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Key Points:12

• The pneumatic fracturing experiments in a Hele-Shaw cell are monitored using ac-13

celerometers and a high speed camera.14

• The acoustic emissions are localized using an energy based signal location method15

and displacement maps are obtained from image correlation.16

• By comparing the acoustic and the optical results we observe the motion starts in17

porous medium and propagates towards the channel tips.18
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Abstract19

Localization of signals is a widely applied technique used in different areas of science20

telecommunication, medicine or seismology. In this work, we study microseismic emis-21

sions due to stick-slip events during pneumatic fracture in a transparent setup at labora-22

tory scale and apply a localization method "Estimated Source Energy Homogeneity". The23

seismic location results are compared with the image correlation results for displacement24

maps corresponding to the event times. We have observed (using optics and acoustics)25

that the movement starts inside the porous medium and progresses towards the channel26

tips, eventually causing channels to grow further. This finding could be of interest in un-27

derstanding fluid-induced earthquake nucleation processes. Similar to in-site applications28

of pneumatic or fluid-related fracturing, it shows that the area influenced extends beyond29

the fracture tips. This also shows why even after the end of pumping, we may get earth-30

quakes, such as in the Basel case [Haring et al. 2008].31

1 Introduction32

Acoustic signal localization is applied in many different areas of science [Gershman33

et al., 1995; Valin et al., 2003; Elnahrawy et al., 2004; Malioutov et al., 2005; Zhu et al.,34

2007; Fink, 2015; Garnier and Fink, 2015]. In robotics, speech-source tracking is done35

to automate cameras to follow the speaker [Brandstein et al., 1997]. In electronics, touch-36

screens are a very popular example of a signal localization. It is necessary for the system37

to locate the touch of a user to transmit information to process a simple message [Terlizzi38

and Minoo, 2009].39

Similarly, in earth sciences, finding the epicenter of an earthquake is necessary to40

understand how it was generated, where exactly the movement occurred, which region41

is more risky for the aftershocks [Aki and Richards, 2002], [Turquet et al., 2018a]. For a42

better quality risk assessment, it is important to know the origin of the seismicity along43

with its location. In nature, seismic events based on gas-solid interactions are very com-44

mon. For example, there are many existing studies about a volcano-heated fluid becomes45

gas causing phreatic eruptions or geysers [Tazieff , 1989; Oppenheimer, 1986; Manga and46

Brodsky, 2006; Christenson et al., 2010; Jolly et al., 2014; Sudo et al., 1998]. Moreover,47

fast air or fluid injection deforming porous medium is used in the industrial applications48

of pneumatic fracturing [Schuring et al., 1996; Accutech, 1994; Gao et al., 2014] or hy-49

draulic fracturing [Charléty et al., 2007; Cuenot et al., 2008; Dorbath et al., 2009; Aochi50

–2–



Confidential manuscript submitted to Geophysical Research Letters

et al., 2011]. At very large scales (tens or hundreds of meters) and high-pressure injec-51

tion, compressibility plays role in the interactions between the pressurized fluid and de-52

formable solid medium similar to the gas-solid interactions mentioned earlier. This phys-53

ical phenomenon can be observed in magma fracturing, eruptions [Rivalta and Segall,54

2007; Poland et al., 2012], fluid injecting into rocks, or reservoir stimulations in geother-55

mal fields [Candela et al., 2018]. Stanchits et al. [2011] have studied the acoustic emis-56

sions on rock samples during thermo-hydro-chemo-mechanical coupled deformations. Wa-57

ter injection into porous sandstone under applied stress induced acoustic emission events.58

These events are generated close to the migrating waterfront. Kobchenko et al. [2013]59

studied the transport of CO2 by diffusion and fracturing the gel layer in a Hele-Shaw cell.60

They studied the length scales of diffusion and flow in fracture networks which are eventu-61

ally linked to statistical properties of river networks and hierarchical-fracture networks. In62

the very recent research of Jamtveit et al. [2018], they have found that the strike-slip lower63

crust earthquakes are causing fluid pressure pulses towards the lower crust and fluid-driven64

associated metamorphic and structural transformations of the lower crust follow these65

earthquakes. More importantly, at large scales, a common way to understand and control66

the fluid induced fracturing is to monitor the microseismicity [Holland, 2013; Valkó and67

Economides, 1995; Cornet et al., 1998; Cornet, 2015; Fehler et al.]. The source locations68

of seismic events are mainly focusing on the fluid-solid coupled events.69

Even though the localization of the microseismicity due to volcanoes, and industrial70

applications such as hydraulic fracturing has a very rich scientific literature, the locations71

of acoustic emissions based on interactions between the injected gas and deformable the72

solid (or gas-metal in pressure tanks [Peacock, 1996]) remains challenging. To the best73

of our knowledge, acoustic emissions have not been studied during pneumatic fractures in74

the scientific literature prior to this article. In this article, we are investigating the source75

mechanics and locations of pneumatic fractures in a porous medium in a transparent Hele-76

Shaw cell. The main focus of this work is to first locate the stick-slip events using acous-77

tic emissions and then to compare them with the displacement field obtained from digital78

image correlation. The main reason behind using a Hele-Shaw cell is to optically record79

the deformations associated with the microseismic event while recording the vibrations80

on the glass plate with accelerometers. This work is based on the similar experiments as81

in the previous works done by Turkaya et al. [2015], Eriksen et al. [2017a], Eriksen et al.82

[2018], and Turquet et al. [2018b].83
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Recently, some of the signal localization types are reviewed in the work Turkaya84

et al. [2016]. Here in this article, we show the application of Estimation of Source Energy85

Homogeneity (ESEH) to locate the source of the acoustic emissions during aerofracturing86

experiments [Turkaya et al., 2015]. These localization results are compared with the Dig-87

ital Image Correlation (details can be found in Eriksen et al. [2017a] results), as obtained88

from the optical recordings via a high-speed camera during the experiment.89

2 Experimental setup90

The aerofracturing experiments analyzed here are conducted in a Hele-Shaw cell91

made of two glass plates 80 cm × 40 cm × 1 cm with an aperture of 1 mm between them92

- see details in Turkaya et al. [2015], Eriksen et al. [2017b], Eriksen et al. [2018], and93

Turquet et al. [2018b]. The experimental setup is shown in Figure 1(a). The acquisition94

chains of optical and acoustic data are presented. The system is triggered via a signal95

generator to have synchronization between optical and acoustic data. The optical data96

were recorded at 125 or 1000 images per second using a Photron SA5 and a flicker-free97

Dedolight 400W projector, and for acoustic data, we use 1 MHz sampling rate. Three98

boundaries of this cell are sealed with a double-sided tape while the fourth side is cov-99

ered with a 40 µm mesh filter. This filter lets the air pass to the surrounding atmosphere100

while keeping the grains inside of the cell. In this particular experiment, we used 1 bar101

overpressure from the inlet and we used 80 µm grains having material density 1.05 g/cm3
102

in loose state inside the cell. Prior to the experiment, the cell is filled vertically before103

sealing with a semi-permeable mesh. Then, the cell is rotated vertically so that the grains104

free fall to the other end of the cell without any external effect. This enables that the solid105

ratio is very close to the random loose packing with a solid fraction of φ = 0.44±0.04106

[Eriksen et al., 2017b]. Finally, the cell is carefully placed horizontally without changing107

this loose state. This simple preparation procedure ensures that the experiments are repro-108

ducible. An empty space is provided between the air inlet and the solid-air interface to109

provide a homogenous pressure over the width of the cell. The air overpressure at the inlet110

is then raised and maintained at a constant level (1 bar in the example on Figure 1).111

During this experiment, acoustic signals are recorded using 4 accelerometers at-119

tached to the bottom plate (see Figure 1(b)). The sensors are placed towards the outlet120

(where most of the stick-slip events are happening) to have a better signal resolution. The121

sensors are Miniature piezoelectric charge accelerometer 4374 - Brüel & Kjaer associated122
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to a NEXUS Charge Amplifier - Type 2692-A conditioner, and the signal is digitized us-123

ing a National Instruments NI-DAQ mx acquisition card PCI-6133 8 Channels acquisition124

card. The accelerometers have 1 Hz to 26 kHz flat response. Using the function given by125

the manufacturer the response is flattened up to 200 kHz. These accelerometers can record126

only normal direction to the glass plate. Depending on the sign of the cumulative dis-127

placement (positive or negative) recorded at the sensor we mark the corresponding signals128

with the polarisation up or down respectively. The acoustic events are located using ESEH129

for a certain window of the signal which starts at the arrival time and ends somewhere in130

the coda. We have presented a more detailed discussion linking the acoustic signal polar-131

ization to medium deformation in Supplementary Text S1. More information about time132

windowing can be obtained from Supplementary Figure S1 and associated caption. Fur-133

thermore, the procedure of detecting the acoustic events from raw recordings is described134

in the Supplementary Text S2.135

3 Estimation of Source Energy Homogeneity (ESEH)136

Estimation of Source Energy Homogeneity considers that the source energy calcu-137

lated from different recordings should be the same after the correction of energy loss due138

to the travel-path attenuation (based on material and distance). If we express the source139

energy with Es and consider that the energy spread cylindrically on the plates the recorded140

energy En at receiver n at a distant R can be expressed with En =
Es

2πRh where h is the141

plate thickness. Es can be estimated following Hibert et al. [2011]; Farin et al. [2016];142

Turkaya et al. [2016] by:143

Es(rs, rn) =

∫ ωNyq

0
2πR(n)ρhc(ω)

|a(ω)|2

ω2 dω, (1)

where Es(rs, rn) is the computed energy coming from a source at rs recorded by a sensor144

at rn. ρ is the mass density of the plate, c(ω) is the group velocity of the waves over dif-145

ferent angular frequencies ω up to Nyquist frequency ωNyq , a(ω) is the Fourier transform146

of the accelerometric recordings. R(n) = | |rn − rs | | is the distance between the source and147

the receiver and h is the plate thickness. Depending on the plate material there could be a148

viscous attenuation factor e(2γ(ω)R(n)) added to the right side of the Eq. (1) to account for149

viscous energy losses where γ(ω) is the viscous attenuation inverse distance. However, for150

glass plates and the distances that are used in this experiment viscous attenuation can be151

neglected (i.e. γ ≈ 0 [Farin et al., 2015]). In the experimental setup, 4 sensors are placed152

on the bottom glass plate on different locations (see Figure 1b and c) to have a good spa-153
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tial coverage. Standard deviation σ(rs) for source energy Es at different test positions rs154

on a regular grid for 4 different sensors are calculated. The minimum of this standard de-155

viation indicates over all tested positions rs the source location [Turkaya et al., 2016]. We156

used 5 mm grid spacing for the trial positions rs on the 45 cm × 30 cm area covered by157

the porous medium inside the Hele-Shaw cell.158

4 Image processing for deformation localization159

The optical images were captured via a high-speed camera (FastCam SA5 - Photron,160

recorded with 125 or 1000 fps with a resolution 1024 × 1024 pixels) during the exper-161

iments. These images are investigated to localize the deformation corresponding to the162

time interval when the acoustic signal is emitted. The deformation of the medium dur-163

ing the acoustic emission is analyzed based on the image analysis techniques eventually164

producing frame-to-frame displacement fields of the porous medium [Eriksen et al., 2015,165

2017b,a; Niebling et al., 2010; Travelletti et al., 2012; Chevalier et al., 2009].166

First, two successive images corresponding to the start and the end of the acous-167

tic event is taken. Following this pre-treatment, a Digital Image Correlation (DIC) pro-168

cedure, called Ncorr (an open source 2D digital image correlation MATLAB software)169

is applied to obtain frame-to-frame displacement fields. Ncorr cross-correlates subwin-170

dows between two images to find displacement fields in between. A detailed description171

of Ncorr is given in Blaber et al. [2015].172

In Figure 2(a), an example of the displacement magnitude field obtained is given173

in the background. This map shows the magnitude of the absolute displacement of the174

medium (without any defined direction in the format of | |ū| | =
√

u2
x + u2

y where ux,y are175

the displacements in directions x and y) occurring between two images taken at 8 ms from176

each other. The colormap shows the norm of the displacement field over the Hele-Shaw177

cell. As it can be seen for this snapshot, the displacements are focused on the fingertips.178

However, it is still possible to see nonzero displacements (of lower amplitudes) farther179

from the fingertips into the porous medium.180

5 Results and Discussion181

In Figure 2 the localization for an acoustic event is given. Displacement maps (in182

grey) are overlaid by acoustic localization results. Markers with different colors are calcu-183
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lated for different time window lengths to define the primary signal (see Supplementary184

Figure S1 for window lengths). The size of the time window is set to extend stepwise to185

give multiple estimations for a single event for a better comparison with DIC results. DIC186

gives us an idea about the evolution of the signal location by indicating the location of the187

displacement occurred during this time interval. In Figure 2 we see that the event source188

starts inside the porous medium and progresses towards the channel tips. Moreover, by189

increasing the size of the time window of the signal, we increase the sensitivity of the190

sensors for the waves coming from a larger area. The waves propagating on thin plates -191

similar to the glass plates which are used in this experimental study - may propagate at192

different velocities as a function of their frequency, which is the definition of dispersive193

waves. In this work, the "dispersivity" of the Lamb Waves are taken into account in wave194

velocity calculations using experimental and theoretical computations [Royer and Dieule-195

saint, 2000].196

We increase the temporal resolution of the high-speed camera to record these events197

in more details. In Figure 3, compared to the displacement magnitude given in Figure 2(a)198

we increased the temporal resolution to 1000 frames per second (initially 125 fps). More-199

over, to increase the spatial resolution of the images (and the resulting displacement maps)200

we are focusing on sub-parts of the Hele-Shaw cell where most of the grain displacement201

takes place. These settings allow us to follow the stick-slip events using the optical equip-202

ment with higher spatial and temporal resolution. In Figure 3(b) we see the location of the203

analyzed area in the cell (the channels are white, the granular porous medium is black, the204

analyzed part of the medium is grey).205

Figure 3(b) also shows us how this stick-slip event starts inside the zone being com-206

pacted around 20 cm away from the tip of the channels with a decompacting zone behind,207

and the pulse, pair of compacting zone and decompacting zone behind, travels backward208

towards the fingertip (in a direction opposite to the grains direction) propagates towards209

the tip of the channels. This is very similar to the phenomenon that we observed in Fig-210

ure 2(a) where the source of the microseismic emission starts inside the porous medium211

and progresses towards the channel tips (see the encircled zone). The first part of the sig-212

nal is more sensitive to the start of the event than the whole slip event. Hence, they locate213

the equivalent of the epicenter, which is typically ahead of the fingers, as illustrated in214

Figure 3. Later on, the displacement gets distributed around most of the fingertips, and215

ends up with the slip of the grains around the tips. The ESEH method is more sensitive216
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to observe this evolution than the conventional arrival-time-based seismic location meth-217

ods since the arrival time of the event does not vary with time but the energy emitted per218

second does. As the time window gets enlarged, the sensors are more and more sensitive219

to signals coming from a larger and larger area, and the resulting location, which consid-220

ers that the source is point-like in the methods, seems to come approximately from points221

belonging to the mobile region, closer to the fingertips.222

6 Conclusion223

In this article, we show that the digital images and acoustic signals are very good224

(and coherent) monitoring tools to detect and localize fracturing and channeling in a porous225

medium. Different acoustic events having different natures (and locations) are investigated226

optically and acoustically (see Supplementary Figures S5-27 for more events and corre-227

sponding event recordings). The deformation magnitude maps obtained from digital im-228

age correlation method are compared with the acoustic signal based source localization229

results. The size of the time windows was set to extend freely so that the method would230

give multiple results for a single event for a better comparison. Depending on the polar-231

ization found on different sensors, it is possible to define the type of the source leading232

acoustic emissions. Localization results seem to fit well with displacement map obtained233

from the optical analysis techniques.234
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Figure 1. (a) The acquisition chain of the aero-fracturing experiments with a Hele-Shaw cell. The signal

acquisition card, camera and the electrovalve connected to the air pump are triggered at the same time via a

TTL signal sent from the signal generator to have synchronized optical and acoustic data. The sensors are

placed on the bottom glass plate of the Hele-Shaw cell using a solid crystallized phenyl salicylate. (b) The

image showing the accelerometers stick under the Hele-Shaw cell is given. In (c), accelerometers are sketched

and numbered. Red dots show the positions of the accelerometers. (d) We present several snapshots of the cell

during injection.
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