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Abstrat

A reent theory that determines the properties of disordered solids as the solid

aumulates damage is applied to the speial ase of �ber bundles with global load

sharing and is shown to be exat in this ase. The theory postulates that the prob-

ability of observing a given emergent damage state is obtained by maximizing the

emergent entropy as de�ned by Shannon subjet to energeti onstraints. This theory

yields the known exat results for the �ber-bundle model with global load sharing

and holds for any quenhed-disorder distribution. It further de�nes how the entropy

evolves as a funtion of stress, and shows de�nitively how the onepts of temper-

ature and entropy emerge in a problem where all statistis derive from the initial

quenhed disorder. A previously unnotied phase transition is shown to exist as the

entropy goes through a maximum. In general, this entropy-maximum transition o-

urs at a di�erent point in strain history than the stress-maximum transition with

the preise loation depending entirely on the quenhed-disorder distribution.

Key words: Fiber Bundles, Entropy Maximization, Phase Transitions

PACS: 46.50.+a, 46.65.+g, 62.20.Mk, 64.60.Fr

1 INTRODUCTION

The �ber-bundle model with global load sharing is a simple model for failure in

tension introdued almost 80 years ago [1�3℄ and having reeived onsiderable

attention and extensions over the past 15 years [4�19℄ . Although this model

may have little pertinene to real �brous systems suh as a rope breaking in

tension, it is of interest beause it possesses exat analytial properties.
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In reent work [20�22℄ , we have developed a general statistial theory for de-

termining the properties of a disordered solid that is aumulating irreversible

damage due to raking under stress. The ensembles in this theory are re-

ated by onsidering di�erent realizations of the quenhed disorder in the loal

breaking strength of the material. Suh realizations are made either for the

system as a whole, or of more pertinene to real systems, by dividing a given

system into smaller �mesovolumes� and letting eah mesovolume orrespond

to a di�erent realization of the quenhed disorder. The ensembles so obtained

have nothing to do with thermal �utuations (moleular dynamis). Given a

system with suh quenhed disorder, our theory determines the probability of

emergent rak states by maximizing Shannon's measure of disorder subjet

to onstraints oming from the energetis of the frature proess.

In the present paper, we apply this theory to the spei� problem of �ber bun-

dles with global load sharing and demonstrate that for any quenhed-disorder

distribution, it yields the known exat results. Furthermore, a previously un-

notied phase transition is demonstrated to exist where entropy goes through

a maximum. This phase transition is distint from the well-known stress maxi-

mum transition and was notied in the present theory beause of the prominent

role played by entropy.

However, the importane of our theory is not that it yields a new result in

this old model, but that it applies and yields analytial results about phase

transitions for any quasi-stati damage model; albeit, for models involving

rak interations, approximate treatment of the funtional integrations may

be required to obtain analytial results (suh as renormalization or mean-�eld

approximations). Using our theory, we reently treated the problem of how the

mehanial properties of roks hange due to raks arriving and interating in

ompressive shear [20�22℄. We analytially demonstrated that the loalization

transition observed in experiments is a seond-order phase transition when it

ours.

2 THERMODYNAMICS

Our theory was originally developed for a disordered solid under the in�uene

of a stress tensor. For �ber bundles, a muh simpler salar theory applies and

so in this setion, the formalism is rederived in this simpli�ed ontext.

A �ber bundle is depited in Fig. 1. A olletion of N �bers are strethed

between two rigid supports. One support is held �xed, while the other is free

to displae. A load FN is applied to the bundle through the free support so

that the �bers are in a state of tension. In this paper, the load FN will always

be normalized by N to de�ne the overall tension τ = FN/N . Eah non-broken
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Fig. 1. A bundle of N �bers strethed between two rigid supports with a load FN

applied through the free support.

�ber in a bundle has the same length L. If, when τ = 0, this length is Lo, then

the measure of strain is ε = L/Lo − 1. Experiments may be performed on the

bundle either by ontrolling τ or ε.

Eah of the �bers has the same Young's modulus whih is taken to be unity so

that the axial strain ε of eah �ber is idential to the tension in the �ber. The

N �bers have strengths ε1, ε2,...εN whih are independent random variables

sampled from a distribution p(ε), whose umulative distribution is de�ned

P (ε) =
∫ ε
0 p(x)dx. As the strain ε of the bundle is inreased, the individual

�bers will break one their tension (strain) gets to their �xed strength thresh-

old. The assumption of �global load sharing� is that when one of the �bers

breaks at �xed load, all the other �bers will extend by the same amount thus

inreasing the tension in eah of the surviving �bers so that the load as a

whole is always supported entirely by the surviving �bers. All of this de�nes

the �ber bundle model with global load sharing. Of interest are the mehani-

al properties of suh bundles as averaged over all possible realizations of the

�ber strengths.

We �rst need to know the probability pj of observing one of the realizations

to be in a partiular state j of damage when the ensemble as a whole is at

an applied strain ε. In the �ber bundle model, a damage state j is de�ned

by whih of the N �bers are broken. One ould de�ne j using a loal order

parameter that is 1 if a �ber is intat and 0 if the �ber is broken.

Our theory postulates that the fration pj of all realizations observed to be in

state j is obtained by maximizing Shannon's measure of disorder

S = −
∑

j

pj ln pj (1)

subjet to onstraints. Suh onstraints must involve the independent variables

of S. To identify the independent variables, we onsider how both S and the

average energy in the ensemble of bundles hange as the strain is inreased.

When ε inreases to ε + dε, there is both a work arried out in reversibly

strething the �bers and an additional work arried out due to irreversible
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�ber breaks. Due to breaking, some of the members of the ensemble (individual

realizations of the disorder) will be led out of their urrent damage state and

into state j, while others that were in state j will transfer to still di�erent

states. If there is a di�erene in the number of members entering and leaving

state j, there will be a hange dpj in the oupation probability of state j and

suh hanges are what ause Shannon's disorder measure S to hange.

The average energy density (average energy normalized by N) in the ensemble

is given by U =
∑

j pjEj . Here, Ej is the energy density required to reate state

j at imposed strain ε and as averaged over all members that have been led

to state j. Depending on the breaking strengths of a given realization, the

work performed in arriving at state j an be di�erent. It is through Ej that

all dependene on the quenhed-disorder distribution enters the problem. The

hange that ours when ε inreases to ε+ dε is

dU =
∑

j

Ejdpj +
∑

j

pjdEj. (2)

The �rst term is the energy expended in hanging the disorder over the ol-

letion of realizations. It is thus proportional to the disorder hange and an

be written

TdS =
∑

j

Ejdpj. (3)

The seond term is written

f dε =
∑

j

pjdEj. (4)

and represents both the reversible strething energy in those members that

did not experiene breaks during the deformation inrement, as well as the

irreversible energy hanges due to all the breaks that did not result in a net

hange in the oupation numbers of eah state.

This deomposition of the energy inrement an be thought of as follows.

When breaks our throughout the ensemble of realizations as ε inreases to

ε+dε, there is a �ow of members between the states. This �ow involves energy

hanges due to �bers breaking in the interval dε. It may be resolved into a

uniform �inompressible� part whose assoiated energy is inluded within f dε
as well as a non-uniform �ompressible� part assoiated with more members

arriving in a given state than are leaving that state. The energy assoiated

with the non-uniform �ow between states is entirely ontained in TdS.

From these expressions it may be onluded that if U is to be treated as a

fundamental funtion, then U = U(S, ε), or equivalently if S is to be treated as

the fundamental funtion then S = S(U, ε). In other words, the independent

variables that must be involved in the onstraints on the maximization of S
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are U and ε. The proportionality onstants T and f are de�ned

T =

(

∂U

∂S

)

ε

and f =

(

∂U

∂ε

)

S

. (5)

The state funtion f is something di�erent than the overall tension τ sine we

also have that τ dε = dU . Thus, in general, (τ−f)dε = TdS so that f 6= τ due

to �bers breaking in a positive inrement dε. If strain were to be dereased,

�bers do not break and so dS = 0 and the state funtion f would be de�ned

using only the purely elasti part of the energy hanges dEj. Changes in f in

this ase are equivalent to hanges in τ . Last, sine we have taken S to be

extensive (proportional to N) while U is a density independent of N , T omes

out being proportional to 1/N . This hoie is made so that fators of N do

not lutter the equations that follow.

The onstraint involving ε is that eah non-broken �ber throughout the entire

ensemble has the same length whih implies εj = ε. The onstraint involving

U is that U =
∑

j pjEj. Carrying out the maximization of S subjet to these

onstraints using Lagrangian multipliers gives the probability distribution as

pj(β, ε) =
e−βEj(ε)

Z(β, ε)
(6)

where β = 1/T and where the partition funtion Z is de�ned

Z(β, ε) =
∑

j

e−βEj(ε). (7)

The free energy F = F (β, ε) in this ensemble (for this set of onstraints) is the

Legendre transform of U with respet to S; i.e., F = U − TS. Di�erentiation

then gives

dF = β−2Sdβ + f dε. (8)

Upon introduing U =
∑

j pjEj and S = −∑j pj ln pj into the Legendre trans-

form F = U−S/β and using that ln pj = −βEj− lnZ we obtain the standard

result

βF = − lnZ. (9)

Thus, the standard anonial ensemble emerges in this problem where quenhed

disorder alone (not moleular �utuations) is responsible for the existene of

ensembles.

An important question in suh an approah is whether anything preise an be

said about the temperature T = 1/β. Indeed, β an formally be found as the

solution of a di�erential equation. This di�erential equation is obtained from

the previously stated but unused fat that dU = τdε whih an be written

τ =
dU

dε
=
∑

j

dpj
dε

Ej +
∑

j

pj
dEj

dε
. (10)
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Fig. 2. A strain-ontrolled experiment. The solid line is the load path followed during

the experiment. The dashed lines represent the path that would be followed if strain

were to be dereased at some point during the experiment. When a �ber breaks at

onstant ε, the load τ must be redued as represented by the vertial drops.

Now from Eq. (6), we obtain that

dpj
dε

=

[

−dEj

dε
β −Ej

dβ

dε
− d lnZ

dε

]

pj, (11)

while from Eqs. (8) and (9)

d lnZ

dε
= −F

dβ

dε
− β

dF

dε
= −U

dβ

dε
− βf. (12)

Sine eah member is at the same ε, eah member has its own τj , and so

τ =
∑

j pjτj . We then obtain the di�erential equation for β in the form

a
dβ

dε
+ bβ + c = 0 (13)

with oe�ients given by

a =
∑

j

pjEj(U−Ej); b =
∑

j

pjEj

(

f − dEj

dε

)

; c =
∑

j

pj

(

dEj

dε
− τj

)

. (14)

Sine pj = pj(β, ε), this equation is non-linear and thus di�ult to solve. In

the present work, we demonstrate that a proposed funtion β = β(ε) exatly
satis�es this equation and thus is the true ��ber-bundle� β. To make progress,

we next obtain Ej and τj for the spei� problem of �ber bundles with global-

load sharing.

3 FIBER BUNDLE MODEL

Figure 2 details the history of how the overall tension τ might evolve when on-

trolled variations in ε are applied to a bundle having �ber strengths ε1, ε2...εN .
In this partiular example, n = 3 �bers have broken when the strain is at ε.
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The load on the bundle is equally shared by the N −n surviving �bers so that

τn = ε
(

1− n

N

)

(15)

whih is a relation independent of the history; i.e. it depends only on the

atual state of the bundle through the number of broken �bers n, and not on

the breaking thresholds ε1, ε2...εn.

The total work density Ep
j for states j onsisting of n broken �bers is the area

under the harging urve in a partiular realization (the area under the solid

line in Fig. 2)

Ep
j =

∫ ε

0
τ(x) dx =

n
∑

m=0

∫ εm+1

εm
τm(x) dx =

n
∑

m=0

(

1− m

N

)

(

ε2m+1

2
− ε2m

2

)

where from Eq. (15) we have used τm(x) = x(1 − m/N) and where by on-

vention εn+1 = ε is the �nal applied strain. A diret reursion gives exatly

Ep
j =

(

1− n

N

)

ε2

2
+

n
∑

m=1

ε2m
2N

. (16)

The �rst term here is the elasti energy that an be reversibly reovered upon

dereasing the strain while the seond term represents the energy irreversibly

onsumed in the breaking proess. Both ontributions an be diretly vizual-

ized in Fig. 2.

Equation (16) is next averaged over the quenhed disorder to obtain the av-

erage energy Ej needed to reate state j. Eah breaking threshold εm is an

independant variable, randomly distributed aording to p(εm) under the on-
dition that 0 ≤ εm ≤ ε. They are therefore distributed aording to the prob-

ability density p(εm)/P (ε) where the normalization fator aounts for the

fat that the upper limit ε is independent of the threshold values εm. Thus,
averaging over the quenhed disorder gives

h(ε) =

〈

ε2m
2

〉

q.d.

=
1

P (ε)

∫ ε

0

x2

2
p(x)dx (17)

where h(ε) designates the average energy that is lost when eah �ber breaks.

The average work density (Hamiltonian) required to reate the state j, aver-
aged over all realizations of the quenhed disorder is then in general

Ej =
(

1− nj

N

)

ε2

2
+

nj

N
h(ε) =

ε2

2
− nj

N

[

ε2

2
− h(ε)

]

. (18)

For example, under the speial assumption that the breaking strengths are

randomly sampled from a uniform distribution on 0 ≤ εm ≤ 1, we have that

p(ε) = 1, P (ε) = ε, h(ε) = ε2/6, and Ej = ε2/2− (nj/N)ε2/3.
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4 Average Properties

We now apply the above theory and determine the thermodynami funtions

as a funtion of applied strain ε. The following analysis is valid for any properly

normalized quenhed-disorder distribution p(ε).

The umulative distribution P (ε) =
∫ ε
0 p(x) dx is the probability that any one

�ber has broken when the strain is at ε. Thus, the fration of all possible

realizations having nj broken �bers and N − nj unbroken �bers is exatly

pexatj = (1− P )N−njP nj . (19)

This distribution may be written

pexatj = p0 exp
[

−nj ln
(

1− P

P

)]

(20)

where p0 = (1−P )N is the probability of the unbroken state j = 0. Upon using

the Hamiltonian of Eq. (18), the postulate of entropy maximization predits

this same distribution to be given by

pj = p0 exp

[

nj
β

N

(

ε2

2
− h

)]

(21)

where p0 = exp(−βε2/2)/Z is the probability of the unbroken state.

These two distributions are both Boltzmannians in the number nj of broken

�bers and are idential if the temperature T = 1/β is given by

β(ε) =
−N

ε2/2− h(ε)
ln

(

1− P (ε)

P (ε)

)

. (22)

If it an be shown that this β satis�es the di�erential equation of Eq. (13), then

our theory is exat when applied to �ber bundles with global load sharing.

From the de�nition P (ε)h(ε) =
∫ ε
0 p(x)x

2/2 dx, one has h(ε) < ε2/2 for any

distribution p(ε). Thus, β(ε) is a negative inreasing funtion up to the strain

point ε = εβ where it smoothly goes to zero. The in�etion point εβ is obtained

from the ondition that P (εβ) = 1/2 and de�nes a previously unnotied phase

transition that will be shown to be distint from the transition at peak stress.

When ε > εβ, β beomes a positive inreasing funtion of ε.

There are two key average properties upon whih all the thermodynami fun-

tions depend; namely, the average fration of broken �bers in eah bundle

〈nj/N〉 and the average of this fration squared 〈(nj/N)2〉. Using the exat

probabilities of Eq. (20) [whih is equivalent to using the β of Eq. (22) in our

8



probability law℄, one obtains

〈

nj

N

〉

=
∑

j

pj
nj

N
=

N
∑

n=0

cNn
n

N
P n(1− P )N−n

(23)

where cNn = N !/[n!(N − n)!] de�nes the number of ways of seleting n objets

from a group of N distinguishable items. The binomial theorem states that

(x+ y)N =
N
∑

n=0

cNn x
nyN−n. (24)

Upon di�erentiating this equation with respet to x and then multiplying by

x/N , gives that when x = P and y = 1− P

〈

nj

N

〉

= P (25)

whih is a known result onsistent with the meaning of P . Di�erentiating a

seond time yields

〈

(

nj

N

)2
〉

= P 2 +
P (1− P )

N
. (26)

Using these two results, the other averages de�ning the thermodynami vari-

ables are easily read o�.

The average stress τ(ε) is thus obtained to be

τ =
∑

j

pjτj = (1− P )ε (27)

whih is initially an inreasing funtion of ε having the slope

dτ

dε
= 1− P − εp. (28)

This slope goes to zero and the stress has a maximum at any strain point ετ
that is a solution of 1− P (ετ)− ετp(ετ ) = 0; i.e., at the point(s) where

ετ p(ετ) = 1−
∫ ετ

0
p(x) dx (29)

admits a solution. This is a known exat result [4,10℄. In general, we an

expet that ετ 6= εβ. The ondition required for equality of these strain points

is that simultaneously εp(ε) = 1/2 and

∫ ε
0 p(x) dx = 1/2 whih for monotoni

distribution funtions p(ε) an only our with the uniform distribution p(ε) =
1 in whih ase ετ = εβ = 1/2 and the two transitions oinide. If p(ε) is a

monotoni inreasing funtion of ε, then ετ < εβ while if it is a dereasing

funtion of ε, then ετ > εβ. For non-monotoni distributions, there an be an

arbitrary number of stress maximas and Eq. (29) an have either no solutions

9



or multiple solutions [10℄ . The nature of the phase transitions at the distint

strain points εβ and ετ is disussed in the following setion.

The average energy in the ensemble is

U =
∑

j

pjEj = (1− P )
ε2

2
+ hP. (30)

Again realling the de�nition of h from Eq. (17) gives

dU

dε
= (1− P )ε− p

ε2

2
+

d(hP )

dε
= τ (31)

whih is also the equation that gives the di�erential equation for temperature.

This is su�ient for demonstrating that the β(ε) of Eq. (22) satis�es its di�er-
ential equation. Nonetheless, as a onsisteny test, the oe�ients a, b, and c
de�ned in Eq. (14) will be derived and the di�erential equation will expliitly

be shown to be satis�ed.

To obtain the state funtion f , we need �rst

dEj

dε
= ε− nj

N

[

ε− p

P

(

ε2

2
− h

)]

. (32)

From Eq. (4) and the lemma of Eq. (25) we then have

f =
∑

j

pj
dEj

dε
= (1− P )ε+ p

(

ε2

2
− h

)

. (33)

The variation of the entropy is obtained from the energy balane as

dS

dε
= β

(

dU

dε
− f

)

= Np ln
(

1− P

P

)

. (34)

Together with the initial ondition S(0) = 0, this is readily integrated to give

S = −N [P lnP + (1− P ) ln(1− P )] . (35)

This expression is the lassial Shannon result for a set of N random variables

in two possible states having probabilities P and 1 − P , whih is preisely

the ase of the �ber bundle with global sharing. This is another onsisteny

hek. This entropy S inreases from zero [total ertainty that every member

is intat℄ and goes smoothly through a maximum [total unertainty as to what

state a member may be in℄ at the same strain point P (εβ) = 1/2 where β goes

to zero. After the smooth maximum, S dereases to reah zero if P (ε) reahes
1 in whih ase there is total ertainty that eah member is entirely broken.

We note that Eq. (35) an also be diretly obtained from the Shannon formula

upon applying the binomial theorem.
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Finally, the free energy F is again obtained from its Legendre transform de�-

nition F = U − S/β to be

F =
ε2

2
−
(

ε2

2
− h

)

ln(1− P )

ln(1− P )− lnP
. (36)

At the point εβ de�ned by P (εβ) = 1/2, the free energy diverges due to the

fat that β(εβ) = 0 while S(εβ) remains �nite. So long as εβ 6= ετ , the free

energy does not diverge when (if) ε = ετ . In passing, we also note that

Z =
[

(1− P )hP−ε2/2
]N/(ε2/2−h)

(37)

is the exat expression of the partition funtion.

With the above results established, we now obtain the oe�ients a, b, c of the
di�erential equation for the temperature as

a=−1 − P

N

(

Ph2 − ε2

2

)2

; b =
1− P

N

(

Ph2 − ε2

2

)(

Pε− p
ε2

2
+ ph

)

;

c=−p

(

h− ε2

2

)

. (38)

Using these together with Eq. (22) for β and its derivative

dβ

dε
= − Np

P (1− P )(h− ε2/2)
+N ln

(

1− P

P

)

[

ε+ (h− ε2/2)p/P

(h− ε2/2)2

]

(39)

shows that the di�erential equation a dβ/dε+ bβ + c = 0 is exatly satis�ed.

5 Phase Transitions

5.1 The entropy maximum transition

The strain point εβ de�ned by P (εβ) = 1/2 is where simultaneously β = 0,
the entropy is a maximum, and the free energy diverges. It is distint from

the stress-maximum transition(s) at ετ . The interpretation of ε = εβ as a

phase transition is natural, sine the most probable on�guration of a bundle

suddenly jumps from being entirely intat to entirely broken. What are the

measurable manifestations of this transition at εβ?

Sine the entropy is a maximum at this point, the �utuations between realiza-

tions should also be a maximum as we now demonstrate. De�ne the fration of
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broken �bers in state j to be ρj = nj/N , and de�ne the average of this fration

to be ρ = 〈ρj〉 = P where P = P (ε) is again the probability of a �ber being

broken. The quantity of interest here is the root-mean-square �utuation ∆ρ
in the fration of broken �bers given by

∆ρ =

√

〈

∆ρ2j
〉

=

√

〈

ρ2j
〉

− ρ2 =

√

P (1− P )
√
N

(40)

whih indeed goes through a maximum at P (εβ) = 1/2 as expeted. This max-

imum is something that an be diretly measured in numerial experiments

on �ber bundles but has never before been ommented on. The reason it has

been disovered in the present theory is beause entropy and temperature are

expliitly present. We enourage someone to numerially measure ∆ρ and to

verify that it is a maximum at the transition point εβ. Reall that for mono-

toni quenhed-disorder distributions, if p(ε) is a dereasing funtion (more

weak �bers than strong �bers), then εβ < ετ . So the numerial observation

in this ase should be that ∆ρ goes through a maximum prior to peak stress.

Equivalent omments hold when p(ε) is an inreasing funtion and εβ > ετ .

The other �utuations that are potentially of interest inlude the root-mean-

square stress �utuation

∆τ =

√

〈

∆τ 2j
〉

=

√

〈

τ 2j
〉

− τ 2 = ε∆ρ (41)

and the root-mean-square energy �utuation

∆U =

√

〈

∆E2
j

〉

=

√

〈

E2
j

〉

− U2 =

(

ε2

2
− h

)

∆ρ, (42)

but sine these are simply proportional to ∆ρ it seems that the interesting

signature of this phase transition is the maximum in ∆ρ.

The �order� of this transition is not lassially de�ned in the Ehrenfest sheme;

however, it seems inappropriate to all it a ontinuous transition beause the

free energy is singular at εβ as shown above. Nonetheless, in the limit as ε → εβ
the singular part of F diverges aording to the saling law

Fs = − ln 2

8

[ε2β − h(εβ)/2]

p(εβ)
(ε− εβ)

−1
(43)

whih has a (trivial) universal exponent. Sine F and its derivatives are di�-

ult to numerially measure, the priniple manifestation of this phase transi-

tion remains ∆ρ going through a maximum at a point εβ 6= ετ .
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5.2 The stress maximum transition

The phase transition at peak stress ε = ετ is the one that researhers up to now

have foused on. Sine S and its derivatives remain ontinuous and �nite there,

an attempt to lassify this transition as being �rst-order or seond-order is

meaningless. The label of �ontinuous� transition seems the most appropriate.

There is universality at this transition due to the fat that for any monotoni

analyti quenhed-disorder distribution, τ(ε) is a smooth analyti funtion so

that upon developing this funtion in the neighborhood of its maximum one is

guaranteed |τ − τ(ετ )| ∼ |ε− ετ |2 with the exponent of ourse being indepen-

dent of the distribution p(ε) or other model parameters. Suh development of

an analyti funtion about a ritial point is the way any mean-�eld theory

aquires a universal saling law. However, Kloster, Hansen and Hemmer [10℄

do demonstrate that a non-analyti quenhed-disorder distribution an lead to

highly non-analyti stress-strain behavior that thus falls outside the quadrati

universality lass. Also, in other damage models in whih elasti interation

between raks (damage points) is important, the simple observation of a

model exhibiting an averaged stress maximum does not by itself guarantee an

exatly quadrati stress-strain relation in the neighborhood of the maximum.

Suh a relation may be non-analyti due to a diverging orrelation length in

the orrelation between raks.

The quadrati stress maximum means that dε/dτ diverges as |τ − τ(ετ )|−1/2

[11,19℄ . Aordingly, the average rate at whih the fration of broken �bers

inreases with stress dρ/dτ = p dε/dτ also diverges as |τ−τ(ετ )|−1/2
[4,15℄ . Us-

ing additional onsiderations not developed in this paper, one an futher show

that the average size of avalanhes also diverges as |τ − τ(ετ )|−1/2
[10,15,17℄,

and that the distribution D(∆) of the size ∆ of the avalanhes sales as

D(∆) ∼ ∆−5/2
[6,7,10,17℄ at the stress maximum. These are the prinipal

observable harateristis of the stress-maximum transition.

6 Summary and Conlusions

Two prinipal results have been obtained in this paper. First, it was demon-

strated that for any quenhed-disorder distribution used in the �ber-bundle

model with global load sharing, the probability of the emergent damage states

may be exatly alulated by maximizing Shannon's entropy subjet to on-

straints. It is through the onstraints that the nature of the quenhed-disorder

distribution enters the marosopi thermodynamis.

Seond, a previously unnotied phase transition ours in the �ber-bundle
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model with global load sharing when the entropy goes through a maximum.

This phase transition is distint from the stress-maximum transition; although,

for the uniform quenhed-disorder distribution, the two transitions oinide.

The priniple manifestation of this transition is that the root-mean-square

�utuation in the number of broken �bers will go through a maximum, whih

is a quantity that an be diretly measured in numerial experiments.

To onlude, we postulate that the probability of emergent states an always

be alulated through entropy maximization for any damage model of interest

inluding models in whih there is elasti interation between the loal dam-

age (order) parameters. Damage models with order-parameter interations

are not normally onsidered amenable to analytial treament; however, using

our approah a rather standard anonial-ensemble partition funtion emerges

and the various funtional integration proedures available for studying the

partition funtion in the neighborhood of ritial points may be employed.

Suh generality is the prinipal utility of our approah. A onern is the ability

to produe an expression for the model temperature. The temperature an be

found in priniple as the solution of a well-posed initial-value problem. Un-

fortunately, the di�erential problem is highly non-linear and thus di�ult to

solve. Beause stress maxima and entropy maxima do not normally oinide,

a stress-maximum transition may be studied by simply assuming the temper-

ature to be well behaved in the neighborhood of the stress maxima. But if an

expliit expression for the temperature is desired, the following approah an

be employed.

In models involving rak interations, there are always a subset of dilute states

in whih the interations are negligible. The exat probabilities of suh states

an usually be determined from the quenhed-disorder distribution alone. A

omparison between the probabilities alulated from entropy maximization

and suh exat probabilities then determines the model temperature to be

used in the Boltzmannian. With the temperature so de�ned, and with a proper

model Hamiltonian in hand, the partition funtion an be analyzed.
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