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In this paper we present a new pseudorandom number generator (PRNG) on graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It is firstly proven to be chaotic according to the Devaney's formulation. We thus propose an efficient implementation for GPU that successfully passes the BigCrush tests, deemed to be the hardest battery of tests in TestU01. Experiments show that this PRNG can generate about 20 billion of random numbers per second on Tesla C1060 and NVidia GTX280 cards. It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically secure. A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is finally proposed.

Introduction

Randomness is of importance in many fields such as scientific simulations or cryptography. "Random numbers" can mainly be generated either by a deterministic and reproducible algorithm called a pseudorandom number generator (PRNG), or by a physical non-deterministic process having all the characteristics of a random noise, called a truly random number generator (TRNG). In this paper, we focus on reproducible generators, useful for instance in Monte-Carlo based simulators or in several cryptographic schemes. These domains need PRNGs that are statistically irreproachable. In some fields such as in numerical simulations, speed is a strong requirement that is usually attained by using parallel architectures. In that case, a recurrent problem is that a deflation of the statistical qualities is often reported, when the parallelization of a good PRNG is realized. This is why ad-hoc PRNGs for each possible architecture must be found to achieve both speed and randomness. On the other side, speed is not the main requirement in cryptography: the great need is to define secure generators able to withstand malicious attacks. Roughly speaking, an attacker should not be able in practice to make the distinction between numbers obtained with the secure generator and a true random sequence. Finally, a small part of the community working in this domain focuses on a third requirement, that is to define chaotic generators. The main idea is to take benefits from a chaotic dynamical system to obtain a generator that is unpredictable, disordered, sensible to its seed, or in other word chaotic. Their desire is to map a given chaotic dynamics into a sequence that seems random and unassailable due to chaos. However, the chaotic maps used as a pattern are defined in the real line whereas computers deal with finite precision numbers. This distortion leads to a deflation of both chaotic properties and speed. Furthermore, authors of such chaotic generators often claim their PRNG as secure due to their chaos properties, but there is no obvious relation between chaos and security as it is understood in cryptography. This is why the use of chaos for PRNG still remains marginal and disputable.

The authors' opinion is that topological properties of disorder, as they are properly defined in the mathematical theory of chaos, can reinforce the quality of a PRNG. But they are not substitutable for security or statistical perfection. Indeed, to the authors' mind, such properties can be useful in the two following situations. On the one hand, a post-treatment based on a chaotic dynamical system can be applied to a PRNG statistically deflective, in order to improve its statistical properties. Such an improvement can be found, for instance, in [START_REF] Bahi | A novel pseudo-random generator based on discrete chaotic iterations[END_REF][START_REF] Bahi | On the link between strongly connected iteration graphs and chaotic boolean discrete-time dynamical systems[END_REF]. On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a cryptographically secure one, in case where chaos can be of interest, only if these last properties are not lost during the proposed post-treatment. Such an assumption is behind this research work. It leads to the attempts to define a family of PRNGs that are chaotic while being fast and statistically perfect, or cryptographically secure. Let us finish this paragraph by noticing that, in this paper, statistical perfection refers to the ability to pass the whole BigCrush battery of tests, which is widely considered as the most stringent statistical evaluation of a sequence claimed as random. This battery can be found in the well-known TestU01 package [START_REF] Pierre | TestU01: A C library for empirical testing of random number generators[END_REF]. Chaos, for its part, refers to the well-established definition of a chaotic dynamical system proposed by Devaney [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF].

In a previous work [START_REF] Bahi | A novel pseudo-random generator based on discrete chaotic iterations[END_REF][START_REF] Bahi | Topological chaos and chaotic iterations, application to hash functions[END_REF] we have proposed a post-treatment on PRNGs making them behave as a chaotic dynamical system. Such a post-treatment leads to a new category of PRNGs. We have shown that proofs of Devaney's chaos can be established for this family, and that the sequence obtained after this post-treatment can pass the NIST [START_REF] Barker | Draft nist special publication 800-131 recommendation for the transitioning of cryptographic algorithms and key sizes[END_REF], DieHARD [START_REF] Marsaglia | Diehard: a battery of tests of randomness[END_REF], and TestU01 [START_REF] Pierre | TestU01: A C library for empirical testing of random number generators[END_REF] batteries of tests, even if the inputted generators cannot. The proposition of this paper is to improve widely the speed of the formerly proposed generator, without any lack of chaos or statistical properties. In particular, a version of this PRNG on graphics processing units (GPU) is proposed. Although GPU was initially designed to accelerate the manipulation of images, they are nowadays commonly used in many scientific applications. Therefore, it is important to be able to generate pseudorandom numbers inside a GPU when a scientific application runs in it. This remark motivates our proposal of a chaotic and statistically perfect PRNG for GPU. Such device allows us to generate almost 20 billion of pseudorandom numbers per second. Furthermore, we show that the proposed post-treatment preserves the cryptographical security of the inputted PRNG, when this last has such a property. Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric key encryption protocol by using the proposed method.

The remainder of this paper is organized as follows. In Section 2 we review some GPU implementations of PRNGs. Section 3 gives some basic recalls on the well-known Devaney's formulation of chaos, and on an iteration process called "chaotic iterations" on which the post-treatment is based. The proposed PRNG and its proof of chaos are given in Section 4. Section 5 presents an efficient implementation of this chaotic PRNG on a CPU, whereas Section 6 describes and evaluates theoretically the GPU implementation. Such generators are experimented in Section 7. We show in Section 8 that, if the inputted generator is cryptographically secure, then it is the case too for the generator provided by the post-treatment. Such a proof leads to the proposition of a cryptographically secure and chaotic generator on GPU based on the famous Blum Blum Shum in Section 9.1, and to an improvement of the Blum-Goldwasser protocol in Sect. 9.2. This research work ends by a conclusion section, in which the contribution is summarized and intended future work is presented.

Related works on GPU based PRNGs

Numerous research works on defining GPU based PRNGs have already been proposed in the literature, so that exhaustivity is impossible. This is why authors of this document only give reference to the most significant attempts in this domain, from their subjective point of view. The quantity of pseudorandom numbers generated per second is mentioned here only when the information is given in the related work. A million numbers per second will be simply written as 1MSample/s whereas a billion numbers per second is 1GSample/s.

In [START_REF] Pang | Generating massive high-quality random numbers using GPU[END_REF] a PRNG based on cellular automata is defined with no requirement to an high precision integer arithmetic or to any bitwise operations. Authors can generate about 3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now. However, there is neither a mention of statistical tests nor any proof of chaos or cryptography in this document.

In [START_REF] Kholodov | Generation of random numbers on graphics processors: Forced indentation in silico of the bacteriophage hk97[END_REF], the authors propose different versions of efficient GPU PRNGs based on Lagged Fibonacci or Hybrid Taus. They have used these PRNGs for Langevin simulations of biomolecules fully implemented on GPU. Performances of the GPU versions are far better than those obtained with a CPU, and these PRNGs succeed to pass the BigCrush battery of TestU01. However the evaluations of the proposed PRNGs are only statistical ones.

Authors of [START_REF] Thomas | A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation[END_REF] have studied the implementation of some PRNGs on different computing architectures: CPU, field-programmable gate array (FPGA), massively parallel processors, and GPU. This study is of interest, because the performance of the same PRNGs on different architectures are compared. FPGA appears as the fastest and the most efficient architecture, providing the fastest number of generated pseudorandom numbers per joule. However, we notice that authors can "only" generate between 11 and 16GSamples/s with a GTX 280 GPU, which should be compared with the results presented in this document. We can remark too that the PRNGs proposed in [START_REF] Thomas | A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation[END_REF] are only able to pass the Crush battery, which is far easier than the Big Crush one.

Lastly, Cuda has developed a library for the generation of pseudorandom numbers called Curand [START_REF] Nvidia | Curand library[END_REF]. Several PRNGs are implemented, among other things Xorwow [START_REF] Marsaglia | Xorshift rngs[END_REF] and some variants of Sobol. The tests reported show that their fastest version provides 15GSamples/s on the new Fermi C2050 card. But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).

We can finally remark that, to the best of our knowledge, no GPU implementation has been proven to be chaotic, and the cryptographically secure property has surprisingly never been considered.

Basic Recalls

This section is devoted to basic definitions and terminologies in the fields of topological chaos and chaotic iterations.

Devaney's Chaotic Dynamical Systems

In the sequel S n denotes the n th term of a sequence S and V i denotes the i th component of a vector V . f k = f • ... • f is for the k th composition of a function f . Finally, the following notation is used:

1; N = {1, 2, . . . , N }. Consider a topological space (X , τ ) and a continuous function f : X → X .

Definition 1 f is said to be topologically transitive if, for any pair of open sets U, V ⊂ X , there exists k > 0

such that f k (U ) ∩ V = ∅. Definition 2 An element x is a periodic point for f of period n ∈ N * if f n (x) = x.
Definition 3 f is said to be regular on (X , τ ) if the set of periodic points for f is dense in X : for any point x in X , any neighborhood of x contains at least one periodic point (without necessarily the same period).

Definition 4 (Devaney's formulation of chaos [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF]) f is said to be chaotic on (X , τ ) if f is regular and topologically transitive.

The chaos property is strongly linked to the notion of "sensitivity", defined on a metric space (X , d) by: Definition 5 f has sensitive dependence on initial conditions if there exists δ > 0 such that, for any x ∈ X and any neighborhood V of x, there exist y ∈ V and n > 0 such that d f n (x), f n (y) > δ. δ is called the constant of sensitivity of f . Indeed, Banks et al. have proven in [START_REF] Banks | On devaney's definition of chaos[END_REF] that when f is chaotic and (X , d) is a metric space, then f has the property of sensitive dependence on initial conditions (this property was formerly an element of the definition of chaos). To sum up, quoting Devaney in [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF], a chaotic dynamical system "is unpredictable because of the sensitive dependence on initial conditions. It cannot be broken down or simplified into two subsystems which do not interact because of topological transitivity. And in the midst of this random behavior, we nevertheless have an element of regularity". Fundamentally different behaviors are consequently possible and occur in an unpredictable way.

Chaotic Iterations

Let us consider a system with a finite number N ∈ N * of elements (or cells), so that each cell has a Boolean state. Having N Boolean values for these cells leads to the definition of a particular state of the system. A sequence which elements belong to 1; N is called a strategy. The set of all strategies is denoted by 1, N N . Definition 6 The set B denoting {0, 1}, let f : B N -→ B N be a function and S ∈ 1, N N be a "strategy". The so-called chaotic iterations are defined by x 0 ∈ B N and

∀n ∈ N * , ∀i ∈ 1; N , x n i = x n-1 i if S n = i f (x n-1 ) S n if S n = i. (1) 
In other words, at the n th iteration, only the S n -th cell is "iterated". Note that in a more general formulation, S n can be a subset of components and f (x n-1 ) S n can be replaced by f (x k ) S n , where k < n, describing for example, delays transmission [START_REF] Robert | Discrete Iterations: A Metric Study[END_REF][START_REF] Bahi | Topological chaos and chaotic iterations, application to hash functions[END_REF]. Finally, let us remark that the term "chaotic", in the name of these iterations, has a priori no link with the mathematical theory of chaos, presented above.

Let us now recall how to define a suitable metric space where chaotic iterations are continuous. For further explanations, see, e.g., [START_REF] Bahi | Topological chaos and chaotic iterations, application to hash functions[END_REF].

Let δ be the discrete Boolean metric, δ(x, y) = 0 ⇔ x = y. Given a function f , define the function:

F f : 1; N × B N -→ B N (k, E) -→ E j .δ(k, j) + f (E) k .δ(k, j) j∈ 1;N , (2) 
where + and . are the Boolean addition and product operations. Consider the phase space:

X = 1; N N × B N , (3) 
and the map defined on X :

G f (S, E) = σ(S), F f (i(S), E) , ( 4 
)
where σ is the shift function defined by σ(S n ) n∈N ∈ 1, N N -→ (S n+1 ) n∈N ∈ 1, N N and i is the initial function i : (S n ) n∈N ∈ 1, N N -→ S 0 ∈ 1; N . Then the chaotic iterations proposed in Definition 6 can be described by the following iterations:

X 0 ∈ X X k+1 = G f (X k ). (5) 
With this formulation, a shift function appears as a component of chaotic iterations. The shift function is a famous example of a chaotic map [START_REF] Devaney | An Introduction to Chaotic Dynamical Systems[END_REF] but its presence is not sufficient enough to claim G f as chaotic.

To study this claim, a new distance between two points X = (S, E), Y = ( Š, Ě) ∈ X has been introduced in [START_REF] Bahi | Topological chaos and chaotic iterations, application to hash functions[END_REF] as follows:

d(X, Y ) = d e (E, Ě) + d s (S, Š), (6) 
where

             d e (E, Ě) = N k=1 δ(E k , Ěk ), d s (S, Š) = 9 N ∞ k=1 |S k -Šk | 10 k . (7) 
This new distance has been introduced to satisfy the following requirements.

• When the number of different cells between two systems is increasing, then their distance should increase too.

• In addition, if two systems present the same cells and their respective strategies start with the same terms, then the distance between these two points must be small because the evolution of the two systems will be the same for a while. Indeed, both dynamical systems start with the same initial condition, use the same update function, and as strategies are the same for a while, furthermore updated components are the same as well.

The distance presented above follows these recommendations. Indeed, if the floor value d(X, Y ) is equal to n, then the systems E, Ě differ in n cells (d e is indeed the Hamming distance). In addition, d(X, Y )d(X, Y ) is a measure of the differences between strategies S and Š. More precisely, this floating part is less than 10 -k if and only if the first k terms of the two strategies are equal. Moreover, if the k th digit is nonzero, then the k th terms of the two strategies are different. The impact of this choice for a distance will be investigated at the end of the document.

Finally, it has been established in [START_REF] Bahi | Topological chaos and chaotic iterations, application to hash functions[END_REF] that,

Proposition 1 Let f be a map from B N to itself. Then G f is continuous in the metric space (X , d).
The chaotic property of G f has been firstly established for the vectorial Boolean negation f (x 1 , . . . , x N ) = (x 1 , . . . , x N ) [START_REF] Bahi | Topological chaos and chaotic iterations, application to hash functions[END_REF]. To obtain a characterization, we have secondly introduced the notion of asynchronous iteration graph recalled bellow.

Let f be a map from B N to itself. The asynchronous iteration graph associated with f is the directed graph Γ(f ) defined by: the set of vertices is B N ; for all x ∈ B N and i ∈ 1; N , the graph Γ(f ) contains an arc from x to F f (i, x). The relation between Γ(f ) and G f is clear: there exists a path from x to x in Γ(f ) if and only if there exists a strategy s such that the parallel iteration of G f from the initial point (s, x) reaches the point x . We have then proven in [START_REF] Bahi | On the link between strongly connected iteration graphs and chaotic boolean discrete-time dynamical systems[END_REF] that,

Theorem 1 Let f : B N → B N . G f is chaotic (according to Devaney) if and only if Γ(f ) is strongly connected.
Finally, we have established in [START_REF] Bahi | On the link between strongly connected iteration graphs and chaotic boolean discrete-time dynamical systems[END_REF] that, Theorem 2 Let f : B n → B n , Γ(f ) its iteration graph, M its adjacency matrix and M a n × n matrix defined by

M ij = 1 n Mij if i = j and M ii = 1 -1 n n j=1,j =i Mij otherwise.
If Γ(f ) is strongly connected, then the output of the PRNG detailed in Algorithm 1 follows a law that tends to the uniform distribution if and only if M is a double stochastic matrix.

These results of chaos and uniform distribution have led us to study the possibility of building a pseudorandom number generator (PRNG) based on the chaotic iterations. As G f , defined on the domain 1; N N × B N , is built from Boolean networks f : B N → B N , we can preserve the theoretical properties on G f during implementations (due to the discrete nature of f ). Indeed, it is as if B N represents the memory of the computer whereas 1; N N is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG). Let us finally remark that the vectorial negation satisfies the hypotheses of both theorems above.

Application to Pseudorandomness

A First Pseudorandom Number Generator

We have proposed in [START_REF] Bahi | A novel pseudo-random generator based on discrete chaotic iterations[END_REF] a new family of generators that receives two PRNGs as inputs. These two generators are mixed with chaotic iterations, leading thus to a new PRNG that improves the statistical properties of each generator taken alone. Furthermore, our generator possesses various chaos properties that none of the generators used as input present.

This generator is synthesized in Algorithm 1. It takes as input: a Boolean function f satisfying Theorem 1; an integer b, ensuring that the number of executed iterations is at least b and at most 2b + 1; and an initial Algorithm 1: PRNG with chaotic functions Input: a function f , an iteration number b, an initial configuration x 0 (n bits) Output: a configuration x (n bits)

x ← x 0 ; k ← b + XORshift(b); for i = 0, . . . , k do s ← XORshift(n); x ← F f (s, x); return x;
Algorithm 2: An arbitrary round of XORshift algorithm Input: the internal configuration z (a 32-bit word) Output: y (a 32-bit word)

z ← z ⊕ (z 13); z ← z ⊕ (z 17); z ← z ⊕ (z 5 
); y ← z; return y; configuration x 0 . It returns the new generated configuration x. Internally, it embeds two XORshift(k) PRNGs [START_REF] Marsaglia | Xorshift rngs[END_REF] that return integers uniformly distributed into 1; k . XORshift is a category of very fast PRNGs designed by George Marsaglia, which repeatedly uses the transform of exclusive or (XOR, ⊕) on a number with a bit shifted version of it. This PRNG, which has a period of 2 32 -1 = 4.29 × 10 9 , is summed up in Algorithm 2. It is used in our PRNG to compute the strategy length and the strategy elements.

This former generator has successively passed various batteries of statistical tests, as the NIST [START_REF] Bahi | On the link between strongly connected iteration graphs and chaotic boolean discrete-time dynamical systems[END_REF], DieHARD [START_REF] Marsaglia | Diehard: a battery of tests of randomness[END_REF], and TestU01 [START_REF] Pierre | TestU01: A C library for empirical testing of random number generators[END_REF] ones.

Improving the Speed of the Former Generator

Instead of updating only one cell at each iteration, we can try to choose a subset of components and to update them together. Such an attempt leads to a kind of merger of the two sequences used in Algorithm 1. When the updating function is the vectorial negation, this algorithm can be rewritten as follows:

x 0 ∈ 0, 2 N -1 , S ∈ 0, 2 N -1 N ∀n ∈ N * , x n = x n-1 ⊕ S n , ( 8 
)
where ⊕ is for the bitwise exclusive or between two integers. This rewriting can be understood as follows.

The n-th term S n of the sequence S, which is an integer of N binary digits, presents the list of cells to update in the state x n of the system (represented as an integer having N bits too). More precisely, the k-th component of this state (a binary digit) changes if and only if the k-th digit in the binary decomposition of S n is 1.

The single basic component presented in Eq. 8 is of ordinary use as a good elementary brick in various PRNGs. It corresponds to the following discrete dynamical system in chaotic iterations:

∀n ∈ N * , ∀i ∈ 1; N , x n i = x n-1 i if i / ∈ S n f (x n-1 ) S n if i ∈ S n . ( 9 
)
where f is the vectorial negation and ∀n ∈ N, S n ⊂ 1, N is such that k ∈ S n if and only if the k-th digit in the binary decomposition of S n is 1. Such chaotic iterations are more general than the ones presented in Definition 6 because, instead of updating only one term at each iteration, we select a subset of components to change.

Obviously, replacing Algorithm 1 by Equation 8, which is possible when the iteration function is the vectorial negation, leads to a speed improvement. However, proofs of chaos obtained in [START_REF] Bahi | Hash functions using chaotic iterations[END_REF] have been established only for chaotic iterations of the form presented in Definition 6. The question is now to determine whether the use of more general chaotic iterations to generate pseudorandom numbers faster, does not deflate their topological chaos properties.

Proofs of Chaos of the General Formulation of the Chaotic Iterations

Let us consider the discrete dynamical systems in chaotic iterations having the general form:

∀n ∈ N * , ∀i ∈ 1; N , x n i = x n-1 i if i / ∈ S n f (x n-1 ) S n if i ∈ S n . ( 10 
)
In other words, at the n th iteration, only the cells whose id is contained into the set S n are iterated.

Let us now rewrite these general chaotic iterations as usual discrete dynamical system of the form X n+1 = f (X n ) on an ad hoc metric space. Such a formulation is required in order to study the topological behavior of the system.

Let us introduce the following function:

χ : 1; N × P 1; N -→ B (i, X) -→ 0 if i / ∈ X, 1 if i ∈ X, (11) 
where P (X) is for the powerset of the set X, that is,

Y ∈ P (X) ⇐⇒ Y ⊂ X.
Given a function f : B N -→ B N , define the function:

F f : P 1; N × B N -→ B N (P, E) -→ E j .χ(j, P ) + f (E) j .χ(j, P ) j∈ 1;N , (12) 
where + and . are the Boolean addition and product operations, and x is the negation of the Boolean x.

Consider the phase space:

X = P 1; N N × B N , (13) 
and the map defined on X :

G f (S, E) = σ(S), F f (i(S), E) , ( 14 
)
where σ is the shift function defined by σ(S n ) n∈N ∈ P 1; N N -→ (S n+1 ) n∈N ∈ P 1; N N and i is the

initial function i : (S n ) n∈N ∈ P 1; N N -→ S 0 ∈ P 1; N .
Then the general chaotic iterations defined in Equation 10 can be described by the following discrete dynamical system:

X 0 ∈ X X k+1 = G f (X k ). (15) 
Once more, a shift function appears as a component of these general chaotic iterations.

To study the Devaney's chaos property, a distance between two points X = (S, E), Y = ( Š, Ě) of X must be defined. Let us introduce:

d(X, Y ) = d e (E, Ě) + d s (S, Š), (16) 
where

             d e (E, Ě) = N k=1 δ(E k , Ěk ) is once more the Hamming distance, d s (S, Š) = 9 N ∞ k=1 |S k ∆S k | 10 k . ( 17 
)
where |X| is the cardinality of a set X and A∆B is for the symmetric difference, defined for sets A, B as

A ∆ B = (A \ B) ∪ (B \ A).
Proposition 2 The function d defined in Eq. 16 is a metric on X .

Proof d e is the Hamming distance. We will prove that d s is a distance too, thus d, as being the sum of two distances, will also be a distance.

• Before being able to study the topological behavior of the general chaotic iterations, we must first establish that:

Proposition 3 For all f : B N -→ B N , the function G f is continuous on (X , d).
Proof We use the sequential continuity. Let (S n , E n ) n∈N be a sequence of the phase space X , which converges to (S, E). We will prove that G f (S n , E n ) n∈N converges to G f (S, E) . Let us remark that for all n, S n is a strategy, thus, we consider a sequence of strategies (i.e., a sequence of sequences). As d((S n , E n ); (S, E)) converges to 0, each distance d e (E n , E) and d s (S n , S) converges to 0. But d e (E n , E) is an integer, so ∃n 0 ∈ N, d e (E n , E) = 0 for any n n 0 . In other words, there exists a threshold n 0 ∈ N after which no cell will change its state:

∃n 0 ∈ N, n n 0 ⇒ E n = E.
In addition, d s (S n , S) -→ 0, so ∃n 1 ∈ N, d s (S n , S) < 10 -1 for all indexes greater than or equal to n 1 . This means that for n n 1 , all the S n have the same first term, which is S 0 : ∀n n 1 , S n 0 = S 0 . Thus, after the max(n 0 , n 1 ) th term, states of E n and E are identical and strategies S n and S start with the same first term. Consequently, states of G f (S n , E n ) and G f (S, E) are equal, so, after the max(n 0 , n 1 ) th term, the distance d between these two points is strictly less than 1. We now prove that the distance between G f (S n , E n ) and G f (S, E) is convergent to 0. Let ε > 0.

• If ε 1, we see that the distance between G f (S n , E n ) and G f (S, E) is strictly less than 1 after the max(n 0 , n 1 ) th term (same state).

• If ε < 1, then ∃k ∈ N, 10 -k ε > 10 -(k+1) . But d s (S n , S) converges to 0, so

∃n 2 ∈ N, ∀n n 2 , d s (S n , S) < 10 -(k+2) ,
thus after n 2 , the k + 2 first terms of S n and S are equal.

As a consequence, the k + 1 first entries of the strategies of G f (S n , E n ) and G f (S, E) are the same (G f is a shift of strategies) and due to the definition of d s , the floating part of the distance between (S n , E n ) and (S, E) is strictly less than 10 -(k+1) ε.

In conclusion,

∀ε > 0, ∃N 0 = max(n 0 , n 1 , n 2 ) ∈ N, ∀n N 0 , d G f (S n , E n ); G f (S, E) ε.
G f is consequently continuous.

It is now possible to study the topological behavior of the general chaotic iterations. We will prove that, Theorem 3 The general chaotic iterations defined on Equation 10 satisfy the Devaney's property of chaos.

Let us firstly prove the following lemma.

Lemma 1 (Strong transitivity) For all couples X, Y ∈ X and any neighborhood V of X, we can find n ∈ N * and X ∈ V such that G n (X ) = Y .

Proof Let X = (S, E), ε > 0, and k 0 = log 10 (ε) + 1 . Any point X = (S , E ) such that E = E and ∀k k 0 , S k = S k , are in the open ball B (X, ε). Let us define X = Š, Ě , where X = G k0 (X). We denote by s ⊂ 1; N the set of coordinates that are different between Ě and the state of Y . Thus each point X of the form (S , E ) where E = E and S starts with (S 0 , S 1 , . . . , S k0 , s, . . .), verifies the following properties:

• X is in B (X, ε), • the state of G k0+1 f (X ) is the state of Y .
Finally the point S 0 , S 1 , . . . , S k0 , s, s 0 , s 1 , . . . ; E , where (s 0 , s 1 , . . .) is the strategy of Y , satisfies the properties claimed in the lemma.

We can now prove Theorem 3...

Proof (Theorem 3) Firstly, strong transitivity implies transitivity. Let (S, E) ∈ X and ε > 0. To prove that G f is regular, it is sufficient to prove that there exists a strategy S such that the distance between ( S, E) and (S, E) is less than ε, and such that ( S, E) is a periodic point.

Let t 1 = -log 10 (ε) , and let E be the configuration that we obtain from (S, E) after t 1 iterations of G f . As G f is strongly transitive, there exists a strategy S and t 2 ∈ N such that E is reached from (S , E ) after t 2 iterations of G f .

Consider the strategy S that alternates the first t 1 terms of S and the first t 2 terms of S : S = (S 0 , . . . , S t1-1 , S 0 , . . . , S t2-1 , S 0 , . . . , S t1-1 , S 0 , . . . , S t2-1 , S 0 , . . . ).

It is clear that ( S, E) is obtained from ( S, E) after t 1 + t 2 iterations of G f . So ( S, E) is a periodic point. Since St = S t for t < t 1 , by the choice of t 1 , we have d((S, E), ( S, E)) < .

Efficient PRNG based on Chaotic Iterations

Based on the proof presented in the previous section, it is now possible to improve the speed of the generator formerly presented in [START_REF] Bahi | A novel pseudo-random generator based on discrete chaotic iterations[END_REF][START_REF] Bahi | Topological chaos and chaotic iterations, application to hash functions[END_REF]. The first idea is to consider that the provided strategy is a pseudorandom Boolean vector obtained by a given PRNG. An iteration of the system is simply the bitwise exclusive or between the last computed state and the current strategy. Topological properties of disorder exhibited by chaotic iterations can be inherited by the inputted generator, we hope by doing so to obtain some statistical improvements while preserving speed. Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations are done. Suppose that x and the strategy S i are given as binary vectors. Table 1 shows the result of x ⊕ S i .

x = 1 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 

S i = 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 x ⊕ S i = 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1
unsigned long t 3 = xorwow ( ) ; x = x ^( unsigned int ) t 1 ; x = x ^( unsigned int ) ( t2 >>32); x = x ^( unsigned int ) ( t3 >>32); x = x ^( unsigned int ) t 2 ; x = x ^( unsigned int ) ( t1 >>32); x = x ^( unsigned int ) t 3 ; return x ; }
In Listing 1 a sequential version of the proposed PRNG based on chaotic iterations is presented. The xor operator is represented by ^. This function uses three classical 64-bits PRNGs, namely the xorshift, the xor128, and the xorwow [START_REF] Marsaglia | Xorshift rngs[END_REF]. In the following, we call them "xor-like PRNGs". As each xor-like PRNG uses 64-bits whereas our proposed generator works with 32-bits, we use the command (unsigned int), that selects the 32 least significant bits of a given integer, and the code (unsigned int)(t>>32) in order to obtain the 32 most significant bits of t.

Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers that are provided by 3 64-bits PRNGs. This version successfully passes the stringent BigCrush battery of tests [START_REF] Pierre | TestU01: A C library for empirical testing of random number generators[END_REF].

Efficient PRNGs based on Chaotic Iterations on GPU

In order to take benefits from the computing power of GPU, a program needs to have independent blocks of threads that can be computed simultaneously. In general, the larger the number of threads is, the more local memory is used, and the less branching instructions are used (if, while, ...), the better the performances on GPU is. Obviously, having these requirements in mind, it is possible to build a program similar to the one presented in Listing 1, which computes pseudorandom numbers on GPU. To do so, we must firstly recall that in the CUDA [START_REF] Nvidia | Cuda cublas library[END_REF] environment, threads have a local identifier called ThreadIdx, which is relative to the block containing them. Furthermore, in CUDA, parts of the code that are executed by the GPU, are called kernels.

Naive Version for GPU

It is possible to deduce from the CPU version a quite similar version adapted to GPU. The simple principle consists in making each thread of the GPU computing the CPU version of our PRNG. Of course, the three xor-like PRNGs used in these computations must have different parameters. In a given thread, these parameters are randomly picked from another PRNGs. The initialization stage is performed by the CPU. To do it, the ISAAC PRNG [START_REF] Jenkins | IWFSE: International Workshop on Fast Software Encryption[END_REF] is used to set all the parameters embedded into each thread.

The implementation of the three xor-like PRNGs is straightforward when their parameters have been allocated in the GPU memory. Each xor-like works with an internal number x that saves the last generated pseudorandom number. Additionally, the implementation of the xor128, the xorshift, and the xorwow respectively require 4, 5, and 6 unsigned long as internal variables.

Algorithm 3: Main kernel of the GPU "naive" version of the PRNG based on chaotic iterations

Input: InternalVarXorLikeArray: array with internal variables of the Algorithm 3 presents a naive implementation of the proposed PRNG on GPU. Due to the available memory in the GPU and the number of threads used simultaneously, the number of random numbers that a thread can generate inside a kernel is limited (i.e., the variable n in algorithm 3). For instance, if 100, 000 threads are used and if n = 1001 , then the memory required to store all of the internals variables of both the xor-like PRNGs2 and the pseudorandom numbers generated by our PRNG, is equal to 100, 000 × ((4 + 5 + 6) × 2 + (1 + 100)) = 1, 310, 000 32-bits numbers, that is, approximately 52Mb.

This generator is able to pass the whole BigCrush battery of tests, for all the versions that have been tested depending on their number of threads (called NumThreads in our algorithm, tested up to 5 million).

Remark 1

The proposed algorithm has the advantage of manipulating independent PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in using a master node for the initialization. This master node computes the initial parameters for all the different nodes involved in the computation.

Improved Version for GPU

As GPU cards using CUDA have shared memory between threads of the same block, it is possible to use this feature in order to simplify the previous algorithm, i.e., to use less than 3 xor-like PRNGs. The solution consists in computing only one xor-like PRNG by thread, saving it into the shared memory, and then to use the results of some other threads in the same block of threads. In order to define which thread uses the result of which other one, we can use a combination array that contains the indexes of all threads and for which a combination has been performed.

In Algorithm 4, two combination arrays are used. The variable offset is computed using the value of combination_size. Then we can compute o1 and o2 representing the indexes of the other threads whose results are used by the current one. In this algorithm, we consider that a 32-bits xor-like PRNG has been chosen. In practice, we use the xor128 proposed in [START_REF] Marsaglia | Xorshift rngs[END_REF] in which unsigned longs (64 bits) have been replaced by unsigned integers (32 bits).

This version can also pass the whole BigCrush battery of tests.

Theoretical Evaluation of the Improved Version

A run of Algorithm 4 consists in an operation (x = x ⊕ t) having the form of Equation 8, which is equivalent to the iterative system of Eq. 9. That is, an iteration of the general chaotic iterations is realized between the last stored value x of the thread and a strategy t (obtained by a bitwise exclusive or between a value provided by a xor-like() call and two values previously obtained by two other threads). To be certain that we are in the framework of Theorem 3, we must guarantee that this dynamical system iterates on the space X = P 1, N N × B N . The left term x obviously belongs to B N . To prevent from any flaws of chaotic properties, we must check that the right term (the last t), corresponding to the strategies, can possibly be equal to any integer of 1, N . Such a result is obvious, as for the xor-like(), all the integers belonging into its interval of definition can occur at each iteration, and thus the last t respects the requirement. Furthermore, it is possible to prove by an immediate mathematical induction that, as the initial x is uniformly distributed (it is provided by a cryptographically secure PRNG), the two other stored values shmem[o1] and shmem[o2] are uniformly distributed too, (this is the induction hypothesis), and thus the next x is finally uniformly distributed.

Thus Algorithm 4 is a concrete realization of the general chaotic iterations presented previously, and for this reason, it satisfies the Devaney's formulation of a chaotic behavior.

Experiments

Different experiments have been performed in order to measure the generation speed. We have used a first computer equipped with a Tesla C1060 NVidia GPU card and an Intel Xeon E5530 cadenced at 2.40 GHz, and a second computer equipped with a smaller CPU and a GeForce GTX 280. All the cards have 240 cores.

In Figure 1 we compare the quantity of pseudorandom numbers generated per second with various xorlike based PRNGs. In this figure, the optimized versions use the xor64 described in [START_REF] Marsaglia | Xorshift rngs[END_REF], whereas the naive versions embed the three xor-like PRNGs described in Listing 1. In order to obtain the optimal performances, the storage of pseudorandom numbers into the GPU memory has been removed. This step is time consuming and slows down the numbers generation. Moreover this storage is completely useless, in case of applications that consume the pseudorandom numbers directly after generation. We can see that when the number of threads is greater than approximately 30,000 and lower than 5 million, the number of pseudorandom numbers generated per second is almost constant. With the naive version, this value ranges from 2.5 to 3GSamples/s. With the optimized version, it is approximately equal to 20GSamples/s. Finally we can remark that both GPU cards are quite similar, but in practice, the Tesla C1060 has more memory than the GTX 280, and this memory should be of better quality. As a comparison, Listing 1 leads to the generation of about 138MSample/s when using one core of the Xeon E5530. In Figure 2 we highlight the performances of the optimized BBS-based PRNG on GPU. On the Tesla C1060 we obtain approximately 700MSample/s and on the GTX 280 about 670MSample/s, which is obviously slower than the xorlike-based PRNG on GPU. However, we will show in the next sections that this new PRNG has a strong level of security, which is necessarily paid by a speed reduction.

All these experiments allow us to conclude that it is possible to generate a very large quantity of pseudorandom numbers statistically perfect with the xor-like version. To a certain extend, it is also the case with the secure BBS-based version, the speed deflation being explained by the fact that the former version has "only" chaotic properties and statistical perfection, whereas the latter is also cryptographically secure, as it is shown in the next sections.

Security Analysis

In this section the concatenation of two strings u and v is classically denoted by uv. In a cryptographic context, a pseudorandom generator is a deterministic algorithm G transforming strings into strings and such that, for any seed s of length m, G(s) (the output of G on the input s) has size G (m) with G (m) > m. The notion of secure PRNGs can now be defined as follows.

Definition 7 A cryptographic PRNG G is secure if for any probabilistic polynomial time algorithm D, for any positive polynomial p, and for all sufficiently large m's,

|Pr[D(G(U m )) = 1] -P r[D(U G (m) ) = 1]| < 1 p(m)
,

where U r is the uniform distribution over {0, 1} r and the probabilities are taken over U m , U G (m) as well as over the internal coin tosses of D. Intuitively, it means that there is no polynomial time algorithm that can distinguish a perfect uniform random generator from G with a non negligible probability. The interested reader is referred to [11, chapter 3] for more information. Note that it is quite easily possible to change the function into any polynomial function satisfying (m) > m) [START_REF] Goldreich | Foundations of Cryptography: Basic Tools[END_REF]Chapter 3.3].

The generation schema developed in ( 8) is based on a pseudorandom generator. Let H be a cryptographic PRNG. We may assume, without loss of generality, that for any string S 0 of size N , the size of H(S 0 ) is kN , with k > 2. It means that H (N ) = kN . Let S 1 , . . . , S k be the strings of length N such that H(S 0 ) = S 1 . . . S k (H(S 0 ) is the concatenation of the S i 's). The cryptographic PRNG X defined in [START_REF] Blum | A simple unpredictable pseudo-random number generator[END_REF] is the algorithm mapping any string of length 2N x 0 S 0 into the string (x 0 ⊕ S 0 ⊕ S 1 )(x 0 ⊕ S 0 ⊕ S 1 ⊕ S 2 ) . . . (x o i=k i=0 S i ). One in particular has X (2N ) = kN = H (N ). We claim now that if this PRNG is secure, then the new one is secure too.

Proposition 4 If H is a secure cryptographic PRNG, then X is a secure cryptographic PRNG too.

Proof The proposition is proved by contraposition. Assume that X is not secure. By Definition, there exists a polynomial time probabilistic algorithm D, a positive polynomial p, such that for all k 0 there exists

N ≥ k0 2 satisfying |Pr[D(X(U 2N )) = 1] -Pr[D(U kN = 1]| ≥ 1 p(2N )
.

We describe a new probabilistic algorithm D on an input w of size kN :

1. Decompose w into w = w 1 . . . w k , where each w i has size N .

2. Pick a string y of size N uniformly at random.

3. Compute z = (y ⊕ w 1 )(y ⊕ w 1 ⊕ w 2 ) . . . (y i=k i=1 w i ).

Return D(z).

Consider for each y ∈ B kN the function ϕ y from B kN into B kN mapping w = w 1 . . . w k (each w i has length N ) to (y ⊕ w 1 )(y ⊕ w 1 ⊕ w 2 ) . . . (y i=k1 i=1 w i ). By construction, one has for every w, D (w) = D(ϕ y (w)), [START_REF] Pang | Generating massive high-quality random numbers using GPU[END_REF] where y is randomly generated. Moreover, for each y, ϕ y is injective: if (y⊕w 1 )(y⊕w 1 ⊕w 2 ) . . . (y i=k1 i=1 w i ) = (y ⊕ w 1 )(y ⊕ w 1 ⊕ w 2 ) . . . (y i=k i=1 w i ), then for every 1 ≤ j ≤ k, y i=j i=1 w i = y i=j i=1 w i . It follows, by a direct induction, that w i = w i . Furthermore, since B kN is finite, each ϕ y is bijective. Therefore, and using [START_REF] Pang | Generating massive high-quality random numbers using GPU[END_REF], one has

Pr[D (U kN ) = 1] = Pr[D(ϕ y (U kN )) = 1] = Pr[D(U kN ) = 1]. (19) 
Now, using [START_REF] Pang | Generating massive high-quality random numbers using GPU[END_REF] again, one has for every x,

D (H(x)) = D(ϕ y (H(x))), ( 20 
)
where y is randomly generated. By construction, ϕ y (H(x)) = X(yx), thus

D (H(x)) = D(yx), (21) 
where y is randomly generated. It follows that

Pr[D (H(U N )) = 1] = Pr[D(U 2N ) = 1]. (22) 
From ( 19) and ( 22), one can deduce that there exists a polynomial time probabilistic algorithm D , a positive polynomial p, such that for all k 0 there exists N ≥ k0 2 satisfying

|Pr[D(H(U N )) = 1] -Pr[D(U kN = 1]| ≥ 1 p(2N ) ,
proving that H is not secure, which is a contradiction.

Cryptographical Applications

A Cryptographically Secure PRNG for GPU

It is possible to build a cryptographically secure PRNG based on the previous algorithm (Algorithm 4). Due to Proposition 4, it simply consists in replacing the xor-like PRNG by a cryptographically secure one. We have chosen the Blum Blum Shum generator [START_REF] Blum | A simple unpredictable pseudo-random number generator[END_REF] (usually denoted by BBS) having the form:

x n+1 = x 2 n mod M
where M is the product of two prime numbers (these prime numbers need to be congruent to 3 modulus 4). BBS is known to be very slow and only usable for cryptographic applications. The modulus operation is the most time consuming operation for current GPU cards. So in order to obtain quite reasonable performances, it is required to use only modulus on 32-bits integer numbers. Consequently x 2 n need to be lesser than 2 32 , and thus the number M must be lesser than 2 16 . So in practice we can choose prime numbers around 256 that are congruent to 3 modulus 4. With 32-bits numbers, only the 4 least significant bits of x n can be chosen (the maximum number of indistinguishable bits is lesser than or equals to log 2 (log 2 (M ))). In other words, to generate a 32-bits number, we need to use 8 times the BBS algorithm with possibly different combinations of M . This approach is not sufficient to be able to pass all the tests of TestU01, as small values of M for the BBS lead to small periods. So, in order to add randomness we have proceeded with the followings modifications.

• Firstly, we define 16 arrangement arrays instead of 2 (as described in Algorithm 4), but only 2 of them are used at each call of the PRNG kernels. In practice, the selection of combination arrays to be used is different for all the threads. It is determined by using the three last bits of two internal variables used by BBS. In Algorithm 5, character & is for the bitwise AND. Thus using &7 with a number gives the last 3 bits, thus providing a number between 0 and 7.

• Secondly, after the generation of the 8 BBS numbers for each thread, we have a 32-bits number whose period is possibly quite small. So to add randomness, we generate 4 more BBS numbers to shift the 32-bits numbers, and add up to 6 new bits. This improvement is described in Algorithm 5. In practice, the last 2 bits of the first new BBS number are used to make a left shift of at most 3 bits. The last 3 bits of the second new BBS number are added to the strategy whatever the value of the first left shift.

The third and the fourth new BBS numbers are used similarly to apply a new left shift and add 3 new bits.

• Finally, as we use 8 BBS numbers for each thread, the storage of these numbers at the end of the kernel is performed using a rotation. So, internal variable for BBS number 1 is stored in place 2, internal variable for BBS number 2 is stored in place 3, ..., and finally, internal variable for BBS number 8 is stored in place 1.

In Algorithm 5, n is for the quantity of random numbers that a thread has to generate. The operation t«=4 performs a left shift of 4 bits on the variable t and stores the result in t, and BBS1(bbs1)&15 selects the last four bits of the result of BBS1. Thus an operation of the form t <<= 4; t| = BBS1(bbs1)&15 realizes in t a left shift of 4 bits, and then puts the 4 last bits of BBS1(bbs1) in the four last positions of t. Let us remark that the initialization t is not a necessity as we fill it 4 bits by 4 bits, until having obtained 32-bits. The two last new shifts are realized in order to enlarge the small periods of the BBS used here, to introduce a kind of variability. In these operations, we make twice a left shift of t of at most 3 bits, represented by shift in the algorithm, and we put exactly the shift last bits from a BBS into the shift last bits of t. For this, an array named array_shift, containing the correspondence between the shift and the number obtained with shift 1 to make the and operation is used. For example, with a left shift of 0, we make an and operation with 0, with a left shift of 3, we make an and operation with 7 (represented by 111 in binary mode).

It should be noticed that this generator has once more the form x n+1 = x n ⊕ S n , where S n is referred in this algorithm as t: each iteration of this PRNG ends with x = x ∧ t. This S n is only constituted by secure bits produced by the BBS generator, and thus, due to Proposition 4, the resulted PRNG is cryptographically secure.

Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem

We finish this research work by giving some thoughts about the use of the proposed PRNG in an asymmetric cryptosystem. This first approach will be further investigated in a future work.

Recalls of the Blum-Goldwasser Probabilistic Cryptosystem

The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm proposed in 1984 [START_REF] Blum | An efficient probabilistic public key encryption scheme which hides all partial information[END_REF]. The encryption algorithm implements a XOR-based stream cipher using the BBS PRNG, in order to generate the keystream. Decryption is done by obtaining the initial seed thanks to the final state of the BBS generator and the secret key, thus leading to the reconstruction of the keystream.

The key generation consists in generating two prime numbers (p, q), randomly and independently of each other, that are congruent to 3 mod 4, and to compute the modulus N = pq. The public key is N , whereas the secret key is the factorization (p, q). Suppose Bob wishes to send a string m = (m 0 , . . . , m L-1 ) of L bits to Alice:

1. Bob picks an integer r randomly in the interval 1, N and computes x 0 = r 2 mod N .

2. He uses the BBS to generate the keystream of L pseudorandom bits (b 0 , . . . , b L-1 ), as follows. For i = 0 to L -1,

• i = 0.

• While i L -1:

-Set b i equal to the least-significant3 bit of x i , i = i + 1, x i = (x i-1 ) 2 mod N.

3. The ciphertext is computed by XORing the plaintext bits m with the keystream: c = (c 0 , . . . , c L-1 ) = m ⊕ b. This ciphertext is [c, y], where y = x 2 L 0 mod N. When Alice receives (c 0 , . . . , c L-1 ), y , she can recover m as follows:

1. Using the secret key (p, q), she computes r p = y ((p+1)/4) L mod p and r q = y ((q+1)/4) L mod q.

2. The initial seed can be obtained using the following procedure: x 0 = q(q -1 mod p)r p +p(p -1 mod q)r q mod N . 

Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser

We propose to adapt the Blum-Goldwasser protocol as follows. Let N = log(log(N )) be the number of bits that can be obtained securely with the BBS generator using the public key N of Alice. Alice will pick randomly S 0 in 0, 2 N-1 too, and her new public key will be (S 0 , N ).

To encrypt his message, Bob will compute The same decryption stage as in Blum-Goldwasser leads to the sequence m 0 ⊕ S 0 , m 1 ⊕ S 0 , . . . , m L-1 ⊕ S 0 . Thus, with a simple use of S 0 , Alice can obtain the plaintext. By doing so, the proposed generator is used in place of BBS, leading to the inheritance of all the properties presented in this paper.

Conclusion

In this paper, a formerly proposed PRNG based on chaotic iterations has been generalized to improve its speed. It has been proven to be chaotic according to Devaney. Efficient implementations on GPU using xor-like PRNGs as input generators have shown that a very large quantity of pseudorandom numbers can be generated per second (about 20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01, namely the BigCrush. Furthermore, we have shown that when the inputted generator is cryptographically secure, then it is the case too for the PRNG we propose, thus leading to the possibility to develop fast and secure PRNGs using the GPU architecture. Thoughts about an improvement of the Blum-Goldwasser cryptosystem, using the proposed method, has been finally proposed.

In future work we plan to extend these researches, building a parallel PRNG for clusters or grid computing. Topological properties of the various proposed generators will be investigated, and the use of other categories of PRNGs as input will be studied too. The improvement of Blum-Goldwasser will be deepened. Finally, we will try to enlarge the quantity of pseudorandom numbers generated per second either in a simulation context or in a cryptographic one.
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 3 She recomputes the bit-vector b by using BBS and x 0 . 4. Alice finally computes the plaintext by XORing the keystream with the ciphertext: m = c ⊕ b.

c = m 0 ⊕

 0 (b 0 ⊕ S 0 ), m 1 ⊕ (b 0 ⊕ b 1 ⊕ S 0 ), . . . , m L-1 ⊕ (b 0 ⊕ b 1 . . . ⊕ b L-1 ⊕ S 0 ) (23) instead of (m 0 ⊕ b 0 , m 1 ⊕ b 1 , . . . , m L-1 ⊕ b L-1 ).

Table 1 :

 1 Example of an arbitrary round of the proposed generator

	Listing 1: C code of the sequential PRNG based on chaotic iteration s
	unsigned int CIPRNG( ) {
	s t a t i c unsigned int x = 1 2 3 1 2 3 1 2 3 ;
	unsigned long t 1 = x o r s h i f t ( ) ;
	unsigned long t 2 = xor128 ( ) ;

  Algorithm 4: Main kernel for the chaotic iterations based PRNG GPU efficient versionInput: InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs in global

	memory;
	NumThreads: Number of threads;
	array_comb1, array_comb2: Arrays containing combinations of size combination_size;
	Output: NewNb: array containing random numbers in global memory
	if threadId is concerned then
	retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory
	and x;
	offset = threadIdx%combination_size;
	o1 = threadIdx-offset+array_comb1[offset];
	o2 = threadIdx-offset+array_comb2[offset];
	for i=1 to n do
	t=xor-like();
	t=t^shmem[o1]^shmem[o2];
	shared_mem[threadId]=t;
	x = x^t;
	store the new PRNG in NewNb[NumThreads*threadId+i];
	store internal variables in InternalVarXorLikeArray[threadId];

in fact, we need to add the initial seed (a 32-bits number)

we multiply this number by 2 in order to count

32-bits numbers

As signaled previously, BBS can securely output up to N = log(log(N )) of the least-significant bits of x i during each round.