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Abstract—As natural disasters seem to become more and more
frequent in some parts of the world, power system resilience is a
growing concern, especially due to the economic consequences of
the induced blackouts. In this paper, we use a temporal-spatial
model to describe natural disasters. Based on fragility curves, we
use a Monte Carlo method to estimate the destructive dynamic
of such disasters, and simulate a hurricane occuring in the IEEE
37-bus network. We then propose an optimization method to
find the most suitable nodes to integrate distributed generators
(DG). With the resulting DG additions, we select the lines to be
hardened to further improve system resilience.

Index Terms—distributed generation, natural disaster, power
system, resilience, temporal-spatial model

I. INTRODUCTION

The recent years have seen an increase in the frequency of
natural disasters, in the form of hurricanes, storms, floods or
earthquakes. Most of these events lead to significant damages
on electric power systems, and sometimes even blackouts [1].
Avoiding such difficulties is thus an increasingly important
topic [2], [3], especially due to their large economic conse-
quences, e.g., for industry. A general approach to such prob-
lems is that systems should ideally have the ability to “bend”
rather than break, i.e., become more resilient. In this paper
we adopt the following definition of power system resilience:
“the ability to prepare for and adapt to changing conditions
and withstand and recover rapidly from disruptions” [4].

Conventional distribution networks have a radial structure,
where power is generated in large centralized power plant
[5]. Consequently, if a node of the radial tree is damaged, all
child nodes will typically also be out of service. This might
however not be the case anymore when we consider distributed
generation (DG) and storage, which are becoming increasingly
popular. By integrating such units (e.g., photovoltaic panels,
fuel cells or microturbines) at the edge of the grid, additional
options for resilience emerge. Another (classical) solution is to
harden power lines [6] to reduce their failure probability, e.g.,
by changing the overhead power lines to underground cables.

Due to the nature of a natural disaster (e.g., a hurricane),
the probability that grid components fail changes with time
as well as location. This implies that natural disasters must
be modeled with temporal-spatial models. Fig. 1 shows a
ficticious example of such an input model. From this model,
the problem is to determine where to install DG and which
power lines to harden in the distribution network. In this paper,

we therefore discuss (a) how to use a Monte Carlo method to
calculate the influence of natural disasters; and (b) how to
determine the best DG and line hardening options.

Fig. 1. Failure probability vs. zone and time.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III introduces the
studied temporal-spatial natural disaster model. Section IV
describes the method used to evaluate where to install DG
and which power lines to harden in distribution network, and
Section V concludes the paper.

II. RELATED WORK

In this section, we review related work under two perspec-
tives: (a) methods used to quantify disasters influence; and (b)
solutions to improve power system resilience.

A. Methods used to quantify disasters influence

First, [1] reviews the resilience of power systems under
natural disasters: it discusses forecasting models with statisti-
cal simulation-based models; then discusses corrective actions,
hardening and resilience activities; and thirdly, proposes two
restoration strategies including DG, microgrids and distribu-
tion automation with decentralized restoration.

[7] presents a methodology for resilience analysis. Firstly,
it analyses the structure of the system, using interaction and



coupling metrics; then it builds a dynamic model considering
failure time and recovery time, and analyses the dynamic
model using state transitions with an event-driven method.
It then provides a resilience metric, by summing the nodes’
states; and at last, it analyses the sensitivity to the variability
of disturbances.

[8] uses fragility curves to express the relation between
the failure probability of a system component, the loss of load
frequency (LOLF) and the loss of load expectation (LOLE).
These are used as reliability indices, and for dividing the
system into different regions in order to precise the influence
of weather, then evaluate the impact of weather in four
cases: normal network, robust network, redundant network,
and response network.

In [9], the authors propose a resilience model including
four sub-models: firstly, using a Poisson process to build
the hurricane model; then building the fragility model of
power system components; thirdly, building the power system
response model; and last, building a restoration model consid-
ering component repair priorities. With this model, the authors
are able to assess resilience in four dimensions: technical,
organizational, social and economic.

Paper [10] uses a spatial-temporal non-stationary random
process approach to model large-scale disruptions in power
distribution induced by severe weather. Firstly, it describes
the dynamic failure and recovery processes, then it quantifies
the disruption rate and recovery rate, and gives a definition of
resilience. At last, it uses hurricane Ike data to calculate the
non-stationary process of the hurricane.

[11] provides a grid-centric model for natural hazards,
that considers the probability and severity of events, the
geographical span of disaster events, the impact on component
availability, and the impact on component capacity.

Finally, [12] proposes a cascading outage analysis model to
evaluate the short term impacts of attacks or disasters. This
model uses four outage checkers, namely a transient stability
checker, a frequency outage checker, an overload outage
checker, and a voltage outage checker to simulate the system
behavior after an initial disturbance. Authors also propose a
tool to analyze power system security under hurricane threats,
by firstly building the hurricane model, then using the model to
simulate transmission line failures based on the failure rate of
the transmission line, thirdly applying these transmission line
failures to the cascading outage analysis model, and finally
obtaining the total system outage.

The above papers provide methods to quantify the influ-
ence of natural disasters. However, they do not address the
method to withstand disasters. In summary, natural disasters
are spatial-temporal non-stationary random processes, which
means that when disasters occur on power systems, the failure
probability of components is different in different geographical
zones, and also as time goes, the destructive dynamic of
components is different.

B. Power system resilience improvement

Once the mechanism of propagation of disasters is known,
we can develop methods or strategies to improve power system
resilience.

For example, [6] proposes several defense plans for boosting
resilience, including short-term resilience measures and long-
term resilience measures. [13] discusses improving resilience
in three ways: utilizing microgrids to restore more loads,
using remote-controlled switches to decrease restoration time,
and providing redundant sources to critical loads. In [14],
authors research about the topology of the system, and find
that networks typically have a number of highly-connected
hub buses. These networks appear to have a scale-free network
structure, so these hub buses are key elements to improve
the resilience of the overall system. In [15], authors propose
an extended topological method by incorporating electrical
distance, power transfer distribution factors, and line flow
limits to research about the vulnerability of the system. In
[16], authors use a simulation method to find which recovery
strategy is the best. It adopts line flow violations and voltage
violations as metrics to calculate the resilience of the system.
Then authors compute power flow for the IEEE 9 nodes model
to compare resilience results with different recovery strategies.

Methods using DG to improve system resilience are also
proposed. In [5], authors present a microgrids forming method
in distribution systems after a natural disaster, and the impacts
of multiple faults are considered. In [17], authors restore
the distribution system using spanning tree search method,
in which microgrids are regarded as virtual feeders. In [18],
the authors propose a three-stage restoration strategy using
DG, with: (a) network cell formation, (b) network cell ex-
pansion, and (c) reconnection with upper level networks. [19]
researches on the sectionalization of a distribution system into
multiple networked self-supplied microgrid, after an outage.
[20] proposes a self-healing planning strategy for all possible
future faults by optimally dividing the distribution system into
microgrids.

In summary, the main methods discussed in the literature
to resist disasters include: 1) using multiple power sources,
i.e., integrating DG sources; 2) hardening highly-connected
lines. Another aspect is that the above papers research on using
DG to improve resilience after disasters are over, but do not
consider using DG to resist disasters while they are happening.

In our previous research [21], we presented a Monte Carlo
method to calculate the influence of natural disasters, but the
natural disaster was built on a simple model. We also did not
consider the optimal connection of DG. The main contribution
of this paper are as follows: 1) we build a spatial-temporal
dynamic model to describe natural disasters; 2) we use a time
series Monte Carlo method to simulate this dynamic model;
3) we study the optimal siting of DGs to improve system
resilience; 4) with the resulting DG additions, we select the
lines to be hardened to further improve system resilience.



III. MONTE CARLO MODEL

Due to the fact that the destructive dynamic of a disaster is
random [10], the Monte Carlo approach [22] is used to simu-
late a large number of disaster scenarios using a probabilistic
approach. Because a natural disaster is a spatial-temporal
random process, we first divide the area of the distribution
network into several zones, and then divide time (the disaster
duration) into several time steps. We assume that the failure
probability is constant during a time-step, but that in different
zones, the failure probability is different.

Then, for each time step and each zone, we use the Monte
Carlo method to calculate the damage. Results at the next time
step depend on damage determined at the previous step.

With the Monte Carlo method, we need to decide the
number of simulations. Based on our previous research [21],
we compute this number as NMC = 10, 000, and the error
between the calculated average value of survival loads and
expectated value of survival loads is less than 10−3. In this
paper, the term surviving loads is defined as follows. At each
node, the load is 1 unit. If there is no power source to serve
a node, then the load of this node will be 0. For each time
step, there are a total of 37 unit loads (one for each node), and
there are 19 time steps, so if the system is fully operational
over the entire duration, the surviving loads value is equal to
37 · 19 = 703. As a consequence, we try to maximize this
value.

A. Simulation process

Based on the forecast data of the natural disaster (for
example, a time series of wind speed for a hurricane, a
time series of rainfall for a flood), and the fragility curve of
components [8], we can get the failure probability of these
components.

We note the time step t ∈ N. Based on geographical criteria,
we divide the area into several zones, Zi, i = {1, 2, 3, ...}, and
the number of power lines in each zone is noted NZi .

The number of nodes in the network is Nn, where Si
pl ∈

R1×m, i = {1, 2, ...,m} represents the state of power lines
(there are m power lines). Si

pl = 0 represents a line that is
destroyed, while Si

pl = 1 represents an operational line. From
this, we can form matrix LM that represents the route between
the loads Li ∈ Load, i = {1, 2, ..., Nn} and the different
power sources PSi ∈ PS, i = {1, 2, ..., Nn}:

LM =


PS1 PS2 PSi

L1 : S11 S12 S1i

L2 : S21 S22 S2i

· · · · · · · · · · · ·
Li : Si1 Si2 Sii

 (1)

where S11 = S22 = ... = Sii = 1;Sij = Sk
pl · Sl

pl · ..., etc.,
k, l = {1, 2, ...,m}.

We use vector yi ∈ Y, i = {1, 2, ..., Nn} to represent
whether there is a power source connected at the node or not.
yi = 1 means that there is a power source connected at node

i, and yi = 0 that there is none. This can be represented as
matrix PN :

PN =


PS1 : y1
PS2 : y2
· · · · · ·
PSi : yi

 (2)

The overall simulation process is shown in Algorithm 1. The
only input variable of this algorithm is PZi×t

pl , that represents
the power line failure probability.

Here, PlZi corresponds to random values (uniformly dis-
tributed random numbers in the interval (0,1)) used to simulate
the severity of the natural disaster. PlineZi

is the state of each
power line (0 or 1), used to describe whether the power line
is destroyed or not. function prod is a Matlab function, that,
for example, for ’prod(A)’ returns the product the elements of
vector A. And R(t) is surviving loads, we calculate R(t) as
follows:

R(t) =

∑NMC

ct=1
LMct

1 +LMct
2 +...+LMct

i

Nn

NMC
(3)

where:

LM ct
1 = (Sct

11 · y1 + Sct
12 · y2 + ...+ Sct

1i · yi) (4)
LM ct

2 = (Sct
21 · y1 + Sct

22 · y2 + ...+ Sct
2i · yi) (5)

LM ct
i = (Sct

i1 · y1 + Sct
i2 · y2 + ...+ Sct

ii · yi) (6)

Algorithm 1 Monte Carlo simulation algorithm
1: for t = 1 : N do
2: for ct = 1 : NMC do
3: PlZi = rand(t,NZi)
4: for i = 1 : t do
5: for j = 1 : NZi

do
6: if PlZi

(i, j) < PZi

pl (1, i) then
7: PlineZi

(i, j) = 0
8: else
9: PlineZi(i, j) = 1

end
end

end
10: for j = 1 : NZi do
11: Spl(1, j) = prod(PlineZi

(:, j))
end

12: Calculate LM · PN
end

13: Calculate R(t)
end

B. Model results

We select the IEEE 37-bus distribution network (Fig. 2)
[5] as the model to simulate the influence of natural disasters
occuring on power system. We divide the area into 3 zones,
namely, zones 1, 2 and 3. We then assume that a hurricane
occurs in this area, and lasts for about 95 minutes. The time
duration is divided into time steps of 5 minutes. In each time
step, we assume that the wind speed is constant, but changes
for each time step, as shown in Fig. 3.



Based on fragility curves [8], we can obtain the failure
probability of power lines, PZi×t

pl . In order to compare the
difference between before and after connecting DG sources
into the distribution system, we arbitrarily define 6 scenarios:

1) Without any DG;
2) Case1: with DG at nodes {3, 21, 30, 35};
3) Case2: with DG at nodes {11, 17, 23, 29};
4) Case3: with DG at nodes {3, 17, 23, 29};
5) Case4: with DG at nodes {11, 17, 29, 35};
6) Case5: with DG at nodes {17, 21, 29, 35}.
Fig. 4 shows the loss of loads in different zones over time,

and Fig. 6 shows the average loss of load in the whole system.
From these two figures, we can see that after connecting DG
sources into the distribution network, the loss of load in the
system is reduced. However, determining where to connect
these sources has not yet been investigated. This is covered in
the next section.

Fig. 2. 37-node distribution network used in the simulations.

IV. RESILIENCE IMPROVEMENT METHOD

Ideally, we could connect DG at all nodes of the system,
which would maximize the resilience. However, the cost would
also be high. We thus need to find an optimum between the
number of DG sources, costs, and resilience improvement.

Firstly, we need to find an index to describe the influence
of connecting DG sources at some nodes. Because we want
the surviving loads to be maximal, the sum of surviving loads
is adopted, namely

∑N
t=1 R(t).

A. Problem description

The variables correspond to vector Y = y1, y2, . . . , yNn
,

which represents whether there is a power source connected

Fig. 3. Wind speed profiles.

Fig. 4. Loss of load vs. zone and time.

at the node or not, namely, PN . We run Algorithm 1, and
compute values for the objective function

∑N
t=1 R(t). Here,

contrary to section III.A, vector Y = y1, y2, . . . , yNn
are

decision variables, and not inputs. This linear optimization
problem is implemented in Matlab. Gurobi is used as a solver
to obtain solutions.

For any time t, we calculate R(t) as equation 3.
Then with the time series, we can compute the objective

function defined as follows:

max
Y

N∑
t=1

R(t) = max
Y

N∑
t=1

∑NMC

ct=1
LMct

1 +LMct
2 +...+LMct

i

Nn

NMC

(7)

B. Results

Algorithm 2 describes the methodology used to determine
the best locations for connecting DG sources at system nodes.
For example, when we interconnect 4 DG sources into the
system, the optimal node results are {29, 30, 33, 35}, while



Fig. 5. Average loss of load vs. time

Algorithm 2 DG placement optimization method
Initialize variables PN (Y = y1, y2, . . . , yNn

)
2: for t = 1 : N do

Run Algorithm 1
4: Calculate LM · PN

Calculate resilience R(t)
end

6: Run optimization: max
Y

∑N
t=1

∑NMC
ct=1

LMct
1 +LMct

2 +...+LMct
i

Nn

NMC

when we connect 5, the nodes are {29, 30, 33, 34, 35}, as
shown in Tab. I. We then compare the results in Fig. 6, and
observe that when we increase the number of connected DG
sources, the surviving loads also increase.

In zone 1, the probability that power lines get destroyed
by the hurricane is the highest among these three zones. On
the contrary, DGs installed in zone 3 can support the whole
system during the whole hurricane duration.

TABLE I
RESULTS FROM THE OPTIMIZATION.

Case Number of DGs Optimal nodes for connecting DG sources

Case6 4 29, 30, 33, 35
Case7 5 29, 30, 33, 34, 35
Case8 6 28, 29, 30, 33, 34, 35
Case9 7 28, 29, 30, 31, 33, 34, 35

Case10 8 28, 29, 30, 31, 33, 34, 35, 36

C. Hardening lines

After the optimal nodes for connecting DG sources have
been determined, we can choose which lines are to be hard-
ened to further improve power system resilience. We assume
that if a power line is hardened, then it will not be destroyed
by disasters (in reality, the probability it is destroyed is
decreased). In the previous sections, we used the route matrix
to represent the route between power sources and loads. This

Fig. 6. Surviving loads vs. number of connected DG sources.

is represented using the multiple results of state of each power
line. Then, if we choose which power line is to harden, the
final optimization problem will be a large nonlinear problem,
difficult to solve.

To circumvent this problem, we rank the influence of
hardening each line. We set 36 different hardening line cases,
in which only one power line is hardened (horizontal axis in
Fig. 7). Based on these cases, we can get Fig. 7, (where ’case
6’-’case 10’ represent different DG integration configurations,
as in Table I ) that represent the relationship between surviving
loads and the hardening line cases. For example, in case 6,
hardening lines {29,32} returns the best results to further
improve resilience; and in case 7, hardening lines {29, 32,
33, 34} returns the best results.

Fig. 7. Surviving loads vs. label of hardening line cases.

V. CONCLUSION

In this paper, we discussed how to improve power system
resilience by integrating DG sources and hardening power



lines. Firstly, we built a temporal-spatial natural disaster model
based on fragility curves. Then, we presented a Monte Carlo
method to calculate the surviving loads under natural disasters.
Afterwards, we simulated the IEEE 37-node network with a
hurricane. With the proposed method, the loss of load can
be calculated in different areas and different times. We then
proposed an optimization method to find the optimal nodes for
integrating DG sources. At last, with a given multiple power
source configurations, we find the lines to be hardened to
further improve system resilience. Future work will include
comparing these results with other approaches.
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