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HAL is a

Acronyms

and storage [START_REF] Lidula | Microgrids research: A review of experimental microgrids and test systems[END_REF][START_REF] Hatziargyriou | Microgrids[END_REF], and are increasingly found in remote areas 103 [START_REF] Katsigiannis | Hybrid simulated annealing-tabu search method for optimal sizing of autonomous power systems with renewables, Sustainable Energy[END_REF][START_REF] Kyriakarakos | Polygeneration microgrids: a viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel[END_REF] or where power system resilience is a crucial concern 104 [START_REF] Wang | Research on resilience of power systems under natural disasters-a review[END_REF][START_REF] Abbey | Powering through the storm: microgrids operation for more efficient disaster recovery[END_REF].

105

To enable RES integration, energy storage systems are con-106 sidered as a key solution, as they enable storing excess gener-107 ation for later use [START_REF] Akhil | Electricity storage handbook[END_REF]. Battery storage systems (BSS) are typ-108 ically used for short-term storage [START_REF] Kyriakarakos | On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative[END_REF], but seem inappropriate 109 for long-term storage due to their low energy density and non-110 negligible self-discharge rate [START_REF] Cau | Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system[END_REF]. Hydrogen storage systems 111 a hybrid GA [START_REF] Atia | Optimization of a pv-wind-diesel system using a 747 system[END_REF], or an improved bat algorithm [24]. How-165 ever, the limits of RBS are quickly reached when more than a 166 few components are included in the system, as the number of [START_REF] Parhoudeh | A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids[END_REF][START_REF] Zakariazadeh | Smart microgrid energy and reserve scheduling with demand response using stochastic optimization[END_REF][START_REF] Xiang | Robust energy management of microgrid with uncertain renewable generation and load[END_REF] and robust optimization 222 [START_REF] Kuznetsova | An integrated framework of agent-based modelling and robust optimization for microgrid energy management[END_REF][START_REF] Hussain | Robust optimization-based scheduling of multi-microgrids considering uncertainties[END_REF][START_REF] Liu | Robust unit commitment considering uncertain demand response[END_REF][START_REF] Valencia | Robust energy management system for a microgrid based on a fuzzy prediction interval model[END_REF]. [START_REF] Parhoudeh | A novel stochastic framework based on fuzzy cloud theory for modeling uncertainty in the micro-grids[END_REF] presents a stochastic method based on the Monte Carlo method is used to verify the robustness of the approach. In [START_REF] Kuznetsova | An integrated framework of agent-based modelling and robust optimization for microgrid energy management[END_REF], uncertainty is quantified in terms of prediction intervals by a non-dominated sorting genetic algorithm (NSGA-II) trained by a neural network. Robust optimization is then used to seek the optimal solution to the problem. [START_REF] Hussain | Robust optimization-based scheduling of multi-microgrids considering uncertainties[END_REF] uses robust optimization-based scheduling for multiple microgrids considering uncertainty. The problem is transformed to a minmax robust problem, and is then solved using linear duality theory and the Karush-Kuhn-Tucker (KKT) optimality conditions.

[47] presents a robust EMS for microgrids. Authors use a fuzzy prediction interval model to obtain the uncertainty boundary of wind output, and then the upper and lower boundaries of wind energy are interpreted as the best and worst-case operating conditions. In the above papers, scenario-based methods usually require generating many scenarios , which can take a lot of time to simulate. On the other hand, robust methods are used to find the worst case, which requires less computation time, although results are more conservative. As a consequence, in this paper, a robust optimization method is selected to find the worst case and best case based on the forecasting error.

The above review of the state-of-the-art has shown that a sizing methodology needs to use an appropriate energy management or scheduling approach, and that MPC-based UC fits these needs. Several papers have considered such combinations of sizing and energy management algorithms. For example, [START_REF] Dufo-Lopez | Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage[END_REF] presents a co-optimization method to size stand-alone microgrids with two GA: one for the sizing, and another one for the scheduling. In [START_REF] Khodaei | Microgrid-based co-optimization of generation and transmission planning in power systems[END_REF], authors present a co-optimization method for microgrid planning in electrical power systems. The leader problem optimizes the planning decisions for the microgrids and the main grid, and, with the proposed plan, the shortterm and economic operation subproblems are solved to check whether constraints are met or not. In [START_REF] Khodaei | Microgrid planning under uncertainty[END_REF], authors also present a microgrid planning model. The problem is decomposed into an investment master problem and an operation subproblem.

The two problems are linked via the benders decomposition method. Finally, in [START_REF] Zhang | A bi-level program for the planning of an islanded microgrid including caes[END_REF], the authors present a bi-level program for the sizing of islanded microgrids with an integrated compressed air energy storage (CAES). The upper level problem is solved using GA, and the lower level problem is solved using the MILP technique.

This paper introduces a general method to size a stand-alone microgrid (PV-BSS-HSS) considering technical and economic criteria, with a combination of EA and UC optimization. Compared to existing literature, contributions include: 

System model

A stand-alone microgrid with four main components is considered (Fig. 2): PV panels, a BSS, an HSS (with an electrolyzer, hydrogen tanks and a fuel cell), and a load corresponding to a building. Static converters are not modeled, as their impact is negligible on sizing results. 

PV panels

The output of the PV panels is calculated using [START_REF] Xu | An improved optimal sizing method for wind-solar-battery hybrid power system, Sustainable Energy[END_REF][START_REF] Tesfahunegn | Fuel cell assisted photovoltaic power systems[END_REF]:

P PV (t) = N PV • η PV • P S TC • G A (t) G S TC • (1 + (T C (t) -T S TC ) • C T ) (1)
where N PV is the number of panels, η PV is the panels efficiency, P S TC is the PV array rated power in W p under standard test conditions (STC), G A is the global solar radiation received by the panels in kW/m 2 , G S TC is the solar radiation under STC (1 kW/m 2 ), T C is the temperature of the panels, T S TC is the STC temperature, and C T is the PV temperature coefficient.

Battery

The state of the BSS is represented by its state-of-charge:

S OC(t) = S OC(t -∆t) + η b • P ch (t) • ∆t C bat - P disch (t) • ∆t C bat (2) 
where η bat is the charging efficiency, P ch (t) is charging power, P disch (t) is the discharging power, ∆t is the sampling time, and C bat is the capacity of the battery pack.

Electrolyzer

Electrolyzers are used to produce hydrogen (H 2 ) from electricity. The characteristic of the electrolyzer can be described as follows [START_REF] Diéguez | Thermal performance of a commercial alkaline water electrolyzer: experimental study and mathematical modeling[END_REF][START_REF] Ulleberg | Modeling of advanced alkaline electrolyzers: a system simulation approach[END_REF]:

V el (t) = N el • V rev + (r 1 + r 2 • T ) • I el (t) A el + s 1 + s 2 • T + s 3 • T 2 × log 1 + t 1 + t 2 T + t 3 T 2 • I el (t) A el (3) 
where V el (t) is the voltage of the electrolyzer, N el is the number 332 of cells, V rev is the reversible cell potential, T is the working 333 temperature (assumed constant), and I el (t)/A el (in A/m 2 , with 334 A el the area) is the current density. Variables r 1 , r 2 , s 1 , s 2 , s 3 , 335 t 1 , t 2 , t 3 are empirical constant coefficients.

336

The production rate of hydrogen of the electrolyzer is then given by Faraday's law:

ṅH 2 el (t) = η F (t) N el I el (t) 2F ( 4 
)
where F is the Faraday constant, and I el is the current in the electrolyzer. η F is Faraday's efficiency, which provides a relation between the actual production rate of hydrogen and its theoretical value, namely:

η F (t) = (I el (t)/A el ) 2 f 1 + (I el (t)/A el ) 2 f 2 (5)
where f 1 and f 2 are empirical coefficients.

337

Using the above equations, an equation relating P el (t) and ṅH 2 el (t) is obtained, in the form of:

P el (t) = f (ṅ H 2 el (t)) (6) 
where f (.) is a nonlinear function. Due to constraints described in Section 3, this function is linearized, such that:

P el (t) = k el • ṅH 2 el (t) (7) 
where k el is a constant. The linearization is done via a linear 338 regression on the curve obtained from [START_REF] Abbey | Powering through the storm: microgrids operation for more efficient disaster recovery[END_REF]. The maximum value 339 of P el is noted P max el . 340

Fuel cell 341

Fuel cells consume H 2 and oxygen to produce electricity and water [START_REF] Larminie | Fuel cell systems explained[END_REF][START_REF] Tesfahunegn | Fuel cell assisted photovoltaic power systems[END_REF][START_REF] Lajnef | Modeling, control, and simulation of a solar hydrogen/fuel cell hybrid energy system for grid-connected applications[END_REF][START_REF] Laurencelle | Characterization of a ballard mk5-e proton exchange membrane fuel cell stack[END_REF]. A simple electrical model is used to describe the characteristic voltage curve of the FC [START_REF] Laurencelle | Characterization of a ballard mk5-e proton exchange membrane fuel cell stack[END_REF]:

V f c (t) = (E OC -r f c • i f c (t) -a • ln(i f c (t)) -m • e s•i f c (t) ) • N f c (8)
where V f c is the voltage of the FC, E OC is the open-circuit volt-342 age of one cell, i f c (t) is the current density in one cell, N f c is the 343 number of cells, and r f c , s, a, and m are empirical coefficients.

344

The hydrogen consumption of the FC depends on its current and is given by:

ṅH 2 f c (t) = N f c I f c (t) 2 F U ( 9 
)
where U is the utilization efficiency of hydrogen by the fuel 345 cell.

346

As for the electrolyzer, the model is linearized to obtain:

P f c (t) = k f c • ṅH 2 f c (t) (10) 
where k f c is a constant. The maximum value of P f c is noted

347 P max f c . 348 2.

Hydrogen tank

Hydrogen tanks are used to store the hydrogen produced by the electrolyzer. The stored hydrogen is then supplied to the FC to generate electricity. Similarly to the BSS, a quantity named level of hydrogen (LOH) is used to represent the state of the tank:

LOH(t) = LOH(t -∆t) + ṅH 2 el (t) • ∆t -ṅH 2 f c (t) • ∆t (11) 
Then, using the ideal gas law (PV = nRT ), the volume of the tank V H 2 can easily be determined.

Scheduling strategy

As the results of the sizing process depend on how the different components are used (i.e., what is their output), an appropriate control strategy is required. Contrary to classical components, ESS introduce a temporal link between time steps and scheduling algorithms have to consider this link to ensure that the SOC remains within allowed bounds. This constraint is necessary to ensure that the results of the sizing are adequate, and components oversizing is avoided. As a consequence, it is necessary to predict the evolution of the entire system, including the PV generation which is the primary source of energy for the microgrid.

This paper uses a form of MPC to plan the operation of the system in advance, using forecasts. This MPC strategy is a UC algorithm. Due to the presence of mixed logical and integer variables, the problem is expressed as a MILP problem.

Cost function

In order to achieve economically efficient operation, the utilization cost of the BSS and the HSS need to be quantified and minimized over a given time horizon [START_REF] Cau | Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system[END_REF][START_REF] Garcia | Optimal economic dispatch for renewable energy microgrids with hybrid storage using model predictive control[END_REF][START_REF] Dufo-Lopez | Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage[END_REF]. For the BSS, aging is a major concern that limits the lifetime of the device. As a consequence, the investment cost and the degradation of the BSS have to be taken int account in the operation cost. The utilization cost for charge and discharge are then implemented as follows [START_REF] Garcia | Optimal economic dispatch for renewable energy microgrids with hybrid storage using model predictive control[END_REF]:

B ch cost (t) = C inv bat • P ch (t) • η b 2 • N bat,cyc (12) 
B disch cost (t) = C inv bat • P disch (t) 2 • N bat,cyc (13) 
where C inv bat is the investment cost for the BSS, and N bat,cyc the number of cycles over its lifetime.

For the HSS, the O&M and the startup costs must also be considered. The utilization cost of the electrolyzer and the FC can be computed as follows [START_REF] Garcia | Optimal economic dispatch for renewable energy microgrids with hybrid storage using model predictive control[END_REF]:

H ele cost (t) =        C inv ele N ele bat,hr + C o&m ele        • δ ele (t) + C start ele • ∆δ ele (t) (14) H f c cost (t) =         C inv f c N f c bat,hr + C o&m f c         • δ f c (t) + C start f c • ∆δ f c (t) (15) 
where C inv ele and C inv f c are the investment costs for the electrolyzer and the FC. C o&m ele and C o&m f c are the operation and maintenance costs of both components. Similarly, C start ele and C start f c are their startup cost. N bat,hr represents the number of hours of operation of the HSS over its lifetime. δ ele (t) and δ f c (t) describe their state (i.e., 1 for on, 0 for off). Finally, ∆δ i represents whether the unit is starting or not, and is defined as:

∆δ i (t) = max{δ i (t) -δ i (t -1), 0}, i = {ele, f c} (16) 
Based on the previous cost functions, the total operation cost function for the entire microgrid, over a time horizon of T hor steps, can be built:

C op = T hor t=1 B ch cost (t) + B dis cost (t) + H ele cost (t) + H f c cost (t) + α • P LS (t) + β • P curt (t)) (17) 
where P LS (t) is the shed load, P curt (t) is the curtailed PV output, 378 also be used [START_REF] Hansen | Heuristic optimization for an aggregator-based resource allocation in the smart grid[END_REF][START_REF] Roche | A multi-agent model and strategy for residential demand response coordination[END_REF], but is kept for future work. The operation of the various components is subject to several constraints, as is the islanded operation of the system. In the following equations, i = {ele, f c} and j = {ele, f c, ch, disch}. First, all component outputs have to be between their minimum and maximum values:

P min j ≤ P j (t) ≤ P max j (18)
In order to consider the status of each device (on or off), the above equation becomes:

δ j (t) • P min j ≤Z j (t) = δ j (t) • P j (t) ≤ δ j (t) • P max j (19)
Due to linearity constraints, this equation can then in turn be transformed into the following two inequalities:

Z j (t) ≤ P j (t) -(1 -δ j (t)) • P min j Z j (t) ≥ P j (t) -(1 -δ j (t)) • P max j ( 20 
)
Another constraint is that the electrolyzer and the FC should not be working at the same time, i.e., the HSS is either charging or discharging:

δ ele (t) + δ f c (t) ≤ 1 (21) 
A similar constraint is used for the BSS:

δ ch (t) + δ disch (t) ≤ 1 (22) 
The SOC and LOH constraints also have to be verified:

S OC min ≤ S OC(t) ≤ S OC max (23) V min H 2 ≤ V H 2 (t) ≤ V max H 2 (24)
Then, equation ( 16) can be rewritten as:

∆δ i (t) = δ i (t) • (1 -δ i (t -1)), i = {ele, f c} (25) 
From [START_REF] Ferrari-Trecate | Modeling and control of co-generation power plants: a hy-868 brid system approach[END_REF], the above nonlinear equation can be transformed into the following linear constraints:

382 -δ i (t) + ∆δ i (t) ≤ 0 (26) -(1 -δ i (t -1)) + ∆δ i (t) ≤ 0 (27) δ i (t) + (1 -δ i (t -1)) -∆δ i (t) ≤ 1 (28)
Finally, as the system is islanded, the balance between generation and demand has to be met at all time steps, so:

P PV (t) -P curt (t) -(P load (t) -P LS (t)) = Z ele (t) -Z f c (t) + Z ch (t) -Z dis (t) (29) 

Problem formulation

Using the above cost function and constraints, the microgrid UC problem can be summarized as follows, where S is the set of variables: 2), ( 7), ( 10), ( 11), ( 18 

min S {C op } s.t. (
C bat ∈ C bat , V max H 2 ∈ V H 2 , P max el ∈ P el , P max f c ∈ P fc . Set U repre- 396 sent the whole set, namely, U = N PV ∪ C bat ∪ V H 2 ∪ P el ∪ P fc , 397 
and U ∈ U.

398

The problem can then be formulated as a leader-follower problem [START_REF] Colson | An overview of bilevel optimization[END_REF]. The leader problem (the sizing problem) is as follows: min

U∈U {F(U)} (31) 
where F(.) is a function representing the total cost of the system over the simulation duration.

400

The follower problem (the scheduling problem), is defined as: min 2), ( 7), ( 10), ( 11), ( 18 To obtain a valid estimate of the actual cost of the system, operation cost is insufficient as capital and maintenance costs must also be considered [START_REF] Maleki | Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with lpsp technology by using evolutionary algorithms[END_REF][START_REF] Dufo-Lopez | Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage[END_REF][START_REF] Maleki | Comparative study of artificial intelligence techniques for sizing of a hydrogen-based stand-alone photovoltaic/wind hybrid system[END_REF]. In order to convert the initial capital cost to an annual capital cost, the capital recovery factor (CRF) is used [START_REF] Maleki | Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with lpsp technology by using evolutionary algorithms[END_REF]:

U * , S {C op } s.t. (
CRF = r(1 + r) n inv (1 + r) n inv -1 ( 33 
)
where r is the real interest rate and n inv is the expected life span 409 of the microgrid.

410

The total capital cost corresponds to the cost of buying the equipment, given by:

C cap = CRF • (N PV • C inv PV + P max f c • C inv f c + P max el • C inv ele + V H 2 • C inv tank + C bat • C inv bat ) (34) 
where C inv variables represent the prices of the PV, FC, elec-411 trolyzer, hydrogen tanks and battery components.

412

Similarly, the annual maintenance cost is given by:

C mnt = N PV • C mnt PV + V H 2 • C mnt tank + C bat • C mnt bat ( 35 
)
where C mnt variables represent the annual maintenance costs of 

417

The fitness function of the leader problem is thus the total cost function F(.) given by:

F = C cap + C op + C mnt (36) 418 
Finally, the overall problem can be formulated as:

min U∈U {C cap + min U * , S {C op } + C mnt } s.t. ( 2 
), ( 7), ( 10), ( 11), ( 18) -(29) (37)

Simulation process 419

In order to obtain the optimal sizing for the system, the 

Simulation results

445

In order to validate the sizing methodology, we run several 446 simulation cases. 

475

are summarized in Table 3. For Cases 2A and 2B, the second load profile with a 50% 514 higher demand is used. For Case 2A, the sizing results return Scheduling results are shown in Fig. 14, where we observe that limited LS and PVC occur, although for Cases 1 and 2 the BSS was used to supply the load (due to its cheaper cost).

As expected, the algorithm choses the most economical way to operate the system. degration of the HSS will be slower than for the BSS. In order to adjust sizing results, the difference between PV output and load demand is computed and shown in Fig. 20.

Then we adopt the maximum shortage value (i.e., the minimum value in Fig. 20) as the capacity of fuel cell, and the maximum surplus value (i.e., the maximum value in Fig. 20) as the capacity of electrolyzer. And sizing value of the HSS are adjusted, so that P max f c = 13, P max ele = 37.

After this adjustment, the rolling-horizon simulation is run again. 

223

  cloud theory to handle uncertainty, and uses a krill herd al-224 gorithm to solve the optimization problem. [42] describes 225 a stochastic optimization for microgrid energy and reserve scheduling. Wind and PV generation fluctuations for each hour are represented by 5-interval discrete probability distribution functions. A scenario tree technique is then used to combine different states of wind and PV fluctuations. [43] presents a scenario-based robust energy management method. Taguchis orthogonal array testing method is used to provide possible testing scenarios, and determine the worst-case scenario. At last,

303

  tailments is assessed to determine the sensitivity of results 304 with respect to these parameters.

305 6 .

 6 Finally, results are compared with a rule-based strategy 306 commonly used in the literature, in order to further evalu-307 ate the performance of the algorithm.

  308

Figure 1 :

 1 Figure 1: Bi-level optimization framework.The rest of this paper is structured as follows. Section 2 in-

  313

Figure 2 :

 2 Figure 2: Microgrid architecture.

  371 and α and β are the corresponding penalty values. Load shed-372 ding (LS) and PV curtailment (PVC) are two means of flexibil-373 ity to ensure a balance between generation and demand. How-374 ever, their use has to be minimized due to their impact on cus-375 tomer comfort and system efficiency, respectively. The values 376 of penalty coefficients α and β are thus chosen to discourage the 377 use of LS and PVC. A form of demand response could however

384

  The scheduling strategy presented in the previous section re-385 quires several input variables. Some of these variables corre-386 spond to the maximum rating or capacity of each component, 387 what are the results of the sizing algorithm. Other inputs are 388 parameters set by the user, such as the initial SOC and LOH 389 values, and the penalty coefficients α and β. The impact of 390 these parameters on results will be discussed in Section 5.

391 4 . 1 .

 41 Leader-follower structure 392 The sizing problem aims at finding the optimal size of the PV, 393 BSS, electrolyzer and FC components to achieve the most cost-394 effective solution over a given time period. Let N PV ∈ N PV , 395

413

  the PV, hydrogen tanks and battery components. As the O&M 414 cost of the FC and the electrolyzer are considered in the opera-415 tion strategy equations (12) to (15), they are not included in the 416 annual cost.

420MILP- 1 . 2 . 3 .

 123 based scheduling algorithm and the EA-based sizing al-421 gorithm are combined.422A GA[START_REF] Atia | Optimization of a pv-wind-diesel system using a 747 system[END_REF][START_REF] Lagorse | Sizing optimization of a stand-alone 873 street lighting system powered by a hybrid system using fuel cell, {PV} 874 and battery[END_REF] is used to solve the leader problem. GA are 423 based on the natural selection process similar to biological evo-424 lution. Operators such as mutations, crossover and selection 425 enable generating candidate solutions. The decision variables 426 of the GA are rounded to the nearest higher value for use in the 427 UC MILP algorithm. 428 The simulation process is shown in Fig. 3: 429 The population of N candidate solutions for the GA is ran-430 domly initialized. 431 Each of these solutions is then used with the follower prob-432 lem. The UC MILP optimization is run. If the solution is 433 infeasible, a new candidate solution is generated. 434 The GA fitness function value is then computed to deter-435 mine the total cost of each candidate solution.

436 4 .Figure 3 :

 43 Figure 3: Optimization process outline.

1 , 3 . 1 1 .Figure 4 :

 13114 Figure 4: Weekly average solar radiation and load profiles.

5. 2 .

 2 Cases overview 465 To evaluate the impact of initial conditions and parameters, 466 five cases are compared. Each case assumes different values 467 for S OC ini , LOH ini , α and β, and one of the two load profiles. 468 Case assumptions are summarized in Table 2. Cases 1A and 469 1B, and Cases 2A and 2B are designed to compare the influ-470 ence of different initial states for SOC and LOH on the sizing 471 results. Case 2 is also used to analyze the influence of different 472 load levels on the sizing of the HSS and the BSS. Case 3 is de-473 signed to analyze the influence of the penalty values (α and β) 474 on sizing results, with values ranging from 10 5 to 10 1 . Results

476 5 . 3 .

 53 Fig.6shows the scheduling results. The HSS is more fre-

Fig. 7 Fig. 7 Figure 5 :

 775 Fig. 7 shows the change in hydrogen level in the tanks. As in 491

Figure 6 :

 6 Figure 6: Scheduling results for case 1A. The curve labelled 'Power' corresponds to the PV output minus the load.

Figure 7 :

 7 Figure 7: LOH and SOC for Case 1A.

Figure 8 :

 8 Figure 8: LOH and SOC for Case 1B.

5. 4 .

 4 Results for Case 2 513

515 50 PV

 50 panels, a 11 kW FC, a 6 kW electrolyzer, tanks with a 516 capacity of 8000 Nm 3 , and 158 kWh of batteries, for a total cost 517 of e 219,410. Fig.9shows the scheduling results, and Fig.10

  518 the LOH and SOC profiles. The HSS is sufficient to provide 519 energy to the load, especially at the beginning, so the needed 520 battery capapcity is lower. However, in Case 2B, the HSS is 521 insufficient to meet the load, so more PV panels and battery 522 energy are needed. We can also see that the rating of the FC 523 is larger than in Case 1. As more energy is needed, it becomes 524 cheaper to use the FC than the battery, hence the higher FC 525 rating. 526 For Case 2B, the sizing results return 54 PV panels, a 10 kW 527 FC, a 7 kW electrolyzer, tanks with a capacity of 7000 Nm 3 , 528 and 190 kWh of batteries, for a total cost of e 200,290. As the 529 load is higher than that of Case 1, more storage, in the form 530 of BSS and HSS is needed. As the cost of the energy initially 531 contained in the storage units is not accounted for, the algorithm 532 increases the size of the storage units rather than increasing the 533 number of PV panels. The obtained scheduling results are close 534 to the ones shown in Fig. 9. Fig. 11 shows the LOH and SOC 535 profiles. Due to slight differences in the scheduling results, the 536 SOC curve is difference from the one in Case 2A. However, the 537 curves for LOH is similar, as the HSS operates as a longer term 538 storage unit.

  539

Figure 9 :Figure 10 :

 910 Figure 9: Scheduling results for Case 2A. The curve labelled 'Power' corresponds to the PV output minus the load.

Figure 11 :

 11 Figure 11: LOH and SOC for Case 2B.

Figure 12 :

 12 Figure 12: Load shedding vs. α & β.

Figure 13 :

 13 Figure 13: Curtailed power vs. α & β.

Figure 14 :

 14 Figure 14: Scheduling results for Case 3. The curve labelled 'Power' corresponds to the PV output minus the load

Figure 15 : 3 561Figure 16 :

 15316 Figure 15: Shed and curtailed power, LOH and SOC profiles for Case 3.

579585 5 . 7 .

 57 Regarding LS and PVC penalty values, results have shown 580 that values in the range of value [10 3 , 10 5 ] are reasonable and 581 enable limiting the use of LS and PVC only to necessary cases. 582 Values larger than 10 5 result in no LS or PVC at all, which can 583 be problematic are they can be seen as flexibility means of last 584 resort. Comparison with a rule-based operation strategy 586In order to compare the obtained results with a simpler, refer-587 ence case, we implement a rule-based operation strategy (RBS) 588[START_REF] Uzunoglu | Modeling, control and simulation of a pv/fc/uc based hybrid power generation system for stand-alone applications[END_REF][START_REF] Castañeda | Siz-876 ing optimization, dynamic modeling and energy management strategies 877 of a stand-alone pv/hydrogen/battery-based hybrid system[END_REF]. The outline of the algorithm is shown in Fig.17

  .
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Figure 17 :

 17 Figure 17: Rule-based strategy algorithm.

Figure 18 :

 18 Figure 18: One-hour one-day rolling horizon scheduling simulation.

Figure 19 : 5 . 9 .

 1959 Figure 19: One-hour one-day rolling horizon scheduling simulation (2000 h-2300 h). The curve labelled 'Power' corresponds to the PV output minus the load.

Figure 20 :

 20 Figure 20: PV output minus load demand.

Figure 21 :

 21 Figure 21: One-hour one-day rolling horizon scheduling simulation with the new sizing value of HSS.

  652

5

  shows the sizing results when Er PV = Er load = 0.1. For 653 the worst-case, the HSS used frequently because it is cheaper 654 than BSS. For the best case, the BSS is used frequently due to 655 limitations of the HSS (minimum startup power), so more BSS 656 capacity is needed.

Figure 22 :

 22 Figure 22: One-hour one-day rolling horizon scheduling simulation with the new sizing value of HSS (2000 h-2300 h). The curve labelled 'Power' corresponds to the PV output minus the load.

Figure 23 :

 23 Figure 23: Difference between PV output and load demand in 4 cases.

  is the set of sizing values obtained from the leader. PV , C bat , V max H 2 , P max el , and P max f c . Then the follower uses 403 these values to calculate the total operation cost using the algo-

	404	
	405	rithm described in Section 3. Based on this cost information,
	406	the leader adjusts the sizing values until an optimal value that
	407	minimizes the overall cost is found.
	408	4.2. Leader problem objective function

) -(29) (32) where U * 401 In other words, the leader first returns a candidate set of val-402 ues for N

Table 1 :

 1 Component and simulation parameters.

	Fuel cell [10, 11, 12, 55, 48]
	A	0.03
	r f c	2.45 × 10 -4
	m	2.11 × 10 -5
	n	0.008
	C inv f c	4,000 e /kW
	C o&m f c	0.2 e /h
	Life cycles	30,000h
	P min f c	1kW
	Electrolyzer [53, 54, 48]
	r 1	0.0015
	r 2	-6.019 × 10 -6
	s 1	2.427
	s 2	-0.0307
	s 3	3.9 × 10 -4
	t 1	0.214
	t 2	-9.87
	t 3	119.1
	f 1	150
	f 2	0.99
	C inv ele C o&m f c	3,200 e /kW 0.2 e /h
	Life cycles	30,000h
	P min ele	1kW
	Battery [48]
	C inv bat C mnt bat	470 e /kWh 1 e /kW.year
	N bat,cyc	2,000
	S OC min	0.5
	S OC max	0.9
	Hydrogen tanks [48]
	C inv tank C mnt tank V min H 2	150 e /Nm 3 10 e /Nm 3 .year 1Nm 3
	PV panels[48]
	C inv PV C mnt PV	7,400 e /kW 6 e /kW.year
	CRF [48]
	n inv	20 years
	r	0.05

Table 2 :

 2 Simulation cases assumptions.

	Cases	1A	1B	2A	2B	3
	S OC ini	0.5	0.9	0.5	0.9	0.5
	LOH ini	5000 3000 8000 7000 5000
	α	10 5	10 5	10 5	10 5	10 3
	β	10 5	10 5	10 5	10 5	10 3
	Load profile	1	1	2	2	1

Table 3 :

 3 Sizing results. Case Load S OC i LOH i Total Cost [e ] C op [e ] C cap [e ] N PV P max f c [kW] P max el [kW] V H 2 [N.m 3 ] C bat [kWh]

	1A	1	0.5	5000	201970	1697.8	127980	52	6	7	7178	189
	1B	1	0.9	3000	160070	1663.2	105070	52	6	7	5283	179
	2A	2	0.5	8000	219410	1725.1	137210	50	11	6	8000	158
	2B	2	0.9	7000	200290	1674.5	128090	54	10	7	7000	190
	3	1	0.5	5000	205160	4562.2	125120	52	7	7	7515	2
	RBS	1	0.5	5000	276560	151.9	174640	57	7	8	10100	407

Table 4 :

 4 Sizing results with different penalty values for Case 1A. P curt (t) [kW] N PV P max f c [kW] P max el [kW] V H 2 [N.m 3 ] C bat [kWh] α = 10 5 , β =

	Case 3	T hor t=1 P LS (t) [kW]	T hor					
		0	4.4576	51	7	7	6823	58
	α = 10 5 , β =	0	84.8847	50	7	1	5026	2
	α = 10 4 , β =	0	84.7377	50	7	2	5543	2
	α = 10 4 , β =	0.0839	2.4054	55	7	8	8341	2
	α = 10 4 , β =	0.0352	0	52	6	7	7601	170
	α = 10 4 , β =	0.1297	0	59	7	8	11123	113
	α = 10 3 , β =	0	84.1643	50	7	2	7015	2
	α = 10 3 , β =	2.209	0.7691	52	7	7	7515	2
	α = 10 3 , β =	3.0844	0	52	7	8	10978	11
	α = 10 3 , β =	1.9553	0	54	7	8	8315	38
	α = 10 1 , β =	57.3662	89.4729	50	2	2	5793	2
	α = 10 1 , β =	60.5996	0	50	2	7	9110	1
	α = 10 1 , β =	60.3302	0	50	2	7	9023	2
	α = 10 1 , β =	60.5804	0	50	2	7	9157	2

t=1

  To account for this uncer-634 tainty, the upper bound and lower bounds of estimated values 635 are used. In the following, P PV (t) and P load (t) are the actual 636 PV output and load values, and Er PV and Er load the error on

637

PV output and load, respectively. The lower and upper bounds 638 are then obtained with P PV (t) = P PV (t) ± P PV (t) • Er PV and 639 P load (t) = P load (t) ± P load (t) • Er load .

640

Two cases are defined. The worst case (the case where the 641 difference between PV output and load is the largest) is when 642

Table 5 :

 5 Sizing results considering uncertainty. The worst case is defined as the case where the difference between PV output and load is the largest, and the lowest for the best case.CaseTotal Cost [e ] C op [e ] C cap [e ] N PV P max f c [kW] P max el [kW] V H 2 [N.m 3 ] C bat [kWh]

	Worst case	279270	1761.7	166960	50	8	8	11022	11
	Best case	174400	1617.2	113450	50	6	6	5875	269
	economically sizing a microgrid containing PV panels, a BSS					
	and an HSS.