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Distributed feedback control of a fractional diffusion
process

Abstract In this paper, a control law that enforces an

output tracking of a fractional diffusion process is de-

veloped. The dynamical behavior of the process is de-
scribed by a space-fractional parabolic equation. The

objective is to force a spatial weighted average output

to track its specified output by manipulating a control

variable assumed to be distributed in the spatial do-
main. The state feedback is designed in the framework

of geometric control using the notion of the character-

istic index. Then, under the assumption that the frac-

tional diffusion process is a minimum phase system, it

is shown that the developed control law guarantees ex-
ponential stability in L2-norm for the resulting closed

loop system. Numerical simulations are performed to

show the tracking and disturbance rejection capabili-

ties of the developed controller.

Keywords Distributed parameter system · fractional

partial differential equation · fractional diffusion · late

lumping · geometric control · characteristic index.

1 Introduction

In the case of Fractional Differential Equations (FDEs),
the order of the derivative is non-integer, allowing them

more flexibility to accurately model dynamical systems

than usual Ordinary or Partial Differential Equations

(ODEs or PDEs) [1–6]. This success is mainly due to the
remarkable nonlocal property of the fractional deriva-

tive [2,7]. Indeed, in some cases, the evolution of a phys-

ical variable depends both on its current and past val-

ues, so that this dynamical behavior can be captured

using the fractional derivative [2,8,9]. Consequently,
FDEs represent an excellent alternative modeling ap-

proach to integer differential equations (IDEs, i.e. ODES

and PDEs) and with the considerable development of

the fractional calculus [10], this kind of equation is

nowadays extensively used in some engineering fields
[9–11], particularly in system and control theories.

In particular, the model of nuclear reactors is based

on the neuron transport equation. Classicaly, the neu-

tron diffusion equation is modelled by an integer order
PDE equation based on Fick’s law. However, this pre-

dicts an infinite speed of propagation of neutrons which

is non physical. The introduction of anomalous diffusion

[12] as subdiffusion results in a fractional order model

of neuron transport and allows to better represent the
heterogeneous core of nuclear reactors [13,14].

Non-equilibrium processes designate a class of com-

plex dynamical systems common in transport-reaction

phenomena [2] where heat and mass transfer must be
considered instead of simple equilibrium. Thus, anoma-

lous convection, anomalous diffusion and anomalous con-

vection-diffusion-reaction phenomena, to name a few,

characterize the dynamical behavior of some complex

biological, chemical and heat processes. The mathe-
matical modeling of these anomalous dynamical pro-

cesses leads to fractional partial differential equations

(FPDEs) that are able to describe accurately their be-

havior [2–5]. Mainly, three types of FPDEs are to be dis-
tinguished: time-FPDEs, space-FPDEs and time-space-

FPDEs. Both mathematical and physical classifications

of these FPDEs are reviewed in [15]. Dynamical pro-

cesses described by FPDEs are classified as distributed

parameter systems or infinite dimensional systems.

Compared to the control theory of FPDEs, the con-

trol theory of integer partial differential equations (IPDEs)

has been has been developed for a long time [16–18] and

two approaches have emerged: early and late lumping
approaches [18–20]. The early lumping approach con-

sists in reducing the infinite dimensional system (IPDEs)

to a finite dimensional one, that is, a lumped parameter
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system (described by ordinary differential equations)

using different model reduction techniques [18,19,21].

It is well known that the early lumping approach of-

ten masks the distributed nature of the original sys-

tem and leads to high-dimensional controller with lim-
ited performance [18,20,22,23], and its usage is rec-

ommended for parabolic systems [23]. The late lump-

ing approach consists in using the infinite dimensional

model (IPDEs), both in the analysis and controller de-
sign stages, without any reduction or approximation.

This approach, which can be adopted for both hyper-

bolic and parabolic systems, allows to preserve the dis-

tributed nature of the infinite dimensional system and

to enhance the closed loop performance. Excellent re-
views of the different control techniques developed in

the literature for IPDEs can be found in [17,20,23].

Chen [24] has written a review about the control

of various systems described by fractional order mod-
els in general with future perspectives and many open

problems, however limited to the case of fractional or-

dinary differential equations. A remarkable example is

the CRONE controller [25] and real life applications in-

clude car suspension control [26], flexible transmission,
hydraulic actuator. The application of fractional order

PID control to power systems is reported by [27].

However, the control design of FPDEs is still rela-

tively undeveloped field except a few recent reported
results in the area of optimal control [28–30]. Stabiliza-

tion and output tracking problems remain unexplored

fields. Hence, handling this two central control prob-

lems by extending the late lumping approach to FPDEs

constitutes an interesting challenge for the control com-
munity. To our knowledge, the current work represents

a first or initial attempt to tackle the control of frac-

tional diffusion process following the late lumping ap-

proach. This SFPDE, classified mathematically as a
space-fractional parabolic equation [15], is commonly

used as an effective mathematical tool to characterize

the evolution of many anomalous dynamical processes

[2,31–34].

The geometric control technique presents the ad-
vantage that the FPDE model can be easily used in

control design without any approximation [22,35,36].

Consequently, the distributed nature of the process is

preserved, yielding a controller with improved perfor-

mance. Thus, in this manuscript, the geometric con-
trol technique is used to design a distributed feedback

control for the fractional diffusion process. The Caputo

version [9,37] is selected in this work for the definition

of the spatial fractional derivative that describes the
anomalous diffusion phenomenon. Based on the reason-

able assumption that the functions that characterize

both the actuation and the sensing distributions are

not orthogonal, a control law of distributed nature is

derived based on the concept of the characteristic in-

dex [22]. Then, by exploiting the minimum phase prop-

erty of the diffusion process, it is demonstrated that

the developed control law yields an exponentially stable
closed loop system in the L2-norm. The output tracking

and disturbance rejection performance of the developed

control is evaluated through numerical simulation, and

both punctual and spatial weighted average outputs are
considered. The closed loop system is simulated using

the method of lines and the Caputo’s fractional deriva-

tive is approximated with splines [38,39].

The content of the paper is structured as follows: In

Section 2, the control problem of the fraction diffusion
process is formulated. Section 3 is devoted to the design

of the distributed control law, in the framework of ge-

ometric control theory, and to the closed loop stability

issue. An application example with numerical simula-
tion results is reported in Section 4. Finally, Section 5

concludes the paper.

2 Control problem

Let us consider the fractional diffusion process described

by the following one-dimensional space-fractional parabolic
equation

∂x(z, t)

∂t
= 0D

α
z x(z, t) + b(z)u(t), 0 < z < 1 (1)

with the following Dirichlet boundary conditions

x(0, t) = x0(t) (2)

x(1, t) = x1(t) (3)

and the initial condition

x(z, t) = x∗(z) (4)

In this fractional diffusion model, z ∈ [0, 1] and

t ∈ [0, +∞[ represent the space and time variables,

respectively. x(z, t) ∈ L2([0, 1]) is the state and u(t) ∈
L2([0, +∞[; ℜ) is the manipulated variable assumed to

be distributed along the spatial domain [0, 1]. b(z) ∈

L2([0, 1]) is a smooth function that characterizes the

distribution of the input u(t). x0(t) and x1(t) are the
state values at the boundaries z = 0 and z = 1, respec-

tively, and x∗(z) ∈ L2([0, 1]) is a given initial profile.

0D
α
z is the bounded spatial fractional derivative oper-

ator where α is the order of the fractional derivative.

L2( . ) and ℜ are the space of the square-integrable func-
tions on the interval [0, 1] and the set of real numbers,

respectively.

Remark 1 This paper deals with fractional diffusion

process, that is, α ∈]1, 2[ [15].
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Remark 2 L2([0, 1]) is the space of square-integrable

functions [40], defined on the domain [0, 1], endowed

with the inner product

〈f(z), g(z)〉 =

∫ 1

0

f(z) g(z) dz, ∀f(z), g(z) ∈ L2([0, 1])

(5)

and the norm

‖f(z)‖ =
√

〈f(z), f(z)〉 (6)

The objective consists in designing a control law u(t)

so that the following output

y(t) =

∫ 1

0

c(z)x(z, t) dz (7)

can track a desired reference yd(t). In equation (7), the
smooth function c(z) ∈ L2([0, 1]) characterizes the lo-

cation of the measurements. The functions b(z) and c(z)

are chosen so that both desired performance and con-

trol design specifications are met. For the formulated

control problem, the following assumption is made.

Assumption 1 The smooth functions b(z) and c(z)

are not orthogonal [40], that is,

〈b(z), c(z)〉 =

∫ 1

0

c(z) b(z) dz 6= 0 (8)

Remark 3 The fractional diffusion process (1)–(4) is

a minimum-phase system. This property can be checked
by simulation [22]. The minimum-phase property im-

plies that the zero dynamics is stable.

For the formulated control problem, a definition of

the fractional derivative must be specified. The differ-
ent definitions proposed in the literature are reviewed

by [37]. It is worth noting that the Grnwald-Letnikov,

Riemann-Liouville and Caputo derivatives remain the

widely used definitions [9,10,37]. Nevertheless, the Ca-

puto derivative presents some advantages [41]: (i) the
usual properties of integer calculus are preserved, for

instance the Caputo derivative of a constant is zero,

(ii) the definition of the Caputo derivative involves an

integral of an integer derivative, thus an accurate nu-
merical approximation of this term can be achieved us-

ing powerful algorithms [38]. In this work, the Caputo

derivative definition is used.

Definition 1 The spatial Caputo derivative of order α
for x(z, t) with the lower limit zero is defined as follows

0D
α
z x(z, t) =

∂αx(z, t)

∂zα
(9)

=
1

Γ (n− α)

z
∫

0

∂nx(z, t)

∂zn
(z − ξ)n−α−1 dξ

(10)

Note that, in equation (10), n is the smallest integer

greater than α, that is, n− 1 < α ≤ n, and Γ ( . ) is the

gamma function [9].

Remark 4 For the fractional diffusion process (1), as

the order α ∈]1, 2[, hence n = 2, and according Defini-

tion 1, the Caputo derivative is defined as

0D
α
z x(z, t) =

1

Γ (2− α)

z
∫

0

∂2x(z, t)

∂z2
(z − ξ)1−α dξ (11)

3 Geometric control of fractional diffusion

process

The fractional diffusion equation (1) possesses a par-

ticular propriety related to the order of the fractional

derivative α. Salehi and Schiesser [41] investigated through
simulation runs the nature of the solution of this equa-

tion with respect to α. It is shown that by changing

the order α from 1 to 2, equation (1) changes from hy-

perbolic (convective) to parabolic (diffusion) equation,

thus for intermediate values, that is, for α ∈]1, 2[, the
equation is hyperbolic-parabolic (convective-diffusive).

This propriety motivates, as pointed out in the intro-

duction, to tackle the formulated control problem ac-

cording to the late lumping approach. Among the con-
trol design techniques based on the direct use of the

PDE model, geometric control presents some remark-

able advantages [42]. This control technique is adopted

here to design the control law u(t) that achieves the

output tracking.
The design of a geometric control law is based on

the characteristic index introduced by [22], which rep-

resents a generalization of the well-known notion of the

relative degree [43] of a finite dimensional system to an
infinite dimensional one.

3.1 Distributed feedback control design

In this subsection, the distributed control law u(t) that
ensures output tracking is derived based on the concept

of the characteristic index. Thus, the first time deriva-

tive of the controlled output (7) reads as

dy(t)

dt
=

∫ 1

0

c(z)
∂x(z, t)

∂t
dz (12)

=

∫ 1

0

c(z)
(

0D
α
z x(z, t) + b(z)u(t)

)

dz (13)

=

∫ 1

0

c(z) 0D
α
z x(z, t) dz +

[
∫ 1

0

c(z) b(z) dz

]

u(t)

(14)
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Hence, from equation (14), it can be seen that u(t)

appears linearly in the first time derivative of y(t). Hence,

taking into account Assumption 1, it follows that the

characteristic index σ = 1. This means that a control

u(t) that preserves the characteristic index in closed
loop can be designed. Consequently, a first-order dy-

namical behavior can be achieved between the desired

reference yd(t) and the controlled output y(t), that is,

τ
dy(t)

dt
+ y(t) = yd(t) (15)

where τ is the desired time constant in closed loop.

In the subsequent development, it is assumed that the

derivative of the desired reference yd(t) satisfy the fol-

lowing condition

∣

∣

∣

∣

dyd(t)

dt

∣

∣

∣

∣

≤ M e−ω t, M ≥ 1, ω > 0 (16)

where | . | is the standard Euclidean norm.

Then, substituting (14) into (15) and solving for u(t)
the resulting equation, the following feedback law fol-

lows

u(t) =

yd(t)− y(t) + τ

∫ 1

0

c(z) 0D
α
z x(z, t) dz

τ

∫ 1

0

c(z) b(z) dz

(17)

which can be equivalently expressed as

u(t) =

yd(t)− y(t) + τ

∫ 1

0

c(z)
∂αx(z, t)

∂zα
dz

τ

∫ 1

0

c(z) b(z) dz

(18)

The stability of the resulting closed loop is investi-
gated in the following subsection.

Remark 5 In the present work, the state is assumed
to be perfectly known. In real practice, the derivative

approximation in the control law (18) is significantly

influenced by measurement noise. This problem is ad-

dressed in Section 3.3.

3.2 Closed loop stability issue

From (15), it is concluded that the closed loop system is

externally stable. In this section, we investigate the sta-
bility of the internal dynamics of the closed loop system,

that is, the unobservable part of the dynamics from the

output (7).

Thus, substituting (18) into (1) yields closed loop

system which can be written under the abstract form

∂x(z, t)

∂t
= Ax(z, t) + B

(

yd(t)− y(t)
)

(19)

x(0, t) = x0(t) (20)

x(l, t) = xl(t) (21)

x(z, 0) = x∗(z) (22)

with

Ax(z, t) = 0D
α
z x(z, t) +

b(z)

∫ 1

0

c(z)
∂αx(z, t)

∂zα
dz

∫ 1

0

c(z) b(z) dz

(23)

B =
b(z)

τ

∫ 1

0

c(z) b(z) dz

(24)

Note that the closed loop system (19)–(22) can be

rewritten as the the interconnection of two subsystems

dy(t)

dt
= −

1

τ
y(t) +

1

τ
yd(t) (25)

∂x(z, t)

∂t
= Ax(z, t) + B e(t) (26)

x(0, t) = x0(t) (27)

x(l, t) = xl(t) (28)

x(z, 0) = x∗(z) (29)

with

e(t) = yd(t)− y(t) (30)

Equations (25) and (26) represent the external and

the internal dynamics, respectively.

By forcing the controlled output (7) to be zero, we

obtain the following zero dynamics

∂x(z, t)

∂t
= Ax(z, t) (31)

x(0, t) = x0(t) (32)

x(l, t) = xl(t) (33)

x(z, 0) = x∗(z) (34)

y(t) = 0 (35)

Now, Remark 3 implies that the zero dynamics (31)–

(34) is stable. Consequently, the operator A generates

a stable C0-semigroup U(t) [44], that is,

‖U(t)‖ ≤ Mx e
−ωx t, Mx ≥ 1, ωx > 0 (36)
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Remark 6 The zeroing of the output allows to con-

clude that the operator A generates a stable semigroup

from the minimum-phase property of the diffusion sys-

tem [22].

Thereafter, from equations (15) and (16), it follows
that e(t) ∈ L1([0, +∞[, ℜ) (L1([0, +∞[, ℜ) is the space

of all integrable functions on the interval [0, +∞[), and

since the time constant τ is positive, the tracking error

is exponentially stable, that is,

|e(t)| ≤ Me e
−ωe t, Me ≥ 1, ωe > 0 (37)

where | . | is the Euclidean norm.

In this case, the mild solution of internal dynamics
(26) is given by [45]

x(z, t) = U(t)x(z, 0) +

∫ t

0

U(t− ξ)B e(ξ) dξ (38)

and therefore

‖x(z, t)‖ =

∥

∥

∥

∥

U(t)x(z, 0) +

∫ t

0

U(t− ξ)B e(ξ) dξ

∥

∥

∥

∥

(39)

≤ ‖x(z, 0)U(t)‖+

∥

∥

∥

∥

∫ t

0

U(t− ξ)B e(ξ) dξ

∥

∥

∥

∥

(40)

≤ ‖x(z, 0)‖Mx e
−ωx t

+

∫ t

0

Mx e−ωx (t−ξ) ‖B‖Me e
−ωe ξ dξ (41)

≤ ‖x(z, 0)‖Mx e
−ωx t

+Mx Me‖B‖ e
−ωx t

∫ t

0

e(ωx−ωe) ξ dξ (42)

Hence, if ωx = ωe, then

‖x(z, t)‖ ≤
(

‖x(z, 0)‖Mx +Mx Me‖B‖ t
)

e−ωx t (43)

and if ωx 6= ωe, we have

‖x(z, t)‖ ≤ ‖x(z, 0)‖Mx e−ωx t

+
Mx Me‖B‖

ωx − ωe

(

e−ωe t − e−ωx t
)

(44)

≤

(

‖x(z, 0)‖Mx +
MxMe‖B‖

|ωx − ωe|

)

e−ω t (45)

where ω = min{ωx, ωe}.

From (43) and (45), it follows that the internal dy-
namics of the closed loop system (19)–(22) is exponen-

tially stable in the L2 norm. Consequently the closed

loop system is exponentially stable.

3.3 Robustness

The purpose of the present paper is to present a control 
law for a fractional diffusion process modelled by the 
FPDE (1). Thus, it was assumed in the design of the 
control law that the model is perfect and that the states 
are known. Obviously, this is not the case in actual 
practice and we will shortly explain how the control law 
can still be applied at the expense of additional features.

A first issue is that the model is never perfectly 
known and parameters are more or less uncertain. In the 
same way as in nonlinear geometric control [22,23, 
42,43], an external input v(t) can be added to the ma-

nipulated input to cope with these uncertainties as

u(t) =
v(t) + yd(t) − y(t) + τ

∫ 1

0

c(z)
∂αx(z, t)

∂zα
dz

τ

∫ 1

0

c(z) b(z) dz

(46)

The external input v(t) is defined by the following linear 
controller

v(t) =
∫

t
0

c(t − s)
[

yd(s) − y(s)
]

ds (47)

where the kernel c(t) is chosen in order to reach the 
desired performance, in particular using integral action 
to ensure regulation and tracking.

The second issue is that the states are not known. In 
that case, it is necessary to estimate the states by means 
of a state observer using some measurements. However, 
it was not done here as the observer design for a PDE 
[46–51] and even more for a FPDE is com-plex and 
would have deserved to be the subject of a totally 
different study. If measurements are noisy, the 
measurements should be first cleaned from the high-
frequency noise by a low-pass filter, then an observer 
based on the FPDE should be used. In this manner, the 
main problems dealing with the robustness of the 
designed control law can be handled.

4 Simulation results

In this section, simulation runs are performed to evalu-
ate the tracking and disturbance rejection capabilities 
of the designed infinite dimensional control law (46). 
The closed loop system is simulated using the method 
of lines [52] by assuming a spatial grid of N = 21 points 
with a uniform spacing ∆z of the spatial interval [0, 1]. 
The integral involved in the definition of the fractional
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spatial derivative (11), with α ∈]0, 2[, is approximated

with splines as follows [39]:

0D
α
z x(z, t)|z=zj

=
∂αx(z, t)

∂zα

∣

∣

∣

∣

z=zj

(48)

=
∆z2−α

Γ (4− α)

j
∑

k=0

∂2x(z, t)

∂z2

∣

∣

∣

∣

z=zk

aj, k

(49)

where zj = j ∆z (j = 1 . . . , N −1), aj, 0 = (j−1)3−α−

j2−α (j − 3 + α), aj, j = 1 and aj, k = (j − k + 1)3−α −

2 (j − k)3−α + (j − k − 1)3−α for k = 1, . . . , J − 1.

The second integer derivative involved in (49) is ap-

proximated using the following finite difference schemes
[38]:

∂2x(z0, t)

∂z2
=

2 x(z0, t)− 5 x(z1, t) + 4 x(z2, t)− x(z3, t)

∆z2

(50)

and

∂2x(zj , t)

∂z2
=

x(zj+1, t)− 2 x(zj, t) + x(zj−1, t)

∆z2
(51)

for j = 1, . . . , N − 1. The integral term involved in the
control law is evaluated using the trapezoidal method.

To obtain a smooth control move when the desired

reference yd(t) exhibits sudden fluctuations, it is pro-

posed to use a filter to generate a reference trajectory

with a specified dynamics. In this work, a first-order fil-
ter is used to generate the filtered reference ydf (t), that

is,

τf
dydf (t)

dt
+ ydf (t) = yd(t) (52)

where τf is the filter time constant. In this case, the

control law (18) takes the following form

u(t) =

ydf(t)− y(t) + τ

∫ 1

0

c(z)
∂αx(z, t)

∂zα
dz

τ
∫ 1

0
c(z) b(z) dz

(53)

The simulation runs are carried out with x∗(z) = 0,

τ = 0.25, τf = 0.1 and the actuator distribution func-

tion b(z) = z (1− z).

4.1 Tracking problem

The tracking problem is considered both for punctual

and spatial weighted average outputs by assuming the

following desired reference

yd(t) =







0 t ≤ 0.25

1 t ≤ 3
2 t > 3

(54)

and boundary conditions

x0(t) = xl(t) = 0 (55)

• Punctual output case
The first test concerns the case of a punctual output

at location zi. Thus, the function c(z) is identified

as a Dirac delta function, that is,

c(z) = δ(z − zi), 0 < zi < 1 (56)

hence the output to be controlled is defined as fol-

lows

y(t) = x(zi, t) (57)

In the simulation run, the position of the controlled

output and the order of the fractional derivative are

set to zi = 0.75 and α = 1.3, respectively.

• Spatial weighted average output case

In the second test, a spatial weighted average output

with c(z) = z is considered, i.e.,

y(t) =

∫ 1

0

z x(z, t) dz (58)

and the order of the fractional derivative is set to

α = 1.8.

Figures 1 and 2 give the simulation results obtained

for the punctual and the spatial weighted average cases,
respectively. Figures 1a and 2a clearly show that the

output tracking is achieved with smooth moves of the

control (Figs. 1b and 2b). These results demonstrate

the tracking capability of the developed control law
(18). The evolutions (3D profile) of the state x(z, t)

are shown in Figures 1c and 2c for the punctual and

the spatial weighted average cases, respectively.

4.2 Disturbance rejection

The disturbance rejection capabilities of the control law

(18) are evaluated for smooth variations of the bound-

ary conditions (2) and (3) assumed as disturbances. The

simulation run consists in applying a set point followed
by a smooth disturbance. The outputs and fractional

orders assumed are the same as those in tracking prob-

lem.
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• Punctual output case

For the punctual output case, the smooth variation

is applied at the left-hand boundary condition (2).

The disturbance is defined as follows

x0(t) =

{

0 t ≤ 0.25

0.5
(

1− e−(t−3)
)

t ≥ 3
(59)

and the desired set point yd(t) = 1.
• Spatial weighted average output case

In this case, the disturbance applied at the right-

hand boundary condition (2) is defined as follows

x1(t) =

{

0 t ≤ 0.25

2
(

1− e−(t−3)
)

t ≥ 3
(60)

and yd(t) = 2.

The simulation results, given by Figures 3 and 4,

demonstrate the capability of the control law (18) to

reject the disturbance. Indeed, Figures 3b and 4b show

that the control law (18) reacts to attenuate the distur-
bance observed at the boundary (Figures 3c and 4c)

and its effect become invisible on the controlled output

(Figures 3a and 4a).

5 Conclusion

In this paper, the late lumping approach is extended

to space-fractional distributed parameter systems. It

shown that, for minimum phase systems, geometric con-
trol represents an interesting design approach of con-

trollers of distributed nature. The case of the space-

fractional parabolic equation that describes the anoma-

lous diffusion is considered. Thus, by assuming a spatial

weighted average output, a distributed control law that
enforces the output tracking in closed loop is designed

using the notion of the characteristic index. It is demon-

strated, in the framework of semigroup theory, that the

resulting closed loop system is exponentially stable in
the L2 norm. Both output tracking and disturbance

rejection performance of the developed controller are

successfully evaluated by performing simulation runs.

To the best knowledge of the authors, this attempt

to tackle the control problem of the fractional distributed
parameter systems, following the late lumping approach,

represents the first contribution to this field. This moti-

vates many possible directions of research to investigate

this interesting and unexplored area.
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Fig. 1: Tracking problem: Evolutions of the controlled
output (Top), the manipulated variable (Middle) and

the state (Bottom) in the case of a punctual output

y(t) = x(0.75, t).
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Fig. 2: Tracking problem: Evolutions of the controlled

output (Top), the manipulated variable (Middle) and

the state (Bottom) in the case of a spatial weighted

average output y(t) =
∫ 1

0 z x(z, t) dz.
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Fig. 3: Disturbance rejection: Evolutions of the con-

trolled output (Top), the manipulated variable (Mid-
dle) and the state (Bottom) in the case of a punctual

output y(t) = x(0.75, t).
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Fig. 4: Disturbance rejection: Evolutions of the con-

trolled output (Top), the manipulated variable (Mid-

dle) and the state (Bottom) in the case of a spatial

weighted average output y(t) =
∫ 1

0
z x(z, t) dz.


