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Introduction and notations

A map is defined topologically as a 2-cell imbedding of a connected graph, loops and multiple edges allowed, in a 2-dimensional surface. A rooted planar map is a map on a sphere with a distinguished edge, called the root, assigned with an orientation. Figure 1(a) shows a rooted planar map with seven edges. We refer to [START_REF] Arquès | Une relation fonctionnelle nouvelle sur les cartes planaires pointées[END_REF][START_REF] Tutte | A census of planar maps[END_REF][START_REF] Tutte | On the enumeration of planar maps[END_REF] for the enumeration of rooted planar maps with respect to the number of edges. Planar maps have been widely studied for their combinatorial structure and their links with other domains such as theoretical physics where they appear in some models of 2-dimensional quantum gravity for instance. From a combinatorial point of view, it is proved in [START_REF] Lehman | Counting rooted maps by genus II[END_REF] that rooted planar maps are in one-to-one correspondence with shuffles of Dyck words that avoid a specific pattern. Then, it becomes natural to extend to maps statistical studies on Dyck words (see [START_REF] Deutsch | Dyck path enumeration[END_REF][START_REF] Mansour | Statistics on Dyck words[END_REF][START_REF] Merlini | Some statistics on Dyck words[END_REF][START_REF] Mansour | Counting peaks at height k in a Dyck path[END_REF][START_REF] Mansour | Counting Dyck paths according to the maximum distance between peaks and valley[END_REF][START_REF] Sapounakis | Counting strings in Dyck paths[END_REF] for instance). It is one of the main purpose of this paper.

A Dyck word on the alphabet {a, ā} is a word generated by the contextfree grammar S → ε | aSāS where ε is the empty word. Let D a be the set of all Dyck words on the alphabet {a, ā}, and let D b be the set of all Dyck words on the alphabet {b, b}. It is well known that Dyck words of semilength n are counted by Catalan numbers (A000108 in the on-line encyclopedia of integer sequences [START_REF] Sloane | The On-line Encyclopedia of Integer Sequences[END_REF]), and that any non-empty Dyck word w ∈ D a has a unique decomposition of the form w = aαāβ where α and β are two Dyck words in D a (see [START_REF] Deutsch | Dyck path enumeration[END_REF]). Also, a word w on the alphabet {a, ā} belongs to D a if and only if the following two properties hold: (i) the number of letters a is equal to the number of letters ā in w, and (ii) in any prefix of w, the number of letters a is greater than or equal to the number of letters ā.

We say that an occurrence of the letter a matches an occurrence of ā located to its right in w ∈ D a , whenever the subword of w consisting of all letters between these two occurrences also belongs to D a . In this case, the pair (a, ā) is called a matching in w. For instance, if w = aāaaāaaāāā, then the second occurrence of the letter a matches the last occurrence of ā since aāaaāā is a Dyck word.

A shuffle of two Dyck words v ∈ D a and w ∈ D b is a word s on the alphabet {a, ā, b, b} where s is constructed by interspersing the letters of v and w. Let S be the set of all shuffles of two Dyck words of D a and D b . Shuffles of semilength n, n ≥ 0, in S are enumerated by the sequence A005568 in [START_REF] Sloane | The On-line Encyclopedia of Integer Sequences[END_REF] A shuffle s of two Dyck words v ∈ D a and w ∈ D b will be called crossing whenever there exists a matching (a, ā) in v and a matching (b, b) in w such that s can be written s = αbβaγ bδāη where α, β, γ, δ and η belong to {a, ā, b, b} * . Then the occurrence ba bā will be called a pair of crossing matchings. Let N CS ⊂ S be the subset of non-crossing shuffles in S,

(b) (a)
aaabbāā bā bab bā Figure 1: A rooted planar map with 7 edges and its non-crossing shuffle representation.

i.e., shuffles with no pair of crossing matchings. For instance, aāb baāb baā is in N CS, while aābb ba bā is not in N CS. Notice that non-crossing shuffles are called canonical parenthesis-bracket systems in [START_REF] Walsh | Combinatorial enumeration of non-planar maps[END_REF]. The shuffles of semilength n ≥ 0 in N CS are enumerated by the sequence A000168 in [START_REF] Sloane | The On-line Encyclopedia of Integer Sequences[END_REF] whose first values for n ≥ 0 are 1, 2, 9, 54, 378, 2916, 24057, 208494. They are in one-to-one correspondence with the rooted planar maps with n edges [START_REF] Bernardi | Bijective counting of tree-rooted maps and shuffles of parenthesis systems[END_REF][START_REF] Cori | Enumeration des graphes planaires à l'aide des séries formelles en variables non commutatives[END_REF][START_REF] Lehman | Counting rooted maps by genus II[END_REF][START_REF] Walsh | Combinatorial enumeration of non-planar maps[END_REF]. See Figure 1 for an example of rooted planar map with its representation as a non-crossing shuffle in N CS. This one-to-one correspondence is obtained by the following process. Starting with the root edge, we follow or cross all edges of the map by making its tour in counter-clockwise direction. Each edge in the map must be reached twice. If the final vertex of the encountered edge has not yet been considered, then we follow this edge and we write the letter a; otherwise, if the edge is reached for the first time, then we write the letter b and we cross it; in the other cases the edge is reached for the second time, and we write ā (resp. b) and we follow the edge (resp. we cross the edge) whenever the first assignment of the edge was the letter a (resp. b). Table 1 gives the correspondence between some patterns of length at most two in a shuffle with their meaning in terms of map. For instance, a pattern b b in a shuffle of N CS corresponds to an empty loop on a vertex of the corresponding rooted planar map. Also, the pattern a b cannot occur in the shuffle representation of a rooted planar map because it necessarily creates a pair of crossing matchings.

In a recent paper [START_REF] Baril | Equivalence of Dyck paths modulo some statistics[END_REF] (for equivalence classes of permutations see [START_REF] Baril | Equivalence classes of permutations modulo excedances[END_REF]), the authors introduced an equivalence relation on the set of Dyck words where two Dyck words are equivalent whenever the positions of the occurrences of a given pattern are the same in both words. They provided generating functions for the numbers of equivalence classes whenever the patterns are of length two: aa, aā, āā and āa. See also [START_REF] Baril | Equivalence classes of Motzkin paths modulo a pattern of length at most two[END_REF] for a study of this equivalence two shuffles with the same semilength are π-equivalent whenever they coincide on the positions of occurrences of the pattern π.

For instance, the shuffle s = aaba bābā bā is bā-equivalent to s = aāab bāab bā since the occurrences of bā appear in positions 5 and 9 in s and s .

In Section 2, we show that the problem of the enumeration of the πequivalence classes in N CS is the same as in S whenever π is a pattern of length at most two that does not belong to the set { ba, bā, a b, āb}. In Sections 3-6, we present enumerative results by providing generating functions for the number of π-equivalence classes when π / ∈ { ba, bā, a b, āb}. Using the one-toone correspondence between rooted planar maps and non-crossing shuffles of Dyck words, this induces enumerative results for equivalence classes of rooted planar maps relatively to the positions of some patterns. See Table 2 for an overview of these results. Notice that the pattern a b does not appear in any shuffle of a rooted planar map, and that we did not succeed to obtain the number of π-equivalence classes in S and N CS for π ∈ {āb, ba, bā}. So, we leave these cases as open problems.

Pattern Sequence Sloane a n , 1 ≤ n ≤ 9 {a}, {ā}, {b}, { b} 1 √ 1-4x
Central binomial coeff.

A000984

2, 6, 20, 70, 252, 924, 3432, 12870, 48620

{aā}, {b b} 1-x 1-3x+x 2

Shift of A001519

2, 5, 13, 34, 89, 233, 610, 1597, 4181

{āa}, { bb} 1-2x 1-3x+x 2 A001519
1, 2, 5, 13, 34, 89, 233, 610, 1597 

{aa}, {āā}, {bb}, { bb } 1+x- √ 1-2x-3x 2 2x 2 +3x-1+ √ 1-2x-3x 2 Bisection of A191385 1, 2,

Some preliminary results

In this section, we prove that for some specific patterns π the numbers of π-equivalence classes in S and N CS are the same.

Lemma 1 Let w = αāβγ be a Dyck word in D a with βγ in {a, ā} * . Then the word w = αβāγ is also in D a .

Proof. The Dyck word w is obtained from w by a shift on the right of a letter ā. So, the number of a and the number of ā remains unchanged in w . Moreover, in any prefix of w the number of a is greater than or equal to the number of ā and this property remains satisfied in w . Using the characterization of a Dyck word given in the introduction, w is in D a . 2

Lemma 2 Let w = αaβāγ be a Dyck word in D a . If β = β 1 β 2 . . . β k is in D a then for any i, 1 ≤ i ≤ k, the word w = αaβ 1 . . . β i-1 āβ i . . . β k γ is also in D a .
Proof. Since w is in D a , (i) the number of a and the number of ā are equal in w, and in any prefix (ii) the number of a is greater than or equal to the number of ā. Since β is in D a , the number of a in any prefix of αaβ 1 . . . β i-1 is strictly greater than the number of ā. This means that αaβ 1 . . . β i-1 ā satisfies Condition (ii). Then, w satisfies (ii) which implies that w belongs to D a .

2

Of course, the last two lemmas also hold if we replace the letter a with b. So, we use them indifferently for a and b. Theorem 1 Let s be a shuffle in S and π be a pattern of length at most two not in {a b, āb, ba, bā}. Then, there exists a shuffle s in N CS with the same semilength as s so that s and s are π-equivalent.

Proof. Let s be a shuffle in S that does not lie in N CS, i.e. s contains a pair of crossing matchings. Then, s can be decomposed s = αbβaγ bδāη so that α, β, γ, δ and η are in {a, ā, b, b} * and the crossing matching ba bā is chosen the leftmost possible in s.

We distinguish three cases: (i) π ∈ {a, aa, ab, ba}; (ii) π = aā; and (iii) π = āa. The other cases are easily obtained using classical symmetries on shuffles ( a ↔ b and mirror). Case (i): Let us consider the word s = αbβaγāδ bη obtained from s by an exchange of ā and b. With Lemma 1 and Lemma 2, s is also a shuffle of two Dyck words. The two shuffles s and s belong to the same π-equivalence class since this operation cannot create or delete a pattern in {a, aa, ab, ba}. Moreover the leftmost pair of crossing matchings in s is shifted on the right compared to s. We repeat the process for as long as required, and we obtain a shuffle in N CS with the same semilength as s, which is π-equivalent to s. Case (ii): Let us assume that s = s 1 s 2 . . . s 2k for some k ≥ 1 with s i ∈ {a, ā, b, b}, 1 ≤ i ≤ 2k. We obtain s from s by the following process: we preserve the positions of all occurrences of the pattern aā; the other letters of s are chosen so that the restriction of s to them is the Dyck word of the form b b for some ≥ 0. It is straightforward to see that s ∈ N CS and that the two shuffles s and s belong to the same aā-equivalence class. Case (iii): Let us assume that s = s 1 s 2 . . . s 2k for some k ≥ 1 with s i ∈ {a, ā, b, b}, 1 ≤ i ≤ 2k. We obtain s from s by the following process: we preserve the positions of all occurrences of the pattern āa and we set s 1 = a and s 2k = ā; the other letters of s are chosen so that the restriction to them is the Dyck word of the form a ā for some ≥ 0. It is straightforward to see that s ∈ D a ⊂ N CS and that the two shuffles s and s belong to the same āa-equivalence class.

2

Corollary 1 Let π be a pattern of length at most two not in { ba, bā, a b, āb}.

For each word length the number of π-equivalence classes in S is also the number of π-equivalence classes in N CS.

This corollary allows us to limit our study of the general case to shuffles in S and patterns π not in { ba, bā, a b, āb}. All results in the following sections will hold for both sets S and N CS.

3 Equivalence modulo π ∈ {a, b, ā, b}

The results for π ∈ {b, ā, b} are deduced from the ones for π = a by using the classical symmetries (mirror and a ↔ b) on shuffles. So, we set π = a in this section.

Let A be the set of shuffles in S defined by the grammar A → D a | D a bD a bA where D a is the set of Dyck words on the alphabet {a, ā}.

Lemma 3

The set A and the set of a-equivalence classes of S are in lengthpreserving one-to-one correspondence.

Proof. For k ≥ 1 let s = s 1 s 2 . . . s 2k be a shuffle in S\A with s i ∈ {a, ā, b, b} for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s ∈ A (with the same semilength as s) such that s and s belong to the same a-equivalence class. We define the word s by performing the following process on s for i from 1 to 2k:

-If s i = a then we set s i = a; -Otherwise, we distinguish three cases: Since the process preserves the occurrences of the letter a in s and do not introduce other letters a in s , s and s belong to the same a-equivalence class. Moreover, s necessarily lies in A. Indeed, the process sets s i = ā whenever w a (s 1 . . . s i-1 ) is not a Dyck word of D a ; in all other cases, it sets s i = b or s i = b alternatively. If s does not contain any occurrence of b, then s ∈ D a ⊂ A; otherwise, the previous construction ensures that s has a prefix of the form αbβ b with α and β in D a . This means that s satisfies the grammar A → D a | D a bD a bA. Thus, we have s ∈ A. Now, it suffices to prove that two distinct shuffles s and s with the same semilength in A are not a-equivalent. For a contradiction, let us assume that s and s belong to the same class.

(i) If w a (s 1 . . . s i-1 ) / ∈ D a then we set s i = ā; (ii) If w a (s 1 . . . s i-1 ) ∈ D
We distinguish two cases:

-If s ∈ D a or s ∈ D a with the same positions of the occurrences of a then we have s = s .

-Otherwise, s can be written s = αbβ bγ with α and β in D a and γ in A. Also, s can be written s = α bβ bγ with α and β in D a and γ in A.

Since α and α belong to D a and have the same positions of occurrences of the letter a, we necessarily have α = α . The same argument for β implies that β = β . We complete the proof by induction on the length for γ and γ in A and we conclude s = s .

2

Theorem 2 The generating function for the set of a-equivalence classes in S (or in N CS) with respect to the semilength is given by

1 √ 1 -4x = n≥0 2n n x n .
Proof. By Lemma 3, it suffices to provide the generating function A(x) of the set A, with respect to the semilength. Every nonempty shuffle s ∈ A is obtained by the grammar A → D a | D a bD a bA where D a is the set of Dyck words on the alphabet {a, ā}. This induces the functional equation:

A(x) = D(x) + xD(x) 2 A(x)
where

D(x) = 1- √ 1-4x 2x
is the Catalan generating function for the set D a , which implies the required result. 2

4 Equivalence modulo π ∈ {aā, b b, āa, bb}

The results for π ∈ {b b, bb} are deduced from the ones for π = aā and π = āa by using the classical symmetries. Then, we study in this section the two cases π = aā and π = āa. Let B be the subset of S defined by the grammar B → aāB | bB bB | ε where B → aāB | ε. It is worth noticing that the set B consists of words of the form (aā) k for all k ≥ 0. Moreover, it is straightforward to see that for any s ∈ B we have w b (s) = (b b) i for some i ≥ 0 and w a (s) = (aā) j for some j ≥ 0. Finally, if X = aā then the set B consists of all shuffles of words X i , i ≥ 0, with Dyck words of the form (b b) j , j ≥ 0, where the occurrences of X = aā are never split. For instance, baāaā baāb b belongs to B, while baāa bāaāb b / ∈ B.

Lemma 4

The set B and the set of aā-equivalence classes of S are in lengthpreserving one-to-one correspondence.

Proof. For k ≥ 1 let s = s 1 s 2 . . . s 2k be a shuffle in S\B with s i ∈ {a, ā, b, b} for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s ∈ B (with the same semilength as s) such that s and s belong to the same class. We define the word s by performing the following process on s: -all occurrences of the pattern aā in s are preserved in s ; -for i from 1 to 2k such that s i does not belong to a pattern aā in s, we distinguish two cases:

(i) if w b (s 1 . . . s i-1 ) = (b b) j for some j ≥ 0, then we set

s i = b, (ii) if w b (s 1 . . . s i-1 ) = (b b) j b for some j ≥ 0, then we set s i = b. For all i (1 ≤ i ≤ 2k) we have either w b (s 1 . . . s i ) = (b b) j or w b (s 1 . . . s i ) = (b b) j b
for some j ≥ 0. Moreover, we have w a (s 1 . . . s i ) = (aā) for some ≥ 0 so that a and ā appear necessarily adjacent in s in an occurrence aā. This means that s is a shuffle that lies in B. Since the process preserves the occurrences of the pattern aā, s and s belong to the same aā-equivalence class.

Less formally, s is obtained from s by fixing the occurrences of aā and by replacing all other letters by a Dyck word of the form (b b) j for some j ≥ 0. Therefore, the definition of B ensures us that s is the unique element in B that lies into the same aā-equivalence class as s.

2

Theorem 3 The generating function for the set of aā-equivalence classes in S with respect to the semilength is given by

1 -x 1 -3x + x 2 = n≥0 F 2n+1 x n
where F m is the m-th Fibonacci number (defined by F m = F m-1 +F m-2 with F 0 = 0 and F 1 = 1).

Proof. By Lemma 4, it suffices to provide the generating function B(x) of the set B, with respect to the semilength. Every shuffle s ∈ B is obtained by the grammar B → aāB | bB bB | ε where B → aāB | ε. This induces the functional equation:

B(x) = 1 + xB(x) + xB(x)B (x)
where B (x) = 1 + xB (x) is the generating function for the set B .

A simple calculation provides the result. 2

Now we consider the equivalence relation for the pattern π = āa. Let B be the set B = aBā | ε where B is defined at the beginning of this section.

Lemma 5

The set B and the set of āa-equivalence classes of S are in length-preserving one-to-one correspondence. Proof. Let s = s 1 s 2 . . . s 2k (k ≥ 1) be a nonempty shuffle in S\B with s i ∈ {a, ā, b, b} for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s ∈ B (with the same semilength as s) such that s and s belong to the same āa-equivalence class.

We define the shuffle s as follows:

-we set s 1 = a and s 2k = ā; -all occurrences of the pattern āa in s are preserved in s ; -for i from 2 to 2k -1 such that s i does not belong to a pattern āa, we distinguish two cases:

(i) if w b (s 1 . . . s i-1 ) = (b b) j for some j ≥ 0, then we set

s i = b, (ii) if w b (s 1 . . . s i-1 ) = (b b) j b for some j ≥ 0, then we set s i = b.
For all i, 1 ≤ i ≤ 2k we have either w b (s 1 . . . s i ) = (b b) j or w b (s 1 . . . s i ) = (b b) j b for some j ≥ 0. Moreover, we have w a (s 1 . . . s i ) = (aā) for some ≥ 0 so that a and ā appear necessarily adjacent in s in an occurrence āa, except for s 1 = a and s 2k = ā. This means that s belongs to B . Since the process preserves the occurrences of the pattern āa, s and s belong to the same āa-equivalence class.

This process ensures us that s is the unique element in B that lies into the same āa-equivalence class as s.

2

Theorem 4 The generating function for the set of āa-equivalence classes in S with respect to the semilength is given by

1 -2x 1 -3x + x 2 = n≥0 F 2n-1 x n
where F m is the m-th Fibonacci number (with F -1 = 1).

Proof. By Lemma 5, it suffices to provide the generating function for

B = aBā | ε which is B (x) = xB(x) + 1 = 1-2x 1-3x+x 2 . 2 
5 Equivalence modulo π ∈ {aa, āā, bb, bb }

The results for π ∈ {āā, bb, bb } are deduced from the ones for π = aa by using the classical symmetries.

Let C be the subset of S defined by the grammar C → C | C bC bC where C → aaāC āC | a(C \ε)āC | ε. In fact, the set C consists of Dyck words in D a such that every occurrence of the letter a is contiguous with another occurrence of a.

Lemma 6

The set C and the set of aa-equivalence classes of S are in lengthpreserving one-to-one correspondence. Proof. Let s = s 1 s 2 . . . s 2k (k ≥ 1) be a shuffle in S\C with s i ∈ {a, ā, b, b} for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s ∈ C (with the same semilength as s) such that s and s belong to the same class. We define the word s by performing the following process on s:

-all occurrences of the pattern aa in s are preserved in s ; -for i from 1 to 2k such that s i does not belong to a pattern aa, we distinguish three cases:

(i) If w a (s 1 s 2 . . . s i-1 ) ∈ D a and w b (s 1 s 2 . . . s i-1 ) = (b b) j b for some j ≥ 0, then we set s i = b;

(ii) If w a (s 1 s 2 . . . s i-1 ) ∈ D a and w b (s 1 s 2 . . . s i-1 ) = (b b) j for some j ≥ 0, then we set s i = b;

(iii) If w a (s 1 s 2 . . . s i-1 ) / ∈ D a then s i = ā. For all i, 1 ≤ i ≤ 2k we have either w b (s 1 s 2 . . . s i ) = (b b) j or w b (s 1 s 2 . . . s i ) = (b b) j b for some j ≥ 0; w a (s 1 s 2 . . . s i ) is a prefix of a Dyck word in D a , w a (s 1 s 2 . . . s 2k ) ∈ D a and w b (s 1 s 2 . . . s 2k ) = (b b) j for some j ≥ 0. So, the word s is a shuffle in S. Moreover, any occurrence of the letter a in s is always contiguous with another occurrence of a. Let i 1 ≥ 1 (resp. i 2 > i 1 ) be the position of the leftmost b (resp. b) in s ; then the prefix w a (s 1 s 2 . . . s i 1 -1 ) (resp. w a (s 1 s 2 . . . s i 2 -1 )) lies into D a which implies that the shuffle s is of the form αbβ bγ with α and β in C and γ in C; thus we have s ∈ C.

The process preserves the positions of the occurrences of aa. So, s and s belong to the same aa-equivalence class.

The proof for the unicity of s in C is obtained mutatis mutandis from the proof of Lemma 3.

2

Theorem 5 The generating function for the set of aa-equivalence classes in S with respect to the semilength is given by

1 + x - √ 1 -2x -3x 2 2x 2 + 3x -1 + √ 1 -2x -3x 2 .
This sequence corresponds to the values of even ranks in A191385 ( Let C (x) be the generating function for the set C . From the above grammar, we deduce the functional equation:

C (x) = x 2 C (x) 2 + x(C (x) -1)C (x) + 1 and C(x) = C (x) + xC (x) 2 C(x) which provides C (x) = x+1- √ 1-2x-3x 2 2x(x+1) and C(x) = 1+x- √ 1-2x-3x 2 2x 2 +3x-1+ √ 1-2x-3x 2 . 2 6 
Equivalence modulo π ∈ {ab, ba, āb , bā}

The results for π ∈ {ba, āb , bā} are deduced from the ones for π = ab by using the classical symmetries.

Let E be the set of shuffles in S defined by the grammar E → E | E bE bE where E → abE bE āE | ε. In fact, the set E consists of shuffles s in S such that every occurrence of a letter x ∈ {a, b} appears in a pattern ab, and there is no matchings (a, ā) and (b, b) such that abā b appears in s.

Lemma 7

The set E and the set of ab-equivalence classes of S are in lengthpreserving one-to-one correspondence. Proof. Let s = s 1 s 2 . . . s 2k (k ≥ 1) be a shuffle in S\E with s i ∈ {a, ā, b, b} for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s ∈ E (with the same semilength as s) such that s and s belong to the same class. We define the shuffle s by performing the following process on s:

-all occurrences of the pattern ab in s are preserved in s ; -for i from 1 to 2k such that s i does not belong to a pattern ab, we distinguish two cases:

(i) If w b (s 1 s 2 . . . s i-1 ) ∈ D b and w a (s 1 s 2 . . . s i-1 ) ∈ D a , then we set s i = b; (ii) If w b (s 1 s 2 . . . s i-1 ) / ∈ D b or w a (s 1 s 2 . . . s i-1
) / ∈ D a then there is a letter x ∈ {a, b} which is not matched in the prefix s 1 s 2 . . . s i-1 (we choose x the rightmost possible). If x = a, we set s i = ā, otherwise we set s i = b. Now, let us prove that this process produces a shuffle in E. We distinguish two cases.

-Let us assume that any letter x ∈ {a, b} belongs to an occurrence ab in s . If s i / ∈ {a, b} then s i = ā (resp. s i = b) whenever the rightmost nonmatched x ∈ {a, b} in s 1 s 2 . . . s i-1 is x = a (resp. x = b). So, s 1 s 2 . . . s i-1 s i can be written either abα bβā or abα b according to the value of s i (ā or b), such that w a (α) ∈ D a , w a (β) ∈ D a , w b (α) ∈ D b and w b (β) ∈ D b . Moreover, α and β also satisfy the property that any x ∈ {a, b} belongs to an occurrence ab. Then, s can be generated by the grammar E → abE bE āE | ε.

-Now, let us assume that there exists an occurrence b that does not lie in a pattern ab (the process ensures that any occurrence of the letter a lies into a pattern ab in s ). We choose the leftmost b with this property. Then, s can be written s = αbβ bγ where α ∈ E , β ∈ E and γ ∈ {a, b, ā, b} * . By induction, we have γ ∈ E and s can be generated by the grammar E → E bE bE.

Considering the two cases, s can be generated by the grammar E → E | E bE bE where E → abE bE āE | ε.

It is clear that two shuffles s and s in E lying into the same abequivalence class are necessarily identical. Using a recursive argument, this induces the unicity of a shuffle in E for a given ab-equivalence class. Let E (x) be the generating function for the set E . From the above grammar, we deduce the functional equation

E (x) = 1 + x 2 E (x) 3 and E(x) = E (x) + xE (x) 2 E(x).
The generating function E (x) is known (see A001764 in [START_REF] Sloane | The On-line Encyclopedia of Integer Sequences[END_REF]) and given by The positions of the occurrences of the pattern π involve our equivalence relation. So, it would be interesting to study the weaker equivalence relation where two maps are equivalent when they have the same number of occurrences of a given pattern in their shuffle representations.

More generally, such a study could be made on maps using other representations and patterns.

  . The first values for n ≥ 0 are 1, 2, 10, 70, 588, 5544, 56628. For instance, s = aabāā bab bā is a shuffle of the two Dyck words aaāāaā ∈ D a and b bb b ∈ D b . For any shuffle s, we denote by w a (s) (resp. w b (s)) the Dyck word in D a (resp. D b ) obtained from s by deleting the letters b and b (resp. a and ā). In the following, we will extend the definition of w a (s) and w b (s) for any word in {a, ā, b, b} * . In particular, if s is a prefix of shuffles, w a (s) (resp. w b (s)) becomes a prefix of a Dyck word in D a (resp. D b ). For instance, if s = aabāā bab bā, then w a (s) = aaāāaā and w b (s) = b bb b; and if s = aabā, it is a prefix of a shuffle, and w a (s) = aaā and w b (s) = b are prefixes of Dyck words. Then, a word s is a shuffle in S if and only if w a (s) ∈ D a and w b (s) ∈ D b .

  a and w b (s 1 . . . s i-1 ) / ∈ D b then we set s i = b; (iii) If w a (s 1 . . . s i-1 ) ∈ D a and w b (s 1 . . . s i-1 ) ∈ D b then we set s i = b. It is worth noticing that w a (s 1 . . . s i ) (resp. w b (s 1 . . . s i )) is a prefix of a Dyck word in D a (resp. D b ) for all i, 1 ≤ i ≤ 2k. Moreover, at the end of the process we necessarily have w a (s 1 . . . s 2k ) ∈ D a and w b (s 1 . . . s 2k ) ∈ D b which means that s belongs to S.

  [START_REF] Sloane | The On-line Encyclopedia of Integer Sequences[END_REF]), and the first values for n ≥ 1 are 1, 2, 5, 12, 31, 81, 216, 583, 1590. Proof. By Lemma 6, it suffices to provide the generating function C(x) of the set C, with respect to the semilength. Every nonempty shuffle s ∈ C is obtained by the grammar C → C | C bC bC where C → aaāC āC | a(C \ε)āC | ε.

  Our study focused on the enumeration of the π-equivalence classes of rooted planar maps in shuffle representation for a pattern π of length at most two not in {a b, āb, bā, ba}. Since the pattern a b does not occur in any shuffle of a rooted planar map, only three patterns are left as open enumeration problems.

Table 1

 1 So, we define the equivalence relation on S and N CS for any pattern π of length at most two:

	: Correspondence between patterns in a shuffle and patterns in a
	rooted planar map.
	relation on Motzkin words.
	The motivation of this paper is to present a similar study for shuffles of
	Dyck words and for rooted planar maps considered with their representation
	by shuffles in N CS.

Table 2 :

 2 Enumeration of π-equivalence classes for shuffles and rooted planar maps.

2

  Theorem 6 The generating function for the set of ab-equivalence classes in S with respect to the semilength is given by This is the sequence A138164 in[START_REF] Sloane | The On-line Encyclopedia of Integer Sequences[END_REF], and the first values for n ≥ 1 are 1, 2, 4, 9, 20, 47, 109, 262, 622. Proof. By Lemma 7, it suffices to provide the generating function E(x) of the set E, with respect to the semilength. Every nonempty shuffle s ∈ E is obtained by the grammar E → E | E bE bE where E → abE bE āE | ε.
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