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Driving prediction techniques (DPTs) are used to forecast the distributions of various future driving conditions (FDC), like velocity, acceleration, driver behaviors etc. and the quality of prediction results has great impacts on the performance of corresponding predictive energy management strategies (PEMSs), e.g., fuel economy (FE), lifetime of battery etc. This survey presents a comprehensive study on existing DPTs. Firstly, a review on prediction objectives and major types of prediction algorithms are presented. Then a comparative study on various prediction approaches is carried out and suitable application scenarios for each approach are provided according to their characteristics. Moreover, prediction accuracy-affecting factors are analyzed and corresponding approaches for dealing with mispredictions are discussed in detail. Finally, the bottlenecks of current researches and future developing trends of DPTs are given. In general, this paper not only gives a comprehensive analysis and review of existing DPTs but also indicates suitable application scenarios for each prediction algorithm and summarizes potential approaches for handling the prediction inaccuracies, which will help prospective designers to select proper DPTs according to different applications and contribute to the further performance enhancements of PEMSs for hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs).

INTRODUCTION

In order to cope with global concentrating issues like energy crisis, air pollutions and health problems brought by conventional vehicles, electric propulsion systems as the secondary energy sources are added into the conventional internal combustion engines (ICE) based powertrain systems to form HEVs or PHEVs [START_REF] Wang | Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[END_REF]. In these hybrid powertrains, the secondary energy sources can assist ICEs to always run in the high efficiency area and improve the dynamic performances of vehicles. Consequently, benefiting from such powertrain configurations, dependences on fossil fuels is reduced and thus less exhausted gases will be emitted, which will lead to cleaner energy transportations. However, how to establish an efficient and effective PEMSs for HEVs/PHEVs to both provide sufficient energy according to changeable external power requirements and achieve best FE is still a not-well-resolved issue [START_REF] Zhang | A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[END_REF].
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Yang Zhou 1 , Alexandre Ravey Based on previous researches, energy management strategies (EMSs) for HEVs/PHEVs can be classified into two main parts:

Rule-based strategies (RBS) and Optimization-based strategies (OBS) [START_REF] Wang | Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[END_REF], [START_REF] Huang | Model predictive control power management strategies for HEVs: A review[END_REF]- [START_REF] Martinez | Energy Management in Plug-in Hybrid Electric Vehicles: Recent Progress and a Connected Vehicles Perspective[END_REF], where Charge-Depleting and Charge-Sustaining (CD-CS) control strategy can be regarded as a special type of RBS for PHEVs. Attempts have been made by many researchers for establishing EMSs based on these methods. For example, as a representative RBS approach, the well-tuned CD-CS strategy based EMSs for PHEVs were widely used due to its simplicity and computational efficiency, which made the battery state of charge (SoC), an indicator of remaining electric charge in battery related to the nominal battery capacity [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF], depleted at the beginning of trips and then maintained within tolerable boundaries when its value reached preset lower limits [START_REF] Ehsani | Design and Control Methodology of Plug-in Hybrid Electric Vehicles[END_REF]- [START_REF] Zhang | Route preview in energy management of plug-in hybrid vehicles[END_REF]. It is a simple-to-implement way of distributing the power flow within the hybrid powertrain system. However, it has shown sub-optimal [START_REF] Gonder | Energy Management Strategies for Plug-In Hybrid Electric Vehicles Distance[END_REF], [START_REF] Tulpule | Effects of different PHEV control strategies on vehicle performance[END_REF] or even non-optimal [START_REF] Sun | Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid Electric Vehicles[END_REF] performances on FE and corresponding electric system efficiency drop during intensive CD mode [START_REF] Zhang | Analytical approach for the power management of blended-mode plug-in hybrid electric vehicles[END_REF].

Compared with RBS approaches, OBSs have shown their advantages in improving FE by minimizing cost functions within various optimization algorithms, including dynamic programming (DP), genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA), etc. As a frequently-utilized OBS approach, dynamic programming (DP) is exploited by many researchers because it can provide with global optimal solutions on FE [START_REF] He | Energy management strategy research on a hybrid power system by hardware-in-loop experiments[END_REF], [START_REF] Wang | Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles[END_REF] during entire trips.

However, two facts prevent this method to be used for real time application: 1) large computational burdens (for the entire trip);

2) requirement of fully-previewed knowledge on future trip [START_REF] Kermani | Predictive energy management for hybrid vehicle[END_REF]- [START_REF] Cao | Research on Model Prediction Energy Management Strategy with Variable Horizon[END_REF], including both future road slope information and velocity profiles, which made them attractive but only in offline design processes or as benchmarks for evaluating other EMSs.

Alternatively, many researchers have switched their research focuses to online OBSs, including equivalent consumption minimization strategies (ECMS), model predictive control (MPC), pontryagin's minimum principle (PMP), machine learning (ML), neural network (NN) etc. Due to its reasonable computation burdens and no requirements of previewed knowledge, ECMS transformed original global optimization problems into instantaneous ones, which gave optimal solutions to distribute instantaneous power demand among different energy sources at each step by minimizing objective functions.

Although computation burdens of ECMS were greatly reduced compared to offline OBSs (e.g. DP-based EMSs), corresponding improvements on FE could be compromised. For example, Li et al. proposed a sequential quadratic programming (SQP) based ECMS for fuel cell hybrid electric vehicle (FCHEV) [START_REF] Li | A novel equivalent consumption minimization strategy for hybrid electric vehicle powered by fuel cell, battery and supercapacitor[END_REF]. By implementing three different penalty functions, the proposed real-time controller could adjust the dynamic behaviors of fuel cell (FC), battery and supercapacitor (SC) according to external power demands. At the same time, it could also maintain FC operating in high efficiency zone with smoothed output current profiles. From corresponding experimental results, it was clear that the proposed EMS could be operated in real-time and did not require any future driving information. However, only 2.16% fuel economy improvement (FEI) was achieved compared with a benchmark RBS.

In order to seek larger FEI, researchers were eager to find an advanced control framework to combine the short-term prediction results with online OBSs. MPC is such an ideal predictive control framework in automotive industries whose main benefits lie in strong ability of handling multivariable and constraints in optimal control problems. Generally, the FE performance of MPC based strategies was considered as a tradeoff between DP and ECMS [START_REF] Huang | Model predictive control power management strategies for HEVs: A review[END_REF]. For example, authors in [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF] From the results proposed in [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF], it was clear that, combined with velocity prediction results, MPC-based controller could achieve 6.4% more FEI than ECMS-based one, which did not The novelty of this paper lies in 1) analysis of several prediction objectives and corresponding reasons why they should be accurately predicted; 2) comparative study on existing approaches used for predicting FDCs; 3) discussions about proper application scenarios for each prediction approach, prediction accuracy-affecting factors and possible ways of improving prediction accuracy and robustness; 4) analysis about missing points in current researches and future trends of DPTs, which includes many original insights and comparisons to make this paper more than simple review on DPTs.

The remainder of the layout of this article is described as follows. In Section 2, a comprehensive review of DPTs is conducted, including several prediction objectives and existing FDCs prediction methods. In Section 3, a comparative study of their benefits and drawbacks is conducted and appropriate application scenarios for each approach are proposed. Then approaches for improving the performance of FCDs prediction methods are discussed. Moreover, the currently unsolved issues about prediction techniques and future developing trends of DPTs are given in Section 4. The conclusions are summarized in Section 5. Besides, all symbols and acronyms in this article could be found in Nomenclature Section.

REVIEWS ON DRIVING PREDICTION TECHNIQUES

The arrangement of section 2 is as follows: in section 2. 

Driving prediction objectives

In this sub-section, several driving prediction objectives, including velocity, acceleration, power demand, SoC reference trajectory, driving pattern, drivers' driving style, are introduced and the importance of providing reasonable prediction results on these objectives is analyzed in detail.

Velocity, acceleration and power demand

As it is stated in [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF], the traction force and power demand of a road vehicle can be denoted as
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Where   For these reasons, researchers are eager to find reasonable ways of predicting vehicle velocities, accelerations and power demands in the future. In previous researches [START_REF] Arsie | Control strategy optimization for hybrid electric vehicles via provisional load estimate[END_REF], A NN-based future vehicle load estimator was established to optimize the control strategies on the supervisory level within prediction horizon, whose effectiveness was testified by simulations. Even though the quality of prediction along the entire trip cannot be guaranteed, it is verified that accessibility of high-accuracy predicted results in the near future can provide with considerable amount of fuel consumption saving. For example, in [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF] 

Other prediction objectives

Except for prediction objectives discussed above, upcoming traffic signal information (e.g. traffic light distributions) have

shown their great potential in reducing fuel consumptions [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF], [START_REF] Bouwman | Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles[END_REF] for PHEVs. Consequently, authors in [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF] proposed a signal-phase prediction model which used historical averaged data and real-time phase data to determine the probability of upcoming traffic lights. The predicted information was embedded into a best velocity planning framework to avoid unnecessary stops and idling time, which turned out to give an average of 6% improvement in FE performances.

Alternatively, as it was indicated in [START_REF] Martinez | Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey[END_REF], drivers' driving styles, which were interpreted as the habits where drivers operated vehicles according to various driving scenarios, play an important role in vehicle energy management. For example, compared to eco-drivers, there were larger chances for aggressive drivers to manipulate vehicles in a more casual manner, such as over-speeding, abruptly lane changing and braking pedals abusing [START_REF] Johnson | Driving Style Recognition Using a Smartphone As a Sensor Platform -Johnson_ITSC2011[END_REF]. Consequently, such driving style will greatly increase the driving risks (e.g. traffic accidents) as well as fuel consumptions. It was found that aggressive driving styles contributed to 68% and 47% more fuel consumptions in the conventional ICE-based vehicles in urban and rural roads, respectively [START_REF] Lenaers | Real Life CO2 Emission and Consumption of Four Car Powertrain Technologies Related to Driving Behaviour and Road Type[END_REF]. Similarly, previewed knowledge of driving styles can improve the performance of EMSs for HEVs/PHEVs [START_REF] Wang | Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[END_REF]. Driving style information was embedded into an EMS for hybrid truck [START_REF] Lin | Driving Pattern Recognition for Control of Hybrid Electric Trucks[END_REF] and the recognized results of driving styles are used to explore the better performance of estimation of remaining range for PHEVs [START_REF] Yu | Driving pattern identification for EV range estimation[END_REF]. However, the precise relationships between FE and driving styles still need to be further investigated under various driving scenarios [START_REF] Martinez | Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey[END_REF].

Moreover, the proper way of combination with preview knowledge on recognition results and corresponding PEMSs is still a challenging issue to be settled. Several driving prediction objectives and corresponding literatures discussed in Section 2.1 are summarized in table I. In the following parts of section 2, several specific future driving conditions (FDCs) prediction approaches are reviewed in detail including their mathematical principles, typical applications and relative comparisons. 

Objectives

Ref. Sum Velocity [START_REF] Zhang | Route preview in energy management of plug-in hybrid vehicles[END_REF], [START_REF] Sun | Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid Electric Vehicles[END_REF], [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF]- [START_REF] Cao | Research on Model Prediction Energy Management Strategy with Variable Horizon[END_REF], [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF], [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF]- [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], [START_REF] Sun | The Role of Velocity Forecasting in Adaptive-ECMS for Hybrid Electric Vehicles[END_REF]- [START_REF] Chen | Multimode Energy Management for Plug-In Hybrid Electric Buses Based on Driving Cycles Prediction[END_REF] 35

Acceleration [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF]- [START_REF] Cao | Research on Model Prediction Energy Management Strategy with Variable Horizon[END_REF], [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF], [START_REF] Xie | Plug-In Hybrid Electric Bus Energy Management Based on Stochastic Model Predictive Control[END_REF], [START_REF] Shi | Research on Markov property analysis of driving cycles and its application[END_REF], [START_REF] He | Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle[END_REF], [START_REF] Li | The Study on Multi-scale Prediction of Future Driving Cycle Based on Markov Chain[END_REF], [START_REF] Zhang | Model Predictive Control Based Energy Management Strategy for a Plug-In Hybrid Electric Vehicle[END_REF] 9

Power demand [START_REF] Di Cairano | Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[END_REF], [START_REF] Ripaccioli | A stochastic model predictive control approach for series hybrid electric vehicle power management[END_REF], [START_REF] Zou | A real-time Markov chain driver model for tracked vehicles and its validation: Its adaptability via stochastic dynamic programming[END_REF], [START_REF] Tianheng | A supervisory control strategy for plug-in hybrid electric vehicles based on energy demand prediction and route preview[END_REF]- [START_REF] Liu | A Bi-Level Control for Energy Efficiency Improvement of a Hybrid Tracked Vehicle[END_REF] 9

SoC reference [START_REF] Tulpule | Effects of different PHEV control strategies on vehicle performance[END_REF], [START_REF] Sun | Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid Electric Vehicles[END_REF], [START_REF] Li | Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus[END_REF], [START_REF] Montazeri-Gh | Near-optimal SOC trajectory for traffic-based adaptive PHEV control strategy[END_REF], [START_REF] Bouwman | Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles[END_REF], [START_REF] Tianheng | A supervisory control strategy for plug-in hybrid electric vehicles based on energy demand prediction and route preview[END_REF],

[74]- [START_REF] Zhao | Energy Control of Plug-In Hybrid Electric Vehicles[END_REF] 12

Driving Pattern [START_REF] Wang | Driving Pattern Prediction Model for Hybrid Electric Buses Based on Real-World Driving Data[END_REF]- [START_REF] Song | The research on vehicle driving pattern characteristic parameters search algorithm based on parallel computing[END_REF], [START_REF] Lin | Driving Pattern Recognition for Control of Hybrid Electric Trucks[END_REF], [START_REF] Yu | Driving pattern identification for EV range estimation[END_REF], [START_REF] Zhang | Stochastic Control of Predictive Power Management for Battery/Supercapacitor Hybrid Energy Storage Systems of Electric Vehicles[END_REF]- [START_REF] Soriano | Drive Cycle Identification and Energy Demand Estimation for Refuse-Collecting Vehicles[END_REF] 11

Drivers' driving styles [START_REF] Martinez | Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey[END_REF]- [START_REF] Lenaers | Real Life CO2 Emission and Consumption of Four Car Powertrain Technologies Related to Driving Behaviour and Road Type[END_REF], [START_REF] Yu | Driving pattern identification for EV range estimation[END_REF] 4

Traffic flow speed [START_REF] Sun | Dynamic Traffic Feedback Data Enabled Energy Management in Plug-in Hybrid Electric Vehicles[END_REF] 1

Traffic signal phase [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF] 1

Traffic congestion level [START_REF] Murphey | Neural learning of driving environment prediction for vehicle power management[END_REF] 1

Future road grade [START_REF] Zeng | A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control with Road Grade Preview[END_REF], [START_REF] Zhang | Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles[END_REF] 2

Distance until charge [START_REF] Naghshtabrizi | Distance Until Charge prediction and fuel economy impact for Plug-in Hybrid Vehicles[END_REF], [START_REF] Lohrer | A Data-Driven Predictive Energy Management Strategy for Plug-in Hybrid Vehicles[END_REF], [START_REF] Ravey | Distance estimation algorithm for plug-in hybrid electric vehicle control strategy[END_REF] 3

Movements of preceding vehicles

[90] 1 In recent years, many attempts have been made using recognition based prediction. The main research focus on this approach is the tradeoff between recognition accuracy and computation burden. The reduced number of characteristic parameters for classification can shorten the computation time making the algorithms more suitable for online applications.

Artificial Intelligence based methods

AI

Among these researches, 62 [START_REF] Ericsson | Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[END_REF], 40 [START_REF] Langari | Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process[END_REF], 17 [START_REF] Yi | Intelligent energy management based on driving cycle identification using fuzzy neural network[END_REF] and 14 [START_REF] Murphey | Neural learning of driving environment prediction for vehicle power management[END_REF] characteristic parameters are used to characterize a specific driving cycle. This number is reduced to only 3 or 2 in [START_REF] Chen | Intelligent power management in SHEV based on roadway type and traffic congestion levels[END_REF] and [START_REF] Lin | Driving Pattern Recognition for Control of Hybrid Electric Trucks[END_REF] respectively. Especially in [START_REF] Chen | Multimode Energy Management for Plug-In Hybrid Electric Buses Based on Driving Cycles Prediction[END_REF], six original characteristic parameters composed of three new parameters through linear mapping approach and the new composed parameters contained more than 90% information of variance in original data.

Therefore, based on composed parameters, a hierarchical cluster is built to extract the characteristic parameters from real driving cycles and then SVM is used to generate the driving patterns.

The second sub-part of AI-based approach is called "experience-based" prediction whose procedure is shown in Fig. 3. In order to simplify the illustration process, a NN-based predictor, which is composed of input layer, hidden layer and output layer, is used here as a representative of AI-based prediction models. In Fig. 3 Two types of AI-based prediction approaches, "recognitionbased" and "experience-based" prediction, shared the same operation framework ---"offline training" and "online predicting". However, there are two major differences between them. In "recognition-based" prediction approaches, the number of input variables is larger than that of "experience-base" prediction approaches (e.g. 100-150 vs. less than 10, respectively). The reason is, in the former approaches, it is necessary to store larger amount of data to ensure the completeness and recognition accuracy of current driving segment, while there is no need to calculate characteristic parameters in the latter approaches. Besides, the outputs of "recognition-based" prediction model are driving patterns which are used as switches to select proper pre-designed PEMSs according to the recognition results. However, the outputs of the "experience-based" prediction model are physical quantities like velocities, accelerations or power demands and these predicted profiles were regarded as the measured disturbances, which were imported into online optimizers to find satisfied solutions within prediction horizons.

Markov based methods

Markov chain is used to describe stochastic sequences of possible events in which the probability of each event depends only on the state obtained in the previous event. 

    1 1 1 1 0 0 1 1 1 1 ( 1) ( r 1) Pr , ,..., Pr , ,... 
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where r is the order of this Markov chain. Specifically, when r equals to 1, such Markov chain is called "one-order" Markov chain, where the next state depends only on current state.

    1 1 1 1 0 0 1 1 Pr , ,..., Pr n n n n n n n n n n s s s s s s                    (4) 
In this way, probability of transition from state i to state j after one step can be marked as:

  1 Pr , ij n j n i p s s i j m        (5) 
where ij p is the element lying in the i th row and j th column of Transition Probability Matrix (TPM), marked as P .

Once 
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)
Similarly, for p H steps ahead, the probability vector

  p v k H  is denoted as     p H p v k H v k P    . ( 7 
)
The overall procedure of making prediction by Markov chain is shown in Fig. 4. There are four main steps in the prediction process.

Step I: establishing TPM by statistical approaches;

Step II: encoding inputs variables (e.g. velocity, acceleration, power request etc.) into states;

Step III: generating the predicted states;

Step IV: decoding predicted states into real physical values. Detailed information of general procedure of Markov chain prediction can be found in [START_REF] Liu | Study on the design method of time-variant driving cycles for EV based on Markov Process[END_REF]. For practical applications, future probability distributions of vehicles' velocity, acceleration and drivers' power request can be predicted by Markov model. For example, in [START_REF] Lenaers | Real Life CO2 Emission and Consumption of Four Car Powertrain Technologies Related to Driving Behaviour and Road Type[END_REF], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF], [START_REF] Huang | Model predictive control power management strategies for HEVs: A review[END_REF] where a Markov chain was used to establish the future distribution of velocity and acceleration in order to predict the future velocity ((V,A)-V distribution). In addition, future vehicle power demand sequence was generated by Markov chain automatically, where input variables are current power demand [START_REF] Ripaccioli | A stochastic model predictive control approach for series hybrid electric vehicle power management[END_REF], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF] (P-P distribution) or current power demand and velocity [START_REF] Zou | A real-time Markov chain driver model for tracked vehicles and its validation: Its adaptability via stochastic dynamic programming[END_REF], [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF] ( (P,V)-P distribution).

Besides, in [START_REF] Joševski | Tube-based MPC for the energy management of hybrid electric vehicles with non-parametric driving profile prediction[END_REF] property, corresponding improvements of may be lost [START_REF] Filev | Generalized Markov models for real-time modeling of continuous systems[END_REF].

Exponentially decreasing model based methods

According to frequent variations of torque demand in a real driving cycle, assumption of a decaying torque demand was more reasonable than a constant torque assumption, which was testified by H. Ali Borhan et al.in their researches [START_REF] Borhan | predictive energy management of a powersplit hybrid electric vehicle[END_REF].

Exponentially decreasing model (EDM) was based on the assumption that drivers' torque demand in the future will drop exponentially within prediction horizon. Therefore, this model can be described by [START_REF] Gonder | Energy Management Strategies for Plug-In Hybrid Electric Vehicles Distance[END_REF]. Combining [START_REF] Gonder | Energy Management Strategies for Plug-In Hybrid Electric Vehicles Distance[END_REF] with the discrete form of vehicle dynamics model ( 9) and by numerical integration, the predicted value of vehicle velocity can be given in [START_REF] Qiuming | Trip based optimal power management of plug-in hybrid electric vehicles using gaskinetic traffic flow model[END_REF]. In [START_REF] Zhang | Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system[END_REF], this model was used to predict future velocity of a PHEV, and prediction results were utilized to develop a MPC based PEMS with a hybrid energy storage system. In [START_REF] Borhan | Model predictive control of a powersplit Hybrid Electric Vehicle with combined battery and ultracapacitor energy storage[END_REF], [START_REF] Borhan | MPC-Based Energy Management of a Power-Split Hybrid Electric Vehicle[END_REF],
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this model was used to provide the prediction of future vehicle velocity and was implemented in the Nonlinear MPC based PEMS framework. In [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF], three types of velocity predictors 

Telematics technique based methods

Thanks to the development of telematics techniques (GPS and navigation system etc.), predictions can be made more accurately with previewed trip knowledge. From previous researches, it can be seen that PEMSs outperforms than many Non-Predictive Energy Management Strategies (N-PEMSs).

However, such advantages can be compromised or even lost if

EMSs were proposed based on the inaccurate prediction results [START_REF] Bouwman | Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles[END_REF], which were mainly caused by uncertain traffic factors (e.g. traffic light signal distribution and traffic congestion level etc.)

and road-related information (e.g. future terrain and speed limits etc.).

For example, in [START_REF] Ma | Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview[END_REF], authors presented a PEMS for HEVs with preview of road grade. Double-layer PEMSs were established in [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF], [START_REF] Kelouwani | Two-layer energy-management architecture for a fuel cell HEV using road trip information[END_REF] and [START_REF] Geng | Two-stage energy management control of fuel cell plug-in hybrid electric vehicles considering fuel cell longevity[END_REF] using the future driving information like traffic lights positions, speed limits and traffic congestion level. Trip-preview based information was used to construct the driving cycle [START_REF] Qiuming | Trip based optimal power management of plug-in hybrid electric vehicles using gaskinetic traffic flow model[END_REF], [START_REF] Hongwen | Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles[END_REF] and identify the route features [START_REF] Zhao | Energy Control of Plug-In Hybrid Electric Vehicles[END_REF] from historical and real-time data.

An online intelligent energy management controller was built by dual-NNs, which was associated with precise or estimated the preview knowledge of trip length and duration [START_REF] Bin | Multi-information integrated trip specific optimal power management for plug-in hybrid electric vehicles[END_REF], [START_REF] Chen | Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[END_REF]. And the simulation results showed that with precise previewed knowledge, the proposed online controller can achieve An optimal velocity planning algorithms is scheduled based on the preview of traffic signal distribution to reduce the fuel consumption in [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], where the proposed approach can reduce fuel consumption by 6% with the combination of real-time information. Similarly, in [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF], a combination of upcoming traffic signal information and vehicle's adaptive cruise control system were proposed to reduce the idle time of the engine and improve the overall FEI. In simulation, the fuel consumption was brought down by 47% through a sequence of 9 traffic lights.

However, such giant FEI may be achieved in future for practical application when the advanced intelligent traffic intersection control systems were available. Markov chain based road grade predictor [START_REF] Zeng | A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control with Road Grade Preview[END_REF] was built for proposing PEMSs with route based information (e.g. vehicle location, traveling direction, and terrain information etc.). Corresponding results showed that the proposed strategies consumed 4.3% more fuel than the best benchmark (DP-based EMS) but 8.2% less fuel than ECMSbased EMS.

Other methods

Apart from the above-discussed prediction approaches, other prediction methods were also explored by researchers. For example, a fast dual-loop Nonlinear PEMSs for HEVs was proposed [START_REF] Buerger | Fast dual loop nonlinear receding horizon control for energy management in hybrid electric vehicles[END_REF], where the inner loop aimed at tracking the reference trajectories based on the knowledge of predicted driving cycle. An ARIMA based method was proposed to forecast the future road grade [START_REF] He | Road Grade Prediction for Predictive Energy Management in Hybrid Electric Vehicles[END_REF]. The root mean square error (RMSE) of 10-second road grade forecast is as low as 0.01 degree and corresponding fuel economy was improved by 4.7%. In [START_REF] Bender | An adaptive driver model for driving cycle prediction in the intelligent truck[END_REF], a gain scheduled driver model (GSDM) was used for predicting the future driving profile. From the results of simulations, the proposed EMS could obtain about 84% of best possible FEI results due to the use of prediction results. In [START_REF] Larsson | Commuter Route Optimized Energy Management of Hybrid Electric Vehicles[END_REF], authors demonstrated a method to identify commuter routes from historical driving data using hierarchical agglomerative clustering method (HACM). In [START_REF] Kermani | Predictive energy management for hybrid vehicle[END_REF], a prediction method was proposed concentrating on the frequency distribution of vehicles future position. Moreover, several DPR and classification methods were proposed based on analytical LVQ-NN [START_REF] Brady | Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas[END_REF], similarity degree (SD) [START_REF] Wei | HEV power management control strategy for urban driving[END_REF], fuzzy logic (FL) [START_REF] Zhang | Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming[END_REF], [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF], Probabilistic support vector machine (PSVM) [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF] and Kalman filter [START_REF] Liu | Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter[END_REF].

Based on the comprehensive review of specific FDCs prediction methods in Section 2, a classification of these methods is proposed and corresponding references are summarized in Table II. 

AI approaches

Recognition based [START_REF] Lin | Driving Pattern Recognition for Control of Hybrid Electric Trucks[END_REF], [START_REF] Chen | Multimode Energy Management for Plug-In Hybrid Electric Buses Based on Driving Cycles Prediction[END_REF], [START_REF] Yi | Intelligent energy management based on driving cycle identification using fuzzy neural network[END_REF]- [START_REF] Murphey | Neural learning of driving environment prediction for vehicle power management[END_REF], [START_REF] Chen | Intelligent power management in SHEV based on roadway type and traffic congestion levels[END_REF] 9

Experience based [START_REF] Banvait | Energy Management Control of Plug-in Hybrid Electric Vehicle using Hybrid Dynamical Systems Set of discrete inputs[END_REF], [START_REF] Sun | The Role of Velocity Forecasting in Adaptive-ECMS for Hybrid Electric Vehicles[END_REF]- [START_REF] Xiang | Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control[END_REF], [START_REF] Tianheng | A supervisory control strategy for plug-in hybrid electric vehicles based on energy demand prediction and route preview[END_REF], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF], [START_REF] Zhang | Stochastic Control of Predictive Power Management for Battery/Supercapacitor Hybrid Energy Storage Systems of Electric Vehicles[END_REF], [START_REF] Li | Power Management for a Plug-in Hybrid Electric Vehicle Based on Reinforcement Learning with Continuous State and Action Spaces[END_REF], [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF],

[106]- [START_REF] Muñoz | Energy management control design for fuel cell hybrid electric vehicles using neural networks[END_REF] 14

Markov approaches (V,A)-V distribution [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF]- [START_REF] Cao | Research on Model Prediction Energy Management Strategy with Variable Horizon[END_REF], [START_REF] Liu | Study on the design method of time-variant driving cycles for EV based on Markov Process[END_REF]- [START_REF] Li | The Study on Multi-scale Prediction of Future Driving Cycle Based on Markov Chain[END_REF], [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF], [START_REF] Zhang | Model Predictive Control Based Energy Management Strategy for a Plug-In Hybrid Electric Vehicle[END_REF] 11 P-P or (P,V)-P distribution 2 [START_REF] Di Cairano | Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[END_REF], [START_REF] Ripaccioli | A stochastic model predictive control approach for series hybrid electric vehicle power management[END_REF], [START_REF] Zou | A real-time Markov chain driver model for tracked vehicles and its validation: Its adaptability via stochastic dynamic programming[END_REF], [START_REF] Liu | Reinforcement Learning Optimized Look-Ahead Energy Management of a Parallel Hybrid Electric Vehicle[END_REF], [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF], [START_REF] Liu | A Bi-Level Control for Energy Efficiency Improvement of a Hybrid Tracked Vehicle[END_REF], [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF], [START_REF] Xiong | Reinforcement learning-based realtime power management for hybrid energy storage system in the plug-in hybrid electric vehicle[END_REF] 8

Other distribution (V-Road Grade) 2D distribution [START_REF] Filev | Generalized Markov models for real-time modeling of continuous systems[END_REF] 1

HMM Driver Torque distribution [START_REF] Joševski | Tube-based MPC for the energy management of hybrid electric vehicles with non-parametric driving profile prediction[END_REF] 1

Diving behaviors distribution [START_REF] Li | Drivingbehavior-aware stochastic model predictive control for plug-in hybrid electric buses[END_REF] 1

GPS coordinates distribution [89] 1

Telematics approaches Uncertain traffic factors [START_REF] Bouwman | Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles[END_REF], [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], [START_REF] Qiu | Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles[END_REF], [START_REF] Kamal | Model predictive control of vehicles on urban roads for improved fuel economy[END_REF], [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF] 5

Road-related information [START_REF] Qiuming | Trip based optimal power management of plug-in hybrid electric vehicles using gaskinetic traffic flow model[END_REF], [START_REF] Zhang | Route preview in energy management of plug-in hybrid vehicles[END_REF], [START_REF] Bouwman | Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles[END_REF], [START_REF] Opila | Uncertain route, destination, and traffic predictions in energy management for hybrid, plug-in, and fuel-cell vehicles[END_REF], [START_REF] Hongwen | Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles[END_REF], [START_REF] Bin | Multi-information integrated trip specific optimal power management for plug-in hybrid electric vehicles[END_REF], [START_REF] Kelouwani | Two-layer energy-management architecture for a fuel cell HEV using road trip information[END_REF], [START_REF] Ma | Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview[END_REF], [START_REF] Geng | Two-stage energy management control of fuel cell plug-in hybrid electric vehicles considering fuel cell longevity[END_REF], [START_REF] Zhao | Energy Control of Plug-In Hybrid Electric Vehicles[END_REF], [START_REF] Zhang | Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles[END_REF], [START_REF] Chen | Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[END_REF], [START_REF] Zhang | Real-time optimal control of plug-in hybrid vehicles with trip preview[END_REF], [START_REF] Golchoubian | Real-Time Nonlinear Model Predictive Control of a Battery-Supercapacitor Hybrid Energy Storage System in Electric Vehicles[END_REF], [START_REF] Karbowski | Route-based online energy management of a PHEV and sensitivity to trip prediction[END_REF] 1, 2 V, A, P refers to vehicle velocity, acceleration and power demand from external environments or drivers' requests.

FURTHER DISCUSSION

In this section, issues like comparative study and suitable application scenarios of each prediction method, factors causing mis-predictions, the mechanism how these factors affect the quality of predictions and methods to cope with mispredictions are discussed in detail.

Comparative study of FDCs prediction methods

A comparative study of driving prediction methods will be conducted in this subsection through their mathematical principles, application complexity, (e.g. data demands and computation burdens), prediction accuracy and robustness.

Mathematical principles

The or real world experimental data can be used to establish TPMs.

In order to ensure the accuracy of prediction results, the database used for establishing TPMs should be abundant to cover as much driving conditions as possible, which causes large data demand and computation burden. Besides, the input variables compose of the basic elements in Markov chain--states. Moreover, the increasing number of states and orders of Markov chains will increase the model resolution, resulting in high prediction accuracy. However, the higher complexity and large amount of data demand brought by them will also increase the computation burdens for real time applications.

The procedures of implementing AI-based prediction approaches can be divided into three parts, determining the structure of prediction models, offline training and online predicting. Taking NN-based approach as an example, the number of input and output variables, the structure and number of neurons and layers, have to be pre-determined according to the complexity of concerned problems. Then, during the offline training processes, large amount of samples are used to train to prediction functions, which can be very time-consuming.

Besides, if the amount of training data is too small or the structures of prediction models are designed too complex, the "overfitting" problem would cause many noises in the online prediction process and thus decrease the prediction accuracy for practical applications. Moreover, if the training error is set too small, it may take long time for the training process to be converged.

Unlike 

Application scenarios of each prediction method

Predictions based on EDM models are time-saving because its prediction model is fixed and simple. However, such model remains unchanged when external driving conditions dramatically change, which leads to unreliable results for real driving conditions. Consequently, it is suitable to be a good benchmark in simulations or stable driving environments where driving conditions do not change rapidly.

For private vehicles, Markov based prediction methods are not suitable for applying in urban area where most vehicles are often in the "stop-and-go" mode, traffic signals are changing with time, vehicles' velocity are highly affected by the movements of preceding vehicles, leading to the difficulties in accurately predicting vehicle's velocity. Predictions based on historical data are more reasonable for public service vehicles, like city buses [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF]- [START_REF] Cao | Research on Model Prediction Energy Management Strategy with Variable Horizon[END_REF], [START_REF] Xie | Plug-In Hybrid Electric Bus Energy Management Based on Stochastic Model Predictive Control[END_REF], [START_REF] Huang | Driving cycle prediction model based on bus route features[END_REF], [START_REF] Chen | Multimode Energy Management for Plug-In Hybrid Electric Buses Based on Driving Cycles Prediction[END_REF] and trucks [START_REF] Lin | Driving Pattern Recognition for Control of Hybrid Electric Trucks[END_REF], [START_REF] Bender | An adaptive driver model for driving cycle prediction in the intelligent truck[END_REF] etc., because their working conditions and commuter routes are relatively fixed and repeated. Therefore, historical data can reflect their common behaviors with high reliability.

Additionally, Markov based approaches are also suitable for highway driving conditions. It should be noted that 1) external driving environments in highway do not change as rapidly as in urban areas, 2) the movements of vehicles are relatively similar on highway than in urban areas, for example, most vehicles are cruising around the upper speed limits in majority of driving time, their velocity will be reduced at every entrance and exit and they will stop at every toll gate, which means, statistically, vehicles in highway driving conditions will follow the similar driving patterns as recorded in historical database. In that case,

TPMs established by such database can effectively reflect future probability distribution of vehicle speed, resulting in higher prediction

The potential of integrating accurate traffic information (e.g. traffic speed, road slope and traffic lights distribution etc.) to reduce the future uncertainties makes AI based methods perform better than Markov based methods in urban areas.

However, the time-consuming model training processes should be finished offline. In order to make the model adapt to the changeable external driving conditions, online learning/training algorithms should be introduced, which will additionally increase computation burdens. For vehicles having relatively fixed operation routes, this approach may have good performance in real time because the offline well-trained models can perform well in most of their driving conditions.

Similar to Markov based approaches, AI based approaches are suitable for applications in highway conditions.

If vehicles are assumed to be operated in an urban area with heavy traffic, short-term road grade preview or even the current road grade information would be of great help for designing PEMSs, since vehicles' average velocity is low but have many transients, which is hard to be accurately predicted by AI-based or Markov based approaches. Moreover, advanced wireless communication systems like Vehicle-to-Vehicle (V2V) and

Vehicle-to-Infrastructure (V2I) communication also provide the data exchanging and sharing platforms for vehicles on the specific roads. The shared information between vehicles and infrastructures are useful to gain the information of potential movements of surrounding vehicles, whose results can be utilized for the velocity prediction during traffic congestion periods. Besides, in suburban and highway driving conditions, this approach may not be suitable for prediction because corresponding advanced intelligent traffic devices may not be well-developed in these areas.

According to discussions in section 3.1 and 3.2, benefits, drawbacks and suitable application scenarios of several types of prediction approaches are summarized in Table III.

Approaches to cope with mis-prediction

Apart from selecting proper prediction horizon, there are many other approaches that can be found in existing literatures to cope with mis-predictions. In this sub-section, several accuracy-affecting factors are firstly analyzed and then different types of mis-predictions caused by these factors and their influences on corresponding PEMSs are indicated. Finally, approaches for improving prediction accuracy and robustness are discussed. It is illustrated by Hongwen H. et al. in [START_REF] He | Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle[END_REF] that 1) the prediction accuracy can be affected by the length of prediction horizon and 2) prediction with variable horizon can provide 20% more accurate results than with fixed prediction horizon.

In [START_REF] Gomozov | Adaptive Energy Management System Based on a Real-Time Model Predictive Control with Nonuniform Sampling Time for Multiple Energy Storage Electric Vehicle[END_REF], a prediction horizon with non-uniform sampling times was proposed benefiting from both a short prediction horizon with small sampling instants and a long prediction horizon with large sampling instants. Corresponding MPC based PEMSs framework with proposed predictive strategy reduced the range and variation of battery power demand by 25.5% and 46.6%, respectively, compared with the results from Rule-based EMSs.

Generally, compared with long-term prediction, prediction with shorter horizon will be more accurate because it is less likely to encounter the external changes and its prediction results will be less affected in short period due to the inertia of systems.

However, PEMSs with short-term prediction will always lead sub-optimality to the performance of proposed PEMSs.

Consequently, tradeoff should be made when choosing proper length of prediction horizon.

 Prediction model distortion

Markov chain and NN based prediction models were generated by "learning" or "training" process, whose performances highly rely on the stationary database. However, real world driving conditions are complex and changing dramatically according to many uncertain factors, like the movements of pedestrians, surrounding vehicles and weather conditions etc. Therefore, such model distortion caused by the discrepancy between original database and real-time changing environments becomes another prediction accuracy-affecting factor. However, if the original database or the prediction model can be updated by online updating algorithm [START_REF] Zou | A real-time Markov chain driver model for tracked vehicles and its validation: Its adaptability via stochastic dynamic programming[END_REF], the prediction model can "learn" new characteristics from external environments. Consequently, the adaptation for prediction models will be improved.

 Prediction-assisting knowledge Three types of knowledge are utilized to explore their potential of accuracy improvements by researchers: a) Knowledge from historical database. For example, in order to increase the amount of prediction-assisting information from historical database to identify Transition Probability Matrix (TPM), conventional "one-order" Markov model ( 2) is expanded to "high-order" Markov model (1) to increase the resolution and accuracy of prediction models. Such expansion required large amount of driving data to estimate corresponding TPMs but such sufficiently rich database cannot be guaranteed in designing processes. That is reason that more than five order Markov chain is rarely seen in corresponding researches [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF],

[67], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF].

b) Knowledge from traffic conditions: The influences on prediction accuracy of traffic-based preview knowledge like terrain knowledge [START_REF] Zhang | Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles[END_REF], [START_REF] Zhang | Real-time optimal control of plug-in hybrid vehicles with trip preview[END_REF], traffic congestion level [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF], traffic signal distribution [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF], [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], [START_REF] Qiu | Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles[END_REF], [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF] and trip length [START_REF] Chen | Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[END_REF], [START_REF] Zhao | Energy Control of Plug-In Hybrid Electric Vehicles[END_REF] were explored by researchers. Various data-fusion approaches (e.g. Dempster-Shafer (DS) and Wavelet Transform (WT) theory) are implemented to assign different weights to these accuracy-affecting factors to create multi-input prediction models.

c) Knowledge from non-traffic conditions. Non-traffic factors like weather conditions (rain, sun, wind...) [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF], driving period (weekdays or weekends) [START_REF] Liu | An On-line Energy Management Strategy based on Trip Condition Prediction for Commuter Plug-in Hybrid Electric Vehicles[END_REF] or even drivers' style (aggressive, moderate, conservative) [START_REF] Wang | Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[END_REF] can also affect the prediction accuracy. For example, detailed expressions of aerodynamic friction a F and rolling friction r F in vehicle dynamic longitude model [START_REF] Wang | Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles[END_REF] are given in [START_REF] Zhang | Route preview in energy management of plug-in hybrid vehicles[END_REF] and [START_REF] Tulpule | Effects of different PHEV control strategies on vehicle performance[END_REF]. [START_REF] Tulpule | Effects of different PHEV control strategies on vehicle performance[END_REF] In [START_REF] Zhang | Analytical approach for the power management of blended-mode plug-in hybrid electric vehicles[END_REF], actual air flow coefficient d c can be heavily affected by external unpredicted wind, the addition of cargo outside the vehicle and driving with windows down [START_REF] Asher | Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy[END_REF]. The rolling friction coefficient r c in [START_REF] Tulpule | Effects of different PHEV control strategies on vehicle performance[END_REF] can increase by 20% when driving on the wet road, while this value will double when driving in sand [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF], which will lead to corresponding changes to predicted values like power demand and velocity.
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 Suitable prediction methods

Like analysis in section 3.2, different prediction approaches perform better in their suitable application scenarios. Besides, another factors like computation burdens and algorithm complexity should also be taken into consideration. For example, in [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF], three different prediction methods were used in the same framework and the experimental results shown that prediction accuracy of RBF-NN based approach was 9.7% higher than that of EDM based approach, while its computation time (0.208s) is 6.5 times that of EDM (0.032s). Under such circumstances, the former approach may be a better prediction approach in simulations where its computation time is acceptable. However, for practical applications, designers should consider the performances' limits of hardware devices and ensure prospective algorithms can completely meet the online requirements.

It is summarized in the previous part of this sub-section that there are four main factors that influenced the prediction accuracy. In the following part, the discussion will focus on what kind of influences these factors will bring to corresponding Predictive Energy Management Strategies (PEMSs).

Firstly, different types of previewed knowledge will bring different levels of impacts to corresponding PEMSs. For example, in [START_REF] Zhang | Route preview in energy management of plug-in hybrid vehicles[END_REF], three different levels of previewed knowledge, namely level 1: the knowledge of terrain, trip length and estimated velocity, level 2: hilly terrain and distance to next charging station and level 3: without preview, are integrated into PEMSs to evaluate their different potentials of fuel saving.

The cost gaps (%) between them and best possible benchmark are used to evaluate the performance of other control strategies.

Moreover, the results showed that PEMS with level 2 of previewed knowledge saved 7.4% more fuel than PEMS with level 3 of previewed knowledge, which means the previewed knowledge of hilly terrain and distance to next charging station are significant in improving the FE. And in another case study, it is testified that estimated velocity and hilly terrain preview knowledge together will bring about up to only 1% additional fuel economy improvement (FEI). Therefore, among these prediction accuracy-affecting factors, the distance to next charging station has the most significant influence on the FE.

Secondly, impacts of various mis-predictions bringing to PEMSs are different. In order to figure out influences caused by different mis-predictions, in [START_REF] Asher | Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy[END_REF], driving-derived prediction errors (predicted velocity, traffic conditions, additional starts/stops, route change etc.) and vehicle parameter prediction errors (vehicle mass, drag coefficients, rolling resistance etc.), are applied to the same PEMS to explore corresponding performance changes. The results indicated that when "additional stop mis-predictions" occurs, where 1,2 or 3 unexpected stops are added into predicted driving profiles, corresponding optimal PEMS can still bring fuel consumption down by 10.8%, 7,9% and 5.1% , respectively. Compared with 10.9% FE improvement brought by baseline optimal PEMS, it is clear that the FE improvements are maintained under such type of mis-predictions. However, FEI under "route change" mis-predictions may be lost. For example, a -4.3% (out of +13.6% possible) FEI was obtained if the drive cycle is the same as expected but then is suddenly ended shortly after it has begun. However, in real driving world, vehicle's states will appear at any area of v-a plane. When real driving states reach in the blank areas, the prediction process will be interrupted, which directly leads to low prediction accuracy. Authors in [START_REF] He | Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle[END_REF] proposed an online reconstruction approach which can ensure the prediction process will be conducted continuously without state-missing. And then, analytical methods like principle component analysis and cluster analysis are implemented to form the Markov-based prediction model with variable horizon, showing 20% accuracy improving than fixed time horizon prediction.

In traditional fixed-time scale Markov based approaches (2)~( 5), future driving cycle is predicted on the basis of previous prediction results step by step, which is called "Singlescale Multi-step" (SSMS) prediction. In order to reduce the accumulation errors during such calculation processes, "Multiscale single-step" (MSSS) Markov prediction model was proposed in [START_REF] Li | The Study on Multi-scale Prediction of Future Driving Cycle Based on Markov Chain[END_REF] and applied in [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF], [START_REF] Li | Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus[END_REF] Some approaches are also used for improving the prediction accuracy of NN-based prediction model. In [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF], authors retrained the NARNN prediction model using newly measured driving cycle data at each moving window step, and thus provided a more accurate prediction of driving cycles. Based on the predicted driving cycles, the proposed PEMS can achieve an optimized energy management result as offline DP method.

In [START_REF] Liu | An On-line Energy Management Strategy based on Trip Condition Prediction for Commuter Plug-in Hybrid Electric Vehicles[END_REF], a hybrid optimization based on GA and PSO was utilized to search for the optimal value of initial weights and thresholds for BPNN in order to improve the prediction accuracy. Moreover, traffic flow speed, even weather and workday/holiday conditions are also taken into consideration

for training the multi-source demand BPNN prediction models.

Approaches to improve prediction robustness

Online TPM updating algorithms are explored by many researchers for improving the robustness and accuracy of conventional Markov models. Authors in [START_REF] Di Cairano | Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[END_REF] used this method to update one column of TPMs of driver behavior prediction model at each time instant to make it fitting better with real driving conditions. From simulation results, it can be seen that the overall prediction accuracy improvements brought by updating algorithms for two real world driving cycles, where the first trace showed smooth accelerations and the second trace showed the steep accelerations, are 1.3% and 13.4%, respectively. The reason behind big discrepancy between two different improvements is that the initial TPMs of first trace is already representative of its driving patterns, whereas in the case of more varied driving cycles the improvements of the updating algorithm are significant.

Similarly, in [START_REF] Zou | A real-time Markov chain driver model for tracked vehicles and its validation: Its adaptability via stochastic dynamic programming[END_REF], based on the nearest-neighborhood method, an online TPM updating algorithm is implemented for the 3-D Markov chain driver model. Inspired by [START_REF] Filev | Generalized Markov models for real-time modeling of continuous systems[END_REF], authors in [START_REF] Liu | Reinforcement Learning Optimized Look-Ahead Energy Management of a Parallel Hybrid Electric Vehicle[END_REF], two Markov velocity predictors based on Nearest

Neighbor approach and Fuzzy Encoding approach are proposed.

And the Reinforcement learning algorithm is utilized for learning transition probability of power demand. From the simulation results, it is noted that fuzzy encoding approach could bring down the prediction errors by 53.7% (one-step ahead) and 40.3% (10-step ahead) compared with Nearest Neighbor based approaches. Combining with the recursive TPM online updating algorithm [START_REF] Zou | Reinforcement learning-based real-time energy management for a hybrid tracked vehicle[END_REF] and the Fuzzy encoding approach, better performances of PEMSs can be achieved by a bi-level EMS for hybrid tracked vehicles [START_REF] Liu | A Bi-Level Control for Energy Efficiency Improvement of a Hybrid Tracked Vehicle[END_REF], where the future power demand can be predicted and fused into real-time control strategy computation.

accuracy and computation efficiency. Besides, advanced onboard processors or even cloud servers should be utilized to fit in with the rapid-growing computation requirements.

Driver model and driving style recognition

Different drivers' styles will lead to different driving actions (accelerating, decelerating, gear selecting etc.) in same driving scenarios. As a matter of fact, drivers' behaviors (driving habits) are always regarded as stochastic disturbances [START_REF] Di Cairano | Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[END_REF], [START_REF] Da Lio | Biologically Guided Driver Modeling: the Stop Behavior of Human Car Drivers[END_REF], [START_REF] Wang | Evaluation of Lane Departure Correction Systems Using a Regenerative Stochastic Driver Model[END_REF] of prediction models, which will have significant impacts on prediction accuracy and corresponding PEMSs performances.

For example, in [START_REF] Zorrofi | A simulation study of the impact of driving patterns and driver behavior on fuel economy of hybrid transit buses[END_REF] which may be further investigated in the future.

Multi-source information integration

More driving related data is available with the rapid development of GPS, ITS, V2V and advanced sensor technologies. Useful prediction-assisting information like terrain profile [START_REF] Zhao | Energy Control of Plug-In Hybrid Electric Vehicles[END_REF], [START_REF] Zhang | Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles[END_REF], [START_REF] Zhang | Real-time optimal control of plug-in hybrid vehicles with trip preview[END_REF], distance to next charging station [START_REF] Naghshtabrizi | Distance Until Charge prediction and fuel economy impact for Plug-in Hybrid Vehicles[END_REF], [START_REF] Lohrer | A Data-Driven Predictive Energy Management Strategy for Plug-in Hybrid Vehicles[END_REF], distribution of traffic signal [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF], [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], [START_REF] Qiu | Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles[END_REF], traffic congestion level [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF] and the unexpected movements of preceding vehicles [START_REF] Kamal | Model predictive control of vehicles on urban roads for improved fuel economy[END_REF], [START_REF] Zhang | Predictive Energy Management Strategy for Fully Electric Vehicles based on Hybrid Model Predictive Control[END_REF] are integrated into conventional prediction models to enhance their performance in existing researches. In future researches, attentions should be paid to predict FDCs in a larger space scale and a longer timescale [START_REF] Martinez | Energy Management in Plug-in Hybrid Electric Vehicles: Recent Progress and a Connected Vehicles Perspective[END_REF].

Researchers are eager to create a fully-connected platform, which includes the V2V network [START_REF] Homchaudhuri | Hierarchical control strategies for energy management of connected hybrid electric vehicles in urban roads[END_REF], vehicle-to-home network [START_REF] Mou | Decentralized optimal demand-side management for PHEV charging in a smart grid[END_REF], vehicle-to-ITS network [START_REF] Jia | A survey on platoon-based vehicular cyber-physical systems[END_REF] and vehicle-togrid (V2G) network [START_REF] Mohamed | Real-time energy management algorithm for plug-in hybrid electric vehicle charging parks involving sustainable energy[END_REF], to share and exchange driving 
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 1 Fig. 1. Block diagram of novel classification of EMSs Although there are many previous studies about various PEMSs for HEVs/PHEVs, there are little researches that focused on corresponding DPTs. Therefore, the motivation of this paper is to conduct a survey about various DPTs to help prospective designers for establishing corresponding PEMSs.

Ft

  the rolling friction,   g Ft the force caused by gravity when driving on non-horizontal roads,   vtis the vehicle speed, a  the density of the ambient air, f A the equivalent frontal area, d c the coefficient that model the actual air flow conditions, r c the rolling friction coefficient, v m the vehicle mass, g the gravity acceleration and  the rode slope. According to (1) and (2), it is clear that power demand from traction part of vehicles within prediction horizon are available given future information about vehicle velocity, acceleration and road slope. With the help of widely-equipped on-board previewed when the desired origin-to-destination path is selected. However, vehicles velocities and accelerations are impossible to be previewed accurately within current transportation infrastructures due to different drivers' behaviors and uncertainties of real world driving conditions (e.g. traffic light distribution, unexpected movements of surrounding vehicles, etc.).

Fig. 2 .

 2 Fig. 2. Block diagram of recognition based prediction

Fig. 4 .

 4 Fig. 4. Block diagram of Markov chain based prediction

  decay) is selected for describing larger torque demand. The physical reason behind that is the periods of large torque demand is very short in typical driving cycles. In other words, statistically, large torque demand is not expected to last long.

Fig. 5 .

 5 Fig.5. Summary block diagram of factors causing mis-predictions According to these analysis, prediction accuracy affecting factors, corresponding mechanisms leading to mis-predictions and how these factors affecting the performance of PEMSs are summarized in Fig. 5.

3. 3 . 2 .Fig. 6 .

 326 Fig. 6. State-missing phenomena in velocity-acceleration plane Within conventional Markov based prediction model, due to the limited amount of training data, there may be some blank areas in the state plane, where no such driving conditions/states exist in training database, which can be seen in the shaded parts in Fig. 6, taking velocity-acceleration (v-a) plane as an example. Such phenomena is called state-missing phenomena.



  related information for high precision prediction and intelligentPEMSs. For instance, in such intelligent connected transportation framework, a single vehicle can be regarded as the basic element of whole traffic flow. Benefiting the systematical information from each connected part, the final PEMSs can be implemented to adjust the dispatch of whole traffic flow to figure out a way of improving FE, expanding the lifetime of expensive energy-providing devices etc.[START_REF] Malikopoulos | Supervisory power management control algorithms for hybrid electric vehicles: A survey[END_REF].Especially, for PEHVs, wireless power transfer technique and the connections among the smart house, micro grids and vehicles bring more flexibility in coordinating energy utilization during both driving and parking process[START_REF] Mou | Decentralized optimal demand-side management for PHEV charging in a smart grid[END_REF]. Even the FEI of single vehicle should not be merely concentrated on a specific driving tasks in one or two day, instead, how to obtain long-term, e.g. one year or more, FEI on average levels and corresponding performances combined with energy sources sizing and degradation issues will be more attractive in future researches. 5. CONCLUSION Future driving conditions (FDCs) prediction is the basis of corresponding predictive energy management strategies (PEMSs) for HEVs/PHEVs and the quality of prediction results greatly affected the performance of PEMSs. This paper presents a comprehensive study on driving prediction techniques (DPTs). Through detailed review and comparisons of FDCs prediction algorithms used for DPTs, it is clear that each of them has own pros and cons, which makes them suitable for different application scenarios. For practical applications, it is significant to utilize the combination of different types of prediction methods together to fit in with various changeable external environments. Moreover, proper tradeoffs should be made between computational burden and prediction accuracy to satisfy the real-time requirements. Based on the analysis of the accuracy-affecting factors, the mechanism how these factors affect the prediction accuracy is clear and then corresponding approaches for improving prediction accuracy and robustness are discussed and summarized. Finally, the outlook of DPTs is conducted to give the developing trends of this technique. In conclusion, major contributions of the presented survey are summarized as follows:  A comprehensive review on DPTs conducted in this paper could provide useful information on recent progress in the field of PEMS for PHEVs;  Comparative studies and scenario-based analyses on various prediction approaches could be used as general selection criteria according to different application backgrounds; Sources of prediction errors and corresponding strategies to cope with mis-predictions were thoroughly discussed to provide potential ways of improving accuracy and robustness of prediction approaches. Additionally, based on the analysis of missing points in current researches, several potential directions of future researches on DPTs are indicated as follows:  In order to adapt for changeable driving conditions, it is highly recommended to explore multi-algorithm based prediction frameworks and introduce online update mechanisms for learning novel characteristics from external driving environments;  Advanced techniques on intelligent driver models including driving behavior prediction and driving styles recognitions, should be further investigated to explore the quantitative relationships between driver models and fuel economy performances;  Corresponding performances on PEMSs could be highly improved, since multi-source information from modern telematics systems, including GPS, GIS and ITS, could be combined for reducing the uncertainty of future driving conditions to further improve prediction accuracy;  Benefiting from rapid development of advanced vehicular technologies, such as V2V, V2G, Internet of Vehicles (IoV) and wireless power transfer, novel possibility of PEMS for HEVs/PHEVs should be explored on larger space scales and longer time scales. Original insights on bottleneck of current researches and potential future developing tendency on Driving Prediction Techniques proposed in this section could provide prospective researchers with novel inspirations and general guidelines for their future works.
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  compared the performances of DP, MPC and ECMS based

	EMSs, whose fuel consumption on Urban Dynamometer
	Driving Schedule (UDDS) driving cycle were 216.39g, 228.51g
	and 242.40g, respectively. It should be noted that a Radial Basis
	Function NN (RBF-NN) velocity predictor was embedded into
	MPC control framework to provide with short-term velocity
	forecasted profiles in each online rolling optimization part.
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  established by RBF-NNs, one, five order Markov chain and EDM were embedded into the MPC based PEMSs framework.

	From the results of the comparative studies, the prediction error
	of RBF-NNs predictor was 32.7%, 38.0% and 26.9% smaller
	than that of EDM, one and five order Markov based approaches,
	whose fuel consumption was 9.7%, 16.3% and 6.9% lower than
	that of other predictors respectively. Moreover, the calculation
	time of RBF-NN predictor based PEMS was 0.208s, which was
	much shorter than one and five order Markov chain, 1.647s and
	2.979s respectively, and longer than that of EDM predictor,
	0.032s. Consequently, it can be concluded that RBF NN-based
	velocity predictors can offer the best overall performance
	within acceptable calculation time.

  . In this framework, TPMs at different time scales were built in advance and each of them reflected the probability distribution from states at t to

	states tr  ,	1,2,..., rH 	p	, where	p H is prediction horizon.
	During prediction processes, predicted value at different time
	scales were obtained by the value of states at t and a bunch of
	different-time-scale TPMs. MSSS based prediction methods
	obtained 7.18% improvement of prediction accuracy than
	SSMS [50].				

  -means clustering-based SVM[START_REF] Wang | A rapid pattern-recognition method for driving styles using clustering-based support vector machines[END_REF], from the results of second groups in online case study, the proposed method improved the recognition accuracy by 9.78% for aggressive drivers and 17.06% for moderate drivers compared to conventional SVM classifier. In addition, total calculation time was greatly reduced from 740.18s to 169.35s. The recognized driving styles can be used to choose different predesigned control strategies to improve FE as well as drivability for HEVs/PHEVs. Similarly, in[START_REF] Aljaafreh | Driving style recognition using fuzzy logic[END_REF], authors proposed a driving style recognition approach based on fuzzy logic. Four types of driving styles including below normal, normal, aggressive and very aggressive were the possible output of proposed recognizer. Benefiting from information from 2-axis accelerometer embedded in GPS, the high-accuracy recognition results can be obtained in real time with short computation expenses. Such recognition results are always used in traffic safety filed, like adaptive cruise control or forward collision warning (FCW). However, corresponding researches combining EMSs/PEMSs with drivers' driving styles to improve overall FE are rarely seen in current publications,

	, three different types, including mild,
	normal and aggressive are explored in simulation with various
	drivers' models. The case study showed that in Central
	Business Districts (CBD), aggressive drivers consumed nearly
	60% more fuel than that of normal drivers, while the mild
	drivers tended to be fuel efficient at the expense of the relative
	slow responses to required commands. Consequently, advanced
	drivers' driving style recognition techniques are therefore
	explored by many researchers in understanding drivers' future
	driving intentions to better control the power flow among
	different energy sources [36] and increase driving safety. A
	rapid driving style pattern-recognition approach was
	established by k

For practical applications, 100% accuracy of prediction is impossible to reach. In that case, PEMSs should not fully rely on the prediction, that is to say, when the prediction is recognized as inaccurate or invalid, backup EMSs should be used for energy distribution. In [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF], a dynamic-neighborhood PSO (DPSO) based PEMS is proposed for reducing the fuel consumption of a PHEV. After that, an online correction algorithm is proposed to evaluate the prediction results by fuzzy logic controller. If prediction result are recognized as inaccurate, the backup Rule-based EMS will take the place of DPSO based PEMS to manage the power flow among the energy sources, which reduce the negative effects of prediction errors. From simulation results, it can be seen the deviations caused by prediction errors could be reduced by 32.39%.

Similarly, in [START_REF] Lohrer | A Data-Driven Predictive Energy Management Strategy for Plug-in Hybrid Vehicles[END_REF], in order to cope with the false prediction of SoC reference value of PHEVs, online Distance Until Charging (DUC) algorithm was implemented to judge 1) whether "false prediction" events happen or not; 2) if there is "false prediction" , the reference curve of SoC will return to original statistical DUC distribution and activate the backup offline rule based EMS; 3) if there is no "false prediction", original real-time PEMS can still be effective. As a result, the proposed PEMS combined with DUC algorithm saved 4.64% more fuel consumption than rule based EMSs, which is slightly less than the results of DP based approaches, 5.89%.

Based on the above analysis, approaches explored by researchers to cope with the mis-predictions are summarized in 

Reduce future uncertainty

Expand one-order Markov Model to High-order Markov Model [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF], [START_REF] Zhang | Model Predictive Control Based Energy Management Strategy for a Plug-In Hybrid Electric Vehicle[END_REF], [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF] Integrating Route-based information into Prediction framework [START_REF] Qiuming | Trip based optimal power management of plug-in hybrid electric vehicles using gaskinetic traffic flow model[END_REF], [START_REF] Zhang | Route preview in energy management of plug-in hybrid vehicles[END_REF], [START_REF] Asadi | Predictive cruise control: Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[END_REF]- [START_REF] Mahler | An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of trafficsignal timing[END_REF], [START_REF] Opila | Uncertain route, destination, and traffic predictions in energy management for hybrid, plug-in, and fuel-cell vehicles[END_REF]- [START_REF] Guo | Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC[END_REF], [START_REF] Bin | Multi-information integrated trip specific optimal power management for plug-in hybrid electric vehicles[END_REF], [START_REF] Kelouwani | Two-layer energy-management architecture for a fuel cell HEV using road trip information[END_REF], [START_REF] Ma | Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview[END_REF],

[77]- [START_REF] Zhao | Energy Control of Plug-In Hybrid Electric Vehicles[END_REF], [START_REF] Zhang | Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles[END_REF], [START_REF] Chen | Energy management for a power-split plug-in hybrid electric vehicle based on dynamic programming and neural networks[END_REF], [START_REF] Zhang | Real-time optimal control of plug-in hybrid vehicles with trip preview[END_REF], [START_REF] Golchoubian | Real-Time Nonlinear Model Predictive Control of a Battery-Supercapacitor Hybrid Energy Storage System in Electric Vehicles[END_REF], [START_REF] Karbowski | Route-based online energy management of a PHEV and sensitivity to trip prediction[END_REF], [START_REF] Asher | Prediction Error Applied to Hybrid Electric Vehicle Optimal Fuel Economy[END_REF] Self-learning/Adaptive Mechanism Adaptive/Self-learning Markov approaches [START_REF] Zou | A real-time Markov chain driver model for tracked vehicles and its validation: Its adaptability via stochastic dynamic programming[END_REF], [START_REF] Filev | Generalized Markov models for real-time modeling of continuous systems[END_REF], [START_REF] Liu | Reinforcement Learning Optimized Look-Ahead Energy Management of a Parallel Hybrid Electric Vehicle[END_REF], [START_REF] Zou | Reinforcement learning-based real-time energy management for a hybrid tracked vehicle[END_REF], [START_REF] Liu | A Bi-Level Control for Energy Efficiency Improvement of a Hybrid Tracked Vehicle[END_REF] Moving window Approaches [START_REF] Zhou | Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles Based on Time Series Prediction[END_REF] Variable prediction horizon Prediction with variable horizon [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF], [START_REF] Cao | Research on Model Prediction Energy Management Strategy with Variable Horizon[END_REF], [START_REF] He | Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle[END_REF], [START_REF] Li | The Study on Multi-scale Prediction of Future Driving Cycle Based on Markov Chain[END_REF] Multi-scale single step method [START_REF] Xie | An energy management strategy based on stochastic model predictive control for plug-in hybrid electric buses[END_REF], [START_REF] Li | Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus[END_REF], [START_REF] Li | The Study on Multi-scale Prediction of Future Driving Cycle Based on Markov Chain[END_REF] Online reconstruction of states [START_REF] He | Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle[END_REF] Reduce the dependency on Predictions Backup strategy coping with mis-predictions [START_REF] Chen | An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle[END_REF] Optimal tuned parameters GA/PSO based parameter optimization method [START_REF] Li | Predictive energy management of fuel cell supercapacitor hybrid construction equipment[END_REF] 4. OUTLOOK OF FDCS PREDICTION

In the following part, a brief analysis about the outlook of driving prediction technique is conducted from practical application perspective.

Multiple prediction algorithms integration

To maximize the performances of each prediction method, suitable application scenarios should be carefully selected before prediction. However, practical application scenarios are usually combined with characteristics from many types of driving patterns. In this case, prediction performance will be poor if only one prediction method is used, because a single algorithm cannot always fit in well with every driving scenario.

Consequently, in the future researches, multiple types of prediction methods should be utilized to make the results more credible in compound driving scenarios. For example, a novel velocity predicted method based on Wavelet transform (WT)

and RBF-NN is proposed by Ningyuan G. et al [START_REF] Guo | A Novel Velocity Forecast Method for Improving Predictive Energy Management of Plug-in Hybrid Electric Vehicles[END_REF] for the PEMS for PHEVs. Simulation results showed that the combined algorithm of 1-RBF-NN and WT achieved the accuracy improvement by 7.31% than the benchmarks. In [START_REF] Liu | Reinforcement Learning Optimized Look-Ahead Energy Management of a Parallel Hybrid Electric Vehicle[END_REF],

[72], [START_REF] Liu | A Bi-Level Control for Energy Efficiency Improvement of a Hybrid Tracked Vehicle[END_REF], the combination of Reinforcement learning (RL) algorithm and Markov Chain was used to predict the power demand or vehicle velocity. And its robustness is verified by real world test data. In [START_REF] Liu | Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles[END_REF] [START_REF] Liu | Reinforcement Learning Optimized Look-Ahead Energy Management of a Parallel Hybrid Electric Vehicle[END_REF], [START_REF] Zou | Reinforcement learning-based real-time energy management for a hybrid tracked vehicle[END_REF], [START_REF] Liu | A Bi-Level Control for Energy Efficiency Improvement of a Hybrid Tracked Vehicle[END_REF], which will result in higher prediction accuracy. Due to the requirements of real-time applications, online updating approaches and their applications for future driving conditions (FDCs) prediction will be a research hotspot in the future.

Computation burden

Computation burden is a key factor that influences the real time performance of prediction algorithms. For example, the prediction accuracy is improved when expanding traditional "one-order" Markov model into "high-order" Markov model [START_REF] Sun | Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles[END_REF]. However, as a side effect of that, the corresponding computation burden increases exponentially. Besides, the additional adaptive, self-learning process, the variable length of prediction horizon and the backup strategy will also bring extra computation time. In order to cope with such situations, measures like using simplified models [START_REF] Ravey | Distance estimation algorithm for plug-in hybrid electric vehicle control strategy[END_REF] or improved high speed solvers [START_REF] Di Cairano | Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[END_REF], [START_REF] Chen | Energy management for plug-in hybrid electric vehicles based on quadratic programming with optimized engine on-off sequence[END_REF], [START_REF] Chen | Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming[END_REF]- [START_REF] Chen | A novel energy management method for series plug-in hybrid electric vehicles[END_REF] (e.g. fast QP solver [START_REF] Richter | Computational complexity certification for real-time MPC with input constraints based on the fast gradient method[END_REF], [START_REF] Pu | Complexity certification of the fast alternating minimization algorithm for linear MPC[END_REF]) were explored by researchers. Therefore, for practical applications, tradeoffs should be made among the prediction Email: marie-cecile.pera@univ-fcomte.fr.