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The paper deals with the geometric characterization of the zero-dynamics for linear time-invariant systems with aperiodic time-driven jumps. As the intuition suggests, it is given by the restriction of the feedback dynamics to the largest subspace over which the trajectories are constrained to ensure zero output. Such a dynamics is characterized by a subset of the flowing zeros and a subset of the zeros which can be fictitiously associated to the jumping dynamics.

I. INTRODUCTION

Nowadays, growing attention is devoted toward dynamics characterized by the interaction of both continuous and discrete-time behaviors. Those kind of systems are referred to as hybrid systems and typically described by set inclusions and the interconnection of suitable discrete and continuoustime models characterizing the jumping and flowing evolutions which are governing, in a combined way, the overall dynamics [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]- [START_REF] Grizzle | Models, feedback control, and open problems of 3d bipedal robotic walking[END_REF]. Among these, hybrid systems with timedriven state jumps (or impulsive systems) are of paramount importance as they allow to fully describe, for example, cyber-physical systems or dynamical analog systems interconnected to digital devices (e.g., sampled-data systems) by simultaneously catching the heterogeneous behaviors acting over the overall system. When jumps are periodic in time, several works have been developed to address important control problems such as, for example, hybrid regulation [START_REF] Marconi | A note about hybrid linear regulation[END_REF], [START_REF] Carnevale | Output regulation for a class of linear hybrid systems. part 1: trajectory generation[END_REF]. In those contributions, the notion of zero-dynamics has been shown to be, as in purely continuous or discrete-time systems, a fundamental issue that cannot be discarded [START_REF] Westervelt | Hybrid zero dynamics of planar biped walkers[END_REF]- [START_REF] Ames | Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics[END_REF]. Still, a complete characterization of this behavior has not been provided so that its analysis is typically lead (in a conservative way) to the corresponding purely continuous or discrete-time counterpart. The work in [START_REF] Galeani | Zeros and poles of transfer functions for linear hybrid systems with periodic jumps[END_REF] represents a first attempt toward the characterization of zeros of a hybrid system via a suitably defined hybrid transfer function in a hybrid frequency domain. However, such an approach is quite involved and suffers from generalizability to a wider context as direct integration of the trajectories is needed for the definition of the zeros and thus motivating the periodic context. Moreover, because the transfer function consists of four components that are parametrized by two complex variables (for the flow and jump behaviors), explicitly exhibiting the zeros might not be easy in general.

In this paper, we address the problem of defining the zero-dynamics for linear hybrid systems with aperiodic timedriven jumps in the geometric framework developed in [START_REF] Wonham | Linear multivariable control[END_REF], [START_REF] Basile | Controlled and conditioned invariants in linear system theory[END_REF] for general results and recently extended to this hybrid context in, for example, [START_REF] Lawrence | Controlled invariant subspaces for linear impulsive systems[END_REF], [START_REF] Zattoni | Measurement dynamic feedback output regulation in hybrid linear systems with state jumps[END_REF]. In doing so, no knowledge of the jumping instants is assumed. In particular, instead of focusing on the definition of the zeros, we investigate the concept of zero-dynamics subspace allowing a revealing study of the hybrid zero-dynamics as defined by a suitable combination of the zero-dynamics corresponding to the flowing and jumping behaviors. Such an approach relies upon the definition of a suitable controlled-invariant subspace (the hybrid zero-subspace) that is contained into the nullspace of the output evolution and is, at the same time, invariant under the flow and jump dynamics. Connections with the hybrid zeros of the system are also established as particular subsets of couples of the flowing and fictious jumping zeros, associated to flowing and jumping dynamics when considered as purely continuous and discrete-time systems. In our context, the feedback laws inducing the zerodynamics is independent upon the jumping period sequence and requires no integration of the trajectories contrarily to what proposed in [START_REF] Galeani | Zeros and poles of transfer functions for linear hybrid systems with periodic jumps[END_REF] or in the context of invariance at large in [START_REF] Lawrence | Controlled invariant subspaces for linear impulsive systems[END_REF].

The remaining of the paper is organized as follows: in Section II the class of systems under study is defined and the problem is settled. In Section III the hybrid zero-dynamics is characterized based on the definition of the hybrid zerosubspace which is controlled invariant under the hybrid system. Insights on the hybrid zero-dynamics are investigated in Section IV where the notion of hybrid zeros is also set. Some examples illustrate the results in Section V whereas conclusions and future perspectives are in Section VI.

II. PRELIMINARIES AND THE CLASS OF SYSTEMS UNDER

STUDY

A. Notations

Mat R (n, m) defines the set of n × m matrices with real entries. Given a square matrix

A ∈ Mat R (n, n) we denote by |A| the determinant of A. The notation σ (A) = {λ ∈ C s.t. |A -λ I| = 0} defines the spectrum of A. Given a matrix B ∈ Mat R (n, m), we say that V = span{s 1 , . . . , s p } ⊂ R n is (A, B)-invariant if, for all s i ∈ V , As i ∈ V + ImB or, in short, AV ⊂ V + ImB. Moreover, we say that F is the friend of a controlled invariant subspace V if (A+BF)V ⊂ V .
We define the ordered set Π(A, B,C) := {V ⊂ R n s.t. AV ⊂ V +ImB and V ⊂ kerC}. With a slight abuse of notations, R ⊥ n denotes the dual space to R n while ΩA denotes the subspace of R ⊥ n generated by the rows of ωA for ω ∈ Ω. Given a subspace V ⊂ R n then Ω := V ⊥ ⊂ R ⊥ n with ω ∈ Ω if, and only if, for all s i ∈ V , ωs i = 0. I and 0 denote respectively the identity and zero matrices of suitable dimensions.

B. Hybrid systems under aperiodic jumps

Introduce the hybrid time domain T = ∪ ∞ k=0 [t k ,t k+1 ]× {k} with t kt k-1 := δ k for all k ∈ N. Accordingly, consider the class of hybrid systems given by

x + = Fx + Gv (1a) ẋ = Ax + Bu (1b) y = Cx (1c) or, more explicitly, for t ∈ [t k ,t k+1 [ x(t k , k) = Fx(t k , k -1) + Gv(k), ẋ(t, k) = Ax(t, k) + Bu(t, k) y(t, k) = Cx(t, k) with x ∈ R n , u, v, y ∈ R p and x(t k , k -1) =e Aδ k x(t k-1 , k -1) + t k t k-1 e (t k -s)A Bu(s, k -1)ds for x(t 0 , -1) = x(t 0 , 0) = x 0 , x(t k , k -1) = lim t→t - k x(t, k -1). 
In what follows, we denote C = c 1 . . . c p , B = b 1 . . . b p . We assume that the time domain is not known in the sense that measures (or estimates) of the jumping instants are not available. We underline that the class of system (1) under study is also referred to as impulsive systems (e.g., see [START_REF] Zattoni | Measurement dynamic feedback output regulation in hybrid linear systems with state jumps[END_REF]).

III. THE HYBRID ZERO-DYNAMICS

The zero-dynamics of (1) is the residual dynamics the system evolves with when, for a suitable x 0 ∈ R n such that y 0 = 0 and a suitable feedback law, one has y(t, k) = 0 for all (t, k) ∈ T . From a geometric point of view [START_REF] Basile | Controlled and conditioned invariants in linear system theory[END_REF], it is the dynamics governing the evolutions over the largest feedback-unobservable subspace. This is the point of view we shall adopt, so that the following definition of hybrid zero-dynamics will be assumed: Definition 3.1: The zero-dynamics of (1) is the residual dynamics the system evolves with when the trajectories are constrained onto the zero-dynamics subspace (or, for brevity, zero subspace) V * h ⊂ R n that is the largest subspace made unobservable under state feedback.

Accordingly, we shall characterize the zero-dynamics through the definition of the zero subspace V * h . As a byproduct, this will lead to a natural interpretation of the zeros of some transfer function associated to (1) as defined, for the periodical case, in [START_REF] Galeani | Zeros and poles of transfer functions for linear hybrid systems with periodic jumps[END_REF].

To this end, when considering (1a) and (1b) as purely continuous and discrete-time dynamics with corresponding output (1c) one can define the subspaces V c ⊂ R n and V d ⊂ R n being the largest invariant subspaces that are, respectively, (A, B)-invariant and (F, G)-invariant and contained in kerC; namely, V c and V d verify, separately, [START_REF] Isidori | Nonlinear Control Systems[END_REF], V c and V d can be further specified as

AV c ⊂ V c + ImB (3a) FV d ⊂ V d + ImG. ( 3b 
V c = ∩ p i=1 ker      c i c i A . . . c i A r i c -1      , V d = ∩ p i=1 ker      c i c i F . . . c i F r i d -1      .
With this in mind, the zero-subspace V * h is thus the largest subspace that is contained in the null-space of C and, at the same time, (A, B) and (F, G)-invariant. By definition of V c and V d , then one has that necessarily V * h ⊂ V c ∩V d ⊂ kerC so that the following definition can be given. Theorem 3.1: Consider the hybrid system (1) and the subspaces V c and V d in (3). Denote V int := V c ∩V d and define V * h as the largest subspace contained in V int ⊂ kerC verifying

AV * h ⊂ V * h + ImB (4a) FV * h ⊂ V * h + ImG (4b)
with dim{V * h } = nr h for some r h ∈ N. Then, V * h defines the zero-subspace for the hybrid system (1); namely, there exist K * and H * (the friends of V * h ) verifying

(A + BK * )V * h ⊂ V * h and (F + GH * )V * h ⊂ V * h (5) 
so that, for all x 0 ∈ V * h , y(t, k) = 0 for all (t, k) ∈ T . The proof of Theorem 3.1 is quite straightforward. V * h defines the zero-subspace associated to (1) as it is the largest controlled-invariant under both (1a) and (1b) and contained in kerC. In addition, when measures of the jumping times are available, double invariance ( 4) is no longer necessary for the definition of the zero-subspace. In that case, the necessary and sufficient condition, together with the construction algorithm, has been provided in [START_REF] Lawrence | Controlled invariant subspaces for linear impulsive systems[END_REF] for controlled invariance of impulsive systems at large. In that case, the friends of V * h under (A, B) and (F, G) depend explicitly on δ k for all k ≥ 0.

As a consequence of Theorem 3.1, the zero-dynamics of the hybrid system (1) can be defined as its restriction onto the zero subspace V * h , as pointed out in Section III-A below. This results from common characteristics of the underlying geometry of the two possibly different zero-dynamics of (1a) and (1b). This aspect is revealed by the proposed state-space approach as it is not evident from the frequency domain characterization proposed in [START_REF] Galeani | Zeros and poles of transfer functions for linear hybrid systems with periodic jumps[END_REF].

Remark 3.2: When p = 1, that is (1) is SISO, then r h can be interpreted as the hybrid relative degree of (1). Remark 3.3: When p = 1 and V * h = {0} then r h = n and there is no hybrid zero-dynamics, even if both V c and V d are not {0}. On the other side, whenever r c = r d = 1 then V * h = kerC regardless A and F and, thus, the internal structure of the flow and hybrid dynamics.

In what follows, such a concept will be further clarified by linking the notion of hybrid zeros of (1) to the zeros of the single transfer functions associated to (1a) and (1b). Before doing this, an algorithm for computing V * h is given by extending the one in [START_REF] Wonham | Linear multivariable control[END_REF], [START_REF] Basile | Controlled and conditioned invariants in linear system theory[END_REF] to this context based on the ones in [START_REF] Lawrence | Controlled invariant subspaces for linear impulsive systems[END_REF], [START_REF] Conte | The disturbance decoupling problem for jumping hybrid systems[END_REF], [START_REF] Carnevale | Output regulation of hybrid linear systems with unpredictable jumps[END_REF].

A. On the computation of V * h Let Π h (A, B, F, G,C) := Π(A, B,C) ∩ Π(F, G,C
) that is the set of subspaces being, at the same time, (A, B) and (F, G)invariant and that are contained in

V int := V c ∩ V d ⊂ kerC. The set Π h (A, B, F, G,C
) is closed under subspace addition and ordered and, thus, possesses a supremal element Chapter 4] that can be deduced starting from V c and V d being the maximum elements of, respectively, Π(A, B,C) and Π(F, G,C) and verifying (3). To this end, the following Lemma is thus useful to characterize all V ∈ Π h (A, B, F, G,C). Lemma 3.1: Consider the matrices A, B, F, G,C defining the hybrid dynamics [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] and

V * h := sup Π h (A, B, F, G,C) [14,
Π h (A, B, F, G,C) := Π(A, B,C)∩ Π(F, G,C). Let V ⊂ R n and Ω := V ⊥ . V ∈ Π h (A, B, F, G,C) if and only if (Ω ∩ (ImB) ⊥ )A + (Ω ∩ (ImG) ⊥ )F ⊂ Ω.
(6) Proof: : One needs to show that (6) is equivalent to (i)

V ⊂ V int ⊂ kerC; (ii) AV ⊂ V + ImB; (iii) FV ⊂ V + ImG.
In due dual space, one gets that V verifies (i), (ii) and (iii), if and only if Ω verifies:

(ib) (kerC) ⊥ ⊂ (V int ) ⊥ ⊂ Ω; (iib) (Ω∩ (ImB) ⊥ )A ⊂ Ω; (iiib) (Ω ∩ (ImG) ⊥ )F ⊂ Ω.
In particular, (ii) and (iii) hold true at the same time if, and only if (iib) and (iiib) do and, as a consequence, (6) holds true. As a matter of fact, ∀ω 1 ∈ Ω ∩ (ImB) ⊥ and ∀ω 2 ∈ Ω ∩ (ImG) ⊥ one has ω 1 Av = 0 and ω 2 Fv = 0 for all v ∈ V if, and only if,

∀ω 1 A ∈ (Ω ∩ (ImB) ⊥ ) and ∀ω 2 F ∈ (Ω ∩ (ImG) ⊥ ) that is ω 1 A ∈ Ω and ω 2 F ∈ Ω. Setting now ω = ω 1 A + ω 2 F, ω ∈ (Ω ∩ (ImB) ⊥ )A + (Ω ∩ (ImG) ⊥ )F and ω ∈ Ω holding if and only if (6) does.
Starting from Lemma 3.1, the next result allows to construct the maximal (A, B) and (F, G) invariant subspace V * h that is contained in V int ⊂ kerC and that defines the zerosubspace of the hybrid system. As typical in the geometric approach, V * h is deduced in the dual space by defining the minimal dimension co-subspace Ω * verifying Lemma 3.1.

Theorem 3.2: Consider the hybrid dynamics (1) and

Π h (A, B, F, G,C) := Π(A, B,C) ∩ Π(F, G,C) with V int := V c ∩ V d ⊂
kerC and V c and V d as in [START_REF] Marconi | Internal model principle for linear systems with periodic state jumps[END_REF]. Introduce the sequence {Ω } as Ω 0 = V ⊥ int and

Ω = V ⊥ int + (Ω -1 ∩ (ImB) ⊥ )A + (Ω -1 ∩ (ImG) ⊥ )F
with = 1, 2, . . . . Then, Ω ⊂ Ω -1 and, for some ≥ * with * ≤ dim(V int ), Ω * = Ω = Ω +1 . As a consequence, the zero-subspace V * h is given by

V * h := (Ω * ) ⊥ . (7) Proof: By construction, one gets Ω 0 ⊂ Ω 1 ⊂ • • • ⊂ Ω for = 1, 2, . . . . Thus, there exists a * ≤ dim(V int ) such that Ω = Ω +1 for all ≥ * . Moreover, from Lemma 3.1, V * h = (Ω * ) ⊥ ∈ Π h (A, B, F, G,C
) and, by construction,

V * h = sup Π h (A, B, F, G,C).
Remark 3.4: Theorems 3.1 and 3.2 (and all the results to come) extend to the case in which the output mappings are switching between flows and jumps, that is to systems of the form (1) where (1c) is modified as follows

y(t, k) = C f x(t, k -1) if t ∈ [t k-1 ,t k ) C j x(t k , k -1) if t = t k .
In that case, one computes V c and V d as the subspaces associated to (A, B,C f ) and (F, G,C j ) and proceeds along the same lines. Remark 3.5: When G = 0, the proposed algorithm recovers the one presented in [START_REF] Conte | The disturbance decoupling problem for jumping hybrid systems[END_REF] for disturbance decoupling under periodic jumps. In addition, it represents an alternative to the one settled in [START_REF] Carnevale | Output regulation of hybrid linear systems with unpredictable jumps[END_REF] for regulation of aperiodically jumping hybrid systems.

B. An invariance-based decomposition

From Theorem 3.1, dim{V * h } = nr h so that, from Theorem 3.2, dim{Ω * } = r h . As a consequence, we rewrite Ω * = span{ω 1 , . . . , ω r h } with ω i being row vectors verifying, for all s ∈ V * h that ω i s = 0 for i = 1, . . . , r h . Introduce now the coordinate transformation

z η = T x, T := ω 1 . . . ω r h T 2 (9) 
with T 2 ∈ Mat R (n-r h , n) being a complement so that |T | = 0 and ω and z ∈ R r h and η ∈ R n-r h . Then, one gets

TAT -1 = A 11 A 12 A 21 A 22 , T B = B 1 B 2 T FT -1 = F 11 F 12 F 21 F 22 , T G = G 1 G 2 , CT -1 = C 1 0
with ImA 12 ⊂ ImB 1 and ImF 12 ⊂ ImG 1 . Thus, in these new coordinates, the friends of V * h under (A, B) and (F, G) are of the form K * = (0 K * r ) and H * = (0 H * r ) and ensure

A 12 + B 1 K * r = 0, F 12 + G 1 H * r = 0. ( 10 
)
so that, when setting

K * r = -(B 1 B 1 ) -1 B 1 A 12 , H * r = -(G 1 G 1 ) -1 G 1 F 12 and u * = ū + K * r η, v * = v + H * r η (11) 
the dynamics (1) get the form

z + = F 11 z + G 1 v (12a) η + = F 21 z + (F 22 + G 2 H * r )η + G 2 v (12b) ż = A 11 z + B 1 ū (12c) η = A 21 z + (A 22 + B 2 K * r )η + B 2 ū (12d) y = C 1 z (12e)
From the previous representation, it is clear that when x ∈ V * h , then z = 0 so that the residual dynamics governing (1) are

η + = Q d η, η = Q c η (13) 
with

Q c := F 22 + G 2 H * r and Q d = A 22 + B 2 K * r .
The hybrid system (13) describes the hybrid zero-dynamics over V * h . The form [START_REF] Galeani | Zeros and poles of transfer functions for linear hybrid systems with periodic jumps[END_REF] underlines that the feedback [START_REF] Ames | Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics[END_REF] is the one generating maximal unobservability of (1) by making the subspace V * h defined in Theorem 3.1 unobservable. Remark 3.6: Contrarily to previous results for hybrid systems (e.g., [START_REF] Carnevale | Output regulation for a class of linear hybrid systems. part 1: trajectory generation[END_REF]), thanks to the geometric characterization, the feedback laws [START_REF] Ames | Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics[END_REF] rendering the zero-dynamics invariant do not require explicit computation of the trajectories of (1) as they only depend on the matrices A, B, F, G,C and the properties they yield. In addition, the knowledge of the jumping period sequence {δ 0 , δ 1 , . . . } is not required.

Accordingly, the following definition is straightforward. Definition 3.2 (Minimum-phase of hybrid LTI systems): The hybrid system (1) is said to be minimum-phase when the zero-dynamics ( 13) are asymptotically stable.

Conditions for investigating the stability of ( 13) are not given as beyond the purpose of the paper. However, the reader is referred to several references on the topics for sufficient conditions and a deeper understanding on the difficulties (e.g., [START_REF] Blanchini | Set-theoretic methods in control[END_REF], [START_REF] Chesi | Lmi conditions for time-varying uncertain systems can be non-conservative[END_REF] 

and references therein).

In what follows, further comments on the characterization of Q c and Q d are discussed with special emphasis on their relations with the zeros of the transfer functions involved.

IV. INSIGHTS TO THE HYBRID ZERO DYNAMICS

A. Jumping and flowing zeros

Unless differently specified and for the sake of simplicity, let (1) be a SISO system with u, v, y ∈ R. Assume the couples (A, B) and (F, G) controllable and (A,C) and (F,C) observable. Consider now the minimal transfer functions associated with the individual flow and jump dynamics (1a) and (1b) when considered as purely continuous and discretetime systems

P(s) = C(sI -A) -1 B = b 0 + • • • + b n-r c s n-r c a 0 + • • • + a n-1 s n-1 + s n L(s) = C(sI -F) -1 G = g 0 + • • • + g n-r d s n-r d f 0 + • • • + f n-1 s n-1 + s n (14)
with s ∈ C, possessing, respectively, nr c and nr d zeros defined by the roots of the numerators of the corresponding transfer function. The next result shows the relation among the zeros of P(s) and L(s) with the r h eigenvalues of Q c and the r h eigenvalues of Q d as given in [START_REF] Wonham | Linear multivariable control[END_REF]. For the sake of compactness denote by Z c and Z d , respectively, the zeros of P(s) and L(s) that is

Z c = {s ∈ C s.t. b 0 + b 1 s + • • • + b n-r c s n-r c = 0} Z d = {s ∈ C s.t. g 0 + g 1 s + • • • + g n-r d s n-r d = 0}
and referred to as the sets of flowing and jumping zeros. We shall refer to s i ∈ σ (Q c ) and z j ∈ σ (Q d ) as, respectively, the hybrid-flowing and hybrid-jumping zeros.

Theorem 4.1: Consider the hybrid system (1) with p = 1 and zero-dynamics of dimension nr h evolving as ( 13) over the zero-subspace V * h . Consider the transfer functions ( 14) and the corresponding flowing and jumping zeros in Z c and Z d . Then, the following inclusions hold true

σ (Q c ) ⊂ Z c (15a) σ (Q d ) ⊂ Z d . (15b) Proof:
The proof is given only for (15b) as it follows the same lines for the flow dynamics. We first recall from [START_REF] Isidori | Nonlinear Control Systems[END_REF] that, given matrices (F, G,C) then the zeros Z d are given by the roots of the polynomial

F -sI G C 0 = g 0 + g 1 s + • • • + g n-r d s n-r d . (16) 
The above polynomial is invariant under feedback and coordinate transformations so that introducing T and H * as in ( 9)- [START_REF] Ames | Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics[END_REF] and

Q d = F 22 + G 2 H * one has F -sI G C 0 = F 11 -sI G 1 C 1 0 |Q d -sI|. (17) 
Now, by applying the Schur complement, one gets

F 11 -sI G 1 C 1 0 = |F 11 -sI| |C 1 (sI -F 11 ) -1 G 1 )|.
The polynomial |F 11 -sI| defines the r h eigenvalues of the matrix F 11 whereas, in the SISO case det(C 1 (sI

-F 11 ) -1 G 1 )
is the transfer function associated to (F, G,C) under the feedback H * so that

(C 1 (sI -F 11 ) -1 G 1 ) = ḡ0 + ḡ1 s + • • • + ḡ ms m det(F 11 -sI)
with the numerator defining the zeros with m < r h . Thus, by plugging now the above relation into (17) one gets

F -sI G C 0 = ( ḡ0 + ḡ1 s + • • • + ḡ ms m)|Q d -sI|. (18) 
Equating the right-hand sides of ( 16) and ( 18) one gets

g 0 + g 1 s + • • • + g n-r d s n-r d = |Q d -sI|( ḡ0 + ḡ1 s + • • • + ḡ ms m)
so that necessarily, m = r h -r d with |Q d -sI| being a factor of the polynomial identifying the zeros associated to (F, G,C). Thus, one gets that σ

(Q d ) ⊂ Z d .
It is worth to note that invariance of V * h (that is unobservability) under ( 1) is yielded under partial zero-cancelation that is by erasing the zeros of P(s) and L(s) in ( 14) making the jump and flow behaviour over V * h compatible. As a consequence, one does not need Z c ∩ Z d = ∅ as (13) does not depend on the actual values of the zeros of (1a) and (1b) but on the common subspaces induced by the hybrid interconnection. Also, the definition of the hybrid zerodynamics is independent on the poles and eigenvalues of the matrices A and F. Remark 4.1: Those arguments extend to the MIMO case by noticing that the numerator of

|C 1 (sI -F 11 ) -1 G 1 | = ḡ0 + ḡ1 s + • • • + ḡ ms m det(F 11 -sI)
defines the closed-loop transmission zeros with m < r h . In that case, σ (Q c ) and σ (Q d ) define the nr h dimensional subset of the transmission zeros associated to, respectively, (A, B,C) and (F, G,C).

In this context, one can re-define the zero-dynamics via the definition of a suitable exosystem whose series interconnection with (1) generates an identically zero output evolution, under suitable initial condition. The following result is given by extending the usual definition of zeros (e.g., [START_REF] Isidori | Nonlinear Control Systems[END_REF]).

Proposition 4.1: Let the hybrid subsystem (1) possess the zero-subspace V * h defined as in Theorem 3.1. Consider the exosystem ξ + = Q d ξ , ξ = Q c ξ with ξ ∈ R n-r h and interconnected to (1) through u = K * r ξ and v = H * r ξ as in [START_REF] Cai | Hybrid systems: limit sets and zero dynamics with a view toward output regulation[END_REF]. Then, for all x 0 ∈ V * h , there exists ξ 0 ∈ R n-r h such that y(t, k) = 0 for all (t, k) ∈ T . More in details, this is given by ξ 0 = T 2 x 0 with T 2 ∈ Mat R (nr h , n) defined as in [START_REF] Westervelt | Hybrid zero dynamics of planar biped walkers[END_REF].

B. On the hybrid zero-sets

The results stated so far put in light that a notion of zerodynamics can be settled in the hybrid context: roughly speaking such a notion is related to the maximal subspace, V * h , which can be rendered unobservable for both the flowing and jumping dynamics under suitable state feedbacks u = H * x and v = K * x. When constrained over such a subspace the hybrid dynamics evolve according to continuous and discretetime behaviors associated to σ

(Q c ) ⊂ Z c and σ (Q d ) ⊂ Z d .
What is peculiar of these subsets of zeros which have the same cardinality, is that they share the maximal unobservable subspace under feedbacks. With this in mind, the definition of zeros-set links the notion of hybrid zero-dynamics to the zeros of the involved transfer functions.

Definition 4.1: The zeros-set of the hybrid system (1) is defined as

Z * h = σ (Q c ) × σ (Q d ) ⊂ Z c × Z d .
It must be noted that such notion of zeros-set is valid for any system resulting from the interlink of different LTI controlled continuous-time and/or discrete-time dynamics defined over the same state space X ⊂ R n , with the same output y = Cx.

Definition 4.1 extends to the hybrid context the notion of the set of zeros of a given transfer function. It is worth to note that the equivalent notion of zero of a transfer function does not have in general a hybrid counterpart since, for a fixed pair (s k , z k ) ∈ Z * h , as any transfer function's zero does, the existence of a one-dimensional subspace which can be rendered unobservable under feedback is not guaranteed.

The discussion about the possibility of computing zerossubsets of the zeros-set Z * h (not developed here for the sake of space) can be deepened starting from these simple elements and the understanding is left to two elementary examples in the sequel. Assuming that a given hybrid system has a zerosset of cardinality at least two, the presence of zeros-subsets corresponds to the existence of feedback-unobservable subspaces shared by the flowing and jumping dynamics of dimensions less then (nr h ) (that is the maximal one); in doing this, one takes into account that unobservability can be generated only by cancelling couples of zeros in Z * h .

V. SOME ILLUSTRATING EXAMPLES

A. Example 1

Consider the hybrid system (1) with

A =   0 1 0 0 0 1 0 0 0   , B =   0 0 1   , F =   1 1 0 0 1 1 0 0 1   , G =   1 0 -1   and C = -1 0 1 . Since r c = r d = 1 then r h = 1 and V * h = V c = V d = span 1 0 1 , 0 1 0 .
Thus, the hybrid zero-dynamics ( 13) are characterized by

Q c = 0 1 1 0 , Q d = 1 1 2 1 1 .
Then the hybrid zeros-set results to be Z

* h = {(-1, 1)} × {1 - √ 2 2 , 1 + √ 2 
2 } with corresponding eigenvectors, under the coordinate transformation above,

w f 1 = (0 1 -1) , w f 2 = (0 1 1) , w j 1 = (0 1 - √ 2) , w j 2 = (0 1 √ 2)
. From this computation, V * h is the unique subspace that is (A, B) and (F, G) invariant so that Z * h of cardinality two is the zeros-set and no zeros-subset exists.

B. Example 2

Consider the hybrid system (1) with A and F as in Example V-A and

B =   0 0 1   , G =   1 0 √ 3-3 6   , C = √ 3-3 6 √ 3+3 6 
1 .

As in the previous example, r h = r c = r d = 1 and

V * h = V c = V d = span 1 0 3- √ 3 6 , 0 1 - √ 3+3 6 
.

In that case, one gets the hybrid zero-dynamics [START_REF] Wonham | Linear multivariable control[END_REF] with

Q c = 0 1 3- √ 3 6 -3+ √ 3 6 , Q d = √ 3+15 4 -5 √ 3-3 12 3- √ 3 6 3- √ 3 6
so that the zeros-set is given by Z

* h = {-1, √ 3-3 6 } × { 3- √ 3 3 , 3+ √ 3 
4 }. By computing the corresponding eigenvectors, in this case the same eigenvector is associated to a pair of a continuous-time and a discrete-time eigenvalues, namely w j 2 = (0

3 √ 3+4 2 
1) , w f 1 = w j 1 = (0 1 1) and

w f 2 = (0 1 2- √ 3 
6 ) . Since s 1 = -1 and z 1 = 3- √ 3 3 share a one dimensional invariant subspace span{w f 1 } (that is an (A, B) and (F, G) invariant subspace in kerC), the system also possesses the hybrid zeros-subset z h = {(-1, 3- √ 3

3 )} of cardinality one; it should be assumed to define a zero-pair as the counterpart of the zero for classical systems. From Theorem 3.1, the zero-subspace is The friends [START_REF] Ames | Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics[END_REF] of V * h are given by H * = (0 0 -1 6 ) and K * = (0 0 -1) so getting that the zero-dynamics [START_REF] Wonham | Linear multivariable control[END_REF] evolve with Q c = -1 and Q d = -1. The hybrid system is minimum-phase as long as δ k > 0 for all k ≥ 0 as the zero-dynamics is scalar. The zero-set Z * h is given by the only pair {(-1, -1)} (composed by flowing and jumping zeros incidentally coincident) which is the zero-pair. For completeness, a simulation is in Figure 1 when assuming a random sequence of jumping times and x 0 = (1 -1 1) ∈ V * h .

V * h = V d = span   1 -1 1   ⊂ V c = span   1 0 -2   ,   0 1 -3  

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, the notion of zero-dynamics has been characterized for classes of linear time invariant hybrid systems under aperiodic time-driven jumps. Following works as [START_REF] Lawrence | Controlled invariant subspaces for linear impulsive systems[END_REF], [START_REF] Zattoni | Output regulation by error dynamic feedback in hybrid systems with periodic state jumps[END_REF], the geometric framework contributes to a better understanding on the zero dynamics of hybrid linear systems under aperiodic jumps. Current work is toward the extension to the nonlinear context and the definition of a weaker notion of zero-dynamics revealed when constraining the output to zero only at the jumping instants as emblematic for the sampling zeros of aperiodic sampled dynamics.

3 . 1 :

 31 ) with dim{V c } = nr c and dim{V d } = nr d for some positive real constants r c , r d . Remark When the continuous and discrete-time dynamics associated to (1a) and (1b) admit well-defined vector relative degrees r c = (r 1 c . . . r p c ) and r d = (r 1 d . . . r p d ) [17, Chapter 5] with r c = ∑

Fig. 1 .C. Example 3

 13 Fig. 1. x 0 ∈ V * h and y(t, k) = 0

 1 = 1

 11 that is, at the same time, (A, B) and (F, G)-invariant. Thus, r h = 2 = max{r c , r d } with r c = 1, r d = 2, Z c = {-1, -2} and Z d = {-1}). By specifying (9) with T 2 = (0 1 0), ω 1 = C and ω 2 = CF, one gets CT -
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