
HAL Id: hal-02131113
https://hal.science/hal-02131113

Submitted on 16 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MCMAS: A toolkit for developing agent-based
simulations on many-core architectures

Guillaume Laville, Christophe Lang, Bénédicte Herrmann, Laurent Philippe,
Kamel Mazouzi, Nicolas Marilleau

To cite this version:
Guillaume Laville, Christophe Lang, Bénédicte Herrmann, Laurent Philippe, Kamel Mazouzi, et al..
MCMAS: A toolkit for developing agent-based simulations on many-core architectures. Multiagent
and Grid Systems, 2015, 11 (1), pp.15 - 31. �hal-02131113�

https://hal.science/hal-02131113
https://hal.archives-ouvertes.fr

MCMAS: a toolkit for developing agent-based

simulations on many-core architectures

Guillaume Laville∗ Christophe Lang∗ Bénédicte Herrmann∗

Laurent Philippe∗ Kamel Mazouzi † Nicolas Marilleau‡

Abstract

Multi-agent models and simulations are used to describe complex sys-

tems in domains such as biological, geographical or ecological sciences.

The increasing model complexity results in a growing need for computing

resources and motivates the use of new architectures such as multi-cores

and many-cores. Using them e�ciently however remains a challenge in

many models as it requires adaptations tailored to each program, using

low-level code and libraries. In this paper we present MCMAS a generic

toolkit allowing an e�cient use of many-core architectures through al-

ready de�ned data structures and kernels. The toolkit provides few fa-

mous algorithms as di�usion, path-�nding or population dynamics that

are frequently used in an agent based models. For further needs, MC-

MAS is based on a �exible architecture that can easily be enriched by

new algorithms thanks to development features. The use of the library is

illustrated with three models and their performance analysis.

Keywords: Multi-Agent Systems, Parallel Computing, GPGPU, Many-

core

1 Introduction

Multi-Agent Systems (MAS) are often used to describe large complex systems
where the behaviour of the simulated entities cannot be generalised by a global
law, as a mathematical di�erential equation for instance. This is the case in nu-
merous biological, geographical or ecological systems [5, 8] where the behaviour
of the entities composing the system can be represented by an algorithm, the
agent algorithm. The behaviour observed on the whole system then emerges
from the animated model.

In these simulations increasing the size or precision of the model is often
needed to obtain more accurate or realistic results. This generally leads to a

∗FEMTO-ST Institute, CNRS / Université de Franche-Comté, France
†Mésocentre de calcul de Franche-Comté, Université de Franche-Comté, France
‡UMI 209 - UMMISCO, Institut de Recherche pour le Développement (IRD), UPMC,

France

1

higher computation load as more entities are represented or as more complex
algorithms are used to simulate the entity behaviours. When the load increases
personal computers may not be able to run the simulations in reasonable time
and more powerful computing platforms must be used. Parallel architectures
are thus becoming a required mean to gain performance. Their use however
requires fundamental improvement in the model runtimes provided by standard
platforms such as NetLogo [26], GAMA [28] or Repast [10]. Several projects
as D-MASON [7] or Repast-HPC [11] have introduced distributed computing
techniques into MAS in order to bene�t from the parallel CPU architectures.
The goal of these works is to accelerate or enlarge the simulations to get more
descriptive and accurate results.

Last years have seen the emergence of GPU cards based on massively par-
allel architectures and many-core processors as the Xeon Phi, both used with a
parallel SIMD (Single Instruction Multiple Data) programming model. GPGPU
computing is already used in various domains as linear solvers, video stream-
ing or image processing. Most of these applications are based on matrix data
structures well-adapted to parallel processing and several general purpose li-
braries for high performance computing as BLAS [2] have already been adapted
to these architectures. The underlying execution model, with lots of cores, well
�ts programs where several identical instructions are applied on large sets of
data (SIMD model). This is, for instance, the case when a linear transforma-
tion is applied on a matrix. Many-core computing, i.e. based on many-core
processors as the Xeon Phi, is an emerging domain that relays on more gen-
eral purpose cores. The number of available cores is usually less than on GPU
but their individual power is higher and they can run more general purpose
applications using the OpenMP parallelism model.

MAS are also characterised by a set of entities having the same behaviour
and should thus bene�t from the use of many-core and GPU architectures. Con-
sidering that most of personal computers are equipped with an easily accessible
GPU card, using GPU to run MAS must then be considered as a possible way
to speed agent based simulations up. Similarly the emergence of many-core pro-
cessors must be considered as an opportunity to improve agent based simulation
performance. In practice MAS may however be characterised by not so regular
data accesses and unpredictable behaviours due to algorithms o�ering multiple
execution branches or random aspects. They thus do not perfectly �t the single
instruction �ow model and adaptations in their execution work�ows are thus
required to allow agents to run concurrently.

In this paper we assess the use of GPU and many-core architectures to accel-
erate MAS simulations. The contribution of the paper is a toolkit, called MCMAS

(Many Core MAS), that provides functions to facilitate the implementation of
MAS simulations on GPU and many-core architectures and better exploit their
computing power. Related works on GPU and MAS are summarised in section
2. Then, in section 3, we present the MCMAS library. Its interface and extension
facilities are illustrated on three use cases: the classical Prey-Predator model,
the Collembola model and the Mior model. The model performance results
are detailed in section 5. We then conclude on the possibilities of the MCMAS

2

platform and its possible application to other models or use cases in section 6.

2 Related works

Multi-agent systems (MAS) are produced by a bottom-up modelling approach,
where the global evolution of the system is determined by the action of individual
entities. These agents are associated to their own properties and behaviours,
described in the shape of algorithm. Multi-agent systems cover a large spectrum
of models, ranging from simple models implemented as cellular automaton to
problems including state-of-art research in arti�cial intelligence. A distinction
is thus made between cognitive and reactive agents [30, 9], depending on the
level of reasoning associated to each individual. Cognitive agents characterised
by complex behaviour are clearly incompatible with the SIMD execution model
of the GPU. On the opposite, the behaviour of a reactive agents is only based
on stimulus and reactions. These agents are used for instance to describe simple
animals [23] or arti�cial creatures [21] bounded by a set of characteristics and
de�nitions. As the reactive agents are characterised by more simple algorithms,
run by all the agents, they are possible candidates to a GPU parallelisation.

MAS simulations usually relay on the scheduling at each time step of the
execution of a set of agents having the same behaviour, hence the same al-
gorithm. When the number of agents in the set becomes large it is worth to
use more powerful computing architectures as GPU or many-core processors1.
Some works have already demonstrated the gain of using GPU to run MAS
in di�erent applications as tra�c simulation [27] or in various domains as cel-
lular automaton [12], mobile agent path �nding [14], genetic processes [22] or
life science[17]. These works present speci�c adaptations of existing MAS to
GPU. In these models individual behaviours driven by mathematical laws (path
�nding) or equations (cellular automatons) can be considered as the application
of the same process on each individual. This approach does not however work
for the majority of MAS, and algorithmic adaptations are often required. Note
that a full-GPU approach sometime limits the possible use in MAS and that
an hybrid approach as presented in [24], based on CPU plus GPU, may �t the
needs of a larger number of MAS.

The FLAME-GPU [25] platform proposes an all-in-one solution to run MAS
on GPU. The framework relies on a detailed XML description of the agents and
on C-like code fragments to support several target architectures. This approach
implies that the MAS is developed for the framework and thus cannot (re)use
an existing model nor cannot interface with other MAS runtimes.

To our knowledge there is yet no work that explores the use of many-core
processors (in the sense of many general purpose cores) to run agent based

1In the literature the term many-core is di�erently used either for GPU and many general
prupose core processors (as the Xeon Phi) or just for many general prupose core processors
to distinguish them from GPU. In the remainder of the paper we use multi-core for general
purpose processors, with usually less than 10 cores, many-core for many-core processors as
the Phi and GPU for GPU cards.

3

simulations.

3 MCMAS

As previously stated on the one hand Multi Agent Systems are based on large
sets of entities with the same behaviour, and thus should bene�t from a SIMD
execution architecture, and on the other hand this behaviour is not always
regular or simple enough to reach a full use of the power of GPU cards or
many-core processors. For this reason, porting a MAS on these architectures
often requires a model adaptation to bene�t from this architecture. Many-
core programming is however not as simple as developing models using MAS
platforms. First, because the programming languages are not the same. Second,
because there is not much facilities for the development or adaptation of models
on such architectures. Note that GPU cards and many-core processors can
also been used as co-processors to accelerate costly functions of a simulation as
globally updating of an environment or a set of agents and we thus also explore
this approach.

3.1 Basic MCMAS

We propose the MCMAS platform to facilitate the implementation of agent based
models, or part of these models, on GPU and many-core architectures. MCMAS

proposes a framework that includes a set of commonly used functions and data
structures to simplify the implementation of new models and it allows the inte-
gration of new functionalities in the shape of plugins. Several levels of use are
thus possible to provide a better �exibility in the integration between CPU and
GPU execution.

Choosing a programming language is the �rst step to adapt an agent based
model to a GPU or many-core platform. On the one hand the Java programming
language is often used for the implementation of MAS due to its large availabil-
ity and its high-level object-oriented programming. On the other hand GPU
platforms only o�er dedicated languages, CUDA or OpenCL, so that a model
implementation requires some part of GPU-speci�c developments or the use of
GPU enabled libraries. Many-core platforms may be programmed with standard
languages but high performance languages as Open-MP, or OpenCL, are needed
to e�ciently bene�t from their computing power. As Java is a widespread lan-
guage in MAS, MCMAS o�ers a higher level Java interface. This interface is
linked with OpenCL GPU-code through the JOCL library [1] (see �gure 1). We
choose OpenCL for its portability and the possibility to run programs on CPU,
GPU and many-core architectures without modi�cation.

As shown on �gure 1 the framework provides two levels of interfaces. A
low level interface MCM, for Many-Core Manager, that relays on the JOCL
adaptation layer. MCM provides tools to manage the execution on several cores
and to manage native memory. Plugins can be developed thanks to this low-
level layer. These plugins are then grouped to provide the higher-level MCMAS

4

JOCL (OpenCL binding)

Plugin

MCM (Many-Core Manager)
Execution queues, data structures,

OpenCL programs...

MCMAS
context

Plugin

Multi-agent framework or simulation

High-level
interface

Low-level
interface

Figure 1: MCMAS general architecture

interface. Plugins are sets of functions used for similar problems (e.g. apply an
operation on a whole grid). To facilitate the addition of new functions MCMAS

is based on a dynamic architecture allowing the registration of new plugins at
runtime.

The proposed architecture allows several parallelisation approaches depend-
ing on the model: (i) a process parallelisation where calls to plugins are issued
only for the usage of many-core optimised primitives in an existing MAS model
while the rest of the simulation still uses the CPU, or (ii) model parallelisa-
tion when the whole MAS model is rewritten to run on a parallel platform. This
two layered extensible architecture allows the designer to either use already de-
veloped plugins or to roll its own solutions, based on the parallelised operations
required by its model. Choosing either solution depends on the model analysis
with regards to the Amdahl law [3], to identify the functions that would most
bene�t to run on several cores and their implementation di�culty. The process
parallelisation is illustrated by the well known Prey-Predator model[20, 29]. The
model parallelisation is illustrated by the Mior model[18]. Note that a third level
of use is also possible when an existing plugin can be adapted to �t the needs
of a model. This third way of using MCMAS is illustrated by the Collembola
model. These model parallelisation are developed in section 4.

5

3.2 Programming with MCMAS

OpenCL provides access to CPU, GPU or many-core threads using an asyn-
chronous interface. This library is based around three main concepts. The
kernel represents a program to be executed on the GPU or many-core. The
work-item is analogous to the concept of thread on CPU. The work-group is a
set of work-items that share memory. An OpenCL execution consists in running
the same kernel on numerous work-items. Synchronisation operations, as barri-
ers, can only be used across the same work-group. Data used by the work-items
can be stored in local (high speed) or global (low speed) GPU or many-core
memory. Since the size of this local memory is often limited to a few hundred of
kilobytes, choosing this number often implies a compromise between the model
synchronisation or data requirements and the available resources. In the case of
agent based simulations, each agent can thus naturally be mapped to a work-
item. Work-groups can then be used to represent groups of agents or simulations
sharing common data (as the environment) or algorithms (as the background
evolution process). This process is described in more details in the case of the
Mior model[18].

Similar data structures are used by whole classes of MAS. One such example
is the grid, which can be either integrated in the algorithm, as in SugarScape [12]
where each cell represents the fundamental unit of modelling, or used to dis-
cretise a continuous environment as path-�nding simulations [15]. These grids
can be considered as 2d or 3d matrices representing agent data or their envi-
ronment. Another data representation often encountered in MAS is the usage
of coordinate systems to position agents in the simulation space [13].

MCMAS provides a standard set of data structures (grids, vectors, structures)
as a mean to pass data to plugin methods. Methods are provided to facilitate
the translation of existing Java data structures to these formats. Each plugin is
also free to de�ne its own data structures, either for its own usage or for general
use. A �exible data architecture has been designed to expand the existing data
collection.

These common structures also lead to the usage of similar algorithms in many
simulations, such as distance computation in 2d or 3d space, di�usion processes,
reduction operations, SIMD transformations (as linear functions) applied to each
cell of the model. These kinds of processing can be parallelised and executed on
the GPU, leading to possible performance gains, without heavy modi�cations
to the model scheme.

The MCMAS interface is based on the MCMASContext object. This context
contains all the data (for instance device context and execution queue) required
to run MCMAS low-level operations and plugins. The context can be created us-
ing a wide variety of constructors, to allow the customisation of the environment
depending on the available execution resources and the needed functionalities:
pro�ling, debugging. . . This MCMAS context can then be either used to initialise
MCMAS plugins using the newInstance() method, or to directly call low-level
OpenCL operations, using the accessors provided for the underlying OpenCL
objects.

6

GPU AgentCell

Cell

Patch

difuse (cells)

Reduce (cells, totals)

API

MCMAS

MCMAS Library

Figure 2: MCMAS integration in MAS framework

3.3 Developing a new MCMAS Plugin

A MCMAS plugin is a Java class which implements the MCMASPlugin interface.
This interface allows plugins to be instantiated from a MCMAS context. This
context is then be used by the plugin to allocate new data structures, to launch
operations or to adapt its execution.

Beyond the basic methods required by the interface, each plugin can provide
its own free-form set of operations. New MCMAS plugins and structures are
packaged as Java libraries. By convention all classes belonging to the same
plugin are located in a mcmas.plugins.<plugin name> package to maintain
code isolation and facilitate the discovery of new plugins.

Most plugin-provided operations are organised around the standard GPU
execution work�ow: (1) OpenCL source code retrieval and compilation, (2)
copy of Java data into input data structures, (3) execution of one or more
kernel, (4) retrieval of output data and translation into Java data structures,
and (5) resource cleanup and return from the primitive call. Memory allocations
in each plugin can be managed at two levels. At instance level the memory is
used for the lifetime of the plugin. At method level the memory is used for
temporary copies of input and output parameters and to manage the execution
progress.

3.4 Using MCMAS from existing MAS frameworks

The MCMAS library can also be used to delegate computations in existing MAS
frameworks. The library can be interfaced with existing agent platforms to
acts as a wrapper for OpenCL code that allows integration of optimised model
parts within other simulators. An intermediary agent is required to translate the
requests issued from existing models into calls to MCMAS plugins, and to manage
the interactions with the MCMAS platform as shown on �gure 2. This translation
layer between MCMAS and the MAS framework allows a transparent use of the
library without disturbing the existing model architecture. For instance, in

7

the case of the GAMA platform, this integration can be realised by extending
the agent description language with MCMAS related functions. For that, an
OGSI plugin dedicated to GAMA can be developed. In the case of the Madkit
framework [16], a threaded agent may be implemented that is ordered by other
simulation agents through a dedicated agent communication language.

4 Parallelising models with MCMAS

In this section we present three examples of model parallelisation. Each case
illustrates a possible use of MCMAS, i.e. using existing plugins (process par-
allelisation), adapting existing plugins to accelerate part of a model (process
parallelisaton with plugin adaptation) or developing a model to run on several
cores (model parallelisation).

4.1 Process parallelisation use case

As a �rst illustration of the MCMAS use we present here an adaptation of the well
known Prey-Predator model. The observed system consists of wolves, sheeps
and grass. Its implementation is based on �ve steps that are run sequentially:
environment preparation (conversion of the environment grid from the java rep-
resentation to the MCMAS representation), grass growth, preparing agent posi-
tion (conversion of agent positions from their java representation to theirMCMAS

representation), maximum search to de�ne the agent moves depending on their
neighbourhood and eventually the agent updates (moves, feeding, reproduction,
energy). Two of these steps can easily be run on many cores as the needed func-
tions (linear transformation of all the cells of the grid and maximum search)
are already implemented in MCMAS. The other parts of the model are harder
to implement on several cores due to synchronisation issues and conditional
behaviours.

Figure 3 illustrates the use of MCMAS to speedup the Prey-Predator model.
This process parallelisation is done at very low cost as we just call plugins. It is
also easy to realise for none expert programmers. The main loop of the model is
run on the CPU. This means that the CPU keeps the control of the simulation
run. The two most costly functions, grass updating and maximum search, are
run in parallel on the GPU or the many-core processor, as on a co-processor. To
illustrate the MCMAS use for a process parallelisation, a scheme of the simulation
program is given on �gure 4.

This usage of the MCMAS library is rather easy to integrate in an existing
model. It however assumes that there always exists an adapted plugin for the
more costly steps of the model. This is fortunately the case for the Prey-
Predator model but this is obviously not the case for all models. For this we
provide other implementation levels in MCMAS that allows the developer to
adapt existing plugins to develop new ones.

8

Agent movements
Maximum search

plugin

Agent coordinates
preparation

Agent updates

CPU MCMAS

Grass growth
Linear transformation

plugin

Environment
preparation

Loop to the next
iteration

Figure 3: Prey-Predator implementation over MCMAS

1 public void run() {
2 MCMASContext context = new MCMASContext(MCMAS.GPU);
3 LinearPlugin linPlug = LinearPlugin.newInstance(context);
4 SearchPlugin searchPlug = Searchlugin.newInstance(context);
5 for nbIter {
6 envGrid = doEnvPreparation (..); // prepare environment on CPU

7 linPlug.transfrom(envGrid) // grass growth on GPU

8 agentVect = doAgentCoordonate (..); // prepare agent coordinates on CPU

9 Searchlugin.searchMax(agentVect); // Max search on GPU

10 agentUpdate(agentVect); // Agent updates on CPU

11 }
12 }

Figure 4: Usage of MCMAS in the Prey-Predator model

4.2 Process parallelisation with plugin adaptation

The Collembola model is focusing on landscape biodiversity. It reproduces the
di�usion of arthropods life forms (collembola) across plots of an identi�ed terri-
tory. This environment is constituted of forests, cultivated and arti�cial areas.
The model goal is to study the impact of modi�cations of this environment on
biodiversity. The model subdivides each plot in surface units and follows the
evolution of the number of individuals in time. The model is thus based on a
grid of cells (the surface units) that are grouped in plots. Its evolution can be
decomposed into four steps: (i) sum of individuals, which mainly consists in
summing the collembola in each plot cell by cell, (ii) reproduction of each popu-
lation in parcels, this consists in creating new individuals in each plot depending
on the previously computed sum, these individuals are then distributed in the

9

cells, (iii) di�usion between cells, which consists in computing the population
gradient and applying the over�ows (individuals that migrate from one cell to
another) and (iv) selection of surviving individuals, which consists in applying
a boolean condition on each cell.

A �rst analysis of the problem shows that a simple way to improve the
simulation performance with many cores is to use existing plugins to compute
each of the four steps. An existing plugins can be used for the selection step as
it is applied to all the cells. The computations done by the three other steps
are close to functions proposed by existing plugins, but they depend on the
plot con�gurations. For this reason we had to adapt them to the particular
Collembola case. The sum step sums the collembola number for each plot
instead of for the whole grid so we have modi�ed the plugin to return a vector
instead of a single value. The reproduction step uses the sum of the collembola in
the plot to determine the number of created collembola, then it distributes them
in the cells under a maximum threshold condition. This has been implemented
using the linear transformation plugin that we adapt to these constraints. The
di�usion step needs to compute a gradient of di�usion between the cells under
the condition of the plot type. We have modi�ed the gradient plugin to add
this condition.

Note that speci�c synchronisation schemes are used with these four steps to
overlap the data transfers between the host memory and the GPU or many-core
memory.

Thanks to the MCMAS architecture the modi�ed plugins are easily added to
the framework. The resulting code is thus quite similar to the one presented
for the Prey-Predator model. We just call the four plugins instead of two.
As previously the GPU or the many-core platform is used as a specialised co-
processor for the simulation.

4.3 Model parallelisation use case

The Mior (MIcro-ORganism) [6] model simulates local interactions in a soil
between microbial colonies and organic matters. The Mior model can be used
in multi-scale MAS, such as Sworm [4]. Since the evolution takes place at a
microscopic scale each unit of soil corresponds to many such simulations that
justify the computing cost of this process.

1 // Create a new MIOR model template

2 MiorWorld model = new MiorModel ();
3 model.nbOM = 310; model.nbMM = 38; model.size = 200;
4 MCMASContext context = new MCMASContext(MCMASContext.GPU);
5 MiorPlugin plugin = MiorPlugin.newInstance(context);
6 // Execute 100 instances simulating 1000 steps each time.

7 int [][] CO2Values = new int [100][1000];
8 plugin.runNSimulations(model , 100, CO2Values , 1000);

Figure 5: Usage of the Mior plugin from Java code

The Mior model is based on two types of agents: (i) the Meta-Mior (MM),

10

1 public class MiorPlugin extends MCMASPlugin <MiorPlugin > {
2 // Static method implemented by all MCMAS plugins (factory)

3 public static MiorPlugin getInstance(MCMASContext context) {
4 new MiorPlugin(context.getContext (), context.getQueue ();
5 }
6 private MiorPlugin(Context context , CommandQueue queue) {
7 }
8 public void runNSimulations (...) {The
9 model is based on a grid of cells (the surface units) that are grouped
10 in plots. The arrival step mainly consists in counting the collembolas
11 in
12 }
13 }

Figure 6: Implementation of the Mior plugin

microbial colonies consuming carbon and (ii) the Organic Matter (OM), car-
bon deposits occurring in soil. Each Meta-Mior agent exhibits two distinct
behaviours. By breathing it converts mineral carbon from the soil to carbon
dioxide CO2, released in the soil. By growing it �xes the carbon present in the
environment to reproduce itself (augments its size). The growing action is only
possible if the colony breathing needs are covered, i.e. if enough mineral carbon
is available.

The Mior model is not based on a grid and many of its computations cannot
be found in a generic plugin so we have developed a speci�c MCMAS plugin.
Figure 6 gives a scheme of the MCMAS implementation for the plugin with
speci�c functions. Once this plugin is developed it can easily been used from a
Java program as illustrated on (Figure 5). Implementing a new plugin however
requires speci�c many-core programming and parallelisation skills to e�ciently
use the resources. For instance the Mior plugin uses compressed data structures
to improve the execution performance. The Mior plugin makes use of the MCM
interface. It facilitates its implementation by providing functions for many-core
run and memory management.

5 Experiments

In this section we present the performance obtained with the implementation
of the three use cases. We show the gain obtained by delegating functions
to MCMAS or by implementing a plugin that uses the MCMAS library. With
these experiments we illustrate the possible uses of MCMAS depending on the
considered GPU.

5.1 Experiment settings

There are lots of GPU cards sold by manufacturers and it is obviously not
possible to test MCMAS on all of them. As we can only test few of them we had
to choice cards that are representative of di�erent categories.

11

One of the MCMAS targets is the improvement of the simulation performance
on personal computers. We thus choose to �rst test our framework on main-
stream cards. We choose two cards: one Nvidia card, the Geforce 560Ti, and
one AMD card, the Radeon HD HD6870. Both can be considered as represen-
tative of actual cards albeit they are not the most up-to-date. They both have
1 Gb of dedicated memory. These cards are included in two di�erent personal
computers. The Geforce card has 384 cores running at a frequency speed of 833
MHz. It is associated with an Intel core i7 2600K processor, with 4 physical
cores, running at 3.4 Ghz and 4 Go of central memory. The Radeon card has
1120 cores running at a frequency speed of 900 MHz. It is associated with an
AMD Phenom II X6 1090T running at 3.2 GHz, with 6 physical cores, and 4 Gb
of central memory. These con�gurations are standard con�gurations for todays
personal computers.

MCMAS can also been used on supercomputers. As more and more clusters
are equiped with GPU cards to improve their computing power, it is worth
testing MCMAS with professional cards. Our tests are based on two generations
of Nvidia GPU cards: the Kepler K20M and K40. The K20 card has 2494 cores
running at a frequency clock of 706 MHz and 5 Gb of dedicated memory. The
K20 card has 2880 cores running at 745 MHz and 12 Gb of memory. They are
associated with an Intel Xeon E5-2609v2 running at 2.5 GHz. This card is a
recent GPU card mostly designed for high Performance Computing (HPC). We
did also run the simulations on a Nvidia Tesla C1060 card. This is a rather
old card launched in 2008. This card gives good results for dedicated code as
the Mior plugin but lakes of genericity for less speci�c implementations, mainly
because it does not provide cached memory. The results with this older card
are presented in [19]. Last, to illustrate the many-core performance, we also run
our models on a Xeon Phi card. The Xeon Phi processor has 61 physical cores
that provides 244 virtual cores running at 1.238GHz with 1 Gb of memory.

Using an accelerator cards as a GPU or a Xeon Phi always results in an
additional cost, at least the cost of transferring data between the CPU and the
card memory. These costs can be minimised when the size of the simulation
increases and the performance gains thus depends more on the size of the model.
Therefore we have run all the presented models with di�erent scaling factors for
the agent population size. On the other hand, running small simulations on
the external card may not be a good idea for particular models due to these
overhead of memory transfers and it is not worth it implementing a many-
core simulation if its size does not justify it. Despite this we did not notice a
performance degradation on our models, even for small sized simulations, as it
can be noticed on the presented performance curves.

For each simulation we measure the running time on the CPU and on the
accelerator card and compare both performance. The CPU runs are Java im-
plementations of the models instead of their initial Netlogo implementations as
it would not be fair to compare programs to interpreted code (Netlogo imple-
mentations are much more slower). The basic CPU runs are sequential runs.
Using the ability of OpenCL, and hence MCMAS, to run on multi-core CPU as
well as on GPU and many-core, we also includes multi-core CPU runs of the

12

models. This gives a comparison of the performance obtained on the CPU by
using all the available cores, since MCMAS also targets multi-core platforms.

With these experiments we intend to show on the one hand how MCMAS can
improve simulations by simply using or adapting existing plugins and, on the
other hand, how it can also be used to develop dedicated plugins and give good
performances on personal computers as well as on HPC platforms. The �rst set
of experiments only presents the results on personal computer platforms. Then,
in a second set, we show the results obtained on HPC platforms.

5.2 Process parallelisation results

Our �rst illustrating model is the Prey-Predator model, a case of simple process
parallelisation. The model is implemented as presented in section 4.1 with two
functions delegated to MCMAS and therefore to the GPU. The objective of this
experiment is to show how a GPU card of a personal computer and MCMAS

can improve the simulation performance in case of a simple adaptation of the
model (call to a dedicated library). The presented implementation of the Prey-
Predator model is probably not the most e�cient implementation of the model.
It just intends to be an illustration of how MCMAS can speed up a model at low
programming cost and complexity.

With this model we assess two cases where the use of more computing power
is needed: increasing the size of the model and varying one of the simulation
parameters, the size of the search area here. The �rst case shows how, depending
on the scaling factor, the whole simulation is impacted by the GPU use. In the
second case only the search plugin is impacted by the parameter variation and
the remaining of the simulation is not changed.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 i
te

ra
ti

o
n
 t

im
e
 (

m
s)

Model size scaling factor

Java/CPU
MCMAS/CPU
MCMAS/GPU

Figure 7: Prey-Predator, performance depending on environment size

Figure 7 shows the performance obtained on the GeForce platform with the
Prey-Predator model when varying the size of the model. Three implementa-

13

tions are compared here: (1) the Java/CPU curve plots the performance of a
traditional sequential implementation of the model, (2) the MCMAS/CPU curve
plots a parallel implementation that runs on the 8 cores (4 physical cores) of the
CPU, and (3) the MCMAS/GPU curve plots the GPU runs of the same imple-
mentation. Each point of the curves is the mean running time of 5 runs2. Note
that the performance obtained by the two parallel implementations are prone
to variation, around 15% between the extreme values. This variation increases
with the model size and is due to concurrency in memory accesses. In the initial
simulation (scale 1) the environment is a 500 × 500 grid with 10000 preys and
5000 predators randomly disseminated on the grid. Note that a scale of two
between two simulations causes a quadratic increase of the number of agents to
maintain the agent density on the grid. For these simulations the size of the
search area is �xed at 50. The �gure shows that using the GPU to delegate the
computation of some functions in the simulation may leads to signi�cant per-
formance improvements, globally 4 times compared to the Java implementation
and 2 times compared to the CPU run whatever the model size is.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 i
te

ra
ti

o
n
 t

im
e
 (

m
s)

Search radius

Java/CPU
MCMAS/CPU
MCMAS/GPU

Figure 8: Prey-Predator, performance depending on the search area size

Figure 8 shows the results obtained by the Prey-Predator model when vary-
ing the size of the search area on the GeForce GPU card. The variation thus
only impacts the search plugin runtime while keeping the same grid size and the
same running time for the other parts of the code. This illustrates that one of
the parameter of the simulation may have a signi�cant impact on the simulation
and its parallelisation. The simulation used is the reference simulation (scale
1) used in Figure 7. The search area is de�ned by a square which side length
is twice the search radius. The size of the search area has thus a quadratic
progression when the search radius linearly progress.

2We did 7 runs for each measure and removed the two extreme values to improve the
quality of the data set

14

On this simple model, by just using existingMCMAS plugins to improve costly
parts of the simulation (as shown on �gure 3), we can speedup the global runs
up to 3.3 times faster compared to the sequential CPU runs with the GeForce
platform and 2.3 times faster than when using the cores of the CPU. Variations
can be observed on the GPU curves that are mainly linked to granularity of the
simulation compared to the cache size as on the previous �gure.

5.3 Process parallelisation with plugin adaptation results

The Collembola model illustrates a case of process parallelisation with plugin
adaptation. The model is tested on both the GeForce and the Radeon cards.
We did not implement the Collembola model on Java and we just compare here
the impact of increasing the number of CPU cores used to run the simulation
to the GPU runs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20

T
o
ta

l
ti

m
e
 f

o
r

2
0

0
 i
te

ra
ti

o
n
s

(s
)

Model size scaling factor

CPU (1 core)
CPU (8 cores)
Geforce 560Ti

(a) GeForce GPU card

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20

T
o
ta

l
ti

m
e
 f

o
r

2
0

0
 i
te

ra
ti

o
n
s

(s
)

Model size scaling factor

CPU (1 core)
CPU (8 cores)

Radeon HD 6870

(b) Radeon GPU card

Figure 9: Collembola: performance depending on the size of the simulation

Figures 9a and 9b show the results obtained when running the simulations
on both the Radeon card and the GeForce card. We compare here a sequential
java run (1 core) and a multi-core MCMAS run on the local CPU (8 cores) to a
GPU run (GeForce or Radeon). Each dot on the curves is the mean value of 5
runs3 of the simulation. The size of the reference simulation (scaling factor of
1) is 256×256. The scale is obtained by multiplying the size of the environment
while maintaining the global collembola density. Increasing the scaling factor
thus leads to a quadratic progression of the observed area size.

As expected the use of the MCMAS library increases the performance of the
simulation compared to the sequential runs. The best observed speedup is factor
of 8 between the sequential run and the GeForce run. Note that the Radeon
run gives poorer performance, limited to a speedup of 2.6. The reason is that
the Radeon card is older and less multi-purpose and thus does not give so much

3We did 7 runs for each measure and removed the two extreme values to improve the
quality of the data distribution

15

performance as the agent code is not regular enough. Similarly the multi-core
CPU curves are very close to the GPU ones and we have noticed a rather light
load of the GPU during the simulations which means that our code does not
take bene�t of the GPU full power has it does not perfectly match the SIMD
programming model. This enforces our initial assumption that GPU platforms
must gain in �exibility to be used with MAS, which is fortunately the case for
newer platforms. The curves exhibit a odd-even pattern, more marked for the
Radeon. Since this phenomenon is visible on distinct hardware, drivers and
OpenCL implementations, it is likely due to the model decomposition process
based on warp of �xed power-of-two sizes.

5.4 Model parallelisation results

The Mior model illustrates the implementation of a complete model in the shape
of a plugin. The Mior experiments illustrate the impact of increasing the level
of adaptation of the algorithm to GPU hardware. Parallelising a model and
adapting it to the GPU architecture may indeed be a complex work and several
iterations are sometime necessary to obtain good performance. For this reason,
we show here three successive versions of the Mior implementation. The GPU
v1.0 Mior implementation is a direct implementation of the existing algorithm
and its data structures. The GPU v2.0 Mior implementation uses compact rep-
resentations of the topology provided by the low level MCM interface. The GPU
v3.0 Mior implementation tries to bene�t from the local memory by explicitly
copying the most used data at the end of each computations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2 4 6 8 10

A
v
e
ra

g
e
 s

im
u
la

ti
o
n
 t

im
e
 (

m
s)

Model size scaling factor

CPU
GPU v1.0
GPU v2.0
GPU v3.0

Figure 10: Mior performance on mainstream GPU

Figure 10 gives a performance comparison of the simulation runs on the
GeForce GPU and its associated CPU. Each dot represents the mean value of

16

the execution duration for 50 simulations. At scale 1 the model contains 38 MM
and 310 OM which is dictated by the original simulation. Then, at each scale,
the size of the model, the number of OM, the number of MM and the size of the
environment are multiplied by the corresponding factor to maintain the same
mean agent density in the model.

We can notice that there is no notable bene�t to run on GPU for scale 1.
The GPU implementation does not have enough threads (representing agents)
for an optimal usage of GPU resources. But from scale 2 to 10 the speedup
increases from 2 to 25 if we consider the CPU and GPU v2.0 results. The
speedup is much higher than for the previous models. This is due to the fact
that the whole simulation is parallelised and adapted to the GPU constraints.
In the previous models only some functions were delegated to the GPU while the
main control structure still run on the CPU. From the GPU v1.0 curve we can
however conclude that parallelising the model is not always that simple. This
�rst version relays on the synchronisation tools provided by OpenCL and this
is not e�cient in this case with too much con�icts. On the other hand the GPU
v3.0 is shown to be underperforming although it was developed to enhance the
e�ciency. In this case the memory copies do not provides the expected gain in
performance. This clearly illustrates the di�culty to develop an optimal code
on the GPU architecture.

5.5 Results on HPC platforms

We show here the results obtained on our HPC platforms presented in section
5.1. The experiments setting for each model are the same as for the personal
computer experiments. We compare each model when running on the CPU of
the computing node and on the GPU or Xeon Phi.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 i
te

ra
ti

o
n
 t

im
e
 (

m
s)

Search radius

Java/CPU
MCMAS/CPU (1 core)

MCMAS/CPU (2 cores)
MCMAS/CPU (4 cores)
MCMAS/CPU (8 cores)

(a) Performance on multi-cores

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 i
te

ra
ti

o
n
 t

im
e
 (

m
s)

Search radius

MCMAS/GPU (Xeon Phi)
MCMAS/GPU (560Ti)

MCMAS/GPU (K20)
MCMAS/GPU (K40)

(b) Performance on many-core and GPU

Figure 11: Performance for the Prey-Predator model on HPC platforms

Figures 11a and 11b show the performance of the Prey-Predator model when
varying the search radius of the predators on several HPC platforms. Figure 11a
shows the compared performance of the model for di�erent CPU con�gurations.

17

For the reference curve we run the Java implementation of the model on the
node CPU. Then we use the MCMAS implementation and run it with di�erent
numbers of cores. The 1-core run generates a signi�cant lost of performance.
This is explained by the initial cost of generating MCMAS data structures. Then
the performance increases with the number of cores until it reaches a speedup
factor of 4 for 8 cores. Figure 11b shows the performance results for di�erent
GPU and many-core platforms. The Xeon Phi provides the best performance
but the Kepler GPU cards give very close results. The GeForce card has been
added here for comparison and we can note that, although its performance is
lower it is not that far for the HPC cards. When comparing both Figures 11a
and 11b, we can see that the running time almost linearly increases with the
search radius and that the performance of the K40 card and the Xeon Phi shows
a speedup of 2 compared to a 8 cores CPU run and a speedup of 10 compared
to the reference Java run.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20

T
o
ta

l
ti

m
e
 f

o
r

2
0

0
 i
te

ra
ti

o
n
s

(s
)

Model size scaling factor

CPU (1 core)
CPU (8 cores)

Kepler K20
Kepler K40

(a) Collembola model

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10

A
ve

ra
g
e
 s

im
u
la

ti
o
n
 t

im
e
 (

m
s)

Model size scaling factor

CPU
GPU v1.0
GPU v2.0
GPU v3.0

(b) Mior model

Figure 12: Performance of Collembola and Mior models on HPC platforms

Figures 12a and 12b shows the results obtained on Kepler GPU for the
Collembola and Mior models. Figure 12a shows a comparison of the results for
the two Kepler platforms and for the multi-core run. Here the K20 card reaches
almost the same performance as the K40 card. This can be explain by the short
di�erence between their frequencies and light load of the devices although the
gain is noticeable. Note that the 8 cores runs give an average performance.
Figure 12b shows the results for the di�erent Mior implementations on the K40
card. The obtained performance is signi�cantly better here than on the GeForce
as we reach a factor of 40.

On these HPC results we see that the speedup varies between 10 (Prey-
Predator and Collembola models) up to 40 (Mior model). As for the mainstream
cards the di�erence is explained by the level of adaptation of the implementation
to the GPU architecture. With a speedup of 40 we reach a rather standard value
that can be reached when porting other applications on GPU, as linear algebra
based applications for instance.

18

6 Conclusion

In this article we present MCMAS, a solution that facilitates the use of many-core
architectures and that allows the integration of optimised model parts within
agent based simulators. To achieve this, two possible approaches are supported
by our toolkit: (i) use MCMAS as an optimised algorithm library; or (ii) use
MCMAS as many-core runtime to develop speci�c algorithms or MAS. The usage
can be mixed by the model designer, depending on its model needs and of the
amount of development required.

The �rst approach is to use the interfaces and plugins already provided
by MCMAS. These plugins cover classic problems in MAS simulations as path-
�nding, di�usion or population dynamics. These prede�ned algorithms are
ready to be used for accelerating one or more parts of an existing CPU sim-
ulation, without huge changes in the existing implementation. Thanks to the
dynamic architecture new plugins can be added at runtime and it is thus easy
to modify standard plugins to adapt them to speci�c cases as illustrated with
the Collembola model.

The second approach is to develop new plugins for MCMAS to enable the
implementation of more specialised or performance-critical algorithms directly
on the underlying many-cores platform. This approach implies the development
of OpenCL kernels, called from MCMAS, to execute portions of the computa-
tions. Once written, these kernels can be used both on CPU, GPU, many-core
processors or any other OpenCL supported platform: this allows to reuse the
same program on a wide set of architectures, ranging from personal computers
to computing clusters, or dedicated GPU nodes, without modi�cation or manual
re-compilation.

Our main goal is now to enrich the MCMAS platform to support more MAS
problems and to re�ne the support of new data structures to generalise the
possible applications of this platform. The platform is now freely available on
our website4 and can also be completed by other contributors.

Note that MCMAS has yet only be tested on four GPU cards, Xeon Phi and
on few CPU cores of a standard CPU. It will interesting to test it on more GPU
architectures or even FPGA based platforms. While simple runs should quickly
be possible as MCMAS if OpenCL is available on these platforms, e�cient use
may leverage more challenges due the di�erence of their design.

7 Acknowledgements

Computations presented in this article were realised on the supercomputing
facilities provided by the Mésocentre de calcul de Franche-Comté. The
authors would like to thank M. Cédric Clerget for its help in running the simu-
lations on the Radeon card.

4https://disc.univ-fcomte.fr/gitlab/guillaume.laville/mcmas/tree/master

19

References

[1] JOCL: Java bindings for OpenCL. http://www.jocl.org/. [24-nov-2014].

[2] The NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS). https:
//developer.nvidia.com/cublas. [24-nov-2014].

[3] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proceedings of the April 18-20,

1967, Spring Joint Computer Conference, AFIPS '67 (Spring), pages 483�
485, New York, NY, USA, 1967. ACM.

[4] E. Blanchart, N. Marilleau, A. Drogoul, E. Perrier, JL. Chotte, and
C. Cambier. Sworm: an agent-based model to simulate the e�ect of earth-
worms on soil structure. European Journal of Soil Science, 60(1):13�21,
2009.

[5] Frank J Bruggeman and Hans V Westerho�. The nature of systems biology.
TRENDS in Microbiology, 15(1):45�50, 2007.

[6] M. Bousso C. Cambier, D. Masse and E. Perrier. An o�er versus de-
mand modelling approach to assess the impact of micro-organisms spatio-
temporal dynamics on soil organic matter decomposition rates. Ecological
Modelling, 139(1-2):301�313, 2007.

[7] Michele Carillo, Gennaro Cordasco, Rosario De Chiara, Francesco Raia,
Vittorio Scarano, and Flavio Serrapica. Enhancing the performances of
d-mason - a motivating example. In Nuno Pina, Janusz Kacprzyk, and
Mohammad S. Obaidat, editors, SIMULTECH, pages 137�143. SciTePress,
2012.

[8] Jean-Christophe Castella, Suan Pheng Kam, Dang Dinh Quang, Peter H.
Verburg, and Chu Thai Hoanh. Combining top-down and bottom-up mod-
elling approaches of land use/cover change to support public policies: Ap-
plication to sustainable management of natural resources in northern Viet-
nam. Land Use Policy, 24(3):531 � 545, 2007. Integrated Assessment of
the Land System: The Future of Land Use.

[9] Brahim Chaib-Draa, Imed Jarras, and Bernard Moulin. Systèmes multi-
agents: principes généraux et applications. Edition Hermès, 2001.

[10] Nicholson Collier. RePast: An Extensible Framework for Agent Simulation.
Natural Resources and Environmental Issues, 8(4):17�21, 2001.

[11] Nicholson Collier and Michael North. Parallel agent-based simulation with
REPAST for high performance computing. SIMULATION, 2012.

[12] R. M. D'souza, M. Lysenko, and K. Rahmani. Sugarscape on steroids:
Simulating over a million agents at interactive rates. In Proceedings of the

Agent 2007 Conference, 2007.

20

[13] U. Erra, B. Frola, V. Scarano, and I. Couzin. An e�cient GPU implemen-
tation for large scale individual-based simulation of collective behavior.
In Proceedings of the 2009 Int. Workshop on High Performance Compu-

tational Systems Biology, HIBI '09, pages 51�58, Washington, DC, USA,
2009. IEEE Computer Society.

[14] R. Silveira et.al. Path-planning for RTS games based on potential �elds.
In Proceedings of the Third international conference on Motion in games,
MIG'10, pages 410�421, Berlin, Heidelberg, 2010. Springer-Verlag.

[15] L. Fischer, R. Silveira, and L. Nedel. GPU accelerated path-planning for
multi-agents in virtual environments. In Proceedings of the 2009 VIII

Brazilian Symposium on Games and Digital Entertainment, SBGAMES
'09, pages 101�110, Washington, DC, USA, 2009. IEEE Computer Society.

[16] O. Gutknecht and J. Ferber. Madkit: a generic multi-agent platform. In
Proceedings of the fourth international conference on Autonomous agents,
AGENTS '00, pages 78�79, New York, NY, USA, 2000. ACM.

[17] G. Laville, N. Marilleau C. Lang, K. Mazouzi, and L. Philippe. Using
GPU for multi-agent soil simulation. In PDP 2013, pages 392�399, Belfast,
Ireland, February 2013. IEEE Computer Society Press.

[18] G. Laville, K. Mazouzi, C. Lang, N. Marilleau, and L. Philippe. Using
GPU for multi-agent multi-scale simulations. In DCAI'12, volume 151 of
Advances in Intelligent and Soft Computing, pages 197�204, Salamanca,
Spain, March 2012. Springer.

[19] Guillaume Laville, Kamel Mazouzi, Christophe Lang, Nicolas Marilleau,
Bénédicte Herrmann, and Laurent Philippe. MCMAS: a toolkit to ben-
e�t from many-core architecture in agent-based simulation. In PADAPS

2013, 1st Workshop on Parallel and Distributed Agent-Based Simulations,

in conjunction with EuroPar 2013, volume 8374 of LNCS, pages 544�554,
Aachen, Germany, August 2013. Springer.

[20] A. J. Lotka. Analytical Note on Certain Rhythmic Relations in Organic
Systems. Proceedings of the National Academy of Sciences of the United

States of America, 6(7):410�415, July 1920.

[21] P. Maes. Designing Autonomous Agents: Theory and Practice from Biology

to Engineering and Back. A Bradford book. MIT Press, 1990.

[22] O. Maitre, N. Lachiche, P. Clauss, L. Baumes, A. Corma, and P. Collet.
E�cient parallel implementation of evolutionary algorithms on GPGPU
cards. In Henk Sips, Dick Epema, and Hai-Xiang Lin, editors, Euro-Par
2009 Parallel Processing, volume 5704 of LNCS, pages 974�985. Springer
Berlin / Heidelberg, 2009.

[23] D. McFarland. The Oxford companion to animal behaviour. Oxford Paper-
back Reference. Oxford University Press, 1987.

21

[24] Fabien Michel. Gpu environmental delegation of agent perceptions for
mabs. In Mohamed Essaaidi and Mohamed Nemiche, editors, ICCS'12,
IEEE International Conference on Complex Systems, Agadir, Morocco,

November 5-6, pages 1�6. IEEE Computer Society, 2012.

[25] Paul Richmond. FLAME GPU Technical Report and User Guide (CS-
11-03). Technical report, Department of Computer Science, University of
She�eld, 2011.

[26] E. Sklar. Netlogo, a multi-agent simulation environment. Arti�cial Life,
13(3):303�311, 2011.

[27] D. Strippgen and K. Nagel. Multi-agent tra�c simulation with cuda.
2009 International Conference on High Performance Computing Simula-

tion, pages 106�114, 2009.

[28] P. Taillandier, A. Drogoul, D.A. Vo, and E. Amouroux. Gama: a simu-
lation platform that integrates geographical information data, agent-based
modeling and multi-scale control. In The 13th International Conference on

Principles and Practices in Multi-Agent Systems, volume 7057/2012, pages
242�258, India, 2012.

[29] Hugo Thierry, David Sheeren, Nicolas Marilleau, Nathalie Corson, Mar-
ion Amalric, and Claude Monteil. From the lotka-volterra model to a
spatialised population-driven individual-based model. Ecological Modeling,

Elsevier, to-appear, 2014.

[30] Eric Werner and Yves Demazeau. The design of multi-agent systems. De-
centralized AI, 3:3�30, 1992.

8 Biographies of authors

Guillaume Laville obtained his Ph.D degree in 2014 at the University of
Franche-Comté. He is currently a system engineer at the computing centre of
Université de Franche-Comté. His research interests include distributed and
parallel platforms, in particular many-core and GPU, and multi-agent systems.

Christophe Lang obtained his PhD Thesis in Computer Science (University
of Franche-Comté) in 1999. He is an associate professor the Computer Science
Department (DISC) of Institut FEMTO-ST at the Université of Franche-Comté
(UFC) (France). His research interests focus on distributed systems, multi-agent
systems, simulation, models and sensor networks.

Bénédicte Herrmann obtained his Ph.D degree in 1993 at the Université of
Franche-Comté. She is currently an Assistant Professor in the Computer Science
Department of Institut FEMTO-ST (DISC) at the Université of Franche-Comté
(UFC) (France). Her main research interests include distributed systems and
complex system modeling.

22

Laurent Philippe obtained his Ph.D degree in 1993 at the Université of
Franche-Comté and his HDR in 2000. He is currently a full Professor in the
Computer Science Department (DISC) of Institut FEMTO-ST at the Univer-
sité of Franche-Comté (UFC) (France). His main research interests include
distributed and parallel systems, scheduling algorithms for parallem platforms
and optimization procedures for complex systems.

Kamel Mazouzi obtained his Ph.D degree in 2005 at the University of Franche-
Comté. He is currently an HPC research engineer at the computing centre of
Université de de Franche-Comté. His research interests include parallel comput-
ing, distributed systems and numerical asynchronous algorithms.

Nicolas Marilleau obtained his Ph.D degree in 2005 at the University of
Franche-Comté. He is Research Engineer at the UMMISCO International Re-
search Unit of the IRD (Research Institut for Development). His main research
area is modeling and simulating complex system with multi-agent systems and
distributed computing. He applies his work especially to soil sciences and ge-
ography, domains where he is actively involved to design and develop models
representing real phenomena.

23

