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Abstract 14 

     Free-standing TiNT array film was successfully synthesized by a one-step 15 

anodization method. The characteristic techniques including scanning electron 16 

microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction 17 

(XRD) were adopted to characterize the morphology and chemical composition of the 18 

TiNT array film. Subsequently, gas sensor based on the TiNT array film was 19 

fabricated and its sensing performance toward H2S was investigated. The results 20 

showed that the optimum operating temperature to detect H2S gas was 300℃, the 21 

detection range to H2S gas was 1-50 ppm with the response value of 4.5-26.2, and a 22 
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good linearity of sensing characteristics could be observed. Meanwhile, the response 23 

and recovery time of the sensor to 50 ppm H2S gas were as low as 22 s and 6 s, 24 

respectively. In addition, mechanisms of the development of the free-standing TiNT 25 

array film and the sensor towards H2S were discussed. In conclusion, its outstanding 26 

sensing properties and readily fabrication of the TiNT array film sensor presented the 27 

potential industrial applications. 28 

 29 
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 31 

1. Introduction 32 

Hydrogen sulfide (H2S) is one of the main pollutants produced in various 33 

industrial processes. It is colorless, highly toxic, extremely flammable and corrosive 34 

in nature [1,2]. Humans exposed to H2S at low concentrations suffer eye irritation, 35 

olfactory fatigue, and damage to the lungs and nervous system. The inhalation of 320 36 

ppm H2S may collapse the heartbeat leading to sudden death [3,4]. Thus, from a 37 

safety point of view, the monitoring of H2S is crucial in many industrial areas. 38 

Recently, there have been many reports on the H2S sensors based on metal oxide 39 

semiconductors, such as: Fe2O3 [5], CuO [6], ZnO [7], WO3 [8] etc. In the past 40 

decades, due to its interesting physical and chemical properties, titanium dioxide 41 

(TiO2) has been considered to be one of the important multifunctional materials with 42 

photocatalytic, photoelectrochemical and gas sensor applications. In particular, being 43 

similar to other metal oxide semiconductors, TiO2 also has shown responses to several 44 



kinds of gases [9-11]. Although the detection results have been reported so far, the 45 

research on the H2S sensors with TiO2 is relatively new and their gas-sensing 46 

performance needs to be improved [12,13]. Thus, developing new sensing material 47 

with high response, good selectivity and quick response is extremely important for 48 

real-time monitoring of H2S. 49 

Recently the improved surface reactivity of TiO2 systems has been reported, 50 

where the nanowires, nanorods and nanotubes have been used [14-16]. One of the 51 

main features of these nanostructures is the large specific surface area that makes 52 

them attractive for use as the sensitive films for gas sensors, which can improve the 53 

gas sensitive performance effectively. Although the TiO2 nanotube (TiNT) arrays have 54 

been successfully synthesized with the electrochemical anodization method, most 55 

sensitive performance were just obtained on the generated nanotube array without 56 

assembling, which hinders the practical application of TiNT [16-18]. 57 

    Several methods for the preparation of the independent TiO2 nanotube arrays 58 

have been reported, which are classified into physical methods and chemical methods. 59 

The physical methods mainly included solvent evaporation film separation [19] and 60 

ultrasonic oscillation [20], whose main drawback was that it was difficult to obtain the 61 

large complete independent TiO2 thin film, and the morphology of the titanium tube 62 

was prone to be destroyed. The chemical methods mainly included the secondary 63 

anodic oxidation [21] and the dissolution method in chemical solution [22]. In other 64 

words, the secondary treatments were obligatory during the preparation process of the 65 

TiNT array membrane and the thick film restricted their feasibility for gas sensing 66 



applications. 67 

    In this work, in Section 3.1, the process of obtaining a complete free-standing 68 

TiNT array membrane by the anodic oxidation method followed by annealing without 69 

any secondary treatments is presented. In Section 3.2, the morphology of the TiNT 70 

membrane obtained with this cost-effective and time-saving method is studied. In 71 

Section 3.3, obtained free-standing array film of TiNT to fabricate a gas sensor is 72 

explained and its gas sensing performances to H2S are carefully investigated. In 73 

Section 3.4, the gas sensing mechanisms of the developed free-standing TiNT array 74 

film are also analyzed in the paper. 75 

 76 

2. Materials and methods 77 

2.1 Synthesis of TiO2 nanotube array 78 

    Prior to the anodization experiments, the titanium foils (99.7% purity, 0.01 mm 79 

thickness) were ultrasonically cleaned for 10 min in acetone, alcohol and deionized 80 

water in sequence, finally dried in air. The anodization was conducted in a 81 

two-electrode electrochemical cell with a platinum foil as cathode and the titanium 82 

foil as anode at a constant potential. All the anodization experiments were carried out 83 

at room temperature with stirring.  84 

The anodizing was carried out at 30 V for 2 h using a direct-current stabilizer 85 

(TASI-1305, Suzhou TASI electronic CO., LTD.). The growth of the nanotube arrays 86 

was obtained using a glycol solution with 0.55 wt% ammonium fluoride and 20 wt% 87 

deionized water. After that, the anodized titanium foil was rinsed with deionized water, 88 



and dried in air. The samples were heated up to 100℃, 200℃, 300℃, 400℃ for 10 min 89 

orderly, at the rate of 10℃/min, and then annealed at 450℃ for 2 h in the air.  90 

 91 

2.2 Characterization of the nanotube array film 92 

The morphologies of the free-standing TiNT array film samples were 93 

characterized by the scanning electron microscopy (SEM) and the energy-dispersive 94 

X-ray spectroscopy (EDS) (Merlin, Zeiss, Germany).   95 

The X-ray diffraction (XRD) patterns were recorded at the room temperature 96 

with Cu Kα radiation of 0.15418 nm in an X-ray diffractometer (D8 ADVANCE, 97 

Bruker, Germany), using a generator voltage of 40 kV and current of 40 mA. The data 98 

were collected for scattering angles (2θ) ranging from 10° to 85° with a step of 0.02° 99 

for 2 s per point. The transition electron microscope (TEM) was performed with the 100 

transmission electron microscopy (JEM-2100F, Japan). 101 

 102 

2.3 Sensor fabrication 103 

For fabrication of the gas sensor, the alumina plate (1.0×1.5 mm) with the gold 104 

electrodes and heating layer processed by the method of screen painting printing [23, 105 

24] was used as the substrate. In order to remove the stain, the substrates were 106 

immersed in acetone, ethanol and deionized water, successively, for 10 min.  107 

A mixture of 10 mL of titanium tetraisopropoxide solution in ethanol with 108 

terpilenol in volume ratio of 6: 3: 2 was painted onto the side of the substrate for 109 

facilitation the later adhesion for the free-standing TiNT array membrane. Then, the 110 



sensor attached with the nanotube layer was heated at 350℃ for 30 min. After heating 111 

treatment, the adhesive was transformed into the TiO2 interlayer, which let the 112 

connection between the substrate and TiNT array film became more compact. 113 

Because of the little amount of TiO2, the contribution of the TiO2 interlayer to the 114 

sensing performance can be considered negligible.  115 

The schematic diagram of the sensor structure is shown in Fig. 1 for the sensing 116 

measurements. To improve its stability and repeatability, the gas sensor was welded 117 

on the pedestal, followed by aging at 450℃ for 72 h in air. 118 

         119 

2.4 Gas sensing measurements 120 

The measurement of the gas sensing performances of the sensor were conducted 121 

by a WS-30A Gas Sensing Measurement System (Weisen Electronic Technology Co., 122 

Ltd., China). Fig. 2 displays a schematic diagram the whole measuring process. The 123 

final concentration of the H2S inside the test chamber was controlled by mass flow 124 

controllers (MFC) connected to calibrated bottles of N2 and H2S. The relative 125 

humidity (RH) was about 50% in the whole testing process. 126 

As shown in the measuring electric circuit (Fig. 2), in the sensing test process, an 127 

appropriate bias voltage (Vt=5 V) is applied. The working temperature of the sensors 128 

could be controlled from room temperature to 500℃ by the heating voltage Vh. Rs is a 129 

resistor of the sensor and Rl is a load resistor connected in series with the gas sensor.   130 

The gas response was defined as the ratio of the stationary electrical resistance of 131 

the sensor in the air Ra to the resistance in the test gas Rg, that is, Response=Ra/Rg. 132 



The response and recovery times of the films were calculated from the response 133 

curves automatically. The response and recovery times were defined as the time 134 

required for a change of the response value to reach 90% of the equilibrium value and 135 

falls to 10% of its maximum sensitivity after injecting and removing the detected gas, 136 

respectively.    137 

 138 

3. Results and discussions 139 

3.1 Development of the free-standing TiNT array film 140 

The formation of the free-standing TiNT array film by electrochemical 141 

anodization is a complex process, its growth mechanism can be represented by Fig. 3. 142 

The overall process of oxide formation was divided into four steps [25-27]: 143 

    (1) Formation of the TiO2 via oxidation 144 

At the beginning of this stage, the concentration of Ti
4+ 

was raised by the 145 

electrochemical etching of the Ti, then the amorphous TiO2 film was formed through 146 

the reaction between Ti
4+ 

and adsorbed O
2-

 on the surface of the electrode.   147 

      (2) Formation of the pores 148 

After the formation of the initial TiO2 layer, fluorine ions could attack the oxide 149 

leading to the formation of the pores through the produced water-soluble [TiF6]
2−

 150 

species. With the extension of the oxidation time, the ordered pores were formed on 151 

the surface of the TiO2 layer. Under the effect of electrochemical etching, the depth of 152 

the pores would be increased gradually. 153 

(3) Formation of the TiO2 nanotube array 154 



The electric field intensity on the concave surface of the pores is lower than 155 

outside the pores, hence the corrosion rate of titanium dioxide on these sites is the 156 

fastest [28]. With the migration of the charge density to the bottom of the nanotubes, 157 

the oxidation film was dissolved along the axial direction of the tubes, gradually 158 

forming the tubular structure film layer. However, as shown in Fig. 4 (a), as time goes 159 

on, the dissolving speed decreases, so that the thickness of the nanotubes wall 160 

gradually increased from top (13 nm) to bottom (36 nm).  161 

Moreover, the metallic region between the tube holes also undergoes a similar 162 

transition leading to the formation of the array of relatively independent nanotubes 163 

(Fig. 4).  164 

(4) Formation of the free-standing TiNT array film 165 

The tube length is governed by competition between anodic oxide formation and 166 

its chemical dissolution. While oxygen and fluorine ions around the titanium are 167 

gradually consumed, both the fluorine ion etching rate and the TiO2 forming rate 168 

begin to decrease until reaching an equilibrium. As shown in Fig. 5, when the reaction 169 

lasts 4 hours, the Ti substrate had been completely oxidated to TiNT array. However, 170 

as presented in Fig. 4 (b-c), after 4 h, the pore mouths have been eroded. When the 171 

reaction duration is increased to 6 h, the tube holes are more dissolved and begin to 172 

collapse.   173 

With the progress of oxidation time, the length of the TiNT increases leading to 174 

an increased strain strength between the TiNT array film and Ti substrate. When the 175 

reaction time attains 2 hours, the compressive stress reaches the critical debongding 176 



stress. Moreover, annealing modifies the interface between them. Hence, the nanotube 177 

array film can be desquamated off naturally after heating treatment [29]. 178 

In order to ensure the integrity of nanotube mouth and membrane, the oxidation 179 

time was taken as 2 hours in the subsequent experiments. 180 

 181 

3.2 Structural and morphological characteristics 182 

Vertically oriented, high aspect ratio TiNT arrays grown by anodic oxidation of 183 

Ti foil were flaked off naturally after the annealing treatment. The transparent TiNT 184 

peeled off the Ti foil is shown in Fig. 6 (a). Fig. 6 (b-d) present the SEM images with 185 

side, top and bottom views of the free-standing TiNT array film. The average inner 186 

diameter of the nanotube was around 110 nm with a wall thickness of 13 nm and the 187 

tube length was 3.8 μm. The hollow structure and the wall of the TiNT can be seen 188 

clearly in Fig. 7. The enlarged TEM image shows a fringe pattern, where the resolved 189 

spacing between the two parallel neighboring fringes is 0.35 nm, corresponding to the 190 

interplanar distance of the {101} lattice planes in anatase TiO2 (Fig. 4b) [30,31].  191 

To better understand the crystalline form and the surface element distribution, the 192 

XRD and EDS were performed. Fig. 8 shows the X-ray diffraction (XRD) patterns of 193 

the TiNT array calcined at 450℃ for 2 h. It can be seen that the phase present was 194 

anatase (JCPDF No. 21-1272). The diffraction peaks at 2θ= 25.1°, 37.4°, 47.8°, 53.8°, 195 

54.9° and 62.8° are identified to be the (101), (004), (200), (105), (211) and (204) 196 

crystal faces, respectively [12,32]. These crystalline peaks indicate that the crystal 197 

structure of TiNT film is the anatase phase. Moreover, Fig. 9 reveals the 198 



stoichiometric TiO2 composition of the film measured by the energy dispersive 199 

spectroscopy method. Hence, the titanium nanotubes are mainly composed with the 200 

titanium and oxygen element, which proved that the compound was titania.  201 

 202 

3.3 Gas sensing properties 203 

From the results mentioned above, we had obtained the free-standing TiNT array 204 

film prepared by one-step electrochemical anodization followed by thermal annealing. 205 

 206 

3.3.1 Optimum operating temperature for gas sensing 207 

In order to evaluate the optimum operating temperature, the sensor was exposed 208 

to 50 ppm H2S at temperatures ranging from room temperature to 400℃. The response 209 

of the sensor to H2S with respect to its operating temperature is presented in Fig. 10. 210 

 Over this temperature range, the response of the sensor increased with the 211 

temperature up to 300℃ and then started to decrease. At temperatures below 300℃, an 212 

increase in the operating temperature promoted H2S chemisorption and the reaction 213 

between the adsorbed H2S molecules and the adsorbed oxygen species, leading to an 214 

enhanced response to H2S gas. When the operating temperature was 300℃, the 215 

response value was 26.2. In contrast, at temperatures higher than 300℃, the response 216 

to H2S was reduced due to desorption of H2S, which decreased the amount of H2S 217 

adsorbed on the sensor surface [5,33]. Therefore, the optimal operating temperature 218 

was 300℃ for the TiO2 sensor.  219 

 220 



3.3.2 Response and recovery time 221 

    The response and recovery time are two important parameters for a gas sensor in 222 

practical application [34]. Fig. 11 is an image of the real-time gas sensing transient to 223 

50 ppm H2S at 300℃ drawn to show the moments of gas input and gas stop. The 224 

response value increased rapidly when the TiNT sensor was exposed to H2S gas and 225 

returned to the initial value when the H2S gas supply was stopped and air was 226 

introduced. The response and recovery times of the sensor are measured from Fig. 11 227 

and presented in Fig. 12. 228 

From Fig. 12, it can be seen that the sensing films have short response-recovery 229 

times, suggesting that the sensors respond quickly to both the injection and removal of 230 

the H2S gas in air. Moreover, the response and recovery times do not dependent on the 231 

concentration of H2S at 1-50 ppm. However, the response times of the sensor exposed 232 

to H2S at 10-50 ppm are longer than at 1-10 ppm. The phenomenon reveals that the 233 

response time increases with the increasing concentration of H2S. When exposed to 234 

50 ppm H2S at 300℃, the response time and recovery time of the sensor were 22 s and 235 

6 s, respectively. 236 

 237 

3.3.3 Effects of gas concentration  238 

The sensitive performance of the sensor was further investigated by exposing the 239 

sensors to different concentrations of H2S gas at the operating temperature of 300℃. 240 

The curves of gas response versus time for 1-10 ppm of H2S gas sensed by the TiNT 241 

array film at 300℃ are shown in Fig. 13 (a), where the response amplitude of the 242 



sensor increases with H2S concentration. Fig. 13 (b) shows that the sensitivity for the 243 

TiO2 sensor is improved with increasing H2S concentration in the range of 1-50 ppm. 244 

The sensor responses toward 1 and 10 ppm are found about 4.5 to 12.4, respectively. 245 

It could be clearly seen that the response increases linearly with the concentrations in 246 

this range, indicating a good linearity of sensing characteristics. Moreover, when the 247 

concentration of H2S exceeds about 10 ppm, the sensitivity still increases but at a 248 

lower rate. 249 

 250 

3.3.4 Selectivity studies 251 

    The gas sensing selectivity of the TiNT array film was further tested at 300℃ by 252 

exposing the sensors to 50 ppm potentially interfering gases including methanol, 253 

formaldehyde, benzene, toluene, xylene and n-dodecane vapors, and the results are 254 

depicted in Fig. 14. Clearly, the sensor based on the TiNT is the most sensitive to H2S, 255 

whereas it presents a low response to the other interfering gases at the same 256 

temperature, implying that the sensor exhibits a better selectivity to H2S than to other 257 

gases.  258 

 259 

3.3.5 Stability and repeatability 260 

     Thermal stability and repeatability of the sensor had been investigated by 261 

repeating experiments for 50 ppm H2S at 300℃. Fig. 15 displays the measured values 262 

for the sensor response versus the storing time. As displayed in the figure, the 263 

response results of the sensor possess a variation of ±1.4% from the initial result (26.2) 264 



in one month. The free-standing TiNT array film demonstrated a good stability and 265 

reproducibility with regard to 50 ppm H2S gas at 300℃, which indicated a stable 266 

morphology and good crystallinity of the fabricated sensing layer.  267 

 268 

3.4 Gas sensing mechanism 269 

    It is well known that the sensing mechanism of TiO2-based gas sensors belongs 270 

to the surface-controlled type, which is based on the change in conductance of the 271 

semiconductor [35,36]. When the sensor is exposed to air, electrons in the surface 272 

region of the TiO2 nanotube walls are consumed by the oxygen molecules that are 273 

adsorbed on the TiO2 surface. Then a depletion region is created on the wall of the 274 

TiNT, leading to an increase in the electric resistance of the TiNT array film [37]. 275 

Another point to be noted is that the type of adsorbed oxygen species depends on the 276 

working temperature of sensor. The changing process of oxygen molecules on the 277 

nanotube surface is illustrated in Eqs. (1-4) [38,39]: 278 

)ads()g( 22 OO                                                      (1) 279 

)ads(e)ads(
-

2

-

2 OO   (T＜147℃)                                    (2) 280 

)ads(2e)ads( ---

2 OO   (147℃＜T＜397℃)                            (3) 281 

)ads(e)ads( -2-- OO   (T＞397℃)                                    (4) 282 

When the sensor was exposed to H2S gas, which was a reducing gas, these 283 

chemisorbed oxygen species played a crucial role in enhancing the H2S gas sensitivity 284 

as explained by the schematic diagram in Fig. 16. The H2S reacted with these oxygen 285 

species and got dissociated after releasing trapped electrons to the TiNT via the 286 



speculated reactions given in Eqs. (5-6) [4,12]: 287 

)ads()g( 22 SHSH                                                   (5)        288 

-

22

-

2 e6)g(2)g(2)ads(6)g(2  SOOHOSH                            (6) 289 

    This leaded to an increase in the carrier concentration on the TiO2 nanotube walls 290 

and a decrease in the surface depletion layer width. Hence, there is an increase in the 291 

response value as shown in Fig. 11.  292 

    Table 1 summarizes the results of gas response to H2S using various forms of 293 

TiO2. The response and recovery time with most of the H2S sensors prepared by TiO2 294 

materials were long, or a modification method was necessary to improve its gas 295 

sensitive performances. However, in this work, the response value, response and 296 

recovery times of the purified TiNT array film sensor toward H2S gas were 297 

comparable to those of the most other TiO2 nanomaterials. 298 

    The following physical and chemical effects might contribute partly to the 299 

enhanced H2S sensing properties of the TiNT array film sensor: (1) electrons are 300 

conducted through the wall of TiNT because of its particular structure, which reduces 301 

the recombination of electrons and holes; (2) the TiNT that presents a large surface 302 

area due to their tube array structure results in a better sensitivity.  303 

 304 

4. Conclusion and perspectives 305 

    The free-standing TiNT array film was successfully synthesized by a one-step 306 

anodization method. Then the film was fabricated and tested for H2S gas sensing at 307 

low concentrations. 308 



The H2S sensing properties including operating temperature, reversibility, 309 

relationship between sensitivity and H2S concentration, selectivity and stability were 310 

studied. The results showed that the optimum operating temperature to detect H2S gas 311 

was 300℃, the detection range to H2S gas was 1-50 ppm with the response value of 312 

4.5-26.2, and a good linearity of sensing characteristics could be observed. It is 313 

generally accepted that metal oxide gas sensors possess relatively longer response and 314 

recovery times. However, the response and recovery time of the sensor to 50 ppm H2S 315 

gas were as low as 22 s and 6 s, respectively. Moreover, the growth mechanism and 316 

gas sensing mechanism of the TiNT array film were studied.      317 

It can be seen that the response values, response and recovery times of the sensor 318 

were outstanding throughout the tests, which demonstrated that the fabricated TiNT 319 

array film sensor presented the potential industrial applications. Moreover, this 320 

electrochemical anodization method based on the Ti foil is relatively simple and, 321 

hence, induces lower costs and makes it be attractive for developing gas sensors 322 

devices.  323 

 324 
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Table 1. Comparison of the sensor responses to H2S with different forms of TiO2. 441 

No. Morphology 
Crystal 

Structure 

Response 

(R=Ra/Rg) 

Concentration 

(ppm) 

Temperature 

(℃) 

Response 

time (s) 

Recovery 

time (s) 
Reference 

1 
Ag-doped TiO2 

nanofiber 

Anatase

& 

rutile 

8.5 100 350 - - Ma et al., 2016 

2 

TiO2 

nanoparticle-d

ecorated Fe2O3 

nanorods 

anatase 7.4 200 300 150 157 Kheel et al., 2016 

3 TiO2-Al2O3 rutile 38.7 1000 650 390 480 Arafat et al., 2017 

4 

CuO doped 

TiO2 

nanoparticle 

anatase 1.77 50 
Room 

temperature 
14 22 

Chaudhari and 

Mishra, 2016 

5 
TiO2 

nanoplates 
anatase 4.8 10 300 10 - Guo et al., 2016 

6 
TiO2 

nanowires 
rutile 11 80 140 - - Munz et al., 2013 

7 TiO2 pellet rutile 275 10 100 150 2500 
Jagadale et al., 

2015 

8 

Free-standing 

TiNT array 

film 

anatase 26 50 300 22 6 Our work 
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Figure 1. (a) Photographs of the blank sensor. (b)A schematic illustration of the sensor 

coated with the sensing material. (c) Top view and (d) side view of the fabricated sensor. 
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Figure 2. Experimental setup and measuring electric circuit for gas sensing performance.  

 

 

 

 

 

Figure 3. Schematic diagram of the growth mechanism of free-standing TiNT array film. 

 

 

 



    

(a) 2h 

      

                (b) 4h                                (c) 6h 

Figure 4. Top-view SEM images of TiNT array film at different oxidation time. 

 

 

 



 
Figure 5. Side-view SEM image of the TiNT array at oxidation time of 4h. 

 

 

 

 

 

                (a)                                (b) 

 

                (c)                                (d) 

Figure 6. (a) Photographic image of the detached TiNT-array film, (b) Top-view SEM, (c) 

Side-view SEM, (d) Bottom-view SEM image of the TiNT array with the oxidation time of 2h..  



 

Figure 7. Wide-field TEM and HRTEM images of a single TiNT. 

 

 

 

 

Figure 8.  XRD peaks of the TiNT. 

 

 



 

Figure 9. Energy dispersive spectroscopy spectrum of the TiNT arrays. 

 

 

 

 

 

Figure 10. Response values of the free-standing TiNT array film to 50 ppm H2S at 

various operating temperatures. 

 



 

Figure 11. The real-time response curve to 50 ppm H2S of the sensor at 300℃. 

 

 

 

 

Figure 12. Summary of response time and recovery time of the sensor exposed to H2S at 

different concentrations at 300℃. 

 

 



 

  

Figure 13. (a) Real-time response curve of the TiNT array film sensor to H2S with 

increased concentration at a working temperature of 300℃; (b) Relationship between 

the sensitivity and H2S concentration. 
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Figure 14. Comparison of sensor response obtained for different gases of 50 ppm. 

 

 

 

 

 

 

Figure 15. Variation of the sensor response to 50 ppm H2S at 300 ℃ for different duration times. 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 16.  Band diagrams and schematic images of the surface reactions under different 

atmospheres: (a) exposed in the air (b) in the presence of H2S gas. 

 

 

 

 

 

 

 


