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ADAPTIVE ESTIMATION IN THE LINEAR RANDOM COEFFICIENTS

MODEL WHEN REGRESSORS HAVE LIMITED VARIATION

CHRISTOPHE GAILLAC(1),(2) AND ERIC GAUTIER(1)

Abstract. We consider a linear model where the coefficients - intercept and slopes - are
random with a distribution in a nonparametric class and independent from the regressors.
The main drawback of this model is that identification usually requires the regressors to have
a support which is the whole space. This is rarely satisfied in practice. Rather, in this paper,
the regressors can have a support which is a proper subset. This is possible by assuming that
the slopes do not have heavy tails. Lower bounds on the supremum risk for the estimation of
the joint density of the random coefficients density are derived for this model and a related
white noise model. We present an estimator, its rates of convergence, and a data-driven rule
which delivers adaptive estimators. The corresponding R package is RandomCoefficients.

1. Introduction

For a random variable α and random vectors X and β of dimension p, the linear random
coefficients model is

Y = α+ β>X,(1)

(α,β>) and X are independent.(2)

The researcher has at her disposal n observations (Yi,X
>
i )ni=1 of (Y,X>) but does not observe

the realizations (αi,β
>
i )ni=1 of (α,β>). α subsumes the intercept and error term and the vector

of slope coefficients β is heterogeneous (i.e., varies across i). For example, a researcher inter-
ested in the effect of the income of the parents on pupils’ achievements might want to allow
different effects for different pupils and to estimate the density of the effect. (α,β>) correspond
to multidimensional unobserved heterogeneity and X to observed heterogeneity. Restricting
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unobserved heterogeneity to a scalar, as when only α is random, can have undesirable im-
plications such as monotonicity in the literature on policy evaluation (see [25]). Parametric
assumptions are often made by convenience and can drive the results (see [30]). For this rea-
son, this paper considers a nonparametric setup. Model (1) is also a type of linear model with
homogeneous slopes and heteroscedastic errors, hence the averages of the coefficients are easy
to obtain. However, the law of coefficients, their quantiles, prediction intervals for Y given
X = x as in [3], welfare measures, treatment and counterfactual effects, which depend on the
distribution of the coefficients can be of great interest.

Estimation of the density of random coefficients fα,β when the support of X is Rp and X has
heavy enough tails has been studied in [4, 32]. These papers notice that the inverse problem is
related to a tomography problem (see, e.g., [10, 11]) involving the Radon transform. Assuming
the support of X is Rp amounts to assuming that the law of angles has full support, moreover
a lower bound on the density of X is assumed so that the law of the angles is nondegener-
ate. When p = 1 this is implied by densities of X which follow a Cauchy distribution. The
corresponding tomography problem has a nonuniform and estimable density of angles and the
dimension can be larger than in tomography due to more than one regressor. More general
specifications of random coefficients model are important in econometrics (see, e.g., [26, 31, 41]
and references therein) and there has been recent interest in nonparametric tests (see [9, 20]).

This paper considers the case where the support ofX is a proper (i.e., strict) subset. This is a
much more useful and realistic framework for the random coefficients model. In our motivating
example, the income of the parents is positive and probably bounded. When p = 1, the problem
is related to limited angle tomography (see, e.g., [21, 33]). There, one has measurements over
a subset of angles and the unknown density has support in the unit disk. This is too restrictive
for a density of random coefficients and implies that α has compact support, ruling out usual
parametric assumptions on error terms. Due to (2), the conditional characteristic function of Y
given X = x at t is the Fourier transform of fα,β at (t, tx>)>. Hence, the family of conditional
characteristic functions indexed by x in the support of X gives access to the Fourier transform
of fα,β on a double cone of axis (1, 0, . . . , 0) ∈ Rp+1 and apex 0. When α = 0, Sβ is compact,
and X ⊆ SX is an arbitrary compact set of nonempty interior, this is the problem of out-of-
band extrapolation or super-resolution (see, e.g., [5] sections 11.4 and 11.5). Because we allow
α to be nonzero, we generalize this approach. Estimation of fα,β is a statistical inverse problem
for which the deterministic problem is the inversion of a truncated Fourier transform (see, e.g.,
[2] and the references therein). The companion paper [24] presents conditions on the law of(
α,β>

)>
and the support of X that imply nonparametric identification. It considers weak

conditions on α which could have infinite absolute moments and the marginals of β could have
heavy tails. In this paper, we obtain rates of convergence when the marginals of β do not have
heavy tails but can have noncompact support.

A related approach is extrapolation. It is used in [42] to perform deconvolution of compactly
supported densities while allowing the characteristic function of the error to vanish on a set
of positive measure. In this paper, the relevant operator is viewed as a composition of two
operators based on partial Fourier transforms. One involves a truncated Fourier transform and
we make use of properties of the singular value decomposition rather than extrapolation.
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Similar to [27, 34], we study optimality in the minimax sense. We obtain lower bounds under
weak to strong integrability in the first argument for this and a white noise model. We present
an estimator involving: series based estimation of the partial Fourier transform of the density
with respect to the first variable, interpolation around zero, and inversion of the partial Fourier
transform. We give rates of convergence and use a Goldenshluger-Lepski type method to obtain
data-driven estimators. We consider estimation of fβ in Appendix B.3. We present a numerical
method to compute the estimator which is implemented in the R package RandomCoefficients.

2. Notations

The notations ·, ·1, ·2, ? are used to denote a variable in a function. The notation a∧b (resp.
a∨b) is used for the minimum (resp. maximum) between a and b, (·)+ for 0∨·, and 1l {A} for the
indicator function of a set A. N and N0 stand for the positive and nonnegative integers. Bold
letters are used for vectors. For all r ∈ R, r is the vector, which dimension will be clear from
the text, where each entry is r. The iterated logarithms are ln0(t) = t and, for j ≥ 1 and t large
enough, lnj(t) = ln(lnj−1(t)). W is the inverse of x ∈ [0,∞) 7→ xex. | · |q for q ∈ [1,∞] stands

for the `q norm of a vector or sequence. For all β ∈ Cd, (fm)m∈N0 functions with values in C,

and m ∈ Nd0, denote by βm =
∏d
k=1 β

mk
k , |β|m =

∏d
k=1 |βk|mk , and fm =

∏d
k=1 fmk

. For a

differentiable function f of real variables, f (m) denotes
∏d
j=1

∂mj

∂x
mj
j

f and supp(f) its support.

C∞
(
Rd
)

is the space of infinitely differentiable functions. The inverse of a mapping f , when it

exists, is denoted by f I . We denote the interior of S ⊆ Rd by
◦
S and its closure by S. When S

is measurable and µ a function from S to [0,∞], L2(µ) is the space of complex-valued square
integrable functions equipped with 〈f, g〉L2(µ) =

∫
S f(x)g(x)µ(x)dx. This is denoted by L2(S)

when µ = 1. When WS = 1l {S}+∞ 1l {Sc}, we have L2 (WS) =
{
f ∈ L2

(
Rd
)

: supp(f) ⊆ S
}

and 〈f, g〉L2(WS) =
∫
S f(x)g(x)dx. Denote by D the set of densities, by Π : L2(Rd) → L2(Rd)

such that Πf(x) = f(−x), and by ⊗ the product of functions (e.g., W⊗d(b) =
∏d
j=1W (bj))

or measures. The Fourier transform of f ∈ L1
(
Rd
)

is F [f ] (x) =
∫
Rd e

ib>xf(b)db and F [f ]

is also the Fourier transform in L2
(
Rd
)
. For all c > 0, denote the Paley-Wiener space by

PW (c) :=
{
f ∈ L2(R) : supp (F [f ]) ⊆ [−c, c]

}
, by Pc the projector from L2(R) to PW (c)

(Pc[f ] = FI [1l{[−c, c]}F [f ]]), and, for all c 6= 0, by

(3)
Fc : L2

(
W⊗d

)
→ L2

(
[−1, 1]d

)
and Cc : L2

(
Rd
)
→ L2

(
Rd
)

f → F [f ] (c ·) f → |c|df(c ·).

Abusing notations, we sometimes use Fc[f ] for the function in L2(R). Ext[f ] assigns the value
0 outside [−1, 1]d and F1st [f ] (t, ·2) is the partial Fourier transform of f with respect to the
first variable. For a random vector X, PX is its law, fX its density, fX|X the truncated density
of X given X ∈ X , SX its support, and fY |X=x the conditional density. For a sequence of
random variables (Xn0,n)(n0,n)∈N2

0
, Xn0,n = Op

U
(1) means that, for all ε > 0, there exists M such

that P(|Xn0,n| ≥ M) ≤ ε for all (n0, n) ∈ N2
0 such that U holds. In the absence of constraint,

https://CRAN.R-project.org/package=RandomCoefficients
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we drop the notation U . With a single index the Op(1) notation requires a bound holding for
all value of the index (the usual notation if the random variables are bounded in probability).

3. Preliminaries

Assumption 1. (H1.1) fX and fα,β exist;
(H1.2) fα,β ∈ L2 (w ⊗W⊗p), where w ≥ 1 and W is even, nondecreasing on [0,∞), such that

W (0) > 0 and limx→∞W (x) =∞,
∑

k∈NM
−1/k
k =∞ withMk =

(∫
R b

2k(1/W )(b)db
)1/2

;
(H1.3) There exists x0 > 0 and X = [−x0, x0]p ⊆ SX and we have at our disposal i.i.d

(Yi,Xi)
n
i=1 and an estimator f̂X|X based on Gn0 = (Xi)

0
i=−n0+1 independent of (Yi,Xi)

n
i=1;

(H1.4) E is a set of densities on X such that, for cX , CX ∈ (0,∞), for all f ∈ E , ‖f‖L∞(X ) ≤ CX
and ‖1/f‖L∞(X ) ≤ cX , and, for (v(n0, E))n0∈N ∈ (0, 1)N which tends to 0, we have

1

v(n0, E)
sup

fX|X∈E

∥∥∥f̂X|X − fX|X∥∥∥2

L∞(X )
= Op (1) .

We maintain this assumption for all results presenting upper bounds. When w = 1, E
[
αk
]
,

for k ∈ N, might not exist. Due to Theorem 3.14 in [18], if there exist R > 0, (aj)j∈N0 ∈
(0,∞)N0 , and (pj)j∈N0 ∈ (−∞, 1]N0 equal to 0 for j large enough, such that, for all x ∈ R,

W (x) ≥ exp

(
x2∏∞

j=0 ln
pj
j (aj |x|)

)
1l {|x| ≥ R}

(
e.g., W (x) = exp

(
|x|

a0 ln(a1|x|)

)
1l {|x| ≥ R}

)
,

then
∑

m∈N 1/
∥∥·2m/W (·)

∥∥1/(2m)

L∞(R)
= ∞ which implies (H1.2). Marginal distributions can have

infinite moment generating functions hence be heavy-tailed and their Fourier transforms belong
to a quasi-analytic class but not be analytic. Now on, we use W[−R,R] or cosh(·/R) for W . This
rules out heavy tails and nonanalytic Fourier transforms. When W = W[−R,R], integrability
in b amounts to Sβ ⊆ [−R,R]p, but cosh(·/R) allows for noncompact Sβ. Though with a

different scalar product, we have L2 (cosh(b·)) = L2
(
eb|·|
)

and (see Theorem IX.13 in [47]),

for a > 0,
{
f ∈ L2(R) : ∀b < a, f ∈ L2

(
eb|·|
)}

is the set of square-integrable functions which
Fourier transform have an analytic continuation on {z ∈ C : |Im(z)| < a/2}. Incidentally,
the Laplace transform is finite near 0 and, if f is a density, it does not have heavy-tails. The
condition X = [−x0, x0]p ⊆ SX in (H1.4) is not restrictive because Y = α+β>x+β>(X−x),
we can take x and x0 such that X ⊆ SX−x, and there is a one-to-one mapping between fα+β>x,β

and fα,β. We assume (H1.4) because the estimator involves estimators of fX|X in denominators.
Alternative solutions exist when p = 1 (see, e.g., [37]) only. Assuming the availability of an
estimator of fX|X using the preliminary sample Gn0 is common in the deconvolution literature
(see, e.g., [16]). By using estimators of fX|X for a well chosen X rather than of fX , the

assumption
∥∥fX|X∥∥L∞(X )

≤ CX and
∥∥1/fX|X

∥∥
L∞(X )

≤ cX in (H1.4) becomes mild.

3.1. Inverse problem in Hilbert spaces. Estimation of fα,β is a statistical ill-posed inverse
problem. The operator depends on w and W . Now on, the functions w and W are those of
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(H1.2). We have, for all t ∈ R and u ∈ [−1, 1]p, Kfα,β(t,u) = F
[
fY |X=x0u

]
(t)x0|t|p/2, where

(4)
K : L2 (w ⊗W⊗p) → L2(R× [−1, 1]p)

f → (t,u) 7→ F [f ] (t, x0tu)x0|t|p/2.

Proposition 1. L2 (w ⊗W⊗p) is continuously embedded into L2(Rp+1). Moreover, K is injec-
tive and continuous, and not compact if w = 1.

The case w = 1 corresponds to mild integrability assumptions in the first variable when
the SVD of K does not exist. This makes it difficult to prove rates of convergence even for
estimators which do not rely explicitly on the SVD such as the Tikhonov and Landweber
method (Gerchberg algorithm in out-of-band extrapolation, see, e.g., [5]). Rather than work
with K directly, we use that K is the composition of operators which are easier to analyze

(5) for t ∈ R, K[f ](t, ?) = Ftx0 [F1st [f ] (t, ·2)] (?)x0|t|p/2 in L2([−1, 1]p).

For all f ∈ L2 (w ⊗W⊗p), W either W[−R,R] or cosh(·/R), and t ∈ R, F1st [f ] (t, ·2) belongs to

L2(W⊗p) and, for c 6= 0, Fc : L2(W⊗p)→ L2([−1, 1]p) admits a SVD, where both orthonormal
systems are complete. This is a tensor product of the SVD when p = 1 that we denote by(
σW,cm , ϕW,cm , gW,cm

)
m∈N0

, where
(
σW,cm

)
m∈N0

∈ (0,∞)N0 is in decreasing order repeated according

to multiplicity,
(
ϕW,cm

)
m∈N0

and
(
gW,cm

)
m∈N0

are orthonormal systems of, respectively, L2(W )

and L2([−1, 1]). This holds for the following reason. Because Fc = FC1/c = (1/|c|)CcF ,
ΠFc = FcΠ, F∗c = (1/W )ΠFcExt, and W is even, we obtain F∗c = Π ((1/W )FcExt) and
FcF∗c = ΠFc ((1/W )FcExt) = (2π/|c|)FI

(
C1/c ((1/W )CcFExt)

)
= 2πFI

(
C1/c (1/W )FExt

)
.

The operator QWc = (|c| /(2π))FcF∗c is a compact positive definite self-adjoint operator (see
[46] and [51] for the two choices of W ). Its eigenvalues in decreasing order repeated according

to multiplicity are denoted by
(
ρW,cm

)
m∈N0

and a basis of eigenfunctions by
(
gW,cm

)
m∈N0

. The

other elements of the SVD are σW,cm =

√
2πρW,cm / |c| and ϕW,cm = F∗c g

W,c
m /σW,cm .

Proposition 2. For all c 6= 0,
(
ϕW,cm

)
m∈N0

is a basis of L2(W ).

The singular vectors
(
g
W[−1,1],c
m

)
m∈N0

are the Prolate Spheroidal Wave Functions (hereafter

PSWF, see, e.g., [46]). They can be extended as entire functions in L2(R) and form a complete
orthogonal system of PW (c) for which we use the same notation. They are useful to carry
interpolation and extrapolation (see, e.g., [40]) with Hilbertian techniques. In this paper, for
all t 6= 0, F1st [fα,β] (t, ·2) plays the role of the Fourier transform in the definition of PW (c).
The weight cosh(·/R) allows for larger classes than PW (c) and noncompact Sβ. This is useful
even if Sβ is compact when the researcher does not know a superset containing Sβ. The useful
results on the corresponding SVD and a numerical algorithm to compute it are given in [23].
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3.2. Sets of smooth and integrable functions. Define, for all (φ(t))t≥0 and (ωm)m∈N0

increasing, φ(0) = ω0 = 1, l,M > 0, q ∈ {1,∞}, t ∈ R, m ∈ Np0, k ∈ N0,

Hq,φ,ωw,W (l,M) :=

f :
∑
k∈N0

∫
R
φ2(|t|)θ2

q,k(t)dt
∨∑

k∈N0

ω2
k‖θq,k‖2L2(R) ≤ 2πl2, ‖f‖L2(w⊗W⊗p) ≤M


and Hq,φ,ωw,W (l) when we replace ‖f‖L2(w⊗W⊗p) ≤M by ‖f‖L2(w⊗W⊗p) <∞, where

bm(t) :=
〈
F1st [f ] (t, ·2), ϕW,x0t

m

〉
L2(W⊗p)

, θq,k(t) :=

 ∑
m∈Np0: |m|q=k

|bm(t)|2
1/2

.(6)

The first inequality in the definition of Hq,φ,ωw,W (l,M) defines the notion of smoothness analyzed
in this paper. It involves a maximum, thus two inequalities: the first for smoothness in the first
variable and the second for smoothness in the other variables. The additional inequality imposes
integrability (see Theorem 1). The asymmetry in the treatment of the first and remaining
variables is due to the fact that only the random slopes are multiplied by regressors which have
limited variation and we make integrability assumptions in the first variable which are as mild
as possible. The use of the Fourier transform to express smoothness in the first variable is
classical. For the remaining variables, we allow for functions with compact and noncompact

support and work with the bases
(
ϕW,x0t
m

)
m∈Np0

for t 6= 0. For functions with compact support,

we show in Section B.5 that it is also possible to use instead the basis giving rise to Fourier
series to define the smoothness in the remaining variables. We analyze all types of smoothness
and because smoothness is unknown, we provide an adaptive estimator. We analyze two values
of q and show that its value matters for the rates of convergence for supersmooth functions.

Remark 1. The next model is related to (1) under Assumption 1 when fX is known:

(7) dZ(t) = K [f ] (t, ·2)dt+
σ√
n
dG(t), t ∈ R,

where f plays the role of fα,β, σ > 0 is known, and (G(t))t∈R is a complex two-sided cylindrical
Gaussian process on L2([−1, 1]p). This means, for Φ Hilbert-Schmidt from L2([−1, 1]p) to a
separable Hilbert space H, (ΦG(t))t∈R is a Gaussian process in H of covariance ΦΦ∗ (see [17]).

Taking ΦG(t) =
∑
m∈Np0

Φ
[
gW,x0t
m

]
Bm(t), where Bm(t) = BR

m(t) + iBI
m(t), (BR

m(t))t∈R and(
BI
m(t)

)
t∈R are independent two-sided Brownian motions, the system of independent equations

(8) Zm(t) =

∫ t

0
σW,x0s
m bm(s)ds+

σ√
n
Bm(t), t ∈ R,

where, Zm :=
〈
Z(?), gW,x0?

m

〉
L2([−1,1]p)

and m ∈ Np0, is equivalent to (7). Because σW,x0s
m is

small when |m|q is large or s is small (see Lemma B.4), the estimator of Section 5.1 truncates
large values of |m|q and does not rely on small values of |s| but uses interpolation.
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Remark 2. [33] considers a Gaussian sequence model corresponding to (7), K is the Radon
transform, p = 1, G is a two-sided cylindrical Wiener process, and L2 (w ⊗W ) is a weighted
L2 space of functions with support in the unit disk of R2 for which K has a SVD with a known
rate of decay of the singular values.

3.3. Interpolation. Define, for all a, ε > 0, the operator on L2(R) with domain PW (a)

Ia,ε [f ] :=
∑
m∈N0

ρ
W[−1,1],aε
m(

1− ρW[−1,1],a
m

)
ε

〈
f, C1/ε

[
g
W[−1,1],aε
m

]〉
L2(R\(−ε,ε))

C1/ε

[
g
W[−1,1],aε
m

]
.(9)

Proposition 3. For all a, ε > 0, we have Ia,ε
(
L2(R)

)
⊆ L2([−ε, ε]) and, for all g ∈ PW (a),

Ia,ε[g] = g in L2(R) and, for C0 := 4 · /
(
π
(

1− ρW[−1,1],·
0

)2
)

and all f, h ∈ L2(R),∥∥f − Ia,ε [h]
∥∥2

L2([−ε,ε]) ≤ 2(1 + C0(aε))
∥∥f − Pa[f ]

∥∥2

L2(R)
+ 2C0(aε) ‖f − h‖2L2(R\(−ε,ε)) .(10)

If f ∈ PW (a), Ia,ε[f ] only relies on f1l{R \ (−ε, ε)} and Ia,ε[f ] = f on R \ (−ε, ε), so (9)
provides an analytic formula to carry interpolation on [−ε, ε] of functions in PW (a). Else,
(10) provides an upper bound on the error made by approximating f by Ia,ε [h] on [−ε, ε]
when h approximates f outside [−ε, ε]. We use interpolation when the variance of an initial

estimator f̂0 of f is large due to its values near 0 but
∥∥∥f − f̂0

∥∥∥2

L2(R\(−ε,ε))
is small and work

with f̂(t) = f̂0(t)1l{|t| ≥ ε}+ Ia,ε
[
f̂0
]

(t)1l{|t| < ε}. Then, (10) yields

(11)
∥∥∥f − f̂∥∥∥2

L2(R)
≤ (1 + 2C0(aε))

∥∥∥f − f̂0
∥∥∥2

L2(R\(−ε,ε))
+ 2(1 + C0(aε))

∥∥f − Pa[f ]
∥∥2

L2(R)
.

When supp (F [f ]) is compact, a is taken such that supp (F [f ]) ⊆ [−a, a]. Else, a goes to infinity
so the second term in (11) goes to 0. ε is taken such that aε is constant because, due to (3.87)
in [46], limt→∞C0(t) =∞ and (10) and (11) become useless. We set C = 2 (1 + C0(aε)).

3.4. Risk. The risk of an estimator f̂α,β is the mean integrated squared error (MISE)

RWn0

(
f̂α,β, fα,β

)
:= E

[∥∥∥f̂α,β − fα,β∥∥∥2

L2(1⊗W⊗p)

∣∣∣∣Gn0

]
.

When W = W[−R,R] and supp
(
f̂α,β

)
⊆ R× [−R,R]p, it is E

[∥∥∥f̂α,β − fα,β∥∥∥2

L2(Rp+1)

∣∣∣∣Gn0

]
, else,

(12) E
[∥∥∥f̂α,β − fα,β∥∥∥2

L2(Rp+1)

∣∣∣∣Gn0

]
≤ ‖1/W‖pL∞(R)R

W
n0

(
f̂α,β, fα,β

)
.

4. Lower bounds

The lower bounds involve a function r (for rate) and take the form

(13) ∃ν > 0 : limn→∞
1

r(n)2
inf
f̂α,β

sup
fα,β∈Hq,φ,ωw,W (l)∩D

E
[∥∥∥f̂α,β − fα,β∥∥∥2

L2(Rp+1)

]
≥ ν.
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When we replace fα,β by f , f̂α,β by f̂ , remove D from the nonparametric class, and consider
model (8), we refer to (13’).

Theorem 1. For all q ∈ {1,∞}, φ increasing on [0,∞), w such that
∫∞

1 w(a)/a4 < ∞, and
0 < l, s,R, κ <∞, if W = W[−R,R],

(T1.1a) (ωk)k∈N0 = (kσ)k∈N0 , φ is such that limτ→∞
∫∞

0 φ(t)2e−2τtdt = 0, fX is known, SX =

X , and ‖fX‖L∞(X ) <∞, then (13) holds with r(n) = (ln(n)/ ln2(n))−(2+kq/2)∨σ,

(T1.1b) we consider model (8), (ωk)k∈N0 =
(
eκk ln(k+1)

)
k∈N0

, then (13’) holds with r(n) =

n−κ/(2κ+2kq)/ ln(n),

else if W = cosh(·/R), we consider model (8),

(T1.2a) (ωk)k∈N0 = (kσ)k∈N0 , for all σ > 1/2, then (13’) holds with r(n) = ln (n/ ln(n))−σ∨σ

(T1.2b) (ωk)k∈N0 =
(
eκk
)
k∈N0

, then (13’) holds with r(n) = n−κ/(2κ+2kq).

By (12), (T1.2a), and (T1.2b), we obtain lower bounds involving RWn0
.

5. Estimation

5.1. Estimator. For all q ∈ {1,∞}, 0 < ε < 1 < T , N ∈ RR, N(t) = bN(t)c for ε ≤ |t| ≤ T ,
N(t) = N(ε) for |t| ≤ ε and N(t) = N(T ) for |t| > T , a regularized inverse is obtained by:

(S.1) for all t 6= 0, obtain a preliminary approximation of F1(t, ·) := F1st [fα,β] (t, ·)

F q,N,T,01 (t, ·2) := 1l{|t| ≤ T}
∑

|m|q≤N(t)

cm(t)

σW,x0t
m

ϕW,x0t
m , cm(t) :=

〈
F
[
fY |X=x0·

]
(t), gW,x0t

m

〉
L2([−1,1]p)

,

(S.2) for all t ∈ [−ε, ε], F q,N,T,ε1 (t, ·) := F q,N,T,01 (t, ·)1l{|t| ≥ ε}+Ia,ε
[
F q,N,T,01 (?, ·)

]
(t)1l{|t| < ε},

(S.3) f q,N,T,εα,β (·1, ·2) := FI1st

[
F q,N,T,ε1 (?, ·2)

]
(·1).

To deal with the statistical problem, we replace cm by

(14) ĉm :=
1

n

n∑
j=1

ei?Yj

xp0f̂
δ
X|X (Xj)

gW,x0?
m

(
Xj

x0

)
1l {Xj ∈ X} ,

where f̂ δX|X (Xj) := f̂X|X (Xj) ∨
√
δ(n0) and δ(n0) is a trimming factor converging to zero

with n0. This yields the estimators F̂ q,N,T,01 , F̂ q,N,T,ε1 , and f̂ q,N,T,εα,β . We use
(
f̂ q,N,T,εα,β

)
+

as a

final estimator of fα,β which always has a smaller risk than f̂ q,N,T,εα,β (see [26, 50]). We use

ne = n ∧ bδ(n0)/v(n0, E)c for the sample size required for an ideal estimator where fX|X is
known to achieve the rate of the plug-in estimator. The upper bounds below take the form

(15)
1

r(ne)2
sup

fα,β∈Hq,φ,ωw,W (l,M)∩D, fX|X∈E
RWn0

(
f̂ q,N,T,εα,β , fα,β

)
= Op(1).

With the restriction fα,β ∈ Hq,φ,ωw,W (l)∩D, we refer to (15’). We use kq := 1l{q = 1}+p1l{q =∞}
and k′q = p+ 1− kq.



9

5.2. Upper bounds. We use T = φI
(
ωN
)
, a = wI

(
ω2
N

)
when w 6= W[−a,a], for u > 0,

Ka(u) := a1l{w 6= W[−a,a]}+ u1l{w = W[−a,a]}. Below N , hence N , is constant.

Theorem 2. Let W = W[−R,R]. For all q ∈ {1,∞}, l,M, s,R, σ, κ, µ, γ, ν > 0, Sβ ⊆ [−R,R]p,

N solution of 2kqN ln
(
NKa(1)

)
+ln

(
ω2
N

)
+(p−1) ln (N) = ln(ne), and ε = 7e/

(
2Rx0Ka(1)

)
,

(T2.1) if φ = 1 ∨ |·|s, (ωk)k∈N0 = (kσ)k∈N0
, and w = 1 ∨ |·|µ, then (15) holds with r(ne) =

(ln (ne) / ln2 (ne))
−σ,

(T2.2) if φ = 1 ∨ |·|s, (ωk)k∈N0 =
(
eκk ln(k+1)

)
k∈N0

, s ≥ κ(p + 1)/(2kq(ν1l{W 6= W[−a,a]} + 1)),

and Λ := (p− 1)(1− (κ(p+ 1)/ (2s (kq(·+ 1) + κ))) /2,

(T2.2a) wI
(
e2κ|·| ln(|·|+1)

)
= ·ν , then (15) holds with r(ne) = n

−κ/(2κ+2(ν+1)kq)
e ln(ne)

Λ(ν),

(T2.2b) a such that Sα ⊆ [−a, a], w = W[−a,a], then (15’) holds with r(ne) = n
−κ/(2κ+2kq)
e ln(ne)

Λ(0),

(T2.3) if φ = eγ|·|, r > 1, (ωk)k∈N0 =
(
eκ(k ln(k+1))r

)
k∈N0

, w such that wI
(
e2κ(|·| ln(|·|+1))r

)
= ·ν ,

d0 = 2κ
(
1 + (p− 1)/(p+ 1)r + 2kq(1 + ν)/((p+ 1) ln(p+ 2))r−1

)
, and for k ∈ {1, . . . , k0},

dk :=

(
kq(1 + ν)(2κ)1−1/r1l{k ≡ 0(mod 2)}

κ(1 + 1/((p+ 1) ln(p+ 2)))r
+

(
(kq + 1)p+ kq − 1

p+ 1
+ kqν

)
1l{k ≡ 1(mod 2)}

κd
1/r−1
0

)k
,

k0 := br/(r − 1)c, and ϕ := exp
(
−
∑k0

k=1 (−1)k dk ln(·)(1/r−1)k+1
)∨

ln(·)p+1+(p−1)/r

then (15) holds with r(ne) =
√
ϕ (ne) /ne.

Theorem 1 shows the rate in (T2.2) is optimal when fX is known and SX = X . It is the same
as in [42] for deconvolution with a known characteristic function of the noise on an interval
when the signal has compact support. The rates in Theorem 2 are independent of p as common
for severely ill-posed problems (see [13, 23]).

Theorem 3. Let W = cosh(·/R). For all q ∈ {1,∞}, l,M, s,R, σ, κ, µ > 0, φ = 1∨|·|s, N solu-

tion of 2kqN ln
(
Ka(e)

)
+ ln

(
ω2
N

)
+ (p− 1) ln (N) /q = ln(ne), and ε = 7e2/

(
4Rx0Ka(7e

2/π)
)
,

(T3.1) if (ωk)k∈N0 = (kσ)k∈N0
, and w = 1∨|·|µ, then (15) holds with r(ne) = (ln (ne) / ln2 (ne))

−σ,

(T3.2) if (ωk)k∈N0 = (eκk)k∈N0 , a such that Sα ⊆ [−a, a], and w = W[−a,a], then (15’) holds

with r(ne) = n
−κ/(2κ+2kq)
e ln(ne)

(p−1)κ/(2q(κ+kq)).

In (T3.2), we relax the assumption that Sβ is compact maintained in (T2.2a). The discussion
after Theorem 2 in [42] considers densities with noncompact support and a pointwise bound
outside [−1, 1]. By inspection of the proof, Rx0 can vary with n. The results of theorems 2 and
3 are related to those for “2exp-severely ill-posed problems” (see [12] and [49] which obtains
the same polynomial rates up to logarithmic factor as in (T2.2b) when 1/v(n0, E) ≥ n and
p = 1). When 1/v(n0, E) ≥ n, the rate in (T3.2) matches the lower bound in model (8).

5.3. Data-driven estimator. We use a Goldenshluger-Lepski method (see [29, 39]). Let
R, ε > 0, q ∈ {1,∞}, ζ0 = 1/ (1 + 4p (1 + 1l {W = cosh(·/R)})), Kmax := bζ0 ln(n)/ ln(2)c,
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Tmax := 2Kmax , Tn :=
{

2k : k = 1, . . . ,Kmax, 2
k ≥ ε

}
, pn := 3

∨
6(1 + ζ0) ln(n), and, for all

N ∈ NR
0 , N0, T ∈ N0, t 6= 0, NW

max,q =
⌊
NW

max,q

⌋
,

B1 (t,N0) := max
N0≤N ′≤NW

max,q

 ∑
N0≤|m|q≤N ′

(
|ĉm(t)|
σW,x0t
m

)2

− Σ
(
t,N ′

)
+

,

B2 (T,N) := max
T ′∈Tn,T ′≥T

∫
T≤|t|≤T ′

∑
|m|q≤N(t)

(
|ĉm(t)|
σW,x0t
m

)2

− Σ (t,N(t)) dt


+

,

Σ (t,N0) := 8(2 +
√

5)(1 + 2pn)
cX
n

(
|t|
2π

)p
νWq (x0t,N0), Σ2(T,N) :=

∫
ε≤|t|≤T

Σ(t,N(t))dt;

(N.1) when W = W[−R,R], N
W
max,q solution of 2kqN0 ln(7eN0/(2Rx0ε)) = ln(n),

νWq (t,N0) = (N0 + 1)kq
[

(N0 + p− 1)p−1

(p− 1)!
1l{q = 1}+ 2p1l{q =∞}

](
1
∨ 7e(N0 + 1)

2R |t|

)2kqN0

.

(N.2) when W = cosh(·/R),

NW
max,q =

ln(n)

2kq
1l

{
ε =

π

4Rx0

}
+

ln(n)

2kq ln (7e2/(4Rx0ε))
1l

{
ε <

π

4Rx0

}
,

νWq (t,N0) = 2p
(

2eR |t|
π

)kq ((N0 + p− 1)p−1

(p− 1)!q
+ 1l{q =∞}

)
exp

(
πkq(N0 + k′q)

2R |t|

)
1l
{
|t| > π

4R

}
+ 2kq

(eπ
2

)2p
(

(N0 + p− 1)p−1

(p− 1)!q
+ 1l{q =∞}

)(
7e2

4R|t|

)2kqN0

1l
{
|t| ≤ π

4R

}
;

N̂ and T̂ are defined, using c1 = 1 + 1/(2 +
√

5)2 (to handle the estimation of fX|X ), as

∀t ∈ R \ (−ε, ε), N̂(t) ∈ argmin
0≤N≤NW

max,q

(B1(t,N) + c1Σ(t,N)) ,(16)

T̂ ∈ argmin
T∈Tn

(
B2

(
T, N̂

)
+ Σ2

(
T, N̂

))
.(17)

The upper bounds below take the form

1

r(n)2
sup

fα,β∈Hq,φ,ωw,W (l,M)∩D, fX|X∈E
RWn0

(
f̂ q,N̂ ,T̂ ,εα,β , fα,β

)
= Op

v(n0,E)/δ(n0)≤n−2 ln(n)−p, ne≥3

(1),(18)

and we refer to (18’) when we use the restriction fα,β ∈ Hq,φ,ωw,W (l) ∩ D.

Theorem 4. For all l,M, s,R, µ, σ > 0, H ∈ N, q ∈ {1,∞}, φ = 1 ∨ |·|s, if

(T4.1) (ωk)k∈N0 = (kσ)k∈N0 , w = 1 ∨ |·|, (18) holds with r(n) = (ln (n) / ln2 (n))−σ when
(T4.1a) W = W[−R,R], Sβ ⊆ [−R,R]p, a = 1/ε, and ε = 7e/(2Rx0 ln(n)),

(T4.1b) W = cosh(·/R), a = 1/ε and ε = 7e2/(4Rx0 ln(n)),
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(T4.2) (ωk)k∈N0 = (eκk ln(1+k))k∈N0 , a such that Sα ⊆ [−a, a], w = W[−a,a], W = W[−R,R],
Sβ ⊆ [−R,R]p, ε = 7e/(2Rx0), and s > (2p+ 1/2) ∨ (κ(p+ 1)/(2kq)), (18’) holds with

r(n) = n−κ/(2κ+2kq) ln(n)1/2+Λ(0) and Λ defined in (T2.2),
(T4.3) (ωk)k∈N0 = (eκk)k∈N0 , a such that Sα ⊆ [−a, a], w = W[−a,a], W = cosh(·/R), ε =

π/(4Rx0), and s > 4p+1/2, (18’) holds with r(n) = n−κ/(2κ+2kq) ln(n)1/2+(p−1)κ/(2q(κ+kq)).

The results in Theorem 4 are for v(n0, E)/δ(n0) ≤ n−2 ln(n)−p, in which case ne = n.

Theorem 1 and (T4.1a) show that f̂ q,N̂ ,T̂ ,εα,β is adaptive. The rate in (T4.2) matches, up to a

logarithmic factor, the lower bound in Theorem (T.1.1b) for model (8). For the other cases,
the risk is different for the lower bounds and the upper bounds in Theorem 4, but using (12) we
obtain the same rate up to logarithmic factors for the risk involving the weight W . (T4.2) and

(T4.2) rely on Sα ⊆ [−a, a] because, else, the choice a = wI
(
ω2
N

)
in Section 5.2 dependents

on the parameters of the smoothness class. However, it is possible to check that we can obtain
the rate in (T2.2a) up to a

√
ln(n) factor when ν = 1 for a choice of a independent of the

parameters of the smoothness class.

To gain insight, let us sketch the proof when f̂ δX|X = fX|X (hence we simply write RW ). Let

∀t ∈ R, N ∈ NR
0 , T ∈ [0,∞), LWq (t,N, T ) :=

∥∥∥(F̂ q,N,T,01 −F1st [fα,β]
)

(t, ·2)
∥∥∥2

L2(W⊗p)
,

w̃ := 1l{w 6= W[−a,a]}/w, and T ∈ Tn. The Plancherel identity and (A.24) yield

RW
(
f̂ q,N̂ ,T̂ ,εα,β , fα,β

)
≤ C

2π

∫
ε≤|t|

E
[
LWq

(
t, N̂(t), T̂

)]
dt+ CM2w̃(a).(19)

The upper bound in (19) with nonrandom N̂ and T̂ is the one we use to obtain theorems 2 and
3. The idea behind (17) is that it allows to obtain an upper bound with a similar quantity but

with arbitrary nonrandom T̂ . By arguments in the proof of Lemma A.5 for the first inequality
and (17) for the second,∫

ε≤|t|
E
[
LWq

(
t, N̂(t), T̂

)]
dt

≤
(

1 +
2√
5

)∫
ε≤|t|

E
[
LWq

(
t, N̂(t), T

)]
dt

+ (2 +
√

5)
(
E
[
B2

(
T̂ , N̂

)
+ Σ2

(
T, N̂

)]
+ E

[
B2

(
T, N̂

)
+ Σ2

(
T̂ , N̂

)])
≤
(

1 +
2√
5

)∫
ε≤|t|

E
[
LWq

(
t, N̂(t), T

)]
dt+ 2(2 +

√
5)E

[
B2

(
T, N̂

)
+ Σ2

(
T, N̂

)]
and, by a Talagrand’s inequality,

E
[
B2

(
T, N̂

)]
≤
(

1 +
2√
5

)∫
ε≤|t|

E
[
LWq (t, N̂(t), T )

]
dt+O

(
1

n

)
,
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W = W[−7.5,7.5], Case 1 W = cosh (·/7.5), Case 2
n = 300 n = 500 n = 1000 n = 300 n = 500 n = 1000

MISE (data-driven) 0.092 0.086 0.083 0.089 0.087 0.085
MISE (oracle) 0.091 0.086 0.082 0.088 0.087 0.085

Table 1. Risk

where the O (1/n) term is independent of T and N̂ . (16) allows to obtain yet another upper

bound which replaces N̂ by an arbitrary nonrandom N . We conclude because the final upper

bound (A.38) has a similar form as (A.32) when we deal with nonrandom N̂ and T̂ .

6. Simulations

Let p = 1, q = ∞, and (α, β)> = ξ1D + ξ2(1 −D) with P(D = 1) = P(D = 0) = 0.5. The
law of X is a truncated normal based on a normal of mean 0 and variance 2.5 and truncated
to X with x0 = 1.5. The laws of ξ1 and ξ2 are either: (Case 1) truncated normals based on

normals with means µ1 =

(
−2
3

)
and µ2 =

(
3
0

)
, same covariance

(
2 1
1 2

)
, and truncated

to [−6, 6]p+1 or (Case 2) not truncated. Table 1 compares E
[∥∥∥f̂∞,N̂ ,T̂ ,εα,β − fα,β

∥∥∥2

L2([−7.5,7.5]2)

]
and the risk of the oracle min

T∈Tn,N∈Nn,H
E
[∥∥∥f̂∞,N,T,εα,β − fα,β

∥∥∥2

L2([−7.5,7.5]2)

]
for cases 1 and 2. The

Monte-Carlo use 1000 simulations. Figure 1 (resp. Figure 2) displays summaries of the law of
the estimator for W = W[−7.5,7.5] (resp. W = cosh(·/7.5)) in Case 1 (resp. Case 2) and n =
1000. As standard in the literature (see, e.g., [15, 19]), the multiplicative constant appearing

in Σ is in practice calibrated from a simulation study. f̂X|X∈X is obtained with the same data.

The estimator requires the SVD of Fc. By Proposition B.1, we have g
W (·/R),c
m = gW,Rcm for

all m ∈ N0. When W = W[−1,1], the first coefficients of the decomposition on the Legendre
polynomials are obtained by solving for the eigenvectors of two tridiagonal symmetric Toeplitz
matrices (see Section 2.6 in [46]). When W = cosh, we refer to Section 7 in [23]. We use

F∗c
(
gW,Rcm

)
= σW,Rcm ϕW,Rcm and that ϕW,Rcm has norm 1 to get the rest of the SVD. The Fourier

inverse is obtained by fast Fourier transform.

APPENDIX - PROOFS

R and I denote the real and imaginary parts. We denote, for all m ∈ N0, by ψcm the function

g
W[−1,1],c
m and µcm = imσ

W[−1,1],c
m . Because ψcm = Fc(Ext[ψcm])/µcm in L2([−1, 1]), ψcm can be

extended as an entire function which we denote with the same notation. Using the injectivity

of Fc (see the proof of Proposition 1), we have ϕ
W[−1,1],c
m = i−mExt[ψcm]. We make use of

∀a, b > 0, sup
t≥1

ln(t)a

tb
=
( a
eb

)a
,(A.1)
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(a) True density (b) Mean of estimates

(c) 97.5% quantile of estimates (d) 2.5% quantile of estimates

Figure 1. Case 1, W = W[−7.5,7.5]

(a) True density (b) Mean of estimates

(c) 97.5% quantile of estimates (d) 2.5% quantile of estimates

Figure 2. Case 2, W = cosh (·/7.5)

∀c > 0, ∀a, b ∈ R, ab ≤ a2

2c
+
b2c

2
.(A.2)

All expectations are conditional on Gn0 when fX|X is unknown and we rely on Gn0 to estimate
it. We remove the conditioning in the notations for simplicity.
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A.1. Proofs of Proposition 1, 2 and 3.
Proof of Proposition 1. The first assertion comes from the fact that W is nondecreasing on
[0,∞) and W (0) > 0. For the rest, we use that, for every h ∈ L2(W⊗p), if we do not restrict
the argument in the definition of Fc[h] to [−1, 1]p, Fc[h] can be defined as a function in L2(Rp).
In what follows, for simplicity, we use Fc[h] for both the function in L2([−1, 1]p) and in L2(Rp).
Let us now show that, for all c 6= 0, Fc defined in (3) is injective. Take h ∈ L2 (W⊗p) ⊆ L2(Rp)
such that Fc[h] = 0 in L2 ([−1, 1]p). When (1/W ) vanishes at one point, h is compactly sup-
ported, thus, by the Paley-Wiener theorem its Fourier transform can be extended as an entire
function which restriction to Rp belongs to L2 (Rp). Because the Fourier transform vanishes
on a subset with nonempty interior, then F [h] = 0 on Rp, thus h = 0 in L2 (Rp). Now, con-
sider the case where (1/W )(x) > 0 for all x ∈ R. Fc[h] belongs to C∞(Rp) by the Lebesgue

dominated convergence theorem because, for all (k,u) ∈ Np0 × Rp,
∫
Rp

∣∣∣c|k|1bkeicbTuh(b)
∣∣∣ db ≤

c|k|1 ‖h‖L2(W⊗p)

∏p
j=1Mkj and, for all (k,u) ∈ Np0×Rp,

∣∣Fc[h](k)(u)
∣∣ ≤ c|k|1 ‖h‖L2(W⊗p)

∏p
j=1Mkj .

Theorem B.1 in [18] and the fact that, by the Cauchy-Schwarz inequality, for all j ∈ {1, . . . , p},
k ∈ Np0, Mkj ≤Mkj−1Mkj+1 yield that Fc[h] is zero on Rp. Thus, F [h] and h are zero a.e.

We now show that K is injective. Take f ∈ L2 (w ⊗W⊗p) such that K[f ] = 0. By the Plancherel
identity and the fact that w ≥ 1, we have∫

Rp+1

|F1st [f ] (t, b)|2W⊗p(b)dtdb ≤ 2π

∫
Rp+1

|f(a, b)|2w(a)W⊗p(b)dadb <∞

thus, there exists Ω1 ⊆ R of Lebesgue measure 1, such that, for all t ∈ Ω1, b 7→ F1st [f ] (t, b) ∈
L2 (W⊗p). Hence, by the above, for all t ∈ Ω1 and c ∈ R, u 7→ Fc [F1st [f ] (t, ·2)] (u) is
continuous. Also, because ‖K[f ]‖L2(R×[−1,1]p) = 0, there exists Ω2 ⊆ R of Lebesgue measure 1,

such that, for all t ∈ Ω2, ‖K[f ](t, ·2)‖L2([−1,1]p) = 0. As a result, using (5), we have , for all

(t,u) ∈ Ω1∩Ω2× [−1, 1]p, K[f ](t,u) = 0. Using again (5) and the injectivity of Fc for all c 6= 0,
we obtain that for all t ∈ (Ω1 ∩ Ω2) \ {0}, F1st [f ] (t, ·2) = 0 in L2 (W⊗p), thus F1st [f ] = 0 in
L2 (1⊗W⊗p) and f = 0 in L2 (1⊗W⊗p), hence in L2 (w ⊗W⊗p).
We show that K is continuous at 0. Let f ∈ L2 (w ⊗W⊗p). By the change of variables, the
Plancherel identity, and the lower bounds on the weights, we have

‖K[f ]‖2L2(R×[−1,1]p) ≤
∫
Rp+1

|F [f ](t,v)|2 (t,v)dtdv ≤
(

2π

W (0)

)p
‖f‖2L2(w⊗W⊗p) .

Let w = 1. We exhibit a bounded sequence (fk)k∈N0
in L2(1 ⊗ W⊗p) for which there does

not exist a convergent subsequence of (K [fk])k∈N0
. Take v0 such that supp(v0) ⊂ [1, 2],

‖v0‖L2(R) = 1 and, for all k ∈ N0 and (a, b>)> ∈ Rp+1, vk(·) = 2−k/2v0(2−k·) and fk(a, b) =

FI
[
vk(·)ϕW,x0·

0 (b)
]

(a). (fk)k∈N0
is bounded by the Plancherel identity and

‖fk‖2L2(1⊗W⊗p) =
1

2π

∫
R
vk(t)

2

∫
Rp

∣∣∣ϕW,x0t
0 (b)

∣∣∣2W⊗p(b)dtdb ≤ 1

2π
.

Using K [fk] (·, ·2) = σW,x0·
0 vk(·)gW,x0·

0 (·2) |x0·|p/2, c ∈ (0,∞) 7→ ρW,c0 is nondecreasing (by

Lemma 1 in [23] which holds for all W satisfying (H1.2)), and using for all j ∈ N0, ‖vj‖L2(R) = 1,
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we obtain, for all (j, k) ∈ N2
0, j < k,

‖K [fj ]−K [fk]‖2L2(R×[−1,1]p) ≥ ρ
W,2jx0
0 (2π)p

∫
R

(
vj(t)

2 + vk(t)
2
)
dt

≥ 2(2π)pρW,x0
0 > 0,

so K is not compact. �

Proof of Proposition 2. This holds by Theorem 15.16 in [38] and the injectivity of Fc. �

Proof of Proposition 3. Take f ∈ L2(R) and start by showing that Ia,ε[f ] ∈ L2([−ε, ε]).
The terms 1 − ρW[−1,1],aε

m in the denominator of (9) are nonzero because
(
ρ
W[−1,1],aε
m

)
m∈N0

is

nonincreasing and ρ
W[−1,1],aε

0 < 1 (see (3.49) in [46]). Using that
(
g
W[−1,1],aε
m (·/ε) /

√
ε
)
m∈N0

is a basis of L2([−ε, ε]), that
(
ρ
W[−1,1],aε
m

)
m∈N0

is nonincreasing, and the Cauchy-Schwarz in-

equality for the first display, using that
∑

m∈N0
ρ
W[−1,1],aε
m = 2aε/π (see (3.55) in [46]) and∥∥∥gW[−1,1],aε

m

∥∥∥2

L2(R)
= 1/ρ

W[−1,1],aε
m (see (3) in [7]) for the second inequality, we obtain

∑
m∈N0

 ρ
W[−1,1],aε
m(

1− ρW[−1,1],aε
m

)
ε

2 ∣∣∣∣〈f, gW[−1,1],aε
m

(?
ε

)〉
L2(R\[−ε,ε])

∣∣∣∣2 ∥∥∥gW[−1,1],a
m

( ·
ε

)∥∥∥2

L2([−ε,ε])

≤
‖f‖2L2(R\[−ε,ε])(
1− ρW[−1,1],aε

0

)2

∑
m∈N0

(
ρ
W[−1,1],aε
m

)2 ∥∥∥gW[−1,1],aε
m

∥∥∥2

L2(R)
≤

2aε ‖f‖2L2(R\[−ε,ε])

π
(

1− ρW[−1,1],aε

0

)2 .(A.3)

Let us now show the second statement. Take ε > 0 and g ∈ PW (a). Let (αm)m∈N be the

sequence of coefficients of g(ε·) ∈ PW (aε) on the complete orthogonal system
(
g
W[−1,1],aε
m

)
m∈N0

.

Because
(
g
W[−1,1],aε
m

)
m∈N0

is a basis of L2([−1, 1]), we have
∑

m∈N0
αmg

W[−1,1],aε
m = g(ε·)1l{|·| ≥

1}+
∑

m∈N0
αmg

W[−1,1],aε
m 1l{|·| ≤ 1}. We identify the coefficients by taking the Hermitian product

in L2(R) with g
W[−1,1],aε
m and obtain Ia,ε[g] = g in L2(R) and, for all f, h ∈ L2(R),∥∥f − Ia,ε [h]

∥∥2

L2([−ε,ε]) ≤ 2
(∥∥f − Pa[f ]

∥∥2

L2([−ε,ε]) +
∥∥Ia,ε [Pa [f ]− h

]∥∥2

L2([−ε,ε])

)
.(A.4)

Replacing f by Pa [f ]− h in (A.3) yields

(A.5)
∥∥Ia,ε [Pa [f ]− h

]∥∥2

L2([−ε,ε]) ≤
C0(aε)

2

∥∥Pa [f ]− h
∥∥2

L2(R\[−ε,ε]) .

Using (A.4) and (A.5) for the first display, Pa [f ]− h =
(
Pa[f ]− f

)
+ (f − h) and the Jensen

inequality for the second display, we obtain∥∥f − Ia,ε [h]
∥∥2

L2([−ε,ε]) ≤ 2
∥∥f − Pa[f ]

∥∥2

L2([−ε,ε]) + C0(aε)
∥∥Pa[f ]− h

∥∥2

L2(R\[−ε,ε])
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≤ 2(1 + C0(aε))
∥∥f − Pa[f ]

∥∥2

L2(R)
+ 2C0(aε) ‖f − h‖2L2(R\[−ε,ε]) . �

A.2. Lower bounds. We denote by Pj the law of density fj,n and by Pj,n the law of an iid
sample of size n, and use

inf
f̂

sup
f∈H

E
[∥∥∥f̂ − f∥∥∥2

L2(Rp+1)

]
≥ inf

f̂
max

fj,n∈H, j∈{1,2}
E
[∥∥∥f̂ − fj,n∥∥∥2

L2(Rp+1)

]
and the next lemma (see Theorem 2.2, (2.5), and (2.9) in [50]).

Lemma A.1. If there exists ξ <
√

2 such that

(i) ∀j ∈ {1, 2}, fj,n ∈ H,

(ii) ‖f1,n − f2,n‖2L2(Rp+1) ≥ 4r(n)2 > 0,

(iii) χ2(P2,n,P1,n) ≤ ξ2 or K(P2,n,P1,n) ≤ ξ2,

then we have

1

r(n)2
inf
f̂

max
fj,n∈H, j∈{1,2}

E
[∥∥∥f̂ − fj,n∥∥∥2

L2(Rp+1)

]
≥ 1

2

(
e−ξ

2

2

∨(
1− ξ√

2

))
.

Proof of (T1.1a). For j = 1, 2, fj,n is a possible fα,β,
(
bjm

)
m∈Np0

the sequence of its coeffi-

cients (see (6)), Pj,n have marginal fX|X , and f jY |X(y|x) are the implied conditional densities.

Steps 1-3 give conditions under which (i)-(iii) in Lemma A.1 are satisfied when

f1,n := f0 and f2,n := f0 + F, f0(a, b) :=
1

πτ
(

1 + (a/τ)2
) 1l{|b|∞ ≤ R}

(2R)p/2
,(A.6)

∀(a, b) ∈ Rp+1, F (a, b) := γFI1st

[(
c(|?|)

2π

)p/2
λ(?)ψ

Rc(?)

Ñ(q)

(
b

R

)]
(a)1l{|b|∞ ≤ R},(A.7)

∀U/2 ≤ |t| ≤ U, λ(t) := exp

(
1− 1

1− (4 |t| − 3U)2 /U2

)
, else λ(t) := 0,(A.8)

Ñ(1) :=
(
N,N(Rx0U)>

)>
, Ñ(∞) := N ∈ Np, N(Rx0U) := dH(Rx0U)e,(A.9)

for H from Section B.1.2, n large enough, N (odd), γ, τ ≥ 1, and U from Step 4 and such that
N ≥ N(Rx0U), hence N ≥ Rx0U ∨2 by the discussion before Lemma B.6. Note ‖λ‖L∞(R) ≤ 1.

Step 1.1. We prove that f1,n and f2,n are nonnegative when

γUNkq/2

 1

1 + p/2

(
Rx0U

π

) p
2
(

5

4

) kq
2
(

5

4
N(Rx0U)

) p−1
2q

∨(
2
p
2
−1C8(Rx0U, p, U)N2

)
≤ 1

τ + 1/τ
,

(A.10)

where C8(Rx0U, p, U) is defined in Lemma B.10. Let (a, b) ∈ R × [−R,R]p. We show that
(A.10) yield f0(a, b) ≥ |F (a, b)| which ensures that f2,n is nonnegative. The first bound in
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(A.10) yields the result when |a| < 1 because, by the third assertion in Lemma B.7,

|F (a, b)| ≤ γ

2π

(x0

2π

)p/2(
N +

1

2

)kq/2
(N(Rx0U) + 1/2)(p−1)/(2q)

∫
R
|t|p/2 λ(t)dt

≤ γU

π(1 + p/2)

(
Ux0

2π

)p/2(5

4
N

)kq/2(5

4
N(Rx0U)

)(p−1)/(2q)

.(A.11)

Because t 7→ ψRx0t

Ñ(q)
(b/R) is analytic (see [22] page 320), t 7→ (x0 |t| /(2π))p/2 λ(t)ψRx0t

Ñ(q)
(b/R) ∈

C∞(R) and its derivatives have compact support. By integration by parts, we obtain

∀a 6= 0, |F (a, b)| ≤ γ

πa2Rp/2

∫ U

U/2

∣∣∣∣∣ ∂2

∂t2

((
Rx0t

2π

)p/2
λ(t)ψRx0t

Ñ(q)

(
b

R

)
1l{|b|∞ ≤ R}

)∣∣∣∣∣ dt.
The result when |a| ≥ 1 is obtained by 1 + (a/τ)2 ≤ (1 + 1/τ2)a2, so by the second bound in

(A.10), γUC8(Rx0U, p, U)N2+kq/2/(2a2) ≤ 1/
(
2p/2τ(1 + (a/τ)2)

)
, and by Lemma B.10

(A.12) ∀(a, b) ∈ Rp+1 : |a| ≥ 1, |F (a, b)| ≤ γUC8(Rx0U, p, U)

2πa2Rp/2
N2+kq/21l{|b|∞ ≤ R}.

f1,n = f0 has integral 1 and so has f2,n by Fubini’s theorem and that ψcN is odd when N is odd.

Step 1.2. We give conditions for f1,n, f2,n ∈ Hq,φ,ωw,W (l). By (A.6)-(A.7), and because, by Step

1.1, for all (a, b) ∈ Rp+1, f2,n(a, b)2 ≤ 4f1,n(a, b)2, f1,n and f2,n belong to L2
(
w ⊗W⊗p[−R,R]

)
.

Let us show that f2,n, hence f1,n (f2,n with γ = 0), satisfy the first condition in Hq,φ,ωw,W (l) if

2

(∫ ∞
0

φ(t)2e−2τtdt+ γ2

(
Rx0U

2π

)p φ(U)2U

p+ 1

)
≤ πl2(A.13)

C12(σ, p)

τp2σ/q
+ γ2 2Up2σ/qN2σ

p+ 1

(
Rx0U

2π

)p
≤ πl2.(A.14)

Let m ∈ Np0 and cPm(t) :=
〈
1/2p/2, ψRx0t

m

〉
L2([−1,1]p)

. By Proposition B.1 (iii), change of vari-

ables, and for all t ∈ R, F1st [f0(·, ?)] (t) = e−|t|τ1l{|?|∞ ≤ R}/(2R)p/2, we have

b2m(t) = i−|m|1

(
e−τ |t|cPm(t) + γ1l{m = Ñ(q)}

(
Rx0 |t|

2π

)p/2
λ(t)

)
.(A.15)

Because
(
ψRx0t
m

)
m∈Np0

is an orthonormal basis, we have

∀t 6= 0,
∑
m∈Np0

∣∣b2m(t)
∣∣2 ≤ 2

(
e−2τ |t| + γ2

(
Rx0 |t|

2π

)p
λ(t)2

)
.(A.16)

The first part of the first condition in Hq,φ,ωw,W (l) holds by (A.13) and because, by (A.16),∑
m∈Np0

∫
R
φ(t)2

∣∣b2m(t)
∣∣2 dt ≤ 4

(∫ ∞
0

φ(t)2e−2τtdt+ γ2

(
Rx0

2π

)p ∫ U

U/2
φ(t)2tpλ2(t)dt

)
.
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The second part of the first condition holds by (A.14) and because, by (A.15) and Lemma B.11,

for all τ ≥
(
3e1/2Rx0/8

)
∨ (1/2) and N ≥ N(Rx0U),

∑
m∈Np0

|m|2σq
∫
R

∣∣b2m(t)
∣∣2 dt ≤ 2

∫
R
e−2τ |t|

∑
m∈Np0

|m|2σq
(
cPm(t)

)2
dt+ γ2

(
Rx0

2π

)p ∣∣∣Ñ(q)
∣∣∣2σ
q

∫
R
λ2(t) |t|p dt


≤ 2

(
C12(σ, p)

τp2σ/q
+ γ2 2Up2σ/qN2σ

p+ 1

(
Rx0U

2π

)p)
.

Step 2. (ii) holds with 4r(n)2 = γ2 (Rx0/(2π))p
∫ U
U/2 t

pλ(t)2dt/π.

Step 3. By (ii) page 97 in [50], we have χ2(P2,n,P1,n) = (1 + χ2 (P2,P1))n − 1 so

χ2(P2,n,P1,n) = n

∫ χ2(P2,P1)

0
(1 + u)n−1du ≤ nχ2 (P2,P1) exp ((n− 1)χ2 (P2,P1)) .

Thus, if χ2 (P2,P1) ≤ 1/n, we have χ2(P2,n,P1,n) ≤ enχ2 (P2,P1). Moreover, we have

χ2 (P2,P1) =

∫
SX

∫
R

fX(x)
(
f1
Y |X(y|x)− f2

Y |X(y|x)
)2

f1
Y |X(y|x)

dxdy

and, for all (y,x) ∈ R× SX such that x1 6= 0,

f1
Y |X(y|x) =

1

πτ(2R)p/2 |x1|

∫
Rp

∏p
k=1 1l{|uk| ≤ |xk|R}((
y −

∑p
k=1 uk

)
/τ
)2

+ 1
du ≥ (2R)p/2

πτ
inf

|u|≤|x|1R

1

((y − u)/τ)2 + 1
.

This yields, using SX = [−x0, x0]p and Parseval’s identity,

χ2 (P2,P1) ≤ πτCX
(2R)p/2

∫
[−x0,x0]p

∫
R

(
2y2

τ2
+

2(|x|1R)2

τ2
+ 1

)(
f1
Y |X(y|x)− f2

Y |X(y|x)
)2
dxdy

=
CXx

p
0γ

2

τ(2R)p/2

∫
[−1,1]p

∫
R

(
|∂tF [F ] (t, x0tx)|2 +

(
(x0pR)2 +

τ2

2

)
|F [F ] (t, x0tx)|2

)
dxdt.

By lemmas B.12 and B.4, we have χ2 (P2,P1) ≤ C18(U, x0, R, τ)γ2N2 exp (−2kqN ln (4N/(eRx0U))),

C18(U, x0, R, τ) :=
CX
τ

(
R3/2x0Ue

3

9
√

2

)p(
C17(Rx0U, p, U) + U

2(x0pR)2 + τ2

2N(Rx0U)2

)(
eRx0U

4N(Rx0U)

) 2(p−1)N(Rx0U)
q

.

As a result, (iii) is satisfied if

(A.17) nγ2N2 exp

(
−2kqN ln

(
4N

eRx0U

))
≤ ξ2

eC18(U, x0, R, τ)
.

Step 4. We take U = 4/(eRx0), N = 2 dNe+ 1 for N going to infinity with n, and τ such that∫ ∞
0

φ(t)2e−2τtdt
∨ C12(σ, p)

2τp2σ/q
≤ πl2

4
.
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Thus N(Rx0U) is universal and N ≥ N(Rx0U) and N ≤ (9/2)N for n large enough. (A.10),
(A.13)-(A.14) (by the pigeonhole principle), and (A.17) hold for n large enough if

γN2+kq/2 ≤ 1

(τ + 1/τ) (9/2)1+(p+kq)/2C8(4/e, p, U)U
,(A.18)

γNσ ≤ l

2pσ/q(9/2)2σ

√
π(p+ 1)

U

(eπ
2

)p/2
, γ ≤ l

φ(U)

√
π(p+ 1)

U

(eπ
2

)p/2
(A.19)

nγ2N2 exp (−4kqN ln (N)) ≤ ξ2

(9/2)2eC18(U, x0, R, τ)
,(A.20)

and γ goes to 0 with n. By taking γ = CγN
−(2+kq/2)∨σ/

(
(C8(4/e, p, U)U) ∧

√
U
)

for a small

enough Cγ depending on l, φ, σ, p, and q, (A.18)-(A.19) hold because Rx0, hence U is fixed.
Then, with N = 3 ln(n)/ (8kq ln2(n)), (A.20) becomes

C2
γ√
n

exp

(
3 ln(n) ln(8kq ln2(n)/3)

4 ln2(n)
−
((

2 +
kq
2

)
∨ σ − 1

)
ln

(
3 ln(n)

8kq ln2(n)

))
≤ ξ2 (C8(4/e, p, U)U)2 ∧ U

8eC18(U, x0, R, τ)

which holds for n large enough and r(n)2 = N−2((2+kq/2)∨σ)C2
γ (Rx0/(2π))p

∫ U
U/2 t

pλ(t)2dt/(4π).�

All other steps 2 are the same as for (T1.1a).

Proof of (T1.2a). Denote by E := L2(R) × L2(R). Equip E with 〈g,h〉2E = 〈g1,h1〉2L2(R) +

〈g2,h2〉2L2(R). Denote by Pmj,n the law of
((

R
(
Zjm(t)

))
t∈R

,
(
I
(
Zjm(t)

))
t∈R

)
in E and by

Pj,n the law on `2 (E) of the sequence indexed by m ∈ Np0. The latter can be defined as

a function of fj,n or
(
bjm(t)

)
m∈Np0, t∈R

, for j = 1, 2. Take f1,n := 0 and f2,n like (A.6)

with Ñ(1) := (N,0>)> ∈ Np0. (A.15) yields, for all m ∈ Np0, b2m(t) = i−|m|1γ1l{m =

Ñ(q)} (Rx0 |t| /2π)p/2 λ(t). By independence, we have, for j = 1, 2, Pj,n =
⊗
m∈Np0

Pmj,n.

Step 1. Using (A.11) and (A.12), we have f2,n ∈ L2
(
w ⊗ cosh (·/R)⊗p

)
and f2,n ∈ Hq,φ,ωw,W (l) if(

Rx0U

2π

)p 2Uγ2

p+ 1
(φ(U) ∨Nσ)2 ≤ πl2.(A.21)

Step 3. Let ξ <
√

2, GW
Ñ(q)

=
(
R
(
σW,x0·
Ñ(q)

b2
Ñ(q)

(·)
)
, I
(
σW,x0·
Ñ(q)

b2
Ñ(q)

(·)
))>

, Q the covariance

operator of PÑ(q)
1,n on E, and, for all h ∈ E, L[h] := (σ/

√
n)
(∫ ·

0 h1(s)ds,
∫ ·

0 h2(s)ds
)>

. The

reproducing kernel Hilbert space H
PÑ(q)

1,n

of PÑ(q)
1,n on E is the image of Q1/2 with the scalar

product of the image structure. By Corollary B.3 in [17] and Q = LL∗, it is the image of L
with the norm ‖f‖2

PÑ(q)
1,n

= (n/σ2)
(
‖h1‖22 + ‖h2‖22

)
for f = L[h] and derived scalar product.

By (2.12) in [17], the scalar product is also defined when one function belongs to H
PÑ(q)

1,n

for
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PÑ(q)
1,n a.e. other function in E. By the Cameron-Martin formula (Proposition 2.26 in [17]),

dPÑ(q)
2,n

dPÑ(q)
1,n

(y) = exp

(〈
y,

√
n

σ
L
[
GW
Ñ(q)

]〉
PÑ(q)

1,n

− 1

2

∣∣∣∣√nσ L [GWÑ(q)

]∣∣∣∣2
PÑ(q)

1,n

)
PÑ(q)

1,n a.s.,

and, because K(P2,n,P1,n) =
∫
E ln

(
dPÑ(q)

2,n /dPÑ(q)
1,n (y)

)
dPÑ(q)

2,n (y), we have

K(P2,n,P1,n) = E

[〈
Z2
Ñ(q)

,

√
n

σ
L
[
GW
Ñ(q)

]〉
PÑ(q)

1,n

]
− n

2σ2

∫
R

∣∣∣σW,x0s

Ñ(q)
b2
Ñ(q)

(s)
∣∣∣2 ds.

Because〈
Z2
Ñ(q)

,

√
n

σ
L
[
GW
Ñ(q)

]〉
PÑ(q)

1,n

=

∣∣∣∣√nσ L [GWÑ(q)

]∣∣∣∣2
PÑ(q)

1,n

+

〈(
BR
Ñ(q)

BI
Ñ(q)

)
,L
[
GW
Ñ(q)

]〉
PÑ(q)

1,n

,

and the second term in the right-hand side is a limit in quadratic mean of mean zero Gaussian
random variables, hence has mean zero (see the arguments page 41 in [17]), we have

K(P2,n,P1,n) =
n

2σ2

∫
R

∣∣∣σW,x0t

Ñ(q)
b2
Ñ(q)

(t)
∣∣∣2 dt.(A.22)

By Proposition B.1 (ii), we haveK(P2,n,P1,n) = γ2nRp
∫
R

(
σcosh,Rx0t

Ñ(q)

)2
(Rx0 |t| /(2π))p λ(t)2dt/(2σ2) =

γ2nRp
∫
R ρ

cosh,Rx0t

Ñ(q)
λ(t)2dt/(2σ2) and, by Theorem 3 in [23] (there is difference of normalisa-

tion for Qt by a factor 1/(2π)), for all U/2 ≤ |t| ≤ U and 2/(Rx0U) ≥ 1, ρcosh,Rx0t

Ñ(q)
≤(

2Rx0Ue/
(
π(1− (Rx0U/2)2)

))p
exp (2kqN ln (Rx0U/2)) . Thus Lemma A.1 (iii) holds if

(A.23) nγ2 exp

(
−2kqN ln

(
2

Rx0U

))
≤ ξ2

(
π(1− (Rx0U/2)2)

2R2x0Ue

)p
2σ2

U
.

Step 4. Let U = 2/(eRx0), N = dNe, γ = Cγξσ
√
eRx0

(
π
(
1− e−2

)
/(4R)

)p/2
/Nσ∨σ for σ >

1/2 and Cγ = l
(
8eR/

(
1− e−2

))p/2√
(p+ 1)eπRx0/

(
2σ+1ξσ

√
eRx0

)
, andN = ln(n/ ln(n))/(2kq).

(A.23) holds if nC2
γ exp (−2kqN − 2 (σ ∨ σ) ln (N)) = C2

γ(2kq)
2(σ∨σ) ln(n)1−2(σ∨σ) ln2(n)2(σ∨σ) ≤

1, so (A.21) and (A.23) hold for n large enough. �

The proof of theorems (T1.1b) and (T1.2b) are similar and postponed to Section B.2.

A.3. Upper bounds. We use, for all ε > 0, N ∈ NR
0 , N0 ∈ N0, T > 0, F̃ q,N,T,01 and f̃ q,N,T,εα,β

which are defined like F̂ q,N,T,01 and f̂ q,N,T,εα,β replacing ĉm by c̃m and F̂ q,N,T,01 by F̃ q,N,T,01 , Zn0 :=

supfX|X∈E
∥∥∆ffX|X

∥∥2

L∞(X )
, K1 :=

∥∥∥1l {ε ≤ |?|}
(
F̂ q,N,T,01 −F1st [fα,β]

)
(?, ·2)

∥∥∥2

L2(1⊗W⊗p)
, K2 :=



21∥∥∥1l {|?| < ε}
(
Ia,ε

[
F̂ q,N,T,01

]
−F1st [fα,β]

)
(?, ·2)

∥∥∥2

L2(1⊗W⊗p)
, ∆f := 1/f̂ δX|X − 1/fX|X ,

c̃m :=
n∑
j=1

ei?YjgW,x0?
m (Xj/x0) 1l{Xj ∈ X}

nxp0fX|X (Xj)
, ω̃q,W,cN(?) := sup

|m|q≤N(?)

1

ρW,cm

, L := (2π)p ‖F1st [fα,β] (?, ·2)‖2L2(Rp) ,

R1(?, ·2) := 1l{ε ≤ | ? |}
(
F̃ q,N,T,01 − F q,N,T,01

)
(?, ·2), R2(?, ·2) := 1l{ε ≤ | ? |}

(
F̂ q,N,T,01 − F̃ q,N,T,01

)
(?, ·2),

R3(?, ·2) := 1l{ε ≤ | ? |}
(
F q,N,T,01 − F q,∞,T,01

)
(?, ·2), R4(?, ·2) := 1l{ε ≤ | ? |}

(
F q,∞,T,01 −F1st [fα,β]

)
(?, ·2)

SN0 (?, ·2) :=
∑

|m|q≤N(?)

gW,x0?
m (·2)∆m(?), Zm,?

j :=
ei?Yj

xp0
∆f (Xj)g

W,x0?
m

(
Xj

x0

)
1l{Xj ∈ X},

∆m :=
1

n

n∑
j=1

Zm,?
j , RWn0,sup := sup

fα,β∈Hq,φ,ωw,W (l,M)∩D, fX|X∈E
RWn0

(
f̂ q,N,T,εα,β , fα,β

)
,

SN1 (?, ·2) :=
∑

|m|q≤N(?)

gW,x0?
m (·2)E [∆m(?)] , SN2 (?, ·2) :=

∑
|m|q≤N(?)

gW,x0?
m (·2) (∆m(?)− E [∆m(?)]) ,

∆W
0 (?,N0, n, z) :=

2

π(2π)p

(
cX | ? |p

n
νWq (x0?,N0) + z

(
L(?) +

cX(N0 + 1)p |?|p

n

)
ω̃q,W,x0?
N0

)
.

Lemma A.2. For allm ∈ Np0, we have E [c̃m(t)] = cm(t) and E
[
|c̃m(t)− cm(t)|2

]
≤ cX/(nxp0).

Proof. This comes from

E [c̃m(t)] =
1

xp0
E
[

eitY

fX|X (X)
gW,x0t
m

(
X

x0

)
1l{X ∈ X}

]
=

1

xp0

∫
X
E
[
eitα+itβ>x

]
gW,x0t
m

(
x

x0

)
dx,

E
[
|c̃m(t)− cm(t)|2

]
≤ 1

nx2p
0

E

[∣∣∣∣ eitY

fX|X (X)
gW,x0t
m

(
X

x0

)∣∣∣∣2
∣∣∣∣∣X ∈ X

]

≤ 1

nx2p
0

∫
X

1

fX|X (x)

∣∣∣∣gW,x0t
m

(
x

x0

)∣∣∣∣2 dx ≤ cX
nxp0

∫
[−1,1]p

∣∣∣gW,x0t
m (u)

∣∣∣2 du. �

Lemma A.3. If f̂X|X satisfies (H1.4) then Zn0 = Op (v(n0, E)/δ(n0)).

Proof. For all n0 sufficiently large so that
√
δ(n0)cX ≤ 1, we have, for all x ∈ X ,∣∣∣(f̂ δX|X − fX|X) (x)

∣∣∣ ≤ ∣∣∣(f̂X|X − fX|X) (x)
∣∣∣ 1l{f̂X|X (x) ≥

√
δ(n0)

}
+
∣∣∣√δ(n0)− fX|X (x)

∣∣∣ 1l{f̂X|X (x)− fX|X (x) <
√
δ(n0)− fX|X (x)

}
≤
∣∣∣(f̂X|X − fX|X) (x)

∣∣∣ ,
hence δ(n0)Zn0 ≤ supfX|X∈E

∥∥∥f̂X|X − fX|X∥∥∥2

L∞(X )
. We conclude by (H1.4). �
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In the remaining, E is a class of densities, fX|X ∈ E , η, l,M > 0, and fα,β ∈ Hq,φ,ωw,W (l,M)∩D.

By Lemma A.3, there exists ME,η such that, for all n0 ∈ N, P (E (Gn0 , E , η)) ≥ 1 − η, where
E (Gn0 , E , η) := {Zn0 ≤ME,ηv(n0, E)/δ(n0)}. We work on E (Gn0 , E , η).

Proof of theorems 2 and 3. The Plancherel and Chasles identities yield
∥∥∥f̂ q,N,T,εα,β − fα,β

∥∥∥2

L2(1⊗W⊗p)
≤

(K1 + K2)/(2π). By the Jensen inequality, we have K1 ≤ 4
∑4

j=1 ‖Rj‖
2
L2(1⊗W⊗p) and, using

(10) for the first display and Lemma B.1 for the second,

K1 +K2 ≤K1 +

∫
Rp

2(1 + C0(aε))
∥∥F1st [fα,β] (?, b)− Pa [F1st [fα,β] (·, b)] (?)

∥∥2

L2(R)
W⊗p(b)db

+

∫
Rp

2C0(aε)
∥∥∥1l {|?| ≥ ε}

(
F̂ q,N,T,01 −F1st [fα,β]

)
(?, b)

∥∥∥2

L2(R)
W⊗p(b)db

≤K1 + 4π(1 + C0(aε))w̃(a)

∫
Rp
‖fα,β(·, b)‖2L2(w)W

⊗p(b)db+ 2C0(aε)K1

≤(1 + 2C0(aε))K1 + 4π(1 + C0(aε))M2w̃(a) ≤ C
(
K1 + 2πM2w̃(a)

)
.(A.24)

Using successively Proposition 2 and lemmas A.2 and B.2, we have

E
[
‖R1‖2L2(1⊗W⊗p)

]
=

∫
ε≤|t|≤T

∑
|m|q≤N(t)

E
[
|c̃m(t)− cm(t)|2

]
(
σW,x0t
m

)2 dt(A.25)

≤ cX
(2π)pn

∫
ε≤|t|≤T

|t|p νWq (x0t,N(t))dt,(A.26)

also

‖R2‖2L2(1⊗W⊗p) ≤
∫
ε≤|t|≤T

(
x0|t|
2π

)p
ω̃q,W,x0t
N(t)

∥∥SN0 (t, ·2)
∥∥2

L2([−1,1]p)
dt,

E
[∥∥SN0 (t, ·2)

∥∥2

L2([−1,1]p)

]
=
∥∥SN1 (t, ·2)

∥∥2

L2([−1,1]p)
+ E

[∥∥SN2 (t, ·2)
∥∥2

L2([−1,1]p)

]
,

∥∥SN1 (t, ·2)
∥∥2

L2([−1,1]p)
=

∥∥∥∥∥∥
∑

|m|q≤N(t)

gW,x0t
m

〈
F
[
fY |X=x0·2

]
(t)
(
∆ffX|X

)
(x0·2) , gW,x0t

m

〉
L2([−1,1]p)

∥∥∥∥∥∥
2

L2([−1,1]p)

≤
∥∥F [fY |X=x0·2

]
(t)
(
∆ffX|X

)
(x0·2)

∥∥2

L2([−1,1]p)

≤ Zn0 ‖F [fα,β] (t, x0t·2)‖2L2([−1,1]p) ≤ Zn0

(
2π

x0|t|

)p
‖F1st [fα,β] (t, ·2)‖2L2(Rp) ,(A.27)

and, by independence and
∑
|m|q≤N

1 =
(
N+p
p

)
1l{q = 1}+ (N + 1)p1l{q =∞} ≤ (N + 1)p,

E
[∥∥SN2 (t, ·2)

∥∥2

L2([−1,1]p)

]
=

∑
|m|q≤N(t)

1

n
E
[∣∣∣Zm,t

j − E
[
Zm,t
j

]∣∣∣2]
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≤
∑

|m|q≤N(t)

Zn0

nx2p
0

∫
X

1

fX|X (x)

∣∣∣∣gW,x0t
m

(
x

x0

)∣∣∣∣2 dx ≤ (N(t) + 1)pcXZn0

nxp0
.(A.28)

Collecting (A.27) and (A.28), we obtain

E
[
‖R2‖2L2(1⊗W⊗p)

]
≤ Zn0

(2π)p

∫
ε≤|t|≤T

(
L(t) +

cX(N(t) + 1)p |t|p

n

)
ω̃q,W,x0t
N(t) dt.(A.29)

By Lemma B.3 and Proposition 2, we have

‖R3‖2L2(1⊗W⊗p) ≤
∫
R

∑
k>N(t)

∑
|m|q=k

|bm(t)|2 dt ≤
∫
R

∑
k>N(t)

ω2
kθ

2
q,k(t)

ω2
N(t)+1

dt ≤ sup
t∈R

2πl2

ω2
N(t)+1

(A.30)

and, by Proposition 2,

‖R4‖2L2(1⊗W⊗p) ≤
∑
k∈N0

∫
|t|≥T

∑
|m|q=k

|bm(t)|2 dt ≤
∑
k∈N0

∫
R

φ2(|t|)
φ2(T )

θ2
q,k(t)dt ≤

2πl2

φ2(T )
.(A.31)

Thus, we have

RWn0,sup ≤ C

(∫
ε≤|t|≤T

∆W
0 (t,N, n, Zn0)dt+ 4l2

(
sup
t∈R

1

ω2
N(t)+1

+
1

φ(T )2

)
+M2w̃(a)

)
.(A.32)

The remaining of the proof is in Section B.2. It particularises (A.32) to the different smoothness.

A.4. Data-driven choice of the parameters. Let Nn be the set of functions N ∈ NR
0 such

that, for all t ∈ R \ (−ε, ε), N(t) ∈ {0, . . . , NW
max,q}, ∆m := ĉm − c̃m, and ∆̃m := c̃m − cm,

Ξ (t,N) :=
∑
|m|q>N

∣∣∣∣ cm(t)

σW,x0t
m

∣∣∣∣2 , S1 (t,N) :=
∑
|m|q≤N

∣∣∣∣E [∆m(t)]

σW,x0t
m

∣∣∣∣2 ,
S2 (t,N) :=

∑
|m|q≤N

∣∣∣∣∆m(t)− E [∆m(t)]

σW,x0t
m

∣∣∣∣2 , S3 (t,N) :=
∑
|m|q≤N

∣∣∣∣∣∆̃m(t)

σW,x0t
m

∣∣∣∣∣
2

,

Kn(t) := HW (t)

(
NW

max,q +
1

2

)p
, L :=

1

42

√
2xp0
cX

,

Ψ0,n(t) := exp
(
−pn

6

)
+

294cXK
2
n(t)

xp0n
exp

(
−
L
√
pnn

Kn(t)

)
,

B̃
(
N̂
)

:= E

 sup
T ′∈Tn

∫
ε≤|t|≤T ′

S3

(
t, N̂(t)

)
−

Σ
(
t, N̂(t)

)
2(2 +

√
5)


+

dt

 ,
Π(n,Zn0 , Tmax, N

W
max,q) := Zn0

∫
ε≤|t|≤Tmax

Ψn(t)dt+ Π1

(
n, Tmax, N

W
max,q

)
,
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Π1(n, Tmax, N
W
max,q) :=

96
(
1 + 2

√
5
)
cXKmax

(2π)pn

∫ Tmax

ε

(
NW

max,q + 1
)
tpνWq

(
x0t,N

W
max,q

)
Ψ0,n(t)dt,

Ψn :=

(
2 +

1√
5

)((
2π

x0 |?|

)p
ω̃q,W,x0t
NW

max,q
‖F1st [fα,β] (?, ·2)‖2L2(Rp) +

(
|?|
2π

)p cXνWq (x0?,N
W
max,q

)
n

)
,

∆̃W
0 (?,N, n, z) :=

cX | ? |p

n
(1 + 2(1 + 2pn)(1 + c1)) νWq (x0?,N) + z

(
L(?) +

cX(N + 1)p |?|p

n

)
ω̃q,W,x0?
N ,

where HW (t) is defined in Proposition B.2. For all t ∈ [−T, T ]\ [−ε, ε] and N ∈ N0, using (A.2)
with c =

√
5, we have

LWq (t,N) ≤ Ξ(t,N) +

(
1 +

2√
5

)
(S1(t,N) + S2(t,N)) + (1 + 2

√
5)S3(t,N).(A.33)

Lemma A.4. For all q ∈ {1,∞}, 0 < ε < 1 < T < Tmax = 2Kmax , t ∈ [−T, T ] \ (−ε, ε), and
N ∈ {0, . . . , NW

max,q}, we have

E
[
S1

(
t, N̂(t)

)]
≤ Zn0

(
2π

x0|t|

)p
ω̃q,W,x0t
NW

max,q
‖F1st [fα,β] (t, ·2)‖2L2(Rp) ,(A.34)

E
[
S2

(
t, N̂(t)

)]
≤ Zn0

cX
n

(
|t|
2π

)p
νWq (x0t,N

W
max,q),(A.35)

E

[(
S3(t,N)− Σ(t,N)

2(2 +
√

5)

)
+

]
≤ 48

cX
n

(
|t|
2π

)p
νWq (x0t,N)Ψ0,n(t).(A.36)

Proof. Let the parameters in the for all statement be given. (A.34) follows from

S1

(
t, N̂(t)

)
≤ ω̃q,W,x0t

N̂(t)

∥∥F [fY |X=x0·
]

(t)
(
∆ffX|X

)
(x0·)

∥∥2

L2([−1,1]p)

≤ Zn0

(
2π

x0|t|

)p
ω̃q,W,x0t
NW

max,q
‖F1st [fα,β] (t, ·2)‖2L2(Rp) (by (A.27)).

By Lemma B.2,
∑
|m|q≤N

(
σW,x0t
m

)−2
≤ |x0t|pνWq (x0t,N)/(2π)p, so we obtain (A.35) by the

following sequence of inequalities, which uses (A.28) for the second display,

E
[
S2

(
t, N̂(t)

)]
≤

∑
|m|q≤NW

max,q

E
[
|∆m(t)− E [∆m(t)]|2

]
(
σW,x0t
m

)2 ≤
cXZn0 |t|pνWq

(
x0t,N

W
max,q

)
(2π)pn

.

To prove (A.36), we use

S3(t,N) =

∫
Rp

∣∣∣F̃ q,N,T,01 (t, b)− F q,N,T,01 (t, b)
∣∣∣2W⊗p(b)db = sup

u∈U

∣∣νtn(u)
∣∣2 ,

νtn(u) :=
〈
F̃ q,N,T,01 (t, ·2)− F q,N,T,01 (t, ·2), u(·)

〉
L2(W⊗p)

=
1

n

n∑
j=1

(
f tu(Yj , Xj)− E

[
f tu(Yj , Xj)

])
,
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f tu(?, ·) := 1l {· ∈ X} eit?

xp0fX|X (·)

∫
Rp

∑
|m|q≤N

gW,x0t
m

(
·
x0

)
1

σW,x0t
m

ϕW,x0t
m (b)u(b)W⊗p(b)db,

and U is a countable dense set of measurable functions of
{
u : ‖u‖L2(W⊗p) = 1

}
and check the

conditions of the Talagrand inequality given in Lemma B.15 with η = pn and Λ(pn) = 1. For
all u ∈ U , the Cauchy-Schwarz inequality yield

∥∥f tu∥∥L∞(R×X )
≤ cX

(
|t|

2πx0

)p/2 ∥∥∥∥∥∥∥∥
 ∑
|m|q≤N

∣∣∣gW,x0t
m (·/x0)

∣∣∣2
ρW,x0t
m

∫
Rp

∣∣ϕW,x0t
m (b)

∣∣2W⊗p(b)db


1/2
∥∥∥∥∥∥∥∥
L∞(X )

≤ cXKn(t)

(
|t|

2πx0

)p/2√
νWq (x0t,N).

By the Cauchy-Schwarz inequality and the computation leading to (A.26), we have

E
[
sup
u∈U

∣∣νtn(u)
∣∣]2

≤ E
[
sup
u∈U

∣∣νtn(u)
∣∣2] ≤ E

[∥∥∥F̃ q,N,T,01 (t, ·2)− F q,N,T,01 (t, ·2)
∥∥∥2

L2(W⊗p)

]
≤ cX

n

(
|t|
2π

)p
νWq (x0t,N) =

Σ(t,N)

8(2 +
√

5)(1 + 2pn)
.

Finally, by the Cauchy-Schwarz inequality and Proposition B.2 for the second display and
Lemma B.2 for the third display, we have

Var
(
R(f tu(Yj , Xj))

)
∨Var

(
I(f tu(Yj , Xj))

)
≤
∫
R×X

∣∣f tu(y,x)
∣∣2 fY,X(y,x)dydx

≤ cX
(
|t|
2π

)p
νWq (x0t,N). �

Lemma A.5. For all ε > 0, q ∈ {1,∞}, and T ∈ Tn, we have

RWn0

(
f̂ q,N̂ ,T̂ ,εα,β , fα,β

)
≤
C
(
2 +
√

5
)2

2π

∫
ε≤|t|≤T

E
[
LWq

(
t, N̂(t), T

)]
+

1

2 +
√

5
E
[
Σ
(
t, N̂(t)

)]
dt

+
C2(2 +

√
5)2

π
Π(n,Zn0 , Tmax, N

W
max,q) + CM2w̃(a).

Proof. Let ε > 0, q ∈ {1,∞}, and T ∈ Tn. Start from (19). Using, for all T1, T2 ≥ ε, RT2
T1

:=

1l {ε ≤ |?|}
(
F̂ q,N̂ ,T1,0

1 − F̂ q,N̂ ,T2∨T1,0
1

)
(?, ·2) andRT1 := 1l {ε ≤ |?|}

(
F̂ q,N̂ ,T1,0

1 −F1st [fα,β]
)

(?, ·2),

we have RT̂ = RT
T̂
−RT̂T +RT and

∥∥∥RT̂∥∥∥2

L2(W⊗p)
= 1l {ε ≤ |?|} LWq

(
?, N̂(?), T̂

)
. Because

(A.37) B2

(
T1, N̂

)
= max

T ′∈Tn

(∫
T1≤|t|≤T1∨T ′

∥∥∥RT ′T1
(t, ·2)

∥∥∥2

L2(W⊗p)
− Σ

(
t, N̂(t)

)
dt

)
+

,
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we have E
[∥∥∥RT2

T1

∥∥∥2

L2(1⊗W⊗p)

]
≤ E

[
B2

(
T1, N̂

)]
+ E

[
Σ2

(
T2, N̂

)]
for possibly random T1 and

T2. By (A.2) with c =
√

5 and (17), we have

E
[∥∥∥RT̂∥∥∥2

L2(1⊗W⊗p)

]
≤ 2(2 +

√
5)
(
E
[
B2

(
T, N̂

)]
+ E

[
Σ2

(
T, N̂

)])
+

(
1 +

2√
5

)
E
[∥∥RT∥∥2

L2(1⊗W⊗p)

]
.

Using, for all T ′ ∈ Tn, RT
′

T,1 := F̂ q,N̂ ,T∨T
′,0

1 − F q,N̂ ,T∨T
′,0

1 , RT
′

T,2 := F q,N̂ ,T,01 − F̂ q,N̂ ,T,01 , and

RT
′

T,3 := F q,N̂ ,T∨T
′,0

1 − F q,N̂ ,T,01 , by (A.2), the objective function in (A.37) is smaller than∫
T≤|t|≤T∨T ′

(2 +
√

5)
2∑
j=1

∥∥∥RT ′T,j(t, ·2)
∥∥∥2

L2(W⊗p)
+

(
1 +

2√
5

)∥∥∥RT ′T,3(t, ·2)
∥∥∥2

L2(W⊗p)
− Σ

(
t, N̂(t)

)
+

dt.

Using that F q,∞,∞,01 = F1st [fα,β], we have, for all t ∈ R \ (−ε, ε),∥∥∥RT ′T,3(t, ·2)
∥∥∥2

L2(W⊗p)
= 1l{T ≤ |t| ≤ T ∨ T ′}

∑
0≤|m|q≤N̂

∣∣∣∣ cm(t)

σW,x0t
m

∣∣∣∣2 ≤ ∥∥∥(F q,N̂ ,T,01 −F1st [fα,β]
)

(t, ·2)
∥∥∥2

L2(W⊗p)
,

hence

B2

(
T, N̂

)
≤ max

T ′∈Tn

∫
T≤|t|≤T ′

(
2(2 +

√
5)
∥∥∥(F̂ q,N̂ ,T ′,01 − F q,N̂ ,T

′,0
1

)
(t, ·2)

∥∥∥2

L2(W⊗p)
− Σ

(
t, N̂(t)

))
+

dt

+

(
1 +

2√
5

)∫
ε≤|t|

∥∥RT (t, ·2)
∥∥2

L2(W⊗p)
dt.

Finally, we have

E
[∥∥∥RT̂∥∥∥2

L2(1⊗W⊗p)

]
≤ 2(2 +

√
5)E

[
Σ2

(
T, N̂

)]
+ (5 + 2

√
5)

(
1 +

2√
5

)
E
[∥∥RT∥∥2

L2(1⊗W⊗p)

]
+ 4(2 +

√
5)2E

max
T ′∈Tn

∫
T≤|t|≤T ′

∥∥∥(F̂ q,N̂ ,T ′,01 − F q,N̂ ,T
′,0

1

)
(t, ·2)

∥∥∥2

L2(W⊗p)
−

Σ
(
t, N̂(t)

)
2(2 +

√
5)


+

 .
Using (A.33) and Lemma A.4, we have

E

max
T ′∈Tn

∫
T≤|t|≤T ′

∥∥∥(F̂ q,N̂ ,T ′,01 − F q,N̂ ,T
′,0

1

)
(t, ·2)

∥∥∥2

L2(W⊗p)
−

Σ
(
t, N̂(t)

)
2(2 +

√
5)


+

dt


≤ E

max
T ′∈Tn

∫
ε≤|t|≤T ′

 ∑
|m|q≤N̂(t)

(
|ĉm(t)− cm(t)|

σW,x0t
m

)2

−
Σ
(
t, N̂(t)

)
2(2 +

√
5)


+

dt


≤
(

1 + 2
√

5
)
B̃
(
N̂
)

+ Zn0

∫
ε≤|t|≤Tmax

Ψn(t)dt.
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Considering the first term of the last inequality and using (A.36) for the second display yields

B̃
(
N̂
)
≤ E

 ∑
T ′∈Tn

∫
ε≤|t|≤T ′

S3

(
t, N̂(t)

)
−

Σ
(
t, N̂(t)

)
2(2 +

√
5)


+

dt


≤
∑
T ′∈Tn

∫ T ′

ε

∑
0≤N≤NW

max,q

96
cX
n

(
t

2π

)p
νWq (x0t,N)Ψ0,n(t)dt

≤ 96cXKmax

(2π)pn

∫ Tmax

ε

(
NW

max,q + 1
)
tpνWq

(
x0t,N

W
max,q

)
Ψ0,n(t)dt. �

Lemma A.6. For all ε > 0, q ∈ {1,∞}, and (T,N) ∈ Tn ×Nn,∫
ε≤|t|≤T

E
[
LWq

(
t, N̂(t), T

)]
+

1

2 +
√

5
E
[
Σ
(
T, N̂(t)

)]
dt

≤
(

2 +
√

5
)2
(∫

ε≤|t|≤T
E
[
LWq (t,N(t), T )

]
+

1 + c1

2 +
√

5
E [Σ(t,N(t))] dt+ 4Π(n,Zn0 , Tmax, N

W
max,q)

)
.

The proof of Lemma A.6 is similar to that of Lemma A.5 and postponed to Section B.2.

Proof of Theorem 4. Let n, n0 such that v(n0, E)/δ(n0) ≤ n−2 ln(n)−p, T ∈ Tn, and N ∈ Nn.
By Lemma A.5 and Lemma A.6, we have

RWn0

(
f̂ q,N̂ ,T̂ ,εα,β , fα,β

)
≤
C
(
2 +
√

5
)4

2π

∫
ε≤|t|≤T

E
[
LWq (t,N(t), T )

]
+

1 + c1

2 +
√

5
E [Σ(t,N(t))] dt

+
2(2 +

√
5)2C

(
1 +

(
2 +
√

5
)2)

π
Π(n,Zn0 , Tmax, Nmax,q) + CM2w̃(a).

The definition of Σ, (A.26), (A.29), (A.30), (A.31), and Lemma B.14 yield

RWn0

(
f̂ q,N̂ ,T̂ ,εα,β , fα,β

)
≤
C2
(
2 +
√

5
)4

π(2π)p

∫
ε≤|t|≤T

∆̃W
0 (t,N(t), n, Zn0)dt+ sup

t∈[−T,T ]

8πl2

ω2
N(t)+1

+
8πl2

φ(T )2

+ CM2w̃(a) +
2(2 +

√
5)2C

(
1 +

(
2 +
√

5
)2)

(A0 +A1)

πn
.(A.38)

The rest of the proof considers the different smoothness and is given in Section B.2.

References

[1] M. Abramowitz and I. Stegun. Handbook of mathematical functions: with formulas, graphs, and mathemat-
ical tables. Dover Publications, 1965.

[2] N. Alibaud, P. Maréchal, and Y. Saesor. A variational approach to the inversion of truncated Fourier
operators. Inverse Probl., 25:045002, 2009.

[3] R. Beran. Prediction in random coefficient regression. J. Stat. Plan. Infer., 43:205–213, 1995.
[4] R. Beran, A. Feuerverger, and P. Hall. On nonparametric estimation of intercept and slope distributions in

random coefficient regression. Ann. Stat., 24:2569–2592, 1996.



28 GAILLAC AND GAUTIER

[5] M. Bertero and P. Boccacci. Introduction to inverse problems in imaging. CRC press, 1998.
[6] A. Bonami, P. Jaming, and A. Karoui. Non-asymptotic behaviour of the spectrum of the sinc kernel operator

and related applications. 2018. Preprint hal-01756828.
[7] A. Bonami and A. Karoui. Spectral decay of the sinc kernel operator and approximations by Prolate

Spheroidal Wave Functions. 2014. Preprint arXiv:1012.3881.
[8] A. Bonami and A. Karoui. Uniform approximation and explicit estimates for the prolate spheroidal wave

functions. Constr. Approx., 43:15–45, 2016.
[9] C. Breunig and S. Hoderlein. Specification testing in random coefficient models. Quant. Econ., 9(3):1371–

1417, 2018.
[10] L. Cavalier. Efficient estimation of a density in a problem of tomography. Ann. Stat., 28:630–647, 2000.
[11] L. Cavalier. On the problem of local adaptive estimation in tomography. Bernoulli, 7:63–78, 2001.
[12] L. Cavalier, Y. Golubev, O. Lepski, and A. Tsybakov. Block thresholding and sharp adaptive estimation in

severely ill-posed inverse problems. Theory Probab. Appl., 48:426–446, 2004.
[13] X. Chen and M. Reiss. On rate optimality for ill-posed inverse problems in econometrics. Economet. Theor.,

27:497–521, 2011.
[14] F. Comte and V. Genon-Catalot. Regression function estimation as a partly inverse problem. Ann. Inst.

Statist. Math., pages 1–32, 2018.
[15] F. Comte, V. Genon-Catalot, and A. Samson. Nonparametric estimation for stochastic differential equations

with random effects. Stochastic Process. Appl., 123(7):2522–2551, 2013.
[16] F. Comte and C. Lacour. Deconvolution with estimated characteristic function of the errors. J. R. Stat.

Soc. Series B, 73:601–627, 2011.
[17] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, second ed. Cambridge, 2014.
[18] M. De Jeu. Subspaces with equal closure. Constr. Approx., 20:93–157, 2004.
[19] C. Dion. New adaptive strategies for nonparametric estimation in linear mixed models. J. Statist. Plann.

Inference, 150:30–48, 2014.
[20] F. Dunker, K. Eckle, K. Proksch, and J. Schmidt-Hieber. Tests for qualitative features in the random

coefficients model. 2017. Preprint arXiv:1704.01066.
[21] J. Frikel. Sparse regularization in limited angle tomography. Appl. Comput. Harmon. Anal., 34:117–141,

2013.
[22] W. Fuchs. On the eigenvalues of an integral equation arising in the theory of band-limited signals. J. Math.

Anal. Appl., 9:317–330, 1964.
[23] C. Gaillac and E. Gautier. Estimates for the SVD of the truncated fourier transform on L2 (cosh(b·)) and

stable analytic continuation. 2019. Preprint arXiv:1905.11338v3.
[24] C. Gaillac and E. Gautier. Identification in some random coefficients models when regressors have limited

variation. Working paper, 2019.
[25] E. Gautier and S. Hoderlein. A triangular treatment effect model with random coefficients in the selection

equation. 2015. Preprint arXiv:1109.0362v4.
[26] E. Gautier and Y. Kitamura. Nonparametric estimation in random coefficients binary choice models. Econo-

metrica, 81:581–607, 2013.
[27] E. Gautier and E. Le Pennec. Adaptive estimation in the nonparametric random coefficients binary choice

model by needlet thresholding. Electron. J. Statist., 12:277–320, 2018.
[28] W. Gautschi. Some elementary inequalities relating to the Gamma and incomplete Gamma function. J.

Math. Phys., 38:77–81, 1959.
[29] A. Goldenshluger and O. Lepski. On adaptive minimax density estimation on Rd. Probab. Theory Related

Fields, 159:479–543, 2014.
[30] J. Heckman and B. Singer. A method for minimizing the impact of distributional assumptions in econometric

models for duration data. Econometrica, 52:271–320, 1984.
[31] S. Hoderlein, H. Holzmann, and A. Meister. The triangular model with random coefficients. J. Econometrics,

201:144–169, 2017.

https://hal.archives-ouvertes.fr/hal-01756828/document
https://arxiv.org/pdf/1012.3881
https://arxiv.org/pdf/1704.01066
https://arxiv.org/abs/1905.11338
http://arxiv.org/pdf/1109.0362v4


29
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SUPPLEMENTAL APPENDIX

Appendix B.1. Harmonic analysis

B.1.1. Preliminaries. Pm is the Legendre polynomial of degree m with ‖Pm‖L2([−1,1]) = 1.

Lemma B.1. For all f ∈ L2
w(R), w even, nondecreasing on [0,∞), and w(0), R > 0, we have∥∥PR [F [f ]]−F [f ]

∥∥2

L2(R)
≤ (2π/w(R)) ‖f‖2L2(w) .

Proof. The result uses the Plancherel identity and∥∥PR [F [f ]]−F [f ]
∥∥2

L2(R)
= 2π

∫
R

1l{|a| > R} |f (a)|2 da ≤ 2π

w(R)

∫
R
|f (a)|2w(a)da. �

Proposition B.1. For all weighting function W , c ∈ R, R > 0, and m ∈ N0, we have

(i) g
W (·/R),c
m = gW,Rcm in L2([−1, 1]),

(ii) σ
W (·/R),c
m = σW,Rcm

√
R,

(iii) ϕ
W (·/R),c
m = ϕW,Rcm (?/R) /

√
R a.e.

Proof. (i) follows from QW (·/R)
c = QWRc and (ii) from σ

W (·/R),c
m =

√
2πρ

W (·/R),c
m / |c| =√

2πρW,Rcm / |c| (by the argument yielding (i)). Now, using (i) in the first display and (ii)

in the last display, we have, for a.e. t ∈ R,

σW,Rcm ϕW,Rcm

(
t

R

)
= F∗Rc

[
gW (·/R),c
m

]( t

R

)
(where F∗Rc : L2([−1, 1])→ L2(W ))

= F∗c
[
gW (·/R),c
m

]
(t)

(
where F∗c : L2([−1, 1])→ L2(W (·/R))

)
= σW (·/R),c

m ϕW (·/R),c
m (t) = σW,Rcm

√
RϕW (·/R),c

m (t),

hence (iii) when we divide by σW,Rcm which is nonzero. �

Proposition B.2. For all m ∈ Np0, R > 0, W = W[−R,R] or W = cosh(·/R), t 6= 0, we

have
∥∥∥gW,x0t
m

∥∥∥
L∞([−1,1]p)

≤ HW (t)
∏p
j=1

√
mj + 1/2, where HW[−R,R]

(t) = Hp
0

(
1 + (x0|t|)2

)p
,

H0 = 2(1 + 1/
√

3), Hcosh(·/R)(t) = Hp
1 (1 ∨ (x0|t|)4)p, H1 > 0.

Proof. When W = W[−R,R], this is (66) in [8] else this is Corollary 1 in [23]. �

Lemma B.2. For all q ∈ {1,∞}, t 6= 0, R > 0, N ∈ N0, in cases (N.1) and (N.2) of Section

5.3, we have
∑
|m|q≤N

1/ρW,tm ≤ νWq (t,N).

Proof. Let R > 0. We use repeatedly, for all x > 0 and N ∈ N0,∑
k≤N

exp (kx) ≤ exp ((N + 1/2)x)

2 sinh (x/2)
≤ exp ((N + 1/2)x)

x
(because sinh(|x|) ≥ |x|),(B.1)

≤ exp (Nx)

1− exp(−x)
,(B.2)
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the cardinal of {m ∈ Np0 : |m|1 = k} is
(
k+p−1
p−1

)
, and (k + p− 1)!/k! ≤ (k + p− 1)p−1, and for

all m ∈ N0, ρcosh,Rt
m = ρ

cosh(·/R),t
m and ρ

W[−1,1],Rt
m = ρ

W[−R,R],t
m .

Start by case (N.2). Let |t| > π/4 and q = 1. By (8) in [23] (there Qt differs by a factor
1/(2π)), we have, for all m ∈ N0,

ρcosh,t
m ≥ 1

2
exp

(
−π(m+ 1)

2 |t|

)
.(B.3)

The result is obtained from the above with (B.1) and∑
|m|1≤N

1

ρcosh,t
m

≤2p
∑
k≤N

∑
|m|1=k

exp

(
π(|m|1 + p)

2 |t|

)

≤2p+1(N + p− 1)p−1e |t|
π(p− 1)!

exp

(
π(N + p)

2 |t|

)
.(B.4)

Let |t| ≤ π/4 and q = 1. By Theorem 1 in [23], we have, for all m ∈ N0,

ρcosh,t
m ≥

(
2

eπ

)2

exp

(
−2 ln

(
7e2

4|t|

)
m

)
.(B.5)

The result is obtained from the above with (B.2) and∑
|m|1≤N

1

ρcosh,t
m

≤
(eπ

2

)2p ∑
k≤N

∑
|m|1=k

exp

(
2 ln

(
7e2

4|t|

)
|m|1

)

≤
(eπ

2

)2p (N + p− 1)p−1

(p− 1)!
exp

(
2 ln

(
7e2

4|t|

)
N

)
1

1− (π/(14e2))2 .(B.6)

The results for q =∞ are obtained using (B.4) and (B.6) with p = 1 and

∑
|m|∞≤N

1

ρcosh,t
m

≤
p∏
j=1

 N∑
mj=0

1

ρcosh,t
mj

 .(B.7)

Consider case (N.1). Let t 6= 0. Because 7e/π ≥ 1 and by Lemma B.5, we have, for all m ∈ N0,

ρ
W[−1,1],t
m ≥ 1

2

(
2 |t|

7e(m+ 1)

∧
1

)2m

.(B.8)

When q = 1, the result follows from the following sequence of inequalities∑
|m|1≤N

1

ρ
W[−1,1],t
m

≤2p
∑
k≤N

∑
|m|1=k

p∏
j=1

exp

(
2mj ln

(
7e(mj + 1)

2 |t|
∨

1

))

≤2p(N + p− 1)p−1(N + 1)

(p− 1)!
exp

(
2N ln

(
7e(N + 1)

2 |t|
∨

1

))
.

When q =∞, we obtain the result using the above with p = 1 and (B.7). �

The proof of the next lemma is straightforward.
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Lemma B.3. Let fα,β ∈ L2 (w ⊗W⊗p). For all m ∈ Np0, t 6= 0, we have cm = σW,x0t
m bm a.e.

B.1.2. Properties of the PSWF and eigenvalues.

Lemma B.4. For all c 6= 0 and m ∈ N0, we have |µcm| ≤
√

2πe3/2 (e |c| / (4(m+ 3/2)))m /3.

Proof. Let c 6= 0 and m ∈ N0. By (69) in [48], 6.1.18 in [1], (7) in [28], (1.3) in [43], we obtain

|µcm| ≤
√
π |c|m (m!)2

(2m)!Γ(m+ 3/2)

≤ π |c|m

4mΓ (m+ 3/2)

Γ(m+ 1)

Γ (m+ 1/2)

≤ π |c|m

4mΓ(m+ 3/2)
(m+ 1)1/2 ≤

√
πe3(e |c|)m(m+ 1)1/2

4m
√

2(m+ 3/2)m+1

and conclude using supx≥0(x+ 1)1/2/(x+ 3/2) ≤ 2/3. �

Lemma B.5. For all c 6= 0 and m ∈ N0, we have

ρ
W[−1,1],c
m ≥ 1

2

(
1l

{
m ≤ 2 |c|

π
− 1

}
+

2c

7e(m+ 1)
1l

{
m >

2 |c|
π
− 1

})2m

.

Proof. When m ≥ 2 |c| /π − 1, the result follows from the fact that, by Proposition 5.1 in

[6] and the Turán-Nazarov inequality (see [44] page 240), ρ
W[−1,1],c
m ≥ (2c/ (7e(m+ 1)))2m /2.

For all m ≤ 2 |c| /π − 1, the result follows from Remark 5.2 in [6] and that, for all m ∈ N0,
c ∈ (0,∞) 7→ ρcm is nondecreasing (by the arguments in the proof of Lemma 1 in [23]). �

We now use Π(c) := 3c2 exp
(
2c2/
√

3
)
/16, H(c) :=

√
2Π(c)∨2, l(c) :=

(
1 + 4c2/33/2

) (
1 + 2c233/2

)
,

if N ≥ H(c) then N ≥ c (for all c ≥ 2, N ≥ c
√

3 exp(8/
√

3)/16 > c else N ≥ H(c) ≥ 2 > c),

f(x) := |x|/(1− x2), g(x) := |x| /(1− x)2, h(x) := |x|/(1− |x|), cf := 4/3, cg := 4, ch := 2,

∀x ∈ [−1/2, 1/2], f(x) ≤ cf |x| , g(x) ≤ cg |x| , h(x) ≤ ch |x| ;(B.9)

2
∑

k≡N [2], 0<k<N

2k + 1 = N(N − 1).(B.10)

(B.10) is obtained because for allN even the sum is 2
∑N/2−1

p=1 4p+1 and else 2
∑(N−1)/2−1

p=0 4p+3.

Lemma B.6. For all c 6= 0 and m ≥ 2, we have
∣∣µcm/µcm−2

∣∣ ≤ Π(c)/m2.

Proof. Let c > 0 and m ∈ N0 (for c < 0, we use µcm = µ−cm ). By Theorem 8.1 in [46], we have

|µcm| =
√
πcm(m!)2

(2m)!Γ(m+ 3/2)
eFm(c), Fm(c) =

∫ c

0

(
2
(
ψtm(1)

)2 − 1

2t
− m

t

)
dt.

Moreover, by (65) in [8], for all t > 0,(√
m+

1

2
− t2√

3
√
m+ 1/2

)2

≤
(
ψtm(1)

)2 ≤ (√m+
1

2
+

t2√
3
√
m+ 1/2

)2
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which yields, if m ≥ 2,

(
ψtm(1)

)2 − (ψtm−2(1)
)2 ≤ (√m+

1

2
+

t2√
3
√
m+ 1/2

)2

−

(√
(m− 2) +

1

2
− t2√

3
√

(m− 2) + 1/2

)2

= 2 +
4t2√

3
+
t4

3

(
1

m+ 1/2
− 1

m− 3/2

)
≤ 2 +

4t2√
3
.(B.11)

Using supx≥2 x
3(x− 1)/

(
(x2 − 1/4)(x− 1/2)(x− 3/2)

)
≤ 3 and (B.11), for all m ≥ 2,∣∣∣∣ µcmµcm−2

∣∣∣∣ =
c2

16

m(m− 1)

(m2 − 1/4)(m− 1/2)(m− 3/2)
exp (Fm(c)− Fm−2(c))

≤ 3c2

16m2
exp

(∫ c

0

((
ψtm(1)

)2 − (ψtm−2(1)
)2

t
− 2

t

)
dt

)
≤ 3c2

16m2
exp

(
2c2

√
3

)
. �

Lemma B.7. For all c 6= 0 and k ∈ N, we have (ψck(1))2 ≤ (k + 1/2)
(
1 + 2c2/33/2

)2
and

‖ψck‖2L∞([−1,1]) ≤ (k + 1/2)
(
1 + 4c2/33/2

)2
. For all c 6= 0 and k ≥ c, we have ‖ψck‖2L∞([−1,1]) ≤

k + 1/2. We also have ‖ψc0‖2L∞([−1,1]) ≤ 2|c|/π.

Proof. The first assertion follows from (65) in [8]. For the second, we use (66) in [8] in the first

display, 22.14.7 and 22.2.10 in [1], hence ‖Pk‖L∞([−1,1]) ≤
√
k + 1/2, in the second inequality,

‖ψck‖L∞([−1,1]) ≤ ‖Pk‖L∞([−1,1]) +
c2√

3(k + 1/2)

(
1 +

√
3/2√

k + 1/2

)

≤
√
k + 1/2

(
1 +

c2

√
3(k + 1/2)

(
1 +

√
3/2√

k + 1/2

))
≤
√
k + 1/2

(
1 +

4c2

33/2

)
.

The third uses (3.4) and (3.125) in [46]. We obtain the last by the proof of Proposition 1 in
[36] which yields ‖ψc0‖2L∞([−1,1]) ≤ 2/(µc0)2 and Lemma B.5. For all c < 0, we use ψ−cm = ψcm. �

Lemma B.8. For all c 6= 0 and N ≥ H(c), we have∥∥∥∥∂ψcN∂c
∥∥∥∥
L∞([−1,1])

≤
2cf (C1(c) + C2(c))C3(c)Π(c)

|c|
√
N,

C1(c) :=
2H(c) + 9

(H(c) + 2)2
, C2(c) :=

2 |c|
πH(c)(H(c)− 1)

+
l(c)

4
, C3(c) :=

√
1 +

1

2H(c)
.

Proof. Take c 6= 0, N ≥ H(c), and w ∈ [−1, 1]. Theorem 7.11 in [46] yields

(B.12)
∂ψcN
∂c

(w) =
2ψcN (1)

|c|
∑

k≡N [2], k 6=N

µcNµ
c
k(

µcN
)2 − (µck)2ψck(1)ψck(w).
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Using µck/µ
c
N ∈ R if k ≡ N [2] and Lemma B.7, we obtain∣∣∣∣∂ψcN∂c (w)

∣∣∣∣ ≤ √4N + 2

|c|
C(f,N, c),

C(f,N, c) := f

(
µcN
µc0

)
2|c|1l{N ≡ 0[2]}

π
+

∑
0<k<N
k≡N [2]

f

(
µcN
µck

)
l(c)

(
k +

1

2

)
+
∑
k>N
k≡N [2]

f

(
µck
µcN

)(
k +

1

2

)
.

Lemma B.6 yields, if k ≡ N [2],

(B.13)

∣∣∣∣µcNµck
∣∣∣∣ ≤ ∣∣∣∣ µcNµcN−2

∣∣∣∣ ≤ Π(c)

N2
≤ 1

2
if k < N and

∣∣∣∣ µckµcN
∣∣∣∣ ≤

(√
Π(c)

N + 2

)k−N
≤ 1

2
if k > N.

Using (B.10), (B.9), (B.13), and
∑

k∈N k2−k = 2 in the third display, the result follows from

C(f,N, c) ≤ cf

(2 |c|
π

+
l(c)N(N − 1)

4

)
Π(c)

N2
+

∑
k≡N [2], k>N

k + 1/2

2(k−N)/2

(√
2Π(c)

N + 2

)k−N
≤ cfΠ(c)

 2 |c|
πH(c)(H(c)− 1)

+
l(c)

4
+

2

(N + 2)2

∑
l≡0[2], l≥2

(
l +N +

1

2

)
1

2l/2


≤ cfΠ(c)

(
C2(c) +

2

(N + 2)2

(
N +

9

2

))
≤ cfΠ(c) (C1(c) + C2(c)) . �(B.14)

Lemma B.9. For all c 6= 0 and N ≥ H(c), we have∥∥∥∥∂2ψcN
∂c2

∥∥∥∥
L∞([−1,1])

≤ Π(c)C3(c)

c2

(
C4(c)N5/2 + C5(c)N3/2 + C6(c)

√
N + C7(c)

)
,

C4(c) := cg (C2(c)− C1(c)) , C7(c) :=
cg

(H(c) + 2)1/2

(
85 +

246

H(c) + 2

)
,

C5(c) := 8 (cf (C1(c) + C2(c))C3(c))2 Π(c) + (cg + 4cf )C2(c) + (8cf − cg)C1(c) + 2cg,

C6(c) := 8chcf (C1(c) + C2(c))2Π(c) + (C1(c) + C2(c))
(
c2cg + 4cf

)
+ 19cg.

Proof. For all c < 0, µcm = µ−cm and ψ−cm = ψcm, hence we only consider c > 0. Using
c ∈ (0,∞) 7→ ψcN (x) is analytic (see [22] page 320) and (7.99) in [46], we have by differentiating

µcNψ
c
N (x) =

∫ 1

−1
eicxtψcN (t)dt :(B.15)

µcN
∂ψcN
∂x

(x) =

∫ 1

−1
icteicxtψcN (t)dt,(B.16)

µcN
∂2ψcN
∂x2

(x) = −
∫ 1

−1
(ct)2eicxtψcN (t)dt,(B.17)
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(
∂2µcN
∂c2

ψcN + 2
∂µcN
∂c

∂ψcN
∂c

+ µcN
∂2ψcN
∂c2

)
(x) =

∫ 1

−1
eicxt

(
∂2ψcN
∂c2

(t) + 2ixt
∂ψcN
∂c

(t)− (xt)2ψcN (t)

)
dt.

(B.18)

Multiplying (B.18) by ψck(x), integrating, and using (B.15)-(B.17), we obtain, for all k 6= N ,

2
∂µcN
∂c

∫ 1

−1

∂ψcN
∂c

(x)ψck(x)dx+ µcN

∫ 1

−1

∂2ψcN
∂c2

(x)ψck(x)dx

= µck

∫ 1

−1

∂2ψcN
∂c2

(x)ψck(x)dx+ 2
µck
c

∫ 1

−1
x
∂ψcN
∂c

(x)
∂ψck
∂x

(x)dx+
µck
c2

∫ 1

−1
x2ψcN (x)

∂2ψck
∂x2

(x)dx.

Recombining and using that, for all k 6= N , µck 6= µcN (see (3.45) in [46]), we obtain

(µcN − µck)
∫ 1

−1

∂2ψcN
∂c2

(x)ψck(x)dx

= 2
µck
c

∫ 1

−1
x
∂ψcN
∂c

(x)
∂ψck
∂x

(x)dx+
µck
c2

∫ 1

−1
x2ψcN (x)

∂2ψck
∂x2

(x)dx− 2
∂µcN
∂c

∫ 1

−1

∂ψcN
∂c

(x)ψck(x)dx.

This yields, for all k 6≡ N [2], using (B.12), (7.69)-(7.70), and Theorem 7.11 in [46],
∫ 1
−1

∂2ψcN
∂c2

(x)ψck(x)dx =

0, while, for all k ≡ N [2] and k 6= N , using (7.69)-(7.70), Theorem 7.11, (7.99) and the eigen-
values (χcN )N∈N0 of the differential operator in (1.1) in [46],∫ 1

−1

∂2ψcN
∂c2

(x)ψck(x)dx =
2

c

µck
µcN − µck

∫ 1

−1
x
∂ψcN
∂c

(x)
∂ψck
∂x

(x)dx+ ΞN,k,

ΞN,k :=
ψcN (1)ψck(1)

c2

(
µcNµ

c
k(χ

c
k − χcN )(

µcN − µck
)2 − 2

µcNµ
c
k(

µcN
)2 − (µck)2

(
2 +

µcN
(
2ψcN (1)2 − 1

)
µcN − µck

))
.

Differentiating (7.114) in [46] in c yields
∫ 1
−1

∂2ψcN
∂c2

(x)ψcN (x)dx = −
∫ 1
−1

(
∂ψcN
∂c (x)

)2
dx. Also, by

(B.13), for all k ≡ N [2],

(B.19)
|µcN |∣∣µcN − µck∣∣ ≤ 1 if k < N and else

|µcN |∣∣µcN − µck∣∣ ≤ 2.

We obtain, using Lemma B.7 and N ≥ c for the first term,∥∥∥∥∂2ψcN
∂c2

∥∥∥∥
L∞([−1,1])

≤
√
N +

1

2

∫ 1

−1

(
∂ψcN
∂c

(x)

)2

dx+
∑

k≡N [2], k 6=N

|ΞN,k| ‖ψck‖L∞([−1,1])

+
∑

k≡N [2], k 6=N

2 |µck|
c
∣∣µcN − µck∣∣

∣∣∣∣∫ 1

−1
x
∂ψcN
∂c

(x)
∂ψck
∂x

(x)dx

∣∣∣∣ ‖ψck‖L∞([−1,1]).(B.20)

For the first term on the right-hand side of (B.20), using Lemma B.8, we obtain√
N +

1

2

∫ 1

−1

(
∂ψcN
∂c

(x)

)2

dx ≤ 8 (cf (C1(c) + C2(c))C3(c))2C3(c)

(
Π(c)

c

)2

N3/2.
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For the second term in (B.20), using that for all k ≡ N [2], µcN/µ
c
k ∈ R and (B.13) we obtain

|ΞN,k| ≤
|ψcN (1)| |ψck(1)|

c2

(
g (ρk) (χck − χcN ) + 2

(
2 +

∣∣2ψcN (1)2 − 1
∣∣ |µcN |∣∣µcN − µck∣∣

)
f (ρk)

)
,

where ρk = µcN/µ
c
k when k < N and ρk = µck/µ

c
N when k > N . Using N ≥ c, (B.19),

|χcN − χck| ≤ |N − k| (k + N + 1) + c2 (see (13) in [7]), (B.9), and
∣∣2ψcN (1)2 − 1

∣∣ ≤ 2N (by
Lemma B.7) for the first inequality, (N − k)(k + N + 1) ≤ N(N + 1) for all 0 < k < N ,
(B.13), and (B.10) for the second, (k −N)(k +N + 1) = k(k + 1)−N2 −N for the third, the
computations in (B.14),

∑∞
k=1 k

22−k = 6 and
∑∞

k=1 k
32−k = 26, and Euclidean division for the

fourth, yield∑
k≡N [2], k 6=N

|ΞN,k| ‖ψck‖L∞([−1,1]) ≤
cg
√

4N + 21l{N ≡ 0[2]}
|c|π

∣∣∣∣µcNµc0
∣∣∣∣ (N(N + 1) + c2 +

4cf
cg

(N + 1)

)

+
cg
√

4N + 2

2c2

∑
k≡N [2], 0<k<N

(
k +

1

2

)
l(c)

∣∣∣∣µcNµck
∣∣∣∣ ((N − k)(k +N + 1) + c2 +

4cf
cg

(N + 1)

)

+
cg
√

4N + 2

2c2

∑
k≡N [2], k>N

(
k +

1

2

) ∣∣∣∣ µckµcN
∣∣∣∣ (|N − k| (k +N + 1) + c2 +

4cf
cg

(2N + 1)

)

≤ cg
√

4N + 2

2c2

(
N(N + 1) + c2 +

4cf
cg

(N + 1)

)(
2 |c|
π

+
l(c)N(N − 1)

4

)
Π(c)

N2

+
cg
√

4N + 2

2c2

∑
k≡N [2], k>N

k + 1/2

2(k−N)/2

(√
2Π(c)

N + 2

)k−N (
(k −N)(k +N + 1) + c2 +

4cf
cg

(2N + 1)

)

≤ cg
√

4N + 2Π(c)

2c2

(
N(N + 1) + c2 +

4cf
cg

(N + 1)

)(
2 |c|

πH(c)(H(c)− 1)
+
l(c)

4

)
+
cg
√

4N + 2

2c2

2Π(c)

(N + 2)2

∑
l≡0[2], l≥2

l +N + 1/2

2l/2

(
c2 +

4cf
cg

(2N + 1)−N −N2

)

+
cg
√

4N + 2

2c2

2Π(c)

(N + 2)2

∑
l≡0[2], l≥2

(
l +N +

1

2

)
(l +N)(l +N + 1)

1

2l/2

≤ cg
√

4N + 2Π(c)

2c2

[
C2(c)

(
N(N + 1) + c2 +

4cf
cg

(N + 1)

)
+ C1(c)

(
c2 +

4cf
cg

(2N + 1)−N −N2

)

+ 2N + 19 +
85

N + 2
+

246

(N + 2)2

]

≤ cgΠ(c)

c2
C3(c)

[
N5/2 (C2(c)− C1(c)) +N3/2

((
1 +

4cf
cg

)
C2(c) +

(
8cf
cg
− 1

)
C1(c) + 2

)
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+
√
N

(
(C1(c) + C2(c))

(
c2 +

4cf
cg

)
+ 19

)
+

85

(H(c) + 2)1/2
+

246

(H(c) + 2)3/2

]
.

For the third term in (B.20), using (B.12), the triangle inequality, and (7.74) in [46] for the
first inequality and using |µcm| / |µcm + µck| ≤ 1 for the second, we obtain∣∣∣∣∫ 1

−1
x
∂ψcN
∂c

(x)
∂ψck
∂x

(x)dx

∣∣∣∣ ≤ 4 |ψcN (1)| |ψck(1)|
|c|

∑
m 6=N, m≡N [2]

|µcN | |µcm| |ψcm(1)|2∣∣∣(µcm)2 −
(
µcN
)2∣∣∣ |µcm|∣∣µcm + µck

∣∣
≤

4 |ψcN (1)| |ψck(1)|
|c|

C(f,N, c),

hence, using (B.14) for the first inequality and (B.9) and (B.14) replacing cf by ch for the third,

∑
k≡N [2], k 6=N

2 |µck|
c
∣∣µcN − µck∣∣

∣∣∣∣∫ 1

−1
x
∂ψcN
∂c

(x)
∂ψck
∂x

(x)dx

∣∣∣∣ ‖ψck‖L∞([−1,1])

≤ 4cf
√

4N + 2(C1(c) + C2(c))
Π(c)

c2

∑
k≡N [2], k 6=N

|µck|∣∣µcN − µck∣∣ |ψck(1)| ‖ψck‖L∞([−1,1])

≤ 4cf
√

4N + 2(C1(c) + C2(c))
Π(c)

c2
C(h,N, c)

≤ 4chcf
√

4N + 2(C1(c) + C2(c))2 Π(c)2

c2
≤ 8chcfC3(c)(C1(c) + C2(c))2 Π(c)2

c2

√
N. �

Lemma B.10. For all u, x0, R > 0, t ∈ R, q ∈ {1,∞}, λ from (A.8) and N(Rx0U) and Ñ(q)
from (A.9), for all N ≥ N(Rx0U), we have

sup
b∈[−R,R]p

∣∣∣∣∣ ∂2

∂t2

((
Rx0t

2π

)p/2
λ(t)ψRx0t

Ñ(q)

(
b

R

))∣∣∣∣∣ ≤ 1l{U/2 ≤ |t| ≤ U}C8(Rx0U, p, U)N2+kq/2,

C8(Rx0U, p, U) :=

(
Rx0U

π

)p/2 C3(Rx0U)pN(Rx0U)(p−1)/(2q)

N(Rx0U)2

(
p|p− 2|
U2

+ C9(U)
2p

U
+ C10(U)

+

(
2p

U
+ 2C9(U)

)
pC16(Rx0U)

N(Rx0U)2
+
p(p− 1)C16(Rx0U)

N(Rx0U)2
+ pC11(Rx0U)

)
,

C9(U) := sup
t∈[U/2,U ]

∣∣λ′(t)∣∣ , C10(U) := sup
t∈[U/2,U ]

∣∣λ′′(t)∣∣ ,
C11(Rx0U) :=

(Rx0)2 Π(Rx0U)

(Rx0U)2

(
C4(Rx0U) +

C5(Rx0U)

N(Rx0U)
+
C6(Rx0U)

N(Rx0U)2
+

C7(Rx0U)

N(Rx0U)5/2

)
,

C16(Rx0U) := 2cfRx0 (C1(Rx0U) + C2(Rx0U))C3(Rx0U)
Π(Rx0U)

Rx0U
.
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Proof. Let q = 1. By symmetry, we take t ∈ [U/2, U ], b ∈ [−R,R]p, and c > 0. We have

R(t, b) :=

∣∣∣∣∣ ∂2

∂t2

((
Rx0t

2π

)p/2
λ(t)ψRx0t

Ñ(q)

(
b

R

))∣∣∣∣∣
≤
(
Rx0

2π

)p/2
tp/2

[(
p |p− 2|

4t2
λ(t) +

p

t

∣∣λ′(t)∣∣+
∣∣λ′′(t)∣∣) ∣∣∣∣ψRx0t

Ñ(q)

(
b

R

)∣∣∣∣
+Rx0

(p
t
λ(t) + 2|λ′(t)|

) ∣∣∣∣∣ ∂ψ
c
Ñ(q)

∂c

∣∣∣∣∣
c=Rx0t

(
b

R

)∣∣∣∣∣+ (Rx0)2 λ(t)

∣∣∣∣∣∣
∂2ψc

Ñ(q)

∂c2

∣∣∣∣∣∣
c=Rx0t

(
b

R

)∣∣∣∣∣∣
]
,

∂ψc
Ñ(q)

∂c

(
b

R

)
=

p∑
j=2

ψcN

(
b1

R

) ∂ψcN(Rx0U)

∂c

(
bj
R

) p∏
l=2
l6=j

ψcN(Rx0U)

(
bl
R

)
+
∂ψcN
∂c

(
b1

R

) p∏
l=2

ψcN(Rx0U)

(
bl
R

)
,

∂2ψc
Ñ(q)

∂c2

(
b

R

)
= 2

p∑
j=2

∂ψcN(Rx0U)

∂c

(
bj
R

)
∂ψcN
∂c

(
b1

R

) p∏
l=2
l 6=j

ψcN(Rx0U)

(
bl
R

)

+

p∑
k=2

p∑
j=2
j 6=k

ψcN

(
b1

R

) ∂ψcN(Rx0U)

∂c

(
bj
R

) ∂ψcN(Rx0U)

∂c

(
bk
R

) p∏
l=2

l6=j,l 6=k

ψx0t
N(Rx0U)

(
bl
R

)

+
∂2ψcN
∂c2

(
b1

R

) p∏
l=2

ψcN(Rx0U)

(
bl
R

)
+

p∑
j=2

ψcN

(
bl
R

) ∂2ψcN(Rx0U)

∂c2

(
bj
R

) p∏
l=2
l 6=j

ψcN(Rx0U)

(
bl
R

)
.

We conclude using N ≥ Rx0U (by the discussion before Lemma B.6), the third assertion of
Lemma B.7, and Lemma B.9. The case q =∞ is obtained with N(Rx0U) = N . �

Lemma B.11. For all R, x0 > 0, 2σ > kq + 4, q ∈ {1,∞}, 2τ ≥
(
3e1/2Rx0/4

)
∨ 1, we have∫

R
e−2τ |t|

∑
m∈Np0

|m|2σq
(
cPm(t)

)2
dt ≤ C12(σ, p)

τp2σ/q
,

C12(σ, p) := Γ(2σ + p+ 1/2)

(
2p−1p

2σ + p

(
8

3e1/2

)2σ+p

+
πe3p2p

√
3

9

)
.

Proof. When q = 1, we use |m|1 ≤ p |m|∞. Let q = ∞, R, x0, σ, τ as in the lemma.

Because P0 = 1l{|·|∞ ≤ 1}/2p/2, for all m ∈ N0,
∣∣∣〈P0, ψ

c
m〉L2([−1,1])

∣∣∣ ≤ 1, and, for all m > |c|,∣∣∣〈P0, ψ
c
m〉L2([−1,1])

∣∣∣ ≤ |µcm| /√2 (see Proposition 3 and (13) in [7]) we obtain, for all t 6= 0,

∑
m∈Np0

|m|2σ∞
(
cPm(t)

)2 ≤ ∑
|m|∞≤Rx0|t|

|m|2σ∞1l{Rx0 |t| ≥ 1}+
∑

|m|∞>Rx0|t|

|m|2σ∞
∣∣∣µRx0t
|m|∞

∣∣∣2
2

.(B.21)
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Using (B.21), Lemma B.4, and
∑
|m|∞=k 1 ≤ p(k + 1)p−1 for the first inequality, m + 1 ≤ 2m

when m ≥ 1 for the second, and 2m+1 ≤ 3m, (Rx0t+1)2σ+p ≤ (2Rx0t)
2σ+p when m,Rx0t ≥ 1,

and (1.3) in [43] for the third, we have∫
R
e−2τ |t|

∑
m∈Np0

|m|2σ∞
(
cPm(t)

)2
dt

≤
∫ ∞

0
2pe−2τt

 ∑
m≤Rx0t

(m+ 1)p−1m2σ1l{Rx0t ≥ 1}+
πe3

9

∑
m>Rx0t

(m+ 1)p−1m2σ

(
eRx0t

4m

)2m
 dt

≤
∫ ∞

0
2ppe−2τt

∫ Rx0t+1

1
u2σ+p−1du1l{Rx0t ≥ 1}dt+

πe3p2p

9

∑
m≥1

m2σ+p−1

(
eRx0

4m

)2m ∫ ∞
0

e−2τtt2mdt

≤ 22(σ+p)p

2σ + p

∫ ∞
1/(Rx0)

e−2τt(Rx0t)
2σ+pdt+

πe3p2p
√

3

9τ

∑
m≥1

m2σ+p−1/2e2m ln(3Rx0/(8τ))

≤ 2p−1pΓ(2σ + p+ 1)

(2σ + p)τ

(
8

3e1/2

)2σ+p

+
πe3p2p

√
3

9τ

∫ ∞
0

e−tt2σ+p−1/2dt ≤ C12(σ, p)

τp2σ/q
. �

Lemma B.12. For all N ≥ H(Rx0U), R,U > 0, q ∈ {1,∞}, and F from (A.7), we have

I1 :=

∫
[−1,1]p

∫
R
|∂tF [F ] (t, x0tx)|2 dxdt ≤ RpC17(Rx0U, p, U)N2ρ

W[−1,1],Rx0U

Ñ(q)
(B.22)

C17(Rx0U, p, U) := C15(Rx0U, p, U) +
2pUC16(Rx0U)2

N(Rx0U)
,

C15(Rx0U, p, U) :=
25p2

8U

(
1 +

2(Rx0U)2

33/2

)4

+
UC9(U)2

N(Rx0U)2
+

5pC9(U) ln(2)

2N(Rx0U)

(
1 +

2(Rx0U)2

33/2

)2

,

I2 :=

∫
[−1,1]p

∫
R
|F [F ] (t, x0tx)|2 dxdt ≤ RpUρW[−1,1],Rx0U

Ñ(q)
.(B.23)

Proof. Let N ≥ H(Rx0U) ≥ 2. For simplicity of notations, we omit W[−1,1] from ρ. We have

F [F ] (t, x0tx) =

(
Rx0 |t|

2π

)p/2
Rp/2λ(t)FRx0t

[
ψRx0t

Ñ(q)

]
(x)

= Rp/2i|Ñ(q)|
1λ(t)

√
ρRx0t

Ñ(q)
ψRx0t

Ñ(q)
(x)

(
because µRx0t

m = im
(

2π

Rx0 |t|

)1/2√
ρRx0t
m

)
.(B.24)

This yields

I1 ≤Rp
∫
R

∫
[−1,1]p

d
√
ρRx0t

Ñ(q)

dt
λ(t) + λ′(t)

√
ρRx0t

Ñ(q)

ψRx0t

Ñ(q)
(x) +

√
ρRx0t

Ñ(q)
λ(t)

∂ψRx0t

Ñ(q)
(x)

∂t

2

dtdx.
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Using (7.114) in [46], cross-products terms are zero and I1 ≤ Rp(I11 + I12), where

I11 =

∫
R

λ(t)2

d
√
ρRx0t

Ñ(q)

dt

2

+ λ′(t)2ρRx0t

Ñ(q)
+ 2λ(t)|λ′(t)|

√
ρRx0t

Ñ(q)

d
√
ρRx0t

Ñ(q)

dt

 dt,

I12 =

∫
R
λ(t)2ρRx0t

Ñ(q)

∫
[−1,1]p

∂ψRx0t

Ñ(q)
(x)

∂t

2

dx

 dt.

Then, using (7.100) in [46] for the second equality yields, for all t 6= 0,

d
√
ρRx0t
N

dt
=

x0R

2
√
ρRx0t
N

dρcN
dc

∣∣∣∣
c=Rx0t

=

√
ρRx0t
N

|t|

(
ψRx0t
N (1)

)2
,

in particular ρRx0t
N is increasing in t and, by the first assertion of Lemma B.7,

∀U/2 ≤ |t| ≤ U,
d
√
ρRx0t
N

dt
≤

(N + 1/2)
√
ρRx0t
N

|t|

(
1 +

2(Rx0U)2

33/2

)2

.(B.25)

When q = 1, using N + 1/2 ≤ 5N/4 for all N ≥ 2 and

d
√
ρRx0t

Ñ(q)

dt
= (p− 1)

(√
ρRx0t
N(Rx0U)

)p−2√
ρRx0t
N

d
√
ρRx0t
N(Rx0U)

dt

+
(√

ρRx0t
N(Rx0U)

)p−1

d
√
ρRx0t
N

dt

 ,

we have

(B.26)
d
√
ρRx0t

Ñ(q)

dt
≤ 5pN

4 |t|

(
1 +

2(Rx0U)2

33/2

)2√
ρRx0t

Ñ(q)
.

The same inequality holds for q =∞ (there N = N(Rx0U)). This yields, for all q ∈ {1,∞},

I11 ≤

(
25p2N2

8

∫ U

U/2

dt

t2

(
1 +

2(Rx0U)2

33/2

)4

+ UC9(U)2 +
5pNC9(U)

2

(
1 +

2(Rx0U)2

33/2

)2 ∫ U

U/2

dt

t

)
ρRx0U

Ñ(q)

≤ C15(Rx0U, p, U)N2ρRx0U

Ñ(q)
.

Then, by (7.114) in [46] and Lemma B.8, we have, for all U/2 ≤ |t| ≤ U ,∫
[−1,1]p

∂ψRx0t

Ñ(q)
(x)

∂t

2

dx = (Rx0)2

∫
[−1,1]

(p− 1)

(
∂ψcN(Rx0U)(x)

∂c

∣∣∣∣∣
c=Rx0t

)2

+

(
∂ψcN (x)

∂c

∣∣∣∣
c=Rx0t

)2
 dx

≤ 2p (C16(Rx0U))2N (using N ≥ N(Rx0U)).

The same holds for q =∞ (there N = N(Rx0U)). This and N ≥ N(Rx0U) yield (B.22).
(B.23) follows from (B.24) and the fact that c ∈ (0,∞) 7→ ρcm is nondecreasing. �
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Appendix B.2. Complements on the proofs of the main results

Proof of (T1.1b). Step 1. By the proof of (T.1a), f2,n ∈ L2
(
w ⊗W⊗p[−R,R]

)
and f2,n ∈

Hq,φ,ωw,W (l) if

(B.27)

(
Rx0U

2π

)p 2Uγ2

p+ 1

(
φ(U)

∨
exp (κN ln (N + 1))

)2
≤ πl2.

Step 3. Let ξ <
√

2 and 8/(eRx0U) ≥ 1. By Lemma B.4, we have, for all U/2 ≤ |t| ≤ U ,(
σ
W[−1,1],Rx0t

Ñ(q)

)2
≤
(
2πe3/9

)p
exp (−2kqN ln (4(N + 3/2)/(eRx0U))) and, by (A.22) and Propo-

sition B.1 (ii), Lemma A.1 (iii) holds if

(B.28) nγ2 exp

(
−2kqN ln

(
4(N + 3/2)

eRx0U

))
≤ (p+ 1)ξ2σ2

U

(
9

R2Ux0e3

)p
.

Step 4. Let U = 4/(eRx0), γ = C̃γ exp (−κN ln (N + 1)), C̃γ = l(πe/2)p/2
√

(p+ 1)eπRx0/8,

N = dNe, 2(κ + kq)N ln (N + 1) = ln
(
C2
γn
)
, Cγ = l(2πRe3/9)p/2

√
π/2/(ξσ). Under such a

choice, (B.27) and (B.28) hold for n large enough. Moreover, we have r(n) = Cr exp (−κN ln (N + 1)),

where Cr = C̃γ (Rx0/(2π))p/2
√∫ U

U/2 |t|
p λ(t)2dt/(4π), N ln (N) ≤ N ln(N+1) ≤ (N + 1) ln (N + 2)

N ln(N + 1) ≤ N ln (N + 1) + ln (N + 1) + 1 + o(1)

= ln
((
C2
γn
)1/(2κ+2kq)

)
+ (1 + o(1)) ln2

((
C2
γn
)1/(2κ+2kq)

)
,

indeed, using iteratively the definition of N , ln (N + 1) = ln (N)+(1+o(1))/N so ln (N + 1) =

ln (N)
(

1 + (1 + o(1))/ ln
((
C2
γn
)1/(2κ+2kq)

))
and

ln (N) = ln2

((
C2
γn
)1/(2κ+2kq)

)
− ln2 (N + 1)

= ln2

((
C2
γn
)1/(2κ+2kq)

)
− ln2 (N) + (1 + o(1))/ ln

((
C2
γn
)1/(2κ+2kq)

)
= ln2

((
C2
γn
)1/(2κ+2kq)

)
− (1 + o(1)) ln3

((
C2
γn
)1/(2κ+2kq)

)
so 1/ ln

((
C2
γn
)(1+o(1))κ/(2κ+2kq)

)
≤ r(n)

(
C2
γn
)κ/(2κ+2kq) /Cr ≤ 1.

Proof of (T.1.2b). Let U = 2/(eRx0), γ = C̃γ exp (−κN), C̃γ = l(πe)p/2
√

(p+ 1)eπRx0/2,

N = dNe, N = ln(n)/(2κ + 2kq), Cγ = l
(
4πe/

(
π
(
1− e−2

)))p/2√
π/2/(ξσ). Under such a

choice, 4 (Rx0U/(2π))p (2Uγ2/(p + 1)) (φ(U)
∨

exp (κN))2 ≤ πl2 and (A.23) hold for n large
enough, hence steps 1 and 3. By Step 2, we have r(n) = Cr exp (−κN) ≥ Cr exp (−κN) /e. �

End of proofs of theorems 2, 3. We consider all smoothness cases when q ∈ {1,∞}. We
θ := 7e/(2Rx0), θ0 := π/(4Rx0), θ1 := 7e2/(4Rx0), Qq := 2kq (1l{q =∞}+ (p/2)p/(p!q)), for
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all k, l ≥ 0, N ≥ 1, fα,β ∈ Hq,φ,ωw,W (l,M),

(B.29) (N + l)k ≤ ((l + 1)N)k,

∫
ε≤|t|≤T

L(t)dt ≤ (2π)p+1l2.

End of proof of Theorem 2. Let t 6= 0 and z > 0. (B.8) yields

(B.30) ω̃q,W,x0t
N ≤ 2p

(
1
∨ θ(N + 1)

|t|

)2kqN

.

This yields, for all N ≥ 1, ∆
W[−R,R]

0 (t,N, n, z) ≤ ∆W[−R,R](t,N, n, z), where

∆W[−R,R](?,N, n, z) :=

(
1
∨ θ(N + 1)

|?|

)2kqN 2

πp+1

(
QqcXN

p |?|p

n
+ z

(
L(t) +

cX(N + 1)p |?|p

n

))
.

Let ne be large enough to ensure N ≥ (p+ 1)/kq. Using N ≤ N , ε ≤ θ ≤ θ(N + 1),∫ T

ε

(
1
∨ θ(N + 1)

t

)2kqN

tpdt = (θ(N + 1))2kqN
∫ θ(N+1)

ε
tp−2kqNdt+ 1l{θ(N + 1) ≤ T}

∫ T

θ(N+1)
tpdt

≤ εp+1

2kqN − p− 1

(
θ(N + 1)

ε

)2kqN

+
T p+1

p+ 1
,(B.31)

∫
ε≤|t|≤T

(
1
∨ θ(N + 1)

|t|

)2kqN

L(t)dt ≤ (2π)p+1l2
(
θ(N + 1)

ε

)2kqN

(by (B.29)),(B.32)

ne/n ≤ 1, and nev(n0, E)/δ(n0) ≤ 1, we have∫
ε≤|t|≤T

∆W[−R,R](t,N, n, Zn0)dt

≤ 4cXN
p

πp+1ne

(
εp+1

kqN

(
θ(N + 1)

ε

)2kqN

+
T p+1

p+ 1

)(
Qq +

ME,η2
p

n

)
+
ME,η2

p+2l2

ne

(
θ(N + 1)

ε

)2kqN

≤ τ0N
p−1

e2kqne

(
θ(N + 1)

ε

)2kqN

+
τ1N

p−1T p+1

ne
,

τ0 :=
e2kq4cXθ

p+1

πp+1kq

(
Qq + e2ME,η2

p
)

+ME,η2
p+2l2, τ1 :=

4cX
πp+1(p+ 1)

(Qq +ME,η2
p) .

(A.32), (N + 1)2kqN ≤ e2kqN2kqN , θ/ε = Ka(1), N + 1 ≥ N , and the definition of a, yield

RWn0,sup ≤ C

(
τ0N

p−1

(
NKa(1)

)2kqN
ne

+ τ1N
p−1T

p+1

ne
+

8l2 +M21l{w 6= W[−a,a]}
ω2
N

)
.(B.33)

The choices of N are such that the first and third terms have the same and largest order.
Proof of (T2.1). Let ne ≥ ee be large enough so that (ln(ne)/τ2)σ((p+1)/s+2)+p−1 ≤ ne, where
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τ2 := 4kq(2σ/µ+ 1)W(1/(4kq(2σ/µ+ 1))). We have

2kqN ln
(
NwI

(
ω2
N

))
+ ln

(
ω2
N

)
+ (p− 1) ln(N) = 2kq

(
2σ

µ
+ 1

)
N ln (N) + 2σ ln (N) + (p− 1) ln(N)

≥ 2kq

(
2σ

µ
+ 1

)
N ln (N)

and, for all x ≥ 1/e, W (x ln(x)) = ln(x). Using as well the definition of W, this yields

(B.34) N ≤ ln(ne)

4kq(2σ/µ+ 1)W(ln(ne)/(4kq(2σ/µ+ 1)))
≤ ln(ne)

τ2
.

Using (B.34), we have T p+1Np−1/ne = Nσ(p+1)/s+p−1/ne ≤ (ln(ne)/τ2)σ(p+1)/s+p−1/ne ≤
(ln(ne)/τ2)−2σ ≤ N−2σ = ω−2

N . Using the definition of N and (B.33), we obtain

RWn0,sup ≤
C

N2σ

(
τ0 + τ1 + 8l2 +M2

)
.(B.35)

We also have

2kqN ln
(
NwI

(
ω2
N

))
+ ln

(
ω2
N

)
+ (p− 1) ln(N) ≤

(
2kq

(
2σ

µ
+ 1

)
+

2σ + p− 1

p+ 1

)
N ln(N),

hence N ln(N) ≥ ln(ne)/τ3, τ3 := 2kq (2σ/µ+ 1) + (2σ + p − 1)/(p + 1). Similarly to (B.34)
and using for the second inequality, for all x > 0, W(x) ≤ ln(x+ 1) (see Theorem 2.3 in [35]),
we have

N ≥ ln(ne)

τ3W (ln(ne)/τ3)
≥ ln(ne)

τ3 ln (ln(ne) + τ3)
≥ ln(ne)

τ3 ln2(ne) (1 + ln(1 + τ3/e))
.(B.36)

This and (B.35) yield the result.
Proof of (T2.2a). We have

2kqN ln
(
NwI

(
ω2
N

))
+ ln

(
ω2
N

)
≥ 2 (kq(ν + 1) + κ)N ln (N) ,(B.37)

henceN ln (N) ≤ (ln(ne)− (p− 1) ln(N)) / (2 (kq(ν + 1) + κ)) and, using τ4 := κ(p+1)/ (2s (kq(ν + 1) + κ)),

T p+1Np−1

ne
=
eκ(p+1)N ln(N+1)/sNp−1

ne
≤ eκ(p+1)/snτ4−1

e N (p−1)(1−τ4).

Because s ≥ κ(p+ 1)/(2kq(1 + ν)), we have τ4 − 1 ≤ −κ/ (κ+ kq(1 + ν)) and

RWn0,sup ≤ C

(
τ1e

κ(p+1)/s

n
κ/(κ+kq(1+ν))
e

N (p−1)(1−τ4) +
τ0 + 8l2 +M21l{w 6= W[−a,a]}

e2κN ln(N+1)

)
.(B.38)

Using again τ4 − 1 ≤ −κ/ (κ+ kq(1 + ν)), τ5 := 2(kq(ν + 1) + κ) ln(2), and

ln (ne)− (p− 1) ln (N) = 2kqN ln
(
NwI

(
ω2
N

))
+ ln

(
ω2
N

)
≤ τ5

ln(2)
N ln (N + 1) ,(B.39)

we obtain e2κN ln(N+1) ≥ n
κ/(κ+kq(1+ν))
e /Nκ(p−1)/(kq(ν+1)+κ) ≥ n

κ/(κ+kq(1+ν))
e /N (p−1)(1−τ4). We

conclude because, by (B.37), N ≤ ln(ne)/τ5.
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Proof of (T2.2b). It is derived from (B.38) with w = W[−a,a] and ν = 0.

Proof of (T2.3). By ln(ne) ≥ 2kqN ln
(
NwI

(
ω2
N

))
+ ln

(
ω2
N

)
≥ ln

(
ω2
N

)
, we have

(N ln(N + 1))r ≤ ln(ne)

2κ
,(B.40)

hence, using the value of T and N ≤ N ln (N + 1) / ln(p+ 2),

T p+1Np−1

ne
=
κp+1(N ln(N + 1))r(p+1)Np−1

γp+1ne
≤ ln(ne)

p+1+(p−1)/r

κ(p−1)/r2p+1+(p−1)/rγp+1 ln(p+ 2)p−1ne
.

Moreover, because ln(ne)
p+1+(p−1)/r is smaller than ϕ(ne) by definition,

RWn0,sup ≤ C

(
τ1ϕ(ne)

κ(p−1)/r2p+1+(p−1)/rγp+1 ln(p+ 2)p−1ne
+
τ0 + 8l2 +M2

e2κ(N ln(1+N))r

)
.(B.41)

We also have

2kqN ln
(
NwI

(
ω2
N

))
+ ln

(
ω2
N

)
+ (p− 1) ln(N) ≤ 2κ (N ln (N + 1))r (1 + h(N)) ,(B.42)

where h := (kq(1 + ν) ·+p− 1) ln (·) /(κ (· ln (·+ 1))r). This yields, for ne large enough,

exp (2κ (N ln(N + 1))r) ≥ exp

(
ln(ne)

1 + h(N)

)
= ne exp

( ∞∑
k=1

(−1)kh(N)k ln(ne)

)
.(B.43)

By (B.42), we haveN ln(N+1) ≥ ln(ne)
1/r/d

1/r
0 . We obtain, by (B.40) for the second inequality,

h (N) ≤ (kq + 1)p/(p+ 1) + kq − 1 + kqν

κ(N ln(N + 1))r−1
≤ ((kq + 1)p/(p+ 1) + kq − 1 + kqν)d

1−1/r
0

κ ln(ne)1−1/r
,

h (N) ≥ kq(1 + ν)

κ(1 + 1/((p+ 1) ln(p+ 1)))r(N ln(N))r−1
≥ kq(1 + ν)(2κ)1−1/r

κ(1 + 1/((p+ 1) ln(p+ 1)))r ln(ne)1−1/r
,

and we conclude using that, for ne large enough so that the remainder below is smaller in
absolute value than a converging geometric series,

exp

( ∞∑
k=1

(−1)kh(N)k ln(ne)

)
≥ exp

(
k0∑
k=1

(−1)kdk ln(ne)
(1/r−1)k+1 +O(1)

)
. �

End of proof of Theorem 3. Let t 6= 0 and z > 0. By (B.3), (B.5), and Proposition B.1
(ii), we have, for q ∈ 1,∞ and |t| ≤ θ0

ω̃q,W,x0t
N ≤

(eπ
2

)2p
exp

(
2kq ln

(
θ1

|t|

)
N

)
1l {|t| ≤ θ0}(B.44)

+ 2p exp

(
2kqθ0(N + k′q)

|t|

)
1l {|t| > θ0} .

For all N ≥ 1, we have ∆
cosh(·/R)
0 (t,N, n, z) ≤ ∆cosh(·/R)(t,N, n, z), where

∆cosh(·/R)(?,N, n, z)



B-16 GAILLAC AND GAUTIER

:=
2

π

(
πe2

8

)p(
2p/qQqcXN

(p−1)/q |?|p

n
+ z

(
L(?) +

cX(N + 1)p |?|p

n

))(
θ1

| ? |

)2kqN

1l {| ? | ≤ θ0}

+
2

πp+1

(
2p/qQqcXN

(p−1)/q |?|p+kq

(4θ0/e)
kq n

+ z

(
L(?) +

cX(N + 1)p |?|p

n

))
exp

(
2kqθ0(N + k′q)

|?|

)
1l {| ? | > θ0} .

Let ne ≥ ee be large enough so N ≥ (p+ 2)/(2kq). We have

∫ T

θ0

tp+kqe2kqθ0(N+k′q)/tdt =

∫ 1/θ0

1/T

e2kqθ0(N+k′q)u

up+2+kq
du ≤ θ

p+1+kq
0 e2kq(N+k′q)

2kq(N + k′q)
≤ θ

p+1+kq
0 e2kq(N+k′q)

p+ 2(1 + kqk′q)
.

(B.45)

Then, using N ≤ N , ne/n ≤ 1, nev(n0, E)/δ(n0) ≤ 1, and ε ≤ θ0, for the first display,∫ θ0

ε
tp
(
θ1

t

)2kqN

dt ≤ εp+1

2kqN − p− 1

(
θ1

ε

)2kqN

,(B.46)

∫
ε≤|t|≤θ0

(
θ1

|t|

)2kqN

L(t)dt+

∫
θ0≤|t|≤T

e2kqθ0(N+k′q)/|t|L(t)dt

≤ (2π)p+1l2

((
θ1

ε

)2kqN

1l{ε < θ0}
∨
e2kq(N+k′q)

)
,

and (B.45) for the second display, we obtain∫
ε≤|t|≤T

∆cosh(·/R)(t,N, n, Zn0)

≤ 22+p/qQqcXN
(p−1)/q

πne

(
πe2

8

)p ∫ θ0

ε
tp
(
θ1

t

)2kqN

dt

+
ME,η
ne

((
πe2

8

)p∨ 1

πp

)
2p+2πpl2

((
θ1

ε

)2kqN

1l{ε < θ0}
∨
e2kq(N+k′q)

)

+
4cX
πne

(
πe2

8

)p
2pME,ηN

p

n

∫ θ0

ε
tp
(
θ1

t

)2kqN

dt+
2p/qQqcXN

(p−1)/qekq

πp+14kq−1θ
kq
0 ne

∫ T

θ0

tp+kqe2kqθ0(N+k′q)/tdt

+
4cX
πp+1ne

2pME,ηN
p

n

∫ T

θ0

tpe2kqθ0(N+k′q)/tdt

≤ G1

(
Nkq

n

)
N (p−1)/q

ne

(
θ1

ε

)2kqN

1l{ε < θ0}+G2

(
Nkq

n

)
N (p−1)/q

ne
e2kq(N+k′q),

(B.47)

G := 4

(
2kq
p+ 2

)(p−1)/q

ME,η

(
πe2

4

)p
πpl2, G1 :=

4cXθ
p+1
0

π

(
2p/qQq + 2pME,η·

)(πe2

8

)p
+G,
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G2 :=
4cXθ

p+1+kq
0

(p+ 2(1 + kqk′q))π
p+1

(
2p/qQq

(
e

4θ0

)kq
+ 2pME,η·

)
+G.

Proof of (T3.1). We have, using Ka(e) = wI
(
ω2
N

)
,

ln(ne)−
p− 1

q
ln(N) = 2kqN ln

(
wI
(
ω2
N

))
+ ln

(
ω2
N

)
=

4kqσ

µ
N ln (N) + 2σ ln (N) ≥ 4kqσ

µ
N ln (N) ,

hence, for ne large enough so that ln(N) ≥ µ/(kqσ),

(B.48) N ≤ ln(ne)

4kqσ ln(N)/µ
≤ ln(ne)

4kq
.

Thus, using (A.1), we have N/n ≤ 1/(4kqe). This yields, using (B.47), (A.32), θ1/ε = wI
(
ω2
N

)
,

N + 1 ≥ N , and the definition of a,

RWn0,sup ≤ C

(
G1

(
k
kq−1
q

4ekq

)
Np−1

(
wI
(
ω2
N

))2kqN

ne
+G2

(
k
kq−1
q

4ekq

)
Np−1 e

2kq(N+k′q)

ne
+

8l2 +M2

ω2
N

)
.

By (B.48), we obtain ω2
NN

(p−1)/qe2kq(N+k′q)/ne ≤ ln(ne)
2σ+(p−1)/qe2kqk′q/(42σ+p−1√ne). Thus,

using (A.1), we have N (p−1)/qe2kq(N+k′q)/ne ≤ e2kqk′q((2σ + (p − 1)/q)/(2e))2σ+(p−1)/q/ω2
N and

using the definition of N ,

RWn0,sup ≤
C

N2σ

(
G1

(
k
kq−1
q

4ekq

)
+G2

(
k
kq−1
q

4ekq

)
e2kqk′q

(
2σ + (p− 1)/q

2e

)2σ+(p−1)/q

+ 8l2 +M2

)
.

(B.49)

We also have

ln(ne) = 2kqN ln
(
wI
(
ω2
N

))
+ ln

(
ω2
N

)
+
p− 1

q
ln(N) ≤

(
2

(
2kq
µ

+ 1

)
σ +

2(p− 1)

q(p+ 2)

)
N ln(N),

hence N ln(N) ≥ ln(ne)/τ6, τ6 := 2 (2kq/µ+ 1)σ+ 2(p− 1)/(q(p+ 2)). Similarly to (B.36), we
have N ≥ ln(ne)/(τ6 (1 + ln(1 + τ6/e)) ln2(ne)), which yields the result with (B.49).
Proof of (T3.2). Because Ka(e) = 1 then 2(kq +κ)N +(p−1) ln(N) ≥ 2(kq +κ)N , we obtain

N ≤ ln(ne)/(2(kq + κ)). Thus using n ≥ ne and (A.1), we have G2(Nkq/n) ≤ G2(k
kq
q /(2(kq +

κ)e)kq). Using (A.32), w = WA, (B.47), ε = θ0, yield

RWn0,sup ≤ C

(
G2

(
k
kq
q

2(kq + κ)ekq

)
N (p−1)/q e

2kq(N+k′q)

ne
+

8l2

ω2
N

)
.

We conclude using the definition ofN , which yieldsN (p−1)/qe2kqN/ne = n
−κ/(kq+κ)
e Nκ(p−1)/(q(1+κ))

and ω−2
N = e−2κN = n

−κ/(kq+κ)
e Nκ(p−1)/(q(kq+κ)). �

Proof of Lemma A.6. Let t ∈ [−T, T ] \ (−ε, ε), N ∈ {0, . . . , NW
max,q}, T ∈ Tn. Using, for

all N1, N2 ∈ N0, R̃N2
N1

(t, ·2) :=
(
F̂ q,N1,T,0

1 − F̂ q,N2∨N1,T,0
1

)
(t, ·2), we have LWq

(
t, N̂(t), T

)
=
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R̃N
N̂(t)
− R̃N̂(t)

N + LWq (t,N, T ). Using (A.2) yields

E
[
LWq

(
t, N̂(t), T

)]
≤(2 +

√
5)

(
E
[∥∥∥R̃N

N̂(t)
(t, ·2)

∥∥∥2

L2(W⊗p)

]
+ E

[∥∥∥R̃N̂(t)
N (t, ·2)

∥∥∥2

L2(W⊗p)

])
+

(
1 +

2√
5

)
E
[
LWq (t,N, T )

]
.

BecauseB1 (t,N) = max
N ′∈N0: N ′≤NW

max,q

(∑
N≤|m|q≤N ′∨N

(
|ĉm(t)| /σW,x0t

m

)2
− Σ (t,N ′)

)
+

, we have

E
[∥∥∥R̃N2

N1
(t, ·2)

∥∥∥2

L2(W⊗p)

]
≤ E [B1 (t,N1)] + E [Σ (t,N2)] for possibly random N1 and N2. Using

c1 ≥ 1 + 1/(2 +
√

5)2 and (16) yield

E
[
LWq

(
t, N̂(t), T

)]
+

1

2 +
√

5
E
[
Σ
(
t, N̂(t)

)]
≤ (2 +

√
5) (2E [B1 (t,N)] + (1 + c1)E [Σ (t,N)]) +

(
1 +

2√
5

)
E
[
LWq (t,N, T )

]
.

By (A.2) and, for all N ′ ∈ Nn, R̃N
′

N,1(t, ·2) :=
(
F̂ q,N∨N

′,T,0
1 − F q,N∨N

′,T,0
1

)
(t, ·2), R̃N

′
N,2(t, ·2) :=(

F q,N,T,01 − F̂ q,N,T,01

)
(t, ·2), and R̃N

′
N,3(t, ·2) :=

(
F q,N∨N

′,T,0
1 − F q,N,T,01

)
(t, ·2), we have

B1(t,N) ≤ max
0≤N ′≤NW

max,q

N ′∈N0

(2 +
√

5)
2∑
j=1

∥∥∥R̃N ′N,j(t, ·2)
∥∥∥2

L2(W⊗p)
+

(
1 +

2√
5

)∥∥∥R̃N ′N,3(t, ·2)
∥∥∥2

L2(W⊗p)
− Σ(t,N ′)


+

.

Using F q,∞,T,01 (t, ·) = F1st [fα,β] (t, ·), we have∥∥∥R̃N ′N,3(t, ·2)
∥∥∥2

L2(W⊗p)
=

∑
N<|m|q≤N∨N ′

∣∣∣∣ cm(t)

σW,x0t
m

∣∣∣∣2 ≤ ∥∥∥(F q,N,T,01 −F1st [fα,β]
)

(t, ·2)
∥∥∥2

L2(W⊗p)
,

B1(t,N) ≤ max
0≤N ′≤NW

max,q

N ′∈N0

(
2(2 +

√
5)
∥∥∥(F q,N ′,T,01 − F̂ q,N

′,T,0
1

)
(t, ·2)

∥∥∥2

L2(W⊗p)
− Σ(t,N ′)

)
+

+

(
1 +

2√
5

)∥∥∥(F q,N,T,01 −F1st [fα,β]
)

(t, ·2)
∥∥∥2

L2(W⊗p)
.

Finally, we have

E
[
LWq

(
t, N̂(t), T

)]
+

1

2 +
√

5
E
[
Σ
(
t, N̂(t)

)]
≤ 4(2 +

√
5)2E

[
max

0≤N ′≤NW
max,q

(∥∥∥(F̂ q,N ′,T,01 − F q,N
′,T,0

1

)
(t, ·2)

∥∥∥2

L2(W⊗p)
− Σ(t,N ′)

2(2 +
√

5)

)
+

]

+ (2 +
√

5)(1 + c1)E [Σ (t,N)] +
(

2 +
√

5
)2

E
[
LWq (t,N, T )

]
.
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Using (A.33) for the second display and Lemma A.4 for the third, we obtain

E

[
max

0≤N ′≤NW
max,q

∥∥∥(F̂ q,N ′,T,01 − F q,N
′,T,0

1

)
(t, ·2)

∥∥∥2

L2(W⊗p)
− Σ(t,N ′)

2(2 +
√

5)

]

= E

 max
0≤N ′≤NW

max,q

 ∑
|m|q≤N ′

(
|ĉm(t)− cm(t)|

σW,x0t
m

)2

− Σ(t,N ′)

2(2 +
√

5)


+


≤
(

1 + 2
√

5
)
E

[
max

0≤N ′≤NW
max,q

(
S3(N ′, t)− Σ(t,N ′)

2(2 +
√

5)

)
+

]

+

(
2 +

1√
5

)
E

[
max

0≤N ′≤NW
max,q

(
S1(N ′, t) + S2(N ′, t)

)]

≤
(
NW

max,q + 1
) (

1 + 2
√

5
)

48
cX
n

(
|t|
2π

)p
νWq

(
x0t,N

W
max,q

)
Ψ0,n(t) + Zn0Ψn(t).

Hence the result. �

Hereafter, let (n, n0) ∈ N2 such that v(n0, E)/δ(n0) ≤ n−2 ln(n)−p, n ≥ e7e2/(2π) large enough
so that NW

max,q ≥ (p + 1)/kq. Using θ1/ ln(n) ≤ 2θ0, let (θ1l{W = W[−R,R]} + θ11l{W =
cosh(·/R)})/ ln(n) ≤ ε ≤ θ1l{W = W[−R,R]} + 2θ01l{W = cosh(·/R)}. Using the definition of

NW
max,q yields NW

max,q ≤ NW
max,q and ε ≤ θ yields N

W[−R,R]
max,q ln

(
N
W[−R,R]
max,q

)
≤ ln(n)/(2kq). Then,

using that, for all x ≥ 1/e, W (x ln(x)) = ln(x), and the definition of W for the bound on

N
W[−R,R]
max,q and else the definition of N

cosh(·/R)
max,q , we have, for all t 6= 0,

NW
max,q ≤

ln(n)

τ7
, τ7 := 2kqW

(
7e2

4πkq

)
1l{W = W[−R,R]}+ 2kq1l{W = cosh(·/R)}.(B.50)

Using, for all |t| ≥ ε and N ≥ 1, 2kqN ln(θ(N + 1)/ |t|) ≤ 2kqN ln(θN/ε) + 2kq, we have(
θ
(
N
W[−R,R]
max,q + 1

)
/ |t|
)2kqN

W[−R,R]
max,q

≤ e2kq
(
θN

W[−R,R]
max,q /ε

)2kqN
W[−R,R]
max,q

. (B.30) and the definition

of N
W[−R,R]
max,q yield

∀|t| ≥ ε, ω̃q,W[−R,R],x0t

NW
max,q

≤ 2pe2kqn.(B.51)

Lemma B.13. For all q ∈ {1,∞}, ε ≤ Tmax ≤ nζ0 , and W ∈ {W[−R,R], cosh(·/R)}, we have∫ Tmax

ε
tpνWq

(
x0t,N

W
max,q

)
dt ≤ AW,q3 ln(n)a0n,

a0 := p1l{W = W[−R,R]}+
p− 1

q
1l{W = cosh(·/R)},

A
W[−R,R],q

3 :=
2pQq

τp7 (p+ 1)

(
θp+1e2kq

kq
+ e(1−ζ0(p+1))7e2/(2π)

)
,
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A
cosh(·/R),q
3 :=

21/qQq

k
(p−1)/q
q

((eπ
2

)2p
1l{ε < θ0}

θp+1
0

p+ 1
+ 2p

(e
4

)kq θp+1
0 e2kqk′q

p+ 2(1 + kqk′q)

)
.

Proof. Let W = W[−R,R]. Using the definition of ν
W[−R,R]
q , NW

max,q ≥ 1, and (B.29) for the first
inequality, (B.31) and (B.50) for the second, and the arguments which yield (B.51) for the last
inequality, the result follows from

∫ Tmax

ε
tpνWq

(
x0t,N

W
max,q

)
dt ≤ 2pQq

(
NW

max,q

)p ∫ Tmax

ε
tp

1
∨θ

(
NW

max,q + 1
)

|t|

2kqNW
max,q

dt

≤ 2pQq ln(n)p

τp7

 εp+1

kqNW
max,q

(
θ(NW

max,q + 1)

ε

)2kqNW
max,q

+
T p+1

max

p+ 1


≤ 2pQq ln(n)p

τp7 (p+ 1)

(
θp+1e2kq

kq
+

1

n(p+1)ζ0−1

)
n.

Let now W = cosh(·/R). Using the definition of νWq , we have for all N ≥ 1 and t 6= 0,

νcosh(·/R)
q (x0t,N) =2p/qQqN

(p−1)/q
(eπ

2

)2p
(
θ1

|t|

)2kqN

1l{|t| ≤ θ0}

+ 2p(1+1/q)QqN
(p−1)/q

(
e|t|
4θ0

)kq
exp

(
2θ0kq(N + k′q)

)
1l{|t| > θ0}.

Because of (B.50), we have, for t 6= 0, e2kqN
cosh(·/R)
max,q ≤ n. By definition of N

cosh(·/R)
max,q , when

ε < θ0, we also have, for |t| ≤ θ0, (θ1/ε)
2kqN

cosh(·/R)
max,q ≤ n. Then, using (B.50) for the first display

and using (B.45) and (B.46) for the second, the result follows from∫ Tmax

ε
tpνWq

(
x0t,N

W
max,q

)
dt ≤2p/qQq

(
ln(n)

2kq

)(p−1)/q (eπ
2

)2p
1l{ε < θ0}

∫ θ0

ε
tp
(
θ1

|t|

)2kqNW
max,q

dt

+Qq

(
ln(n)

2kq

)(p−1)/q 2p(1+1/q)ekq

(4θ0)kq

∫ Tmax

θ0

tp+kqe
2θ0kq

(
NW

max,q+k
′
q

)
dt

≤2p/qQq

(
ln(n)

2kq

)(p−1)/q (eπ
2

)2p
1l{ε < θ0}

θp+1
0

p+ 1

(
θ1

ε

)2kqNW
max,q

+Qq

(
ln(n)

2kq

)(p−1)/q 2p(1+1/q)ekq

(4θ0)kq
θ
p+1+kq
0 e2kqk′q

p+ 2(1 + kqk′q)
e

2kqNW
max,q

≤Acosh(·/R),q
3 ln(n)(p−1)/qn. �
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Lemma B.14. For all q ∈ {1,∞}, W ∈ {W[−R,R], cosh(·/R)}, and (ε ∨ 1) ≤ Tmax ≤ nζ0 , we
have Π(n,Zn0 , Tmax, Nmax,q) ≤ (A0 +A1)/n, where

A0 :=
ME,η
n

(
2 +

1√
5

)((
4π2

θx0

)p
b0(2π)l2 +

2cXA
W,q
3

(2π)pe7e2/(2π)

)
,

b0 := 2pe2kq1l{W = W[−R,R]}+
(eπ

2

)2p
1l{W = cosh(·/R)},

A1 :=
96
(
1 + 2

√
5
)
cXζ0A

W,q
3

(2π)pkq ln(2) (1/τ7 + π/(7e2))p

((
a0 + 2

eζ0

)a0+2

+
e1/b1294cXa

2
1

xp0

(
a0 + 2(p+ 1)

e

)a0+2(p+1)
)
,

a1 :=

(
1

τ7
+

π

7e2

)p
(H01l{W = W[−R,R]}+H11l{W = cosh(·/R)})p

(
1 + x2

0

)p
,

b1 :=
L
√
p2

a1

(
e(1− 4(1 + 1l{W = cosh(·/R)})pζ0)

2p+ 3

)p+3/2

.

Proof. Let us show

Zn0

∫
ε≤|t|≤Tmax

Ψn(t)dt ≤ A0

n
and Π1(n, Tmax, Nmax,q) ≤

A1

n
.(B.52)

Let W = W[−R,R]. Using for the second display v(n0, E)/δ(n0) ≤ n−2 ln(n)−p, (B.51), ε ≥
θ/ ln(n), (B.29), and Lemma B.13, we obtain

Zn0

∫
ε≤|t|≤Tmax

Ψn(t)dt =Zn0

(
2 +

1√
5

)(
2π

x0

)p ∫
ε≤|t|≤Tmax

ω̃q,W,x0t
NW

max,q
|t|−p ‖F1st [fα,β] (t, ·2)‖2L2(Rp) dt

+ Zn0

(
2 +

1√
5

)
cX

(2π)pn

∫
ε≤|t|≤Tmax

|t|pνWq (x0t,N
W
max,q)dt

≤
ME,η

n2 ln(n)p

(
2 +

1√
5

)((
4π

θx0

)p
e2kqn ln(n)p(2π)p+1l2 +

2cXA
W,q
3 ln(n)p

(2π)p

)
.

Using n ≥ e7e2/(2π) and (A.1) yield the first inequality in (B.52). Similarly, by definition of

N
cosh(·/R)
max,q and (B.44), we have ω̃

q,cosh(·/R),x0t

NW
max,q

≤ (eπ/2)2pn. This and (B.50) yield the first

inequality in (B.52) for the other instances of W and q.
By (B.50), we have

Kn(t) ≤
(

ln(n)

τ7
+

1

2

)p
T 2p

maxH
p
0

(
1

T 2
max

+ x2
0

)p
≤ a1 ln(n)pT 2p

max.(B.53)

We obtain, using Tmax ≤ nζ0 for the third inequality and (A.1) for the fourth,

L
√
pnn

Kn(t)
≥
L
√
p2 ln(n)n

a1 ln(n)pT 2p
max

≥
L
√
p2n

(1−4ζ0p)/2

a1 ln(n)p−1/2
≥ b1 ln(n)2.
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Using (B.50) for the first inequality, Lemma B.13 for the second, and using the definition of

pn, 6(1 + ζ0) ln(n) > 3, (B.53), and T 4p
max ≤ n4pζ0 , for the third, we have

Π1(n, Tmax, Nmax,q)

≤
96
(
1 + 2

√
5
)
cXζ0 ln(n)2

(2π)pkq ln(2)n

(
1

τ7
+

π

7e2

)p ∫ Tmax

ε
tpνWq

(
x0t,N

W
max,q

)
dt sup

ε≤t≤Tmax

Ψ0,n(t)

≤
96
(
1 + 2

√
5
)
cXζ0A

W,q
3

(2π)pkq ln(2)n

(
1

τ7
+

π

7e2

)p
sup

ε≤t≤Tmax

ln(n)p+2nΨ0,n(t)

≤
96
(
1 + 2

√
5
)
cXζ0A

W,q
3

(2π)pkq ln(2)n

(
1

τ7
+

π

7e2

)p( ln(n)p+2

nζ0
+ sup

n>0

(
e−b1 ln(n)2

n2
) 294cXa

2
1

xp0

ln(n)3p+2

n2(1−2pζ0)

)
.

Thus, (A.1), 1−2pζ0 > 1/2, supx>0

(
e−b1 ln(x)2

x2
)

= e1/b1 yield the second inequality in (B.52).

We obtain similarly the bounds for the other instances of W and q. �

End of proof of Theorem 4. We start from (A.38) and useA4 := 2(2+
√

5)2C
(

1 +
(
2 +
√

5
)2)

(A0+

A1)/π, T ∗ := 2k
∗
, k∗ := bln(φI(ωN∗))/ ln(2)c, N∗(t) := bN∗c, where N∗ is defined below, and

RW,adp
n0,sup := sup

fα,β∈Hq,φ,ωw,W (l,M)∩D, fX|X∈E
RWn0

(
f̂ q,N̂ ,T̂ ,εα,β , fα,β

)
.

We have, for all |t| ≥ ε, W ∈ {W[−R,R], cosh(·/R)}, and N ≥ 1, 2∆̃W
0 (t,N, n, Zn0)/(π(2π)p) ≤

∆̃W (t,N, n, Zn0) where ∆̃W is defined like ∆W replacingQq byQq,n := Qq (1 + 2(1 + 2pn)(1 + c1)).
Thus, by (A.38), we obtain, for all W ∈ {W[−R,R], cosh(·/R)},

RW,adp
n0,sup ≤C

(
2 +
√

5
)4
∫
ε≤|t|≤T

∆̃W

(
t,N(t), n,

ME,ηv(n0, E)

δ(n0)

)
dt

+ C
(

2 +
√

5
)4
(

sup
t∈[−T,T ]

4l2

ω2
N(t)+1

+
4l2

φ(T )2

)
+ CM2w̃(a) +

A4

n
.(B.54)

Proof of (T4.1a). Let N∗ solution of

(B.55) 2kqN
∗ ln (N∗ ln(n)) + ln

(
ω2
N∗

)
+ (p− 1) ln (N∗) + ln2(n) = ln(n),

n ≥ e7e2/(2π) large enough so N∗ ≥ 1, and (ln(n)/τ ′2)σ/s ≤ nζ0/2, where τ ′2 := 2kqW(e/(2kq)).
By (B.55) and the definition of NW

max,q, we have N∗ ≤ NW
max,q for all t ∈ R \ (−ε, ε), hence

N∗ ∈ Nn. Also T ∗ ∈ Tn because, by the arguments in the proof of (T2.1),

N∗ ≤ ln(n)

2kqW(ln(n)/(2kq))
≤ ln(n)

τ ′2
,
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so we have T ∗ ≤ (ln(n)/τ ′2)σ/s ≤ nζ0/2 ≤ Tmax. (B.31), (B.32), and pn = 6 (1 + ζ0) ln(n), yield

RW,adp
n0,sup ≤ C

(
2 +
√

5
)4

ln(n)(N∗)p−1

(
τ ′0
n

(N∗ ln(n))2kqN∗ +
τ ′1
n

(T ∗)p+1

)
+

8C
(
2 +
√

5
)4
l2

ω2
N∗

+
θCM2

ln(n)
+
A4

n
,

τ ′0 :=
e2kq4cXθ

p+1

πp+1kq

(
Qq

(
1

e
+

(
1

e
+ 6 (1 + ζ0)

)
2(1 + c1)

)
+ eME,η2

p

)
+
ME,η2

p+2l2

e
,

τ ′1 :=
4cX

πp+1(p+ 1)

(
Qq

(
1

e
+

(
1

e
+ 6 (1 + ζ0)

)
2(1 + c1)

)
+
ME,η2

p

e

)
.

The computation below gives lower bounds on N∗ ln(N∗) and N∗:

ln(n) = 2kqN
∗ ln (N∗ ln(n)) + (2σ + p− 1) ln (N∗) + ln2(n)

≤ 2
(

(2(kq + σ) + p− 1)N∗ ln(N∗)
∨

(2kqN
∗ + 1) ln2(n)

)
≤ 2

(
(2(kq + σ) + p− 1)N∗ ln(N∗)

∨
(2kq + 1)N∗ ln2(n)

)
.

Using both andW(x) ≤ ln(x+1) for all x > 0, we obtain N∗ ≥ ln(n)/((τ8
∨

(2kq+1)) ln2(n)(1+
ln(1 + τ8/e)), where τ8 := 2(2(kq + σ) + p− 1). We conclude proceeding like for (B.35).
Proof of (T4.2). Start from (B.54), where, because w = WA, the term M2w̃(a) is zero. Let

N∗ solution of 2kqN
∗ ln (N∗) + ln

(
ω2
N∗

)
+ (p − 1) ln (N∗) + ln2(n) = ln(n). By definition of

NW
max,q this yields N∗ ≤ NW

max,q hence N∗ ∈ Nn. Using arguments from the proof of (T2.2a) we

have T ∗ ≤ nκ/(2(κ+kq)s) and, using s > 2p+1/2, for n large enough nκ/(2(κ+kq)s) ≤ n1/(4p+1)/2 ≤
Tmax, hence T ∗ ∈ Tn. Thus, we obtain

RW,adp
n0,sup ≤ C

(
2 +
√

5
)4

ln(n)(N∗)p−1

(
τ ′0
n

(N∗)2kqN∗ +
τ ′1
n

(T ∗)p+1

)
+

8C
(
2 +
√

5
)4
l2

ω2
N∗

+
A4

n
.

This yields the result following the proof of (T2.2a).
Proof of (T4.1b). Starting from (B.54), the proof is similar to that of (T4.1a) with elements

from that of (T3.1), using N∗ solution of 2kqN ln2 (n) + (p− 1) ln(N)/q + ln
(
ω2
N∗

)
= ln(n).

Proof of (T4.3). The proof is similar to that of (T4.2). Start from (B.54). Let N∗ solution
of 2(kq +κ)N∗+ (p− 1) ln(N∗)/q+ ln2(n) = ln(n). Then, using the definition of NW

max,q, which

satisfies 2kqN
W
max,q = ln(n), we have N∗ ∈ Nn. Using arguments from the proof of (T3.2), we

have T ∗ ≤ nκ/(2s(κ+kq))
e and, using s > 4p+1/2, for n large enough n

κ/(2s(κ+kq))
e ≤ n1/(8p+1)/2 ≤

Tmax, hence T ∗ ∈ Tn. This yields the result using the proof of (T3.2). �
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Appendix B.3. Estimation of the marginal fβ

For all (ωm)m∈N0
increasing, ω0 = 1, l,M > 0, q ∈ {1,∞}, consider

Hq,ωw,W (l,M) :=

f : ‖f‖L2(w⊗W⊗p) ≤M,
∑
k∈N0

ω2
k ‖θq,k‖

2
L2(R) ≤ 2πl2

 .

For brevity, we present the slow rates and the estimator f̂ q,N,εβ :=
∑
|m|q≤N(ε) ĉm(ε)ϕW,εx0

m /σW,εx0
m .

It is based on fβ = F1st [fα,β] (0, ·2).

Proposition B.3. Let W = W[−R,R]. For all q ∈ {1,∞}, l,M,R > 0, σ > 2, Sβ ⊆ [−R,R]p, N

solution of 2(1+σ)kqN ln(N)+p(1−σ) ln(N)+ln(ω2
N ) = ln(ne), ε = θ/ωN , (ωk)k∈N0 = (kσ)k∈N0

,

and w such that
∫
R a

2/w(a)da <∞, we have(
ln(ne)

ln2(ne)

)2σ

sup
fβ∈Hq,ωw,W (l,M)∩D, fX|X∈E

E
[∥∥∥f̂ q,N,εβ − fβ

∥∥∥2

L2(Rp)

]
= Op(1).

Proof. We assume fX|X is known. The general case can be handled like in the proof of (T2.1).

Use f εβ := F1st [fα,β] (ε, ·) and define f q,ε,Nβ like f̂ q,ε,Nβ with c̃m(t) (see Lemma A.2) instead of

ĉm(t). Use
∥∥∥f̂ q,N,εβ − fβ

∥∥∥2

L2(Rp)
≤ 3

∑3
j=1 ‖Rj‖

2
L2(Rp), where R1 := f̂β−f q,N,εβ , R2 := f q,N,εβ −f εβ,

and R3 := f εβ − fβ. Let n ≥ ee large enough so that N ≥ 1
∨

((σ − 1)p− σ)/(2kq). By similar

arguments from (A.26), (B.29), N ≤ N , and (N + 1)2kqN ≤ e2kqN2kqN , we have

E
[
‖R1‖2L2(Rp)

]
≤QqcXe

2kq

πpn
εpNp

(
1
∨ θN

ε

)2kqN

=
QqcXe

2kqθp

πpn
Np(1−σ)+2(1+σ)kqN .(B.56)

We also obtain ‖R2‖2L2(Rp) ≤ 2πl2/ω2
N and

‖R3‖2L2(Rp) ≤
∫

[−R,R]p

(∫
R

∣∣eiεa − 1
∣∣ fα,β(a, b)da

)2

db

≤ε2
∫

[−R,R]p

(∫
R
|a| fα,β(a, b)da

)2

db ≤ θ2M2

ω2
N

∫
R

a2

w(a)
da <∞.(B.57)

Then, using ln(n) = 2(1 +σ)kqN ln(N) + p(1−σ) ln(N) + ln(ω2
N ) ≥ 2σkqN ln(N) and W(x) ≤

ln(x + 1), we have N ≤ ln(n)/(2σkq ln2(ne)(1 + ln(1 + 2σkq/e)). The result follows from the
definition of N , (B.56), and (B.57). �

Similar ideas apply for the estimation of fβj for j = 1, . . . , p.

Appendix B.4. Talagrand inequality for complex functions

Lemma B.15. Let X1, . . . , Xn n independent random vectors, Λ := (
√

1 + ·−1)∧1, U a count-
able set of complex measurable functions, and, for all u ∈ U , νn(u) :=

∑n
i=1 (u(Xi)− E [u(Xi)]) /n.
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If there exist M,H, v > 0 such that

sup
u∈U
‖u‖L∞(Rp) ≤M, E

[
sup
u∈U
|νn(u)|

]
≤ H, sup

u∈U

1

n

n∑
i=1

Var (R(u(Xi)))
∨

Var (I(u(Xi))) ≤ v,

then, for all η > 0,

E

[(
sup
u∈U
|νn(u)|2 − 4(1 + 2η)H2

)
+

]
≤ 48

(
v

n
e−η

nH2

6v +
294M2

Λ(η)2n2
e−
√

2Λ(η)
√
η

42
nH
M

)
.

Proof. The result follows from Theorem 7.3 in [14] and

E

[(
sup
u∈U
|νn(u)|2 − 4(1 + 2η)H2

)
+

]
≤ E

[(
sup
u∈U

R(νn(u))2 + sup
u∈U

I(νn(u))2 − 4(1 + 2η)H2

)
+

]

≤ E

[(
sup
u∈U

R(νn(u))2 − 2(1 + 2η)H2

)
+

]
+ E

[(
sup
u∈U

I(νn(u))2 − 2(1 + 2η)H2

)
+

]
. �

Appendix B.5. Approximation by PSWF in Sobolev ellipsoids.

For all σ, s, l > 0 and q ∈ {1,∞}, denote by (φm (·/R))m∈Zp :=
(
eiπm

>·/R/(2R)p/2
)
m∈Zp

,

F [f ](?,k) :=
∫
R e

i?a
∫

[−R,R]p e
iπk>b/R f(a, b)dadb/(2R)p/2, and

Hq,s,σ(l) :=

{
f :

∫
R

∑
k∈Zp

|F [f ](t,k)|2 (1 ∨ t2s)dt
∨∫

R

∑
k∈Zp

|F [f ](t,k)|2
(
1 ∨ |k|2σq

)
dt ≤ 2πl2

}
.

Denote, for all N ∈ N and c 6= 0, by PNc (resp. EN ) the projector in L2
(
W⊗p[−R,R]

)
onto the

vector space spanned by
(
ψcm (·/R) /Rp/2

)
|m|∞<N (resp. (φm (·/R))|m|∞<N ). For all t 6= 0

and
(
n,m,N, Ñ

)
∈ N4

0, denote by ϕt := F1st [f ] (t, ·2), βmn (t) :=
〈
ψtm, Pn

〉
L2([−1,1])

, Jj the

Bessel function of the first kind and order j > −1, KN,Ñ
t :=

∥∥∥EÑϕt − PNx0tE
Ñϕt

∥∥∥2
, and I

N,Ñ
:=∑

k∈Zp: |k|∞<Ñ
∑
|m|∞≥N

|〈φk (·/R) , ψx0?
m (·/R)〉|2.

Proposition B.4. For all σ, l,M,R > 0, q ∈ {1,∞}, and s ≥ σ+p/2, we have, for all N ≥ 10,∫
R

∥∥F1st [f ] (t, ·2)− PNx0tF1st [f ] (t, ·2)
∥∥2
dt ≤ 2πAl2

N2σ
,(B.58)

A :=2

((
1

1/(πe)− 1/10

)2σ

+ c

(
p+ 2σ

be

)p+2σ

+

(
2eRx0

π

)p
(e2x0)2σ

)
,

a :=

√
5e3(e2 + 1/e2)5/8

3(ln(2) + 2)211/4
, b := p

(
5

8
ln

(
21

10

)
− 1

e

)
,
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c :=
p(4R2/(πe))p

2R

(
a2p 8p(p− 1)p−1

(3p)pep−1
+

(
(2p− 1)8

5pe

)2p−1 5p−18

p16p ln (21/10)

)
.

Proposition B.4 is an analogue of (A.30) with N constant and (ωk)k∈N0
= (kσ)k∈N0

. It shows
that the approximation error when we use a truncated series expansion in the PSWF basis is

of order N−2σ whether we work on the class Hq,s,σ(l) or Hq,φ,ωw,W[−R,R]
(l,M) with φ = 1 ∨ |·|s.

(A.31) can be obtained using the first inequality in the definition of Hq,s,σ(l) and, for all t 6= 0,∑
k∈Zp |F [f ](t,k)|2 = ‖F1st[f ](t, ·2)‖2

L2
(
W⊗p

[−R,R]

) =
∑
m∈Np0

|bm(t)|2. Thus (T2.1) also holds

for functions in the intersection of Hq,s,σ(l)
⋂{

f : ‖f‖
L2
(
w⊗W⊗p

[−R,R]

) ≤M
}

. The proof below

uses techniques from the proof of Lemma 11 in [7].
Proof. In this proof, 〈·, ·〉 and ‖·‖ denote the scalar product and norm in L2([−R,R]p). Take

f ∈ Hq′,s,σ′(l). Let N ≥ 10 and Ñ := bτNc, where τ := 1/(πe). We have∥∥ϕt − PNx0tϕ
t
∥∥2 ≤ 2

(∥∥∥ϕt − EÑϕt − PNx0t

(
ϕt − EÑϕt

)∥∥∥2
+KN,Ñ

t

)
≤ 2

(∥∥∥ϕt − EÑϕt∥∥∥2
+KN,Ñ

t

)
.(B.59)

Using that
(
ψx0t
m (·/R) /Rp/2

)
m∈Np0

are orthonormal in L2([−R,R]p) and the Cauchy-Schwarz

inequality in the second display yield

KN,Ñ
t =

∥∥∥∥∥∥
∑

k∈Zp: |k|∞<Ñ

〈
ϕt, φk

( ·
R

)〉 ∑
|m|∞≥N

〈
φk

( ·
R

)
, ψx0t
m

( ·
R

)〉
ψx0t
m

( ?
R

) 1

Rp

∥∥∥∥∥∥
2

≤
∑

k∈Zp: |k|∞<Ñ

∣∣∣〈ϕt, φk ( ·
R

)〉∣∣∣2 IN,Ñ (t) ≤

(∑
k∈Zp

|F [f ](t,k)|2
)
I
N,Ñ

(t).

We have, using (18.17.19) in [45] for the first equality and for all k ∈ Z and m ∈ N0,∣∣∣〈φk ( ·
R

)
, ψx0t

m

( ·
R

)〉∣∣∣2 =
R

2
|Im,k +Om,k|2 ≤ R

(
|Im,k|2 + |Om,k|2

)
,

Im,k :=

b5m/8c−1∑
n=0

βmn (x0t)
〈
eiπk·, Pn

〉
L2([−1,1])

, Om,k :=
∑

n≥b5m/8c

βmn (x0t)i
n

√
2

|k|

√
n+

1

2
Jn+1/2(|k|π).

Using, for all k ∈ Z,
∣∣〈eiπk·, Pn〉∣∣ ≤ √2, Proposition 3 in [7], and integral test for convergence

(indeed, by (3.4) page 34 in [46], for all m ≥ 2 ∨ (e2x0 |t|), 2
√
χx0t
m / (x0 |t|) ≥ 2e2 > 1), we

obtain, for all m ≥ 2 ∨ (e2x0 |t|),

|Im,k| ≤
√

5

2π

∫ b5m/8c
0

(
2
√
χx0t
m

x0 |t|

)x
dx
∣∣µx0t
m

∣∣ ≤ √
5/(2π)

ln
(

2
√
χx0t
m / (x0 |t|)

) (
2
√
χx0t
m

x0 |t|

)b5m/8c ∣∣µx0t
m

∣∣ .
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Let m ≥ 2 ∨ (e2x0 |t|). Using Lemma B.4 for the first inequality, we obtain

|Im,k| ≤
√

5e3

3

1

ln(2) + 2

(
2
√
m(m+ 1) + x2

0t
2

x0 |t|

)5m/8(
ex0 |t|

4(m+ 3/2)

)m

≤
√

5e3

3

1

ln(2) + 2

(√
e2 + 1/e2(m+ 1)

211/5(m+ 3/2)

)5m/8

exp

(
−3m

8
ln

(
m

ex0 |t|

))
≤ a exp

(
−3m

8
ln

(
m

ex0 |t|

))
.

Using, for all j > −1/2, x ∈ R, and n ∈ N0, |Jj(x)| ≤ |x|j /
(
2jΓ(j + 1)

)
(see 9.1.20 in [1]),

|βmn (x0t)| ≤ 1, and
√
n+ 1/2 < Γ(n + 3/2)/n! (see (5.6.4) in [45]) for the first inequality and

m > 8/5 and n! ≥ (n/e)n
√

2πn for the third, we obtain, for all k ∈ Z,

|Om,k| ≤
∑

n≥b5m/8c

√
π

n!

(
|k|π

2

)n

≤
√
π

b5m/8c!

(
|k|π

2

)b5m/8c
exp

(
|k|π

2

)
≤
√

5m

16

(
|k|πe

2(5m/8− 1)

)5m/8

exp

(
|k|π

2

)
.

Using
∣∣〈φk (·/R) , ψx0t

m (·/R)
〉∣∣2 ≤ R for all (k,m) ∈ N2

0 for the first inequality,
∑
|m|∞=j 1 ≤

p(j + 1)p−1 for the second, (B.29) and the convexity of x 7→ xp for the fourth inequality, we
have, for all t such that N ≥ e2x0 |t|,

I
N,Ñ

(t) ≤ Rp−1
∑

k∈Zp: |k|∞<Ñ

∞∑
j=N

∑
|m|∞=j

p∏
l=1

∣∣∣〈φkl ( ·R) , ψx0t
j

( ·
R

)〉∣∣∣2

≤ R2p−1
∑

k∈Zp: |k|∞<Ñ

∞∑
j=N

p(j + 1)p−1
p∏
l=1

(
|Ij,kl |

2 + |Oj,kl |
2
)

≤ pR2p−1
∑

k∈Zp: |k|∞<Ñ

∞∑
j=N

(j + 1)p−1

(
a2

(
ex0 |t|
j

)3j/4

+
5je|kl|π

16

(
|kl|πe

2(5j/8− 1)

)5j/4
)

≤ p(4R2τN)p

2R

∞∑
j=N

jp−1a2p

(
ex0 |t|
j

)3pj/4

+

(
5eÑπj2

16

)p(
Ñπe

2(5j/8− 1)

)5pj/4
1

j
.

Using κ(t) := −3 ln (ex0 |t| /N) /8, κ(t) ≥ 3/8 for N ≥ 2 ∨ (e2x0 |t|), and supj≥1 j
p−1e−pκ(t)j =

(1− 1/p)p−1/(κ(t)e)p−1 for the second inequality, we obtain, for all N ≥ e2x0 |t|,
∞∑
j=N

jp−1

(
ex0 |t|
j

)3pj/4

≤ (1− 1/p)p−1

(κ(t)e)p−1

∫ ∞
N

e−pκ(t)jdj ≤ (p− 1)p−1

(pκ(t))pep−1
e−pκ(t)N .
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Using 1 − 8/(5N) ≥ 1/5, that for j ≥ N , Ñπe/(2(5j/8 − 1)) ≤ 10τπe/21 = 10/21, and

supj≥1 j
2p−1e−5pj/8 = ((2p− 1)8/(5pe))2p−1 for the first inequality, we obtain

∞∑
j=N

j2p−1

(
Ñπe

2(5j/8− 1)

)5pj/4

≤
(

(2p− 1)8

5pe

)2p−1 ∫ ∞
N

e−5pj ln(21/10)/8dj

≤
(

(2p− 1)8

5pe

)2p−1 8

5p ln(21/10)
e−5pN ln(21/10)/8.

Using (B.59) for the first display, using supt: |t|≤N/(e2x0) IN,Ñ (t) ≤ cNpe−bN (because 5 ln(21/10)/8−
τπ < 3/8 ≤ κ(t)), using s ≥ σ + p/2, f ∈ Hq,s,σ(l), and, for all |t| > N/(e2x0), I

N,Ñ
(t) ≤

Rp
∑
k∈Zp: |k|∞<Ñ ‖φk‖

2
L2([−1,1]p) ≤ (2τNR)p for the second, we have∫

R

∥∥F1st [f ] (t, ·2)− PNx0tF1st [f ] (t, ·2)
∥∥2
dt

≤ 2
∥∥∥F1st [f ]− EÑF1st [f ]

∥∥∥2

L2(R×[−R,R]p)
+ 2

∫ N/(e2x0)

−N/(e2x0)

∑
k∈Zp

|F1st [f ] (t,k)|2 dt sup
t: |t|≤N/(e2x0)

I
N,Ñ

(t)

+
2 (2τNR)p

1 ∨ (N/(e2x0))2s

∫
|t|>N/(e2x0)

∑
k∈Zp

|F1st [f ] (t,k)|2 (1 ∨ t2s)dt

≤ 4πl2

(τN − 1)2σ
+

4πl2cNp

ebN
+

4πl2
(
2τRe2x0

)p
(e2x0)2σ

N2σ
.

Using τ − 1/10 > 0 and (A.1) yield the result. �
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