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Features such as low greenhouse-gas emission, high energy efficiency and operating sta-bility make fuel cell (FC) an attractive power 
source for a wide variety of applications. Nevertheless, to achieve its commercialization, durability and reliability remain big chal-
lenges. This work aims at developing an efficient data-driven fault detection and identifi-cation methodology through the use of a 
recently proposed brain-inspired computational paradigm, Reservoir Computing (RC). The considered “Reservoir” is made of a 

particular class of complex dynamics emulating a virtual neural network, and modeled by a nonlinear delay equation. This original and 
experimentally compatible approach indeed demonstrated recently excellent performances on complex nonlinear problems such as 
classification and prediction tasks. In this work, a first attempt is made to introduce the RC method into the field of FC diagnosis. 
Targeted fault types include CO poisoning, low air flow rate, defective cooling and natural degradation. Experimental results show the 
simplicity and efficiency of RC method to discriminate the abovementioned health states. Moreover, the influence of four key RC 
parameters and also of the learning database is investigated in order to explore the possibility of further facilitating and generalizing the 
RC approach.

Introduction

Fuel cell (FC) is considered as one of themost promising power

generation systems in the near future [1e3]. As a clean and

efficient electro-chemical power converter, FC converts

directly the chemical energy of the fuel (e.g. hydrogen) into

electricity without internal combustion. Their only by-

products are water and heat in the case of pure hydrogen

being supplied. Compared with conventional power plants,

the principle advantages of FC include:

▪ High energy efficiency, twice as efficient as the conven-

tional internal combustion engine [4];

▪ Zero or near zero greenhouse-gas emission according to

the FC types and the production way of hydrogen;

▪ Operating stability andmaintenance simplicity sincere few

moving parts exist in the system, thus providing less vi-

brations and highly reliable operation [5];
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▪ Generating electricity as long as the fuel is supplied, unlike

the batteries [5];

▪ Coping with the intermittency of the renewables such as

wind and solar power, without geographic limitations [6].

Among the different FC technologies, polymer electrolyte

membrane (or proton exchange membrane) fuel cells

(PEMFCs) have drawn the most attention from both the aca-

demic and industrial researchers [1e3,7]. The dominance of

PEMFC technology can be reflected in terms of the number of

FC system shipments in recent years, which accounts for 88%

of the total FC shipments [8]. Generally, they operate at rela-

tively low temperature (<120 �C) which allows them to start up

quickly. Moreover, high compactness and low weight make

them perfect for transportation and portable applications [9].

Despite of their desirable properties, one of the primary bar-

riers nowadays for their commercialization is the reliability

and durability [1]. A lifetime of 2,500 h for transportation

PEMFC stack was reported in Ref. [10], which reaches only the

half of the DoE 2010 targets (5,000 h for transportation) [11].

Fault diagnosis is therefore of high necessity in reinforcing the

reliability and improving the durability of PEMFCs.

In this paper, we present a framework based on RC for fault

detection and isolation of PEMFC stacks. Firstly, a brief pre-

sentation of PEMFC fault diagnosis context is realized in the

2nde section. Then, an introduction to the RCmethod is made

in “Introduction to reservoir computing (RC)” Section in order

to give a clear idea of thismethod. “PEMFC systemdescription”

Section deals with how to utilize RC for fuel cell diagnosis and

its main interests. “Reservoir computing (RC) for fuel cell

diagnosis” Section presents the targeted PEMFC system and

four involved fault types. Diagnosis results are illustrated and

further analysis is made in “Reservoir computing (RC) for fuel

cell diagnosis” Section. The final section ends with a conclu-

sion and perspectives.

Context of the study

PEMFC diagnosis

Many works on the PEMFC diagnosis are presented in Refs.

[12,13]. Methods based on the parameters’ identification are

often used. The EIS based models extracts descriptors from

EIS to monitor and make a diagnosis online. This method can

be used for the detection of watermanagement issues, and for

the analysis of aging and degradation [14e16].

In Ref. [14], a robust control is applied to the fuel cell. For

this, the controller needs to know precisely the operation

conditions of the PEMFC, obtained by online spectroscopy. In

Ref. [15], PEMFC monitoring of flooding and drying is per-

formed using a model-based approach coupled with EIS. A

study of the impedance response of the fuel cell as a function

of the relative humidity in the inlet gas was performed. The

parameters of an electric equivalent circuit were then

extracted from the obtained data. In Ref. [16], one PEMFC cell

at high temperature was analyzed in different operating

conditions using impedance spectroscopy, with the main aim

of providing a data set for future fuel cell diagnostic systems.

The proposedmodel is able to provide a good estimation of the

experimental data in all operating modes. It was also shown

that the temperature has an influence on the ohmic resistance

and, on the other hand, on the charge transfer resistance. The

gas transfer resistance showed a strong dependence on cur-

rent and a weaker dependence to the temperature.

In Ref. [17], a diagnostic method is performed using a

model based on the relative sensitivity of the fault. The

advantage of thismethod is that it does not require knowledge

about the fault severity to provide a diagnosis. To test this

methodology, a PEMFC simulator has been developed. This

simulator has been modified to include a different set of fault

condition. All simulated faults have been tested with this

diagnosticmethod, which hasmanaged to correctly detect the

simulated faults. The simulated faults taken into account

were: failure on the compressor motor, flooding fault in the

cathode compartment, air leakage to the cathode and problem

in the temperature control.

The work depicted in Ref. [18] is focused on calculating

residuals using an observer. The isolation of defects is ach-

ieved by using structured residues once the fault has been

detected. The proposed algorithm is able to identify and

evaluate multiple defects sensors presented at different

times. The algorithm is tested on a commercial fuel cell where

a set of fault scenarios is considered.

In Ref. [19], the CVA (for Canonical Variable Analysis) with

a relatively small order is used. The CVA is similar to PCA

(Principal Component Analysis), a geometric and statistics

method to analyze data. Two concepts are then tested, a

Kalman filter and a reversemodel, which show howmodels of

the CVA state space can be used for the diagnosis of non-

measurable inputs.

These models are used to represent the non-linear

behavior of a PEM in operating range similar to load cycles

of vehicle driving cycles.

The PCA to estimate a 50 cell PEMFC health status offline is

realized in Ref. [20]. This analysis is based on data provided

from temperature, voltage, current, flow and humidity sen-

sors. In this work, the PCA makes it possible to exploit the

correlations between variables and the similarities between

the measurements at time t. To complete this process, an

empirical model of PEMFC is proposed connecting the various

input parameters to the cell voltage using a multiple linear

regression.

Fuzzy logic was used in Ref. [21]. A diagnostic methodology

based on fuzzy classification (FcM for Fuzzy c-Means) is

developed in combination with data from the EIS. This

method allows to develop a diagnostic methodology online

with the ability to distinguish different degrees of flooding and

drying inside the PEMFC.

Bayesian methods to detect a drying up and flooding the

PEMFC offline using data from the EIS are proposed in Ref. [22].

A naive Bayesian classifier was chosen as the approach.

Twelve input variables allow differentiation between six

operating modes: minor drying, moderate drying, light flood-

ing, minor flooding, moderate flooding, and a normal mode.

After a study of the parameters that can influence the

correct classification rate, optimized classifier is proposed,

able to detect 91% of the samples of the validation database.

Methods from signal processing are also used for the

diagnosis of PEMFC with firstly the use of fast Fourier
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transform (FFT). In Ref. [23], FFT analysis on the voltage and

pressure information to detect a flooding phenomenon on a

stack of 10 cells is realized. The dominant frequency drop of

the pressure signal is used as an indicator of the behavior of

water in the cathode and in the anode, thereby predicting the

voltage variation of the fuel cell.

The wavelet transform is used in Ref. [24], in order to di-

agnose the health of a fuel cell only with the analysis of its

voltage signalwhich is the easiest and least expensive variable

tomonitor in a PEMFC system. The feasibility and reliability of

this methodmake it possible to correctly classify the different

following states of the PEMFC: drying and flooding cells.

Finally, in Ref. [25], the authors demonstrated the possi-

bility of using an ANN (Artificial Neural Network) based pro-

cedure for diagnosing water management issues, including

drying out and flooding. Based on the recurrent ANN (RNN)

based model, the threshold functions were defined and

applied on the residuals between the actual and the model

outputs (i.e. stack voltage and pressure drop) to discriminate

both faults. Hamming neural networks are used in Ref. [26] to

estimate offline the health of a 20 cell PEMFC, each cell being

monitored, with the voltage sensors and current information

only. A diagnostic approach based on Hamming neural

network for the identification of appropriate parameters of

fuel cell model is proposed to diagnose the state of health

(SOH) of a PEMFC. The output voltages of a 20 PEM fuel cell

weremeasured, in addition to the parameters of themodel, in

order to be used as the training and validation dataset. This

subsection allows to highlight the use of artificial neural

network in the diagnosis of PEMFC. However, the next section

presents other applications of ANN in the field of the study of

PEMFC, to insist on the popularity and effectiveness of ANN in

the different areas of FC studies.

Use of neural networks in various PEMFC research domain

As mentioned in the previous section, among the various

methods proposed in the literature, ANN are present in many

fields of study related to the PEMFC, as an efficient method to

grasp its complexity. The focus are particularly placed on the

modeling and the control of PEMFC fields.

Concerning the modeling of PEMFC field, in Ref. [27], the

authors propose a neural network modelling approach for the

mechanical nonlinear behavior of a PEMFC. An experimental

set is designed for this purpose: a fuel cell system in operation

is subjected to random and swept-sine excitations on a

vibrating platform in three axes directions. The mechanical

response is measured with accelerometers. A neural network

containing 18 hidden neurons is then build with the collected

data-based. The results obtained are very interesting, and

make it possible to optimize the position of available sensors

in order to get the most sensitive mechanical response to

loads. A different model is proposed in Ref. [28], where three

different kind of neural networks (Multilayer Perceptron

(MLP), Generalized Feedforward Network and Jordan and

Elman Network) are designed in order to model a PEMFC stack

performance according to the temperature. The influence of

temperature of two periods was studied: the temperature in

the conditioning period and temperature when the fuel cell

was operating. A comparison between the three types of

neural model tested is realized and the authors conclude than

the MLP gives better results for this application. Jemei et al.

2008 [29] proposed a static and dynamic model of a PEMFC

system by using ANN, particularly feedforward type. Stack

current, stack temperature, air humidity, hydrogen and oxy-

gen flow are inputs and the stack voltage is the output. A good

consistency between the proposed ANN model and the

experimental result were observed, i.e. the error rate is less

than 1% for a single cell compared with 5%e10% given by

mathematical or hybrid models.

Obviously, the ANN are also used for the control of a PEMFC

[30]. In this article, a recurrent neural network is used to

control the water management in PEMFC. The water concen-

tration in cathode is controlled and the humidity fluctuation

are reduced at the cathode. Simulation results showed that a

controller based on RNN has shorter response time than PID

controller. These results are obtained only with simulation in

Matlab-Simulink environment. In Ref. [31], a neural networks

(NN)-based active and reactive power controller of a stand-

alone PEMFC power plant (FCPP) is proposed. The proposed

controller is used tomodify the invertermodulation index and

the phase angle of the ac output voltage to control the active

and reactive power output from the FCPP to match the ter-

minal load. The proposed controller and the fuel cell power

plant model have been tested with simulations and the data

used corresponds to an active and reactive load demands of a

single-family residence.

Numerous studies have proved the ANN strong capability

in the modelling or pattern recognition of nonlinear complex

systems [28e32]. It can indeed approach any nonlinear map-

ping with arbitrary accuracy when properly trained [33].

Compared with the physical models, the ANN method pro-

vides an attractive alternative since it doesn't need huge

knowledge about the underlying physical processes. More-

over, an accurate identification of inner physical parameters

is not required.

Despite its widely acknowledged potential and a number of

successful applications reported in the literature, ANN's

impact in PEMFC domain still remains limited. The main

reason lies in the fact that ANN, especially the RNN type is

inherently difficult to train. The generally adopted gradient-

descent based methods aim at iteratively reducing the

training error, which always suffer from the following

shortcomings:

(1) The low convergence rate and the high computational

training costs. The update of a single parameter is

usually computationally expensive. It may require

many update cycles. Consequently, ANN training is

feasible only for relatively small neural networks (in the

orders of tens of units) [33].

(2) The existence of bifurcations [34]. In the course of

learning, the network dynamics may experience bi-

furcations due to the discontinuities at some points

(called “bifurcation points”) in the parameter space.

This may result in undesirable consequences like the

explosion of the error gradient, the jump of the network

rate. As a consequence, the convergence of the training

progress cannot be guaranteed, or even converged, local

optima may be obtained.
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Thesemay hinder RNN's application especially in real-time

scenarios. A recently proposed, brain-inspired computational

paradigm called Reservoir Computing (RC) is reported to have

overcome the shortbacks of traditional ANNs like high

computational training cost and low convergence rate.

Excellent performances of RC have been achieved in the

literature, moreover, with hardware implementation instead

of the usual software only solution, on complex non-linear

problems such as modeling, classification and prediction

tasks [32,35]. Meanwhile, in the field of fuel cell fault diag-

nosis, RC is still a relatively new concept. In regard of this, it is

very interesting to make such an attempt to adapt the RC

paradigm for data-driven fault diagnosis of PEMFCs.

Introduction to reservoir computing (RC)

Birth of RC

To have a clear understanding of reservoir computing, recur-

rent neural network as its originated theoretical ground is

unavoidable to be introduced. Generally, according to the

network topology, ANN can be divided into two types: feed-

forward and recurrent network,which is illustrated in Fig. 1 (a)

and (b).

Feedforward type (FNN), often referred as multi-layer per-

ceptron (MLP), is the most commonly used topology in the

literature. It is essentially a non-linear functional mapping

between a set of input and output variables. Due to its feed-

forward structure and non-dynamic nature, its applications

have beenmainly restricted to the processing of non-temporal

problems [36]. Meanwhile, in RNN structure, the presence of

recurrent connections makes the information not only flow

forwardly, but also circulated inside the network. Thus, the

current information is integrated with that of the previous

steps. Consequently, the network is a nonlinear mapping of

both the current input and the input history. By virtue of this

property, RNN is able to solve inherently temporal problems,

e.g. speech recognition and temporal prediction. Theoreti-

cally, RNN can be regarded as a universal approximator of

dynamical systemsundermild and general assumptions. That

can also explain perfectly why RNN gains a higher popularity

in the practical applications especially when dealing with

dynamic problems.

Nonetheless, as explained in the introduction, the tradi-

tional RNN training methods may suffer from the low

convergence rate, high computational cost and local optima.

From the year 2000 on, a new trend for understating,

designing and training RNN has been formed to overcome its

limitations. Two typical methods are Echo State Network

(ESN) and Liquid State Machine (LSM), which were proposed

independently by Prof. Jaeger in 2001 [37] and Prof. Maas et

Prof. Markram in 2002 [38]. The two methods, combined with

the later appearing Back-Propagation De-Correlation (BPDC)

learning rule were unified into a common research stream

[39]. That is Reservoir Computing (RC).

Fundamental idea of RC

The fundamental idea can be vividly revealed by the concept

“reservoir”. A reservoir is regarded as a container of abundant

dynamic transient states. Indeed, a reservoir usually contains

102 to 103 internal neurons, which is much more than the

traditional RNN (typically tens of neurons). If the reservoir

satisfies certain properties, a linear combination of the tran-

sient states could be sufficient to solve complex nonlinear

problem with an excellent performance [37].

The main differences of RC paradigm compared with the

traditional RNN training methods consist in: firstly, the in-

ternal network structure is assumed to be fixed and isn't

optimized according to the training process. Thus, the

network dynamics are not affected during training. Secondly,

the training process is strongly simplified. It is reduced to the

determination of output weights, which can be easily calcu-

lated by linear regression techniques [33]. A schematic illus-

tration is shown in Fig. 2. In this figure, the arrows represents

the optimization of theweight values realized according to the

error between the output and the target signal. As we can see,

just one optimization is needed for the RC paradigm.

An interesting view can be presented when RC is

compared with the kernel methods, e.g. support vector ma-

chine. The key idea behind kernel methods is mapping the

Fig. 1 e Different network topologies.
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low dimensional input space into a high dimensional feature

space by some kernel functions, where the classification or

regression is greatly facilitated. The functionality of the

reservoir here is similar to that of kernel function. In RC, the

input signal is non-linearly mapped into a high dimensional

reservoir state through the transient response of the reser-

voir [33], where the RC output is a linear combination of the

transient states with adjustable weights. A graphic illustra-

tion is shown in Fig. 3.

Due to its simplicity of use and excellent performances, RC

has quickly gained a high popularity in various practical ap-

plications, especially in the field of machine learning. For

instance, the word error rate was brought to 0% from the

previous 0.6% concerning the speech recognition task [39]. A

0% test error has been achieved on the Japanese Vowel

benchmark while the previous best test error is 1.8% [40]. The

non-linear wireless channel equalization has been improved

by two orders of magnitude, meanwhile the prediction of

chaotic dynamic utilizing RC has been improved by three or-

ders of magnitude compared with previous methods [41].

Furthermore, in a recent international financial forecasting

competition it wins the contest.1

RC topologies

Generally, RC consists of three distinct parts: an input layer, a

reservoir and an output layer. The input layer is connected

with the reservoir via a randomly generated input weight

matrix (WI), which remains unchanged during training. The

reservoir contains a large number of randomly interconnected

nodes (via WD) which are also left untrained [33]. When

excited by the input signals, the reservoir exhibits complex

transient dynamics, which are further read out by the output

layer via an output weight matrix (WR).)

A discrete-time RC with a basic architecture consists of K

inputs, N internal nodes and L outputs is represented in Fig. 4

(a). For this architecture, the reservoir is set randomly, in

contrast to Fig. 4 (b),where the reservoir structure is ordered.At

time step n, the inputs are u(n) ¼ [u1(n),…uK(n)], internal nodes

arex(n)¼ [x1(n),…xN(n)], and theoutputsarey(n)¼ [y1(n),…yL(n)].

At time step n, the activation state of the internal nodes is a

non-linear transformation of both the current inputs and the

previous states of the nodes and outputs.

xðnÞ ¼ fNL

�

WD
$xðn� 1Þ þWI

$uðnÞ þWFB
$yðn� 1Þ

�

(1)

where fNL ($) is the neuron activation functionwhich is usually

non-linear, WI is the input weight matrix, WD, is the reservoir

weight matrix of the interconnected nodes,WFB is an optional

output feedback weight matrix. The output is further calcu-

lated by a simple linear combination of x (n):

yðnÞ ¼ WR
$xðnÞ ¼

XN

i¼1
wR

ki$xiðnÞ (2)

with WR the trained output weight matrix.

Classical RC is largely driven by a series of randomized

model building stages, which could be unstable and hard to

understand, especially for fault diagnosis. In this paper, we

propose to use a specific architecture of RC, which is

comprised of a single nonlinear node with delayed feedback,

as illustrated in Fig. 4 (b). This novel architecture was pro-

posed by Appeltant et al., in 2011 [35], and its experimental

implementation of RC was also realized firstly. Afterwards,

several works have been performed based on this specific

reservoir architecture and considerable successes were re-

ported on a variety of practical tasks [30,34,45]. Compared

with the classical randomly created RC, it has a specific

reservoir design and a much simplified structure, which

greatly facilitates the hardware implementation. Further-

more, it favors a deeper understanding of the interplay of

dynamical properties and reservoir performance [35]. Mean-

while, this architecture is reported to have as good perfor-

mance as traditional RCs for certain tasks [32].

The reservoir is an assembly of virtual nodes, which are

obtained by dividing the delay loop into N equally distanced

intervals. The time interval between each two adjacent nodes

is dt (also called node distance). Thus, the total delay time of

the delay loop is tD ¼ N � dt. The nodes composing the

reservoir here are in fact the delay dynamics at different

temporal positions. They have the same functionality as the

traditional nodes. That's also why they are named “virtual

node”. In order to achieve the optimal performance of RC, the

choice of node distance dt is crucial. Usually, dt < TR, with TR

being the characteristic time of the non-linear node. In this

regime, the states of the virtual nodes depend on the states of

the neighboring nodes instead of behaving likeN independent

nodes. Interconnected in this way, the entity of virtual nodes

serves as a reservoir [35]. In “PEMFC system description”

Section, more details of utilizing this novel architecture for

fault diagnosis are presented.

Fig. 2 e Traditional RNN and RC paradigm. (A)Traditional gradient-descent based RNN training methods adapt all

connection weights, including input-to-RNN, RNN-internal, and RNN-to-output weights. (B) In RC, only the RNN-to-output

weights (bold arrows) are adapted [34].

1 http://www.neural-Forecasting-competition.com/NN3/index.

htm.
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PEMFC system description

Description of the test bench

The experimental tests were performed on a 1 kW fuel cell test

bench developed in the laboratory. A detailed description of

the test bench can be found in Ref. [45]. The purpose of the

tests was to introduce different controlled health states into a

PEMFC stack by configuring various operating parameters, e.g.

gas flows, stack temperature, humidity levels. A simplified

schema of the test bench is illustrated in Fig. 5. The gas cir-

cuits include the hydrogen and the air circuit. The gas flow

rate and pressure can be controlled separately thanks to a flow

rate controller and a back pressure valve. Before entering the

stack, both the hydrogen and the air can be humidified or kept

dry. A coolingwater circuit which consists of a cold source and

a hot source was applied to manage the stack temperature.

The stack outlet water temperature is classically considered

as the representative the actual stack temperature.

Fig. 3 e Illustration of linear reparability, adapted from Ref. [24]. (a) The two classes are not linearly separable in a two

dimensional space. (b) By a non-linear mapping into a three dimensional space, the two classes are separable by a linear

hyperplane.

Fig. 4 e Sketch of RC schemes. Classical RC scheme (top), Scheme of RC utilizing a nonlinear node with delayed feedback

(bottom).
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In this work, a 8-cell PEMFC stack was investigated, sup-

plied by CEA, with its basic information listed in Table 1. The

stack works nominally at a current of 110 A, as its active

surface is equal to 220 cm2.

Four degrading health states

The set of tests carried out and focused on in this paper in-

cludes four degrading operating conditions:

✓ Low cathode stoichiometric ratio (FSC). FSC plays an

import role in the health management of fuel cell systems.

It influences the oxygen availability as well as the humidity

of the membrane. Compared with high FSCs, low ones

could lead to more rapid and severe degradation of the fuel

cell, as it is an incentive factor of cathode water flooding

and cathode starvation. As a result, evident fluctuations

could be normally observed in the stack voltage signal

when the stack current is kept constant. In this study,

different values of FSCwere applied on the stack in order to

study its influence on the stack performance. Stable stack

voltage under the lowest FSC which equals 1.2 was recor-

ded for final comparison.

✓ Defective cooling system. The effect of cooling system is

studied here considering its connection to the stack tem-

perature. Defective cooling could result in excessive stack

temperature and may further introduce the membrane

drying phenomenon. In this study, the flow rate of the

water circulating in the cooling system (FRW) was reduced

gradually in order to observe its impact on the stack per-

formance. Stable stack voltage under the lowest water flow

rate of 0.5 Nl/min (Normal liters per minute) was acquired

for further evaluation.

✓ CO poisoning. CO poisoning is considered as one of the

most common faults for PEMFCs which use platinum as

their catalyst. CO in the hydrogen flow is preferentially

absorbed to the platinum and thus block or limit the active

sites. Normally, the poisoning effect is slow and reversible

if the anode is exposed to dioxygen. During the fault

process, a slow decline of the stack voltage can be

observed. In our test, a low concentration of CO (10 ppm)

was mixed with pure hydrogen to supply the anode side of

the stack. The test was carried out by operating the stack in

the presence of CO during 2 h until the stack reached a

steady state.

✓ Continuous aging life test. Compared with the above-

mentioned faults, thenatural aging effect causes theslowest

performance degradation. A 124 h continuous test under

nominal conditions was conducted on the stack to observe

the natural degrading effect under the time evolution. A

degradation rate of 1.3mV/h is observedon the stack voltage

during the whole process. Specially, the stack voltage at the

end of the aging test is collected for comparison.

A set of stack voltages recorded under normal and the four

degrading conditions are plotted in Fig. 6. The acquisition

frequency is 11 Hz. Each sequence consists of 2000 points and

lasts for about 3 min. Different behaviors of stack voltage

under the time evolution can be visually observed.

At first sight, CO poisoning after 2 h’ test seems to cause

the most severe performance degradation of the fuel cell, as it

Fig. 5 e Simplified diagram of the PEMFC system.

Table 1 e Description of the fuel cell and its nominal 
operating conditions.

Parameters Value

Number of cells 8

Electrode active surface 220 cm2

Coolant flow: water 2 Nl/min

Anode stoichiometry 1.5

Cathode stoichiometry 2

Absolute pressure of input H2 150 kPa

Absolute pressure of input air 150 kPa

Maximum pressure difference 30 kPa

Temperature of output cooling circuit 80 �C

Anode relative humidity 50%

Cathode relative humidity 50%

Current (Istk) 110 A

Current density 0.5 A/cm2
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resulted in the lowest stack voltage which is about 1.5 V,

whereas the other conditions correspond to a value around

5 V. In order to show more details about the stack voltage

under the other operating conditions, a further enlarged figure

was illustrated in Fig. 6 (b). It can be found that low FSC and

aging generate similar average stack voltage, while their

shapes differ significantly. The flow rate of cooling water

seems to have little influence on the stack voltage as the two

voltages under FRW ¼ 2 Nl/min and 1 Nl/min have similar

magnitude and temporal variations.

Reservoir computing (RC) for fuel cell diagnosis

Fault diagnosis principle

The objective of this section is to utilize RC directly as a fault

detector and classifier to discriminate differenthealth states of

the PEMFC stack,without the necessity ofmodelling thewhole

system. In the first part of this work, stack voltage is applied as

the only input signal of the RC for fault diagnosis. The stack

voltage signal is considered as an informative signalwhich can

reflect the FC health state. In Ref. [48], the voltage signals were

applied as database to discriminate influence of air flow rate,

hydrogen flow rate and gas pressure. In Ref. [29], the stack

voltage drop is considered as a common consequence of both

drying out and flooding. In Refs. [47e49], fault classification

was successfully performed in a cell-voltage generated space.

The principle idea of the diagnosis method, illustrated in

Fig. 7, is based on the analysis of the frequency response of the

stack under fault. As a fault occurs, the physical state of the FC

changes, and therefore the frequency content of its voltage

response changes as well. The diagnosis method relies then

on four basic steps:

(1) Signal preprocessing. The voltage signal is firstly trans-

formed into a time-frequency representation by Short

Time Fourier Transform (STFT). Simply speaking,

through a moving window process, the original voltage

signal in time domain is broken up into a set of small

segments. Each segment is then processed by tradi-

tional Fast Fourier Transform (FFT). It provides the in-

formation about the evolution of each frequency

component and its instantaneous strength (in form of

power spectral density) along the time axis.

(2) RC input. In this step, an input weight matrix WI is

created randomly with a low sparsity (0.1 with non-zero

elements filled with ±1). It performs a random selection

of the frequency components along the time samples.

The final input which activates the internal nodes is the

input signal matrix Mu, which is a multiplication of the

input weight matrix WI and the time-frequency repre-

sentation Mc: Mu ¼ WI �Mc.

(3) RC nonlinear transformation. It is performed by a dynamic

function which is physically based on an optoelectronic

implementation, with more details described in

Ref. [32]. The transformation plays the role of injecting

the preprocessed signal into the nonlinear function and

generating the corresponding reservoir states which are

further read out in the output layer.

The utilized non-linear dynamic function fNL is expressed

as [32]:

TR
dxðtÞ
dt

þ xðtÞ ¼ bsin2ðmxðt� tDÞ þ ruðt� tDÞ þ∅0Þ (3)

where TR is the internal characteristic time scale of the

nonlinear dynamics. It determines the coupling extent of the

extent of the internal virtual nodes (or the reservoir connec-

tivity) through its impulse response. The longer TR relatively to

the node distance dt is, the more connected consecutive nodes

are [32]. b is the nonlinear gain. Normally its value should be

smaller than 1 in order to avoid destabilization of the dynamics.

f0 is the offset phase, which determines the mean operating

point along the nonlinear function. For instance, f0 close to 0 or

±p/2 gives average operating point along the parabola, while f0

around ±p/4 gives a linear average operating point. m is the

Fig. 6 e Stack voltages under normal and four degrading conditions.
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feedback scaling. It is a binary parameter (i.e. 0 or 1) which

controls the open or closed operation of the feedback loop.

Normally, a feedback operation is adopted, i.e. m ¼ 1. r is the

input scaling factor which corresponds to the amplifier of the

input signal. It represents the relative weight of the input in-

formation versus the feedback signal x (t � tD).

To summarize, when utilizing RC for a specific task, a

number of key parameters need to be adjusted in order to

obtain goodperformance. These include thenon-linearity gain

b and the offset phase f0 which are related to the non-linear

dynamics, input scaling r and the regression parameter l,

given that the fundamental structure of the reservoir is set

(inc. TR, tD and Nn).

(4) Training and testing. The objective of the training pro-

cedure is to calculate the output weightmatrix based on

the known signals. It can be realized simply through

linear regressionmethods. The ridge regressionmethod

is utilized here in order to avoid overfitting to the

training data. In the testing phase, untrained signals are

processed to see if they belong to the same class as

those used in the training phase.

Fault diagnosis results and analysis

Considering the real-time fault diagnosis process, a certain

number of data samples (defined as segment width W herein)

are collected for analysis at regular intervals (defined as

sliding step S herein), as shown in Fig. 8. The configuration of S

and W is normally done according to the targeted fault types

(whether they occur fast or slowly).

In the first step of our analysis, a sample-dividing proced-

ure is performed. Each 2000-sampleVstk in Fig. 6 is divided into

a quantity of segments by applying the sliding step (S) and the

segment width (W) as above mentioned. And an example of

S ¼ 10 and W ¼ 600, which corresponds to a sliding step of

around 1s (0.91s) and a segment width of around 1 min

(0.91min) is utilized in this study. The values are initially such

selected considering that all the concerning fault types in this

study (low FSC, defective cooling, CO poisoning and aging) are

relatively slow ones, in time scale of minutes or even hours

[49]. Certainly, to research the influence of S and W on the

diagnostic result, different sets of these two values should be

tried in this step.

The five operating conditions are labeled as the number

1e5 correspondently, as shown in Table 2. Each segment is

marked as a number (1e846) and 846 segments are obtained

finally for fault classification.

In the preprocessing phase, the STFT transformation is

firstly applied on each segment to obtain its time-frequency

representation. Consequently, the original voltage signal is

transformed into a matrix Mc with dimensions Nf (number of

frequency channels ¼ 65) � Ns (number of time intervals or

samples ¼ 8). In this step, an input weight matrix WI (Nn

(400) � Nf) is created randomly with a low sparsity (0.1 with

Fig. 7 e Principle of the RC diagnosis method.
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non-zero elements filled with ±1). The input data finally

injected in the RC network is thus an Nn � Ns (400 � 8) matrix

Mu (see Fig. 9, line 1). The activation of WI on the STFT rep-

resentation can be interpreted as a random contribution of

some selected frequency components at some selected time

[50].

The constructed inputmatrixMu is further converted into a

one dimensional signal, u(t), by simply unfolding horizontally

each successive column and sequentially arranging them. A

time trace is thus formed and injected into the dynamical

system. The dynamic function as described in equation (3),

performs a nonlinear transformation of the input time trace

u(t) into a set of reservoir states x(t). The reservoir states of RC,

x(t), are further collected into a big matrix A, represented in a

two dimensional way. Each element corresponds to the

spatiotemporal response of the node amplitudes. The readout

process consisting of a matrix product A � WR ¼ B, with B the

target matrix formed by all the targets in the training dataset,

as illustrated in Fig. 9.

Offline training

For offline training, a leave-one-out cross validation proced-

ure is applied to calculate the output weight matrix and to

evaluate initially the algorithm performance. Meanwhile the

RC parameters above-mentioned are also optimized during

this process.

The objective of the training procedure is to calculate the

output weight matrix WR, in order to satisfy the following

condition:

A�WR ¼ B (4)

where B is the target matrix formed by all the targets in the

training subset. To solve this problem, multiple methods

exist. In order to avoid overfitting to the training data, some

Gaussian noises can be added into the training data or the

ridge regression method can be applied. Herein, the second

way is adopted, which introduces an additional penalty term.

The penalty term serves the purpose of balancing the error on

the training dataset and the weight norm [35]. The calculation

of WR by ridge regression is expressed as:

WR
opt ¼ argminWR

�

�AWR � B
�

�

2 þ lkWk2 (5)

where jj$jj is the Euclidean norm, and l is a regularization

parameter that controls the strength of the penalty term.

When l ¼ 0, the expression becomes actually the linear

regression. The term ljjWjj2 (l > 0) is dedicated to keep the

output weights as small as possible while minimizing the

training error. It should be underlined that when using ridge

regression for a specific task, l should be optimized firstly. The

calculation of the output weight matrix can be further con-

verted as follows [50]:

WR ¼
�

AAT þ lI
��1

ATB (6)

During the leave-one-out cross validation procedure, an

excellent classification rate of 99.88% has been obtained based

on the offline training dataset (under the parameter set b¼ 0.8,

f0 ¼ 0.01p, l ¼ 5e-5, r ¼ 8). Only one error of the 846 segments

is obtained, which belong to the defective cooling condition

and diagnosed as normal state.

The influence of principle RC parameters during this pro-

cess, including the non-linearity gain b, the offset phase f0,

relative input scaling factor r and the regression parameter l,

is emphasized in Section 4.3.

New dataset test

Apart from one dataset for offline training, another new

dataset obtained under the same configuration of operating

conditions is utilized for test. The diagnostic results are listed

in Table 3. Aswe can see, theworst classification rate obtained

is 92.435%. It can be observed that all the wrongly classified

segments belong to F3, i.e. the defective cooling. They are

diagnosed as “Normal”. This could be reasonably explained by

a detailed observation of the shapes of the two voltage signals

under the F3 condition (low FRW, in yellow) and the F1 con-

dition (2 Nl/min, in purple). It can be found that they evolve

with time in a quite similar way (see Table 4).

Influence of RC parameters

As mentioned in “Description of the test bench” Section, key

parameters of RC method need to be optimized in order to

obtain a good performance. They are namely the non-linearity

gain b, the offset phase f0, the relative input scaling factor r

and the regression parameter l. The selection of the param-

eters is done in such a way that the range of each parameter is

Fig. 8 e Illustration of the dividing procedure (voltage

signal under FSC ¼ 1.2 being used as an example).

Table 2 e Labelling of different operating conditions.

Label Operating condition Segment number

1 Normal 1e141

Normal (2 Nl/min) 283e423

2 FSC ¼ 1.2 142e282

3 FRW ¼ 0.5 Nl/min 424e564

4 CO poisoning 565e705

5 Natural degradation 705e846
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given by expertise knowledge and then an exhaustive search

is done to find the optimal value of each parameter corre-

sponding to the least error rate.

The two parameters related to the non-linearity and dy-

namic properties- b and f0 are scanned with high precision

within the given range. An example of the (b, f0) scanning plan

with the fixed parameter l ¼ 0.00001 and r ¼ 10 is demon-

strated in Fig. 10. It can be seen that when b is sufficiently large

(b> 0.3), low classification error rates can be generally obtained.

With adjustment of f0, the lowest classification error rate can

even reach 0.47% (e.g. b ¼ 0.8 and f0 ¼ 0.01p). It can also be

observed that the RC performance is quite robust versus the

parameters as long as they are within a certain range, since a

number of combinations can give satisfactory results.

A further research on the influences of r and l is per-

formed. Fig. 11 (a) and (b) are provided to show the de-

pendences of the RC performance on these parameters. In the

two figures, b ¼ 0.8 and f0 ¼ 0.01p is adopted.

It can be observed in Fig. 11 (a) that generally as r increases,

better performance can be obtained and r ¼ 8 gives the best

performance.Without loss of generality, a suggested range of r

is given here: 4 < r < 10. From the observation of Fig. 11 (b), a

reasonable of choice of lherewould be: 3� 10�5� l� 5 � 10�5,

which corresponds to a classification error rate of 0.12%.

Basedon theaboveanalysis, it canbeconcluded that: firstly,

the RC performance doesn't depend so critically on the pa-

rameters as long as they are kept within a certain range. This

also explainswhyanumberof combinationsof theparameters

can give the same best performance. Secondly, to perform a

practical task, the mentioned “a certain range” should be

specified.Herein, an (quasi) exhaustive search is applied tofind

the optimal parameters. However, once the parameters are

determined, no iteration of the procedure is needed [41].

The values of each parameter utilized in this work are set

as follows: b ¼ 0.8, f0 ¼ 0.01p, r ¼ 8, l ¼ 5e-5. One point should

be underlined is that the random generated input weight

Fig. 9 e Illustration of the RC method for fault classification.

Table 3 e Online diagnostic results.

Diagnosed class

F1 (normal) F2 (low FSC) F3 (low FRW) F4 (CO poisoning) F5 (severe aging)

Actual class F1 (Normal) 100% 0 0 0 0

F2 0 100% 0 0 0

F3 7.565% 0 92.435% 0 0

F4 0 0 0 100% 0

F5 0 0 0 0 100%

The bold is here to underline the error obtained.

Table 4 e Parameter configuration (1824 combinations of 4 parameters).

l 0.0001 0.00001

r 1 5 10 1 5 10

b 0.1:0.05:1 0.1:0.05:1 0.1:0.05:1 0.1:0.05:1 0.1:0.05:1 0.1:0.05:1

f0 (/p) 0.01:0.1:1.51 0.01:0.1:1.51 0.01:0.1:1.51 0.01:0.1:1.51 0.01:0.1:1.51 0.01:0.1:1.51
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matrix WI also has non-negligible influences on the RC per-

formance. In the above analysis, each procedure under a new

parameter set has been repeated 10 times to fix the optimalWI

which corresponds to the lowest classification error rate.

Influence of the learning database

During the training procedure as indicated in “Four degrading

health states” Section, 846 segments are obtained based on

the 6 operating signals. Each segment goes further through a

STFT preprocess to be transferred into a time-frequency 2D

representation and corresponds to 8 time samples, as illus-

trated in Fig. 9. The final RC matrix A used for offline training

has a dimension of 400 (number of nodes) � 6768 (number of

time samples), where the 6768 samples are arranged one by

one in a certain order.

In this part, the aim is to analyze the influence of the

construction of the learning database on the classification

results. The Reservoir Computing is a tool in the field of arti-

ficial intelligence, and requires a learning phase to calibrate

the synaptic weights. This learning phase involves a dedicated

database for this task, and it is interesting to define how the

construction of the training base will influence the results.

Therefore, to determine these effects, classification rate given

at the end of each study corresponds to the worst case among

the results, meaning that the simulation leading to the lowest

value the good classification rate is reported. In light of this,

the study realized in this section try to answer the following

question: Is there a difference of the classification result if

only a part of the learning database is used instead of the

complete one (both databases remain in order)?

A statistical tool called “P-value”, which is used most often

for hypothesis test in scientific research, is utilized herein.

The general idea of the hypothesis test involves three steps:

First, making an initial hypothesis H0, which is also called the

null hypothesis; second, collecting the database; third, based

on the available data, deciding whether to accept or reject H0.

In the latter case, the alternative hypothesis Ha which is the

opposite of the null hypothesis is accepted.

Fig. 11 e Dependence of the RC performance on (a) r (l ¼ 0.00001) and (b) l (r ¼ 8).
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Fig. 10 e Classification error rate with two scanned

parameters b and f0 (l ¼ 0.00001, r ¼ 10).
Fig. 12 e Histogramof the results (inblue) and theassociated

distribution fit (in red) (Study 1). (For interpretation of the

references to colour in this figure legend, the reader is

referred to the web version of this article.)
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A P-value is ultimately used to determine the probability of

retaining H0. If the P-value is less than (or equal to) a, i.e. the

significance level, H0 is rejected. It means that the data under

study gives reasonable evidence to support the alternative

hypothesis. Otherwise, the initial hypothesis is retained. The

choice of significant level a at which H0 is rejected is arbitrary

and it has conventionally three levels-0.01, 0.05 and 0.1.

Specifically, the four steps to reject or not H0 using the P-

value approach are [51]:

i. Specifying the null and alternative hypothesis (H0 and Ha);

ii. Using available data and assuming that the null hy-

pothesis is true, calculating the statistic test value. To

perform hypothesis analysis for the population mean m,

the value t* ¼ x�m

s=
ffiffi

n
p is used, which follows a t-distribution

with n � 1 degree of freedom.

iii. Using the above data, calculating the P-value corre-

sponding to: “If the null hypothesis is true, what is the

probability of observing a test statistic corresponding to

the alternative hypothesis?”

iv. Defining the significance level a, compare the P-value to

a. If the P-value is less than (or equal to) a, the null hy-

pothesis is rejected in favor of the alternative hypoth-

esis. If the P-value is greater than a, the null hypothesis

is accepted.

Study 1 of the learning database

The objective herein is to compare the simulation results ob-

tained based on a reduced learning database with the results

presented in “Four degrading health states” Section. Remind

than the previous worst classification rate is 92.435%, so the m

value of H0 is set as 92.43.

To compare both situations, 100 simulations are performed

by taking a smaller database, consisting of 50% of the previous

database. These data are selected randomly throughout the

learning database, but remain in order. Since we are inter-

ested to see whether the worst classification performance

based on the reduced database is less than 92.43%, and not

better, a left-tailed t-test is conducted. More specifically, the

Fig. 13 e Student table (study 1).
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null hypothesis is set as: H0: m ¼ 92.43 versus the alternative

hypothesisHa: m < 92.43. The distribution of the 100 simulation

results, corresponding to the initial population, are shown in

Fig. 12. This initial population corresponds to the hypothesis

H0: m ¼ 92.43.

Basically, the aim here is to compare another set of simu-

lation (the tested base) to the initial population in order to

analyze the influence between both treatments. Firstly, the t*

value has to be calculated. This value is obtained using the

formula t* ¼ x�m

s=
ffiffi

n
p , with x the average of the samples to analyze

(in our case, the tested database contains 10 random samples),

m the average at which the samples are compared, s the

standard deviation of the sample and n is the number of

samples processed, i.e. n¼ 10. The principle herein is to look at

the value t* obtained for n � 1 degrees of freedom. In this case,

our value t* ¼ �3.82. In order to calculate the P-value, the

student table or (t-table) is introduced as below. It gives the

probability value (P) either for one-tailed or two-two tailed test

given the number of the degrees of freedom and the t* value

(in absolute form) The aim is then to compare the obtained P-

value with a reference value of a, 0.05 here, a value which is

often used by default in the statistic tests. In our case, the

absolute value of t* is 3.82 and it is between 3.25 and 4.297, the

column value of the Student table, as shown in Fig. 13. These

two columns correspond to a P-value between 0.0005 and

0.001, which is less than the significant level a ¼ 0.05. As

indicated in the descriptive part of the P-value test, the hy-

pothesis H0 is thus rejected, which indicated that the results

are sensitive to the size of the learning database.

Nevertheless, these results are perfectly logical. It seems

clear that the tools from the field of AI requiring learning are

sensitive to the size of the database. However, even if this

point is known to all, it remains difficult to quantify. This

study let to highlight the fact that from a statistical point of

view, the changes in the learning base are similar to apply a

totally different treatment to the RC. This don't invalidate the

study results, but it means that the way to build the learning

base has importance. Upon completion of this statistical hy-

pothesis tests, it appears that the results obtained with the RC

data on fault diagnosis are dependent on the number of

samples dedicated to learning. However, the study has shown

that theworst simulation case give a classification rate of 88%.

Conclusion and perspectives

In this paper, a first attempt of applying a recently proposed,

brain-inspired computational RCmethod for fault diagnosis of

the PEM fuel cell stack ismade. The RCmethod originates from

recurrent neural network, however has overcome the training

difficulties such as low convergence rate, high computational

training cost and existence of bifurcation points. The funda-

mental principle is to create a reservoir containing a large

number (hundreds to thousands) of interconnected nodes

randomly and fixedly, and to train only the output weight

matrix by a linear regression method. The feasibility and ef-

ficiency of the RC method is verified by discriminating five

different health states of the stack. An excellent classification

rate of 99.88% for offline training process and 92.43% for

new unknown dataset test are obtained. Furthermore, the

influence of a set of key parameters (the non-linearity gain b,

the offset phase f0, the relative input scaling factor r and the

regression parameter l) is emphasized on. It is summarized

that RC is not extremely criticalwith respect to the parameters

as long as they are kept within a certain range (In our case, a

suggested range is: b> 0.3, 4< r< 10 and3� 10�5� l� 5� 10�5).

Furthermore, the influence of the size and arranging order of

the learning database is investigated. The conclusion of the

study is that the classification results are dependent on these

factors. However, even in the worst case, the good classifica-

tion rate reach 88%.

The current work is a first-stage application of RC method

for PEM fuel cell fault diagnosis. Only stack voltage signals are

tackled in this paper under constant current solicitation. The

undergoing work involves performing fault diagnosis based

on signals obtained under both stable and dynamic processes.

More operating conditions and resulted fault types are

configured in the second-stage work. The advantage of RC

method for solving nonlinear dynamic problems is expected

to be more prominent.

Additionally, the physical implementation of the algorithm

will be considered in the future work for online realization of

the algorithm. This photonic implementation was already

achieved in the Optics Department of FEMTO-ST, UFC, for

speech recognition, by Larger et al., 2012.
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