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ADAPTIVE ESTIMATION IN THE LINEAR RANDOM COEFFICIENTS
MODEL WHEN REGRESSORS HAVE LIMITED VARIATION

CHRISTOPHE GAILLAC®:(2 AND ERIC GAUTIER™

ABSTRACT. We consider a linear model where the coefficients - intercept and slopes - are
random with a distribution in a nonparametric class and independent from the regressors.
The main drawback of this model is that identification usually requires the regressors to have
a support which is the whole space. This is rarely satisfied in practice. Rather, in this paper,
the regressors can have a support which is a proper subset. This is possible by assuming that
the slopes do not have heavy tails. Lower bounds on the supremum risk for the estimation of
the joint density of the random coefficients density are derived for this model and a related
white noise model. We present an estimator, its rates of convergence, and a data-driven rule
which delivers adaptive estimators. The corresponding R package is RandomCoefficients.

1. INTRODUCTION

For a random variable o and random vectors X and 3 of dimension p, the linear random
coefficients model is

(1) Y=a+8"X,
(2) (o, 87) and X are independent.

The researcher has at her disposal n observations (Y;, X, )7_, of (Y, X ") but does not observe
the realizations (a;, ,BZ-T)?:1 of (av, ,BT). « subsumes the intercept and error term and the vector
of slope coefficients 3 is heterogeneous (i.e., varies across 7). For example, a researcher inter-
ested in the effect of the income of the parents on pupils’ achievements might want to allow
different effects for different pupils and to estimate the density of the effect. («, ,BT) correspond
to multidimensional unobserved heterogeneity and X to observed heterogeneity. Restricting
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unobserved heterogeneity to a scalar, as when only « is random, can have undesirable im-
plications such as monotonicity in the literature on policy evaluation (see [25]). Parametric
assumptions are often made by convenience and can drive the results (see [30]). For this rea-
son, this paper considers a nonparametric setup. Model (1) is also a type of linear model with
homogeneous slopes and heteroscedastic errors, hence the averages of the coefficients are easy
to obtain. However, the law of coefficients, their quantiles, prediction intervals for Y given
X = x as in [3], welfare measures, treatment and counterfactual effects, which depend on the
distribution of the coefficients can be of great interest.

Estimation of the density of random coefficients f, g when the support of X is R and X has
heavy enough tails has been studied in [4, 32]. These papers notice that the inverse problem is
related to a tomography problem (see, e.g., [10, 11]) involving the Radon transform. Assuming
the support of X is R? amounts to assuming that the law of angles has full support, moreover
a lower bound on the density of X is assumed so that the law of the angles is nondegener-
ate. When p = 1 this is implied by densities of X which follow a Cauchy distribution. The
corresponding tomography problem has a nonuniform and estimable density of angles and the
dimension can be larger than in tomography due to more than one regressor. More general
specifications of random coefficients model are important in econometrics (see, e.g., [26, 31, 41]
and references therein) and there has been recent interest in nonparametric tests (see [9, 20]).

This paper considers the case where the support of X is a proper (i.e., strict) subset. This is a
much more useful and realistic framework for the random coefficients model. In our motivating
example, the income of the parents is positive and probably bounded. When p = 1, the problem
is related to limited angle tomography (see, e.g., [21, 33]). There, one has measurements over
a subset of angles and the unknown density has support in the unit disk. This is too restrictive
for a density of random coefficients and implies that « has compact support, ruling out usual
parametric assumptions on error terms. Due to (2), the conditional characteristic function of Y
given X = x at ¢ is the Fourier transform of f, g at (t, txz")". Hence, the family of conditional
characteristic functions indexed by @« in the support of X gives access to the Fourier transform
of fo 3 on a double cone of axis (1,0,...,0) € RP*! and apex 0. When a = 0, Sg is compact,
and X C Sx is an arbitrary compact set of nonempty interior, this is the problem of out-of-
band extrapolation or super-resolution (see, e.g., [5] sections 11.4 and 11.5). Because we allow
a to be nonzero, we generalize this approach. Estimation of f, g is a statistical inverse problem
for which the deterministic problem is the inversion of a truncated Fourier transform (see, e.g.,
[2] and the references therein). The companion paper [24] presents conditions on the law of

(a, ,BT)T and the support of X that imply nonparametric identification. It considers weak
conditions on « which could have infinite absolute moments and the marginals of 3 could have
heavy tails. In this paper, we obtain rates of convergence when the marginals of 3 do not have
heavy tails but can have noncompact support.

A related approach is extrapolation. It is used in [12] to perform deconvolution of compactly
supported densities while allowing the characteristic function of the error to vanish on a set
of positive measure. In this paper, the relevant operator is viewed as a composition of two
operators based on partial Fourier transforms. One involves a truncated Fourier transform and
we make use of properties of the singular value decomposition rather than extrapolation.
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Similar to [27, 34], we study optimality in the minimax sense. We obtain lower bounds under
weak to strong integrability in the first argument for this and a white noise model. We present
an estimator involving: series based estimation of the partial Fourier transform of the density
with respect to the first variable, interpolation around zero, and inversion of the partial Fourier
transform. We give rates of convergence and use a Goldenshluger-Lepski type method to obtain
data-driven estimators. We consider estimation of fg in Appendix B.3. We present a numerical
method to compute the estimator which is implemented in the R package RandomCoefficients.

2. NOTATIONS

The notations -, -1, -2, * are used to denote a variable in a function. The notation a Ab (resp.
aV'b) is used for the minimum (resp. maximum) between a and b, (-)4 for 0V-, and 1 {A} for the
indicator function of a set A. N and Ny stand for the positive and nonnegative integers. Bold
letters are used for vectors. For all » € R, r is the vector, which dimension will be clear from
the text, where each entry is r. The iterated logarithms are Ing(t) = ¢ and, for 7 > 1 and ¢ large
enough, In;(¢) = In(In;_1(¢)). W is the inverse of z € [0,00) — ze”. |- |, for ¢ € [1,00] stands
for the ¢, norm of a vector or sequence. For all B € C%, (fn)men, functions with values in C,
and m € N, denote by 8™ = Hizl Br*s 1BI™ = szl |Bk|™*, and fm = szl fm,- For a
differentiable function f of real variables, f(™) denotes H;l:l % f and supp(f) its support.

J

C> (]Rd) is the space of infinitely differentiable functions. The inverse of a mapping f, when it

exists, is denoted by f!. We denote the interior of S C R? by S and its closure by S. When S
is measurable and p a function from S to [0 o), LQ(,u) is the space of complex-valued square

integrable functions equipped with (f,g)r2(,) = [s f (x)dz. This is denoted by L?(S)
when = 1. When Ws = ]1{5}+oo ]l{Sc} we have L2 (Ws {feL?(RY) : supp(f) C S}
and (f, g) L2(Ws) =[5 f( x)dz. Denote by D the set of densities, by II : L2(R?) — LZ(Rd)

such that IIf(x) = f(—= ), and by ® the product of functions (e.g., W®%(b) = szl W(b;))

or measures. The Fourier transform of f € L' (R?) is F[f](z) = [za eibT’cf(b)db and F [f]
is also the Fourier transform in L? (Rd). For all ¢ > 0, denote the Paley-Wiener space by
PW(c) := {f € L*[R) : supp (F [f]) C [¢,c]}, by P. the projector from L*(R) to PW(c)
(P [f] .7-"] [1{[—c, ¢]}F [f]]), and, for all ¢ # 0, by

3) Fer L2(We) — L2([-1,1]7) and C.: L*(RY) — L*(RY
f = Flflle) fooo= le?f(en).

Abusing notations, we sometimes use F.[f] for the function in L?(R). £xt[f] assigns the value
0 outside [—1,1]% and Fig [f] (¢,-2) is the partial Fourier transform of f with respect to the
first variable. For a random vector X, Px is its law, fx its density, fx|x the truncated density
of X given X € X, Sx its support, and fy|x—, the conditional density. For a sequence of

random variables (XnOvn)(no,n) Nz’ Xnon = Op(1) means that, for all € > 0, there exists M such
U

that P(|Xy.n| > M) < € for all (ng,n) € N2 such that & holds. In the absence of constraint,
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we drop the notation . With a single index the O,(1) notation requires a bound holding for
all value of the index (the usual notation if the random variables are bounded in probability).

3. PRELIMINARIES

Assumption 1. (H1.1) fx and f, g exist;

(H1.2) fap € L? (w® W®P), where w > 1 and W is even, nondecreasing on [0, 00), such that
W(0) > 0 and lim, o W (2) = 00, Ypeny My /¥ = 0o with My, = ([ b2*(1/W)(b)db)"/*;

(H1.3) There exists g > 0 and X = [—zg,20]’ € Sx and we have at our disposal i.i.d
(Yi, X)), and an estimator fX|X based on Gn, = (X;))__,, ;. independent of (V;, X ;)i ;

(H1.4) & is aset of densities on A" such that, for cx,Cx € (0,00), forall f € &, [[f|| foo(x) < Cx
and [|[1/f|l o2y < ex, and, for (v(no, &))neen € (0, )N which tends to 0, we have

1 -~ 2
v(no, €) f;lipes HfX‘X a fXIXHLOO(X) =0p(1).

We maintain this assumption for all results presenting upper bounds. When w =1, E [ak],
for £ € N, might not exist. Due to Theorem 3.14 in [18], if there exist R > 0, (a;)jen, €
(0,00)N0and (p;)jen, € (—00, 1]N0 equal to 0 for j large enough, such that, for all x € R,

z’ ||

W(z) > exp (Hgo_ T (ajm)) 1ol 2 R} (e W) =oxp (L) 1glel > 1)),

then Y, o5 1/ ||-2™/W (- HlL/Oleg) = oo which implies (H1.2). Marginal distributions can have

infinite moment generating functions hence be heavy-tailed and their Fourier transforms belong
to a quasi-analytic class but not be analytic. Now on, we use W|_g g or cosh(-/ R) for W. This
rules out heavy tails and nonanalytic Fourier transforms. When W = W|_p g, integrability
in b amounts to Sg C [—R, RJP, but cosh(-/R) allows for noncompact Sg. Though with a
different scalar product, we have L? (cosh(b-)) = L? (ebH) and (see Theorem IX.13 in [17]),
for a > 0, {f €L’R): Vb<a, felL? (eb|")} is the set of square-integrable functions which
Fourier transform have an analytic continuation on {z € C : |Im(z)| < a/2}. Incidentally,
the Laplace transform is finite near 0 and, if f is a density, it does not have heavy-tails. The
condition X = [—z¢,z0]? C Sx in (H1.4) is not restrictive because Y = a+ 8"z + 8" (X —z),
we can take  and xg such that X C Sx_,, and there is a one-to-one mapping between fa+ﬁT2”3

and f, . We assume (H1.4) because the estimator involves estimators of fxy in denominators.
Alternative solutions exist when p = 1 (see, e.g., [37]) only. Assuming the availability of an
estimator of fx|y using the preliminary sample G, is common in the deconvolution literature
(see, e.g., [16]). By using estimators of fx|x for a well chosen A" rather than of fx, the
assumption HfX\XHLoo ) < Cx and Hl/fXIXHLoo < c¢x in (H1.4) becomes mild.

3.1. Inverse problem in Hilbert spaces. Estimation of f, g is a statistical ill-posed inverse
problem. The operator depends on w and W. Now on, the functions w and W are those of
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(H1.2). We have, for all t € R and w € [-1,1P, Kfo8(t,u) = F | fy|x=zou] (t)xo|t[P/2, where

(@) K: L?(weoWeP) — L2(R x [~1,1]?)
f —  (t,u) — F[f] (t, zotw)zo|t|P/?.

Proposition 1. L? (w ® W®P) is continuously embedded into L?(RP*1). Moreover, K is injec-
tive and continuous, and not compact if w = 1.

The case w = 1 corresponds to mild integrability assumptions in the first variable when
the SVD of KL does not exist. This makes it difficult to prove rates of convergence even for
estimators which do not rely explicitly on the SVD such as the Tikhonov and Landweber
method (Gerchberg algorithm in out-of-band extrapolation, see, e.g., [5]). Rather than work
with /C directly, we use that K is the composition of operators which are easier to analyze

(5) for t € R, K[f)(t, %) = Frao [Fist [f] (£, -2)] ()ao|tP/? in L*([~1,1]7).

For all f € L? (w ® W®P), W either W|_g g) or cosh(-/R), and t € R, Fis [f] (£, -2) belongs to
L?(W®P) and, for ¢ # 0, F.: L2(W®P) — L?([-1,1]P) admits a SVD, where both orthonormal
systems are complete. This is a tensor product of the SVD when p = 1 that we denote by

(le/ “ gpyvr‘{’c, gfnv ’C> , Where (an@/ ’C> € (0,00)M0 is in decreasing order repeated according
meENg meNg

to multiplicity, (cpnmf’c) and (gZKC> are orthonormal systems of, respectively, L2(WW)
meENp meNg

and L?([-1,1]). This holds for the following reason. Because F, = FCi;. = (1/|c|)C.F,
IIF. = FII, Ff = (1/W)IIF.Ext, and W is even, we obtain F} = II((1/W)F.Ext) and
FFr = WF (W) Felat) = (27 /|c|)FL (C1je (1/W)CFEat)) = 2nF! (Cyje (1/W) FEat).
The operator QY = (|| /(2n))F.F: is a compact positive definite self-adjoint operator (see
[46] and [51] for the two choices of W). Its eigenvalues in decreasing order repeated according

to multiplicity are denoted by (p%c> and a basis of eigenfunctions by (gn”{’c) . The
meNg meNy
other elements of the SVD are 07‘:[1/’0 =1/ QWpTVX’C/ lc| and gonVTV’C = fjg%c/oxf’c.
Proposition 2. For all ¢ # 0, (gp}%v’c> . is a basis of L2(W).
meNp
W
The singular vectors (gm[fl’”’c> N are the Prolate Spheroidal Wave Functions (hereafter
meNo

PSWF, see, e.g., [46]). They can be extended as entire functions in L?(R) and form a complete
orthogonal system of PW (c) for which we use the same notation. They are useful to carry
interpolation and extrapolation (see, e.g., [40]) with Hilbertian techniques. In this paper, for
all t # 0, Fist [fa,8] (t,-2) plays the role of the Fourier transform in the definition of PW (c).
The weight cosh(-/R) allows for larger classes than PW (c) and noncompact Sg. This is useful
even if Sg is compact when the researcher does not know a superset containing Sg. The useful
results on the corresponding SVD and a numerical algorithm to compute it are given in [23].
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3.2. Sets of smooth and integrable functions. Define, for all (¢(t))i>0 and (wp,)
increasing, ¢(0) =wo=1,1,M >0, g € {1,00}, t € R, m € N, k € Ny,

meENy

HEG (M) = f: ) /R & ([t)05 (D)t \/ Y willOgrllizmy < 278, 1f | 2wewer) < M
keNp keNg

and qu%u(l) when we replace || f||z2wewery < M by || fllr2(wewery < 00, where
1/2
(6) bm(t) = <Flst [f] (t, ‘2)) @%’x0t>L2(W®p) ) gq,k(t) = Z ’bm(t)‘Q

meNg: |m| =k

The first inequality in the definition of ngd{,{,‘] (I, M) defines the notion of smoothness analyzed
in this paper. It involves a maximum, thus two inequalities: the first for smoothness in the first
variable and the second for smoothness in the other variables. The additional inequality imposes
integrability (see Theorem 1). The asymmetry in the treatment of the first and remaining
variables is due to the fact that only the random slopes are multiplied by regressors which have
limited variation and we make integrability assumptions in the first variable which are as mild
as possible. The use of the Fourier transform to express smoothness in the first variable is

classical. For the remaining variables, we allow for functions with compact and noncompact

support and work with the bases <<pm$°t> w for t # 0. For functions with compact support,
meNy

we show in Section B.5 that it is also possible to use instead the basis giving rise to Fourier
series to define the smoothness in the remaining variables. We analyze all types of smoothness
and because smoothness is unknown, we provide an adaptive estimator. We analyze two values
of ¢ and show that its value matters for the rates of convergence for supersmooth functions.

Remark 1. The next model is related to (1) under Assumption 1 when fx is known:

o
7 dZ(t) = K[f](t,-2)dt + —=dG(t), teR
(7) (t) = Kf1 (¢ -2) " (t), teR,
where f plays the role of f, g, 0 > 0 is known, and (G(%)):cr is a complex two-sided cylindrical
Gaussian process on L?([—1,1]P). This means, for ® Hilbert-Schmidt from L?([-1,1]?) to a
separable Hilbert space H, (PG(t))icr is a Gaussian process in H of covariance ®®* (see [17]).

Taking ®G(t) = 3,,cnp ® [gmm} Bum(t), where B (t) = B (t) +iBJ,(t), (BX(t))wer and

(Bgn(t)) +cg are independent two-sided Brownian motions, the system of independent equations

t
(8) Zon(t) = / W0y, (s)ds + tER,
0

%Bm@),

0S

where, Z,, = <Z (%), gm0 and m € NP is equivalent to (7). Because o™ is

>L2([_171]p)
small when |m|, is large or s is small (see Lemma B.4), the estimator of Section 5.1 truncates
large values of |m/|, and does not rely on small values of |s| but uses interpolation.
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Remark 2. [33] considers a Gaussian sequence model corresponding to (7), K is the Radon
transform, p = 1, G is a two-sided cylindrical Wiener process, and L? (w ® W) is a weighted
L? space of functions with support in the unit disk of R? for which IC has a SVD with a known
rate of decay of the singular values.

3.3. Interpolation. Define, for all a,e > 0, the operator on L?(R) with domain PW (a)

W[—l,l] , A€

) Zaclf]= Z (1 fT;W[—l,l]va) . <f, Ci/e [grvx[fl’l]’ge] >L2(JR\(—e,e))C1/6 [97‘2/[71,117@6] '

meENg

Proposition 3. For all a,e > 0, we have Z, . (L*(R)) C L%([—¢,€]) and, for all g € PW (a),

A2
Zuclg] = g in L*(R) and, for Cp:=4-/ <7r (1 - pgv[fl‘”’> > and all f,h € L*(R),

(10)  [|f = Zae [ 2_cqy < 201+ Co@e)) || £ = Palfll| 7oy +2Co(ae) I =kl 7o —ce

If f € PW(a), Z,[f] only relies on fI{R \ (—¢,€)} and Z,[f] = f on R\ (—¢,¢€), so (9)
provides an analytic formula to carry interpolation on [—e¢, €] of functions in PW(a). Else,
(10) provides an upper bound on the error made by approximating f by Z,.[h] on [—e, ¢
when h approximates f outside [—e, €]. We use interpolation When the variance of an initial

estimator f of f is large due to its values near 0 but H - fo‘ is small and work

R L2(R\(~€0))
with F(t) = FO(OU|t] > €} + Zue | F [ } (£)1{|t| < €}. Then, (10) yields
1+ 2Ch(ae) Hf ’ ’

-7 e

When supp (F[f]) is compact, a is taken such that supp (F[f]) C [—a, a]. Else, a goes to infinity
so the second term in (11) goes to 0. € is taken such that ae is constant because, due to (3.87)
in [46], limy_,o0 Co(t) = 0o and (10) and (11) become useless. We set C' = 2 (1 + Cp(ac)).

2
@ + 2(1 + Co(ae) Hf Pal HLQ(R).

3.4. Risk. The risk of an estimator f, 3 is the mean integrated squared error (MISE)

i (Fos: fas) —E[Hfaﬁ ot g]

~ 2
fcx,ﬁ - faﬁ L2(RPH1)

L2(1QW®P)

When W = W|_p s and supp (faﬁ) CRx[-R,RP,itis E U

gno] , else,

(12) |:Hfaﬁ foc,@‘

Guo| < 11/ e oy R (T S

L2 Rp+1)

4. LOWER BOUNDS

The lower bounds involve a function r (for rate) and take the form

1
(13) Jv>0: lim, ,—— inf sup {Hfa,ﬁ faﬁ’
r(n) faB fopeMLGE (1N

L2(RpH1) ] -
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When we replace f, g by f, faﬁ by f, remove D from the nonparametric class, and consider
model (8), we refer to (13”).

Theorem 1. For all ¢ € {1,00}, ¢ increasing on [0,00), w such that [~ w(a)/a* < oo, and

0<l,s,R,k<o0, it W=W_gpg,

(T1.1a) (wk)ken, = (K7)keNy, ¢ is such that lim, fooo B(t)2e=2tdt = 0, fx is known, Sx =
X, and | fx || oe(xy < 00, then (13) holds with r(n) = (In(n)/ Ing(n))~*+*e/2V7,

(T1.1b) we consider model (8), (wg)ken, = (e’"‘kln(kﬂ))keNO, then (13’) holds with r(n) =
n—H/(QK/-‘er‘q)/ ln(n),

else if W = cosh(-/R), we consider model (8),

(T1.2a) (wr)keno = (7 )ren,, for all @ > 1/2, then (13°) holds with (n) = In (n/In(n)) 7"’

(T1.2b) (wg)ken, = (eﬁk)kEN07 then (13’) holds with r(n) = n~—*/(2x+2ke),

By (12), (T1.2a), and (T1.2b), we obtain lower bounds involving R}).

5. ESTIMATION

5.1. Estimator. For all ¢ € {l1,00},0<e<1<T, N cRR N(t)=|N()]| fore <|t| < T,
N(t) = N(e) for |t| < eand N(t) = N(T) for |[t| > T, a regularized inverse is obtained by:
(S.1) for all ¢ # 0, obtain a preliminary approximation of Fi(t,-) := Fis [fa,8] (t,-)

Cm (T - "
PN g =1l <1y Y Sl oWt ) = (F ] (0,955
iml, <N () 7™

(S.2) forallt € [—e, ¢, FPN () i= FENTO(, ) {[t] > €} + Ty, [Ff’N’T’O(*, .)} (O1{]t] < e},
(83) S50, 02) o= Fly [FPYT (0 2)] (1),

To deal with the statistical problem, we replace ¢, by

1< e™Yi Waox [ X
(14 =2 Y (32) 14X € ).
= nggqx(Xj) o

where @(IX(XJ-) = fX|X(Xj) V \/d(ng) and d(np) is a trimming factor converging to zero

. o . SeNTO0 5gN.T “4.N.T 2,N,T
with ng. This yields the estimators F&NT0 FONTe anqg fg’ﬁ’ ‘. We use (fz’ﬁ’ ’6) as a
k] ? +

final estimator of f, 3 which always has a smaller risk than fg’g’T’E (see [26, 50]). We use
ne = n A [d(ng)/v(no, )| for the sample size required for an ideal estimator where fx |y is
known to achieve the rate of the plug-in estimator. The upper bounds below take the form

1 7q,N,Te
5 sup R,‘fg( ap ,faﬁ) = Op(1).

(15)
r(ne) FapEHLSE LMD, fx|x€E

With the restriction f, g € Hiﬁ,’{}}(l)ﬁp, we refer to (157). We use kq := 1{q = 1} +pl{q = oo}
and ky =p+1— kg
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5.2. Upper bounds. We use T = ¢! (wﬂ), a = w! (w&) when w # W_g4), for u > 0,
Kg(u) := al{w # Wi_gq} +ul{w = W_, 4 }. Below N, hence N, is constant.
Theorem 2. Let W = W|_g g). For all ¢ € {1,00}, I, M, s, R,0,K,,7,v >0, Sg C [-R, R]?,
N solution of 2kgN In (NK4(1)) +1n (wzﬂ) +(p—1)In(N) = In(n.), and € = Te/ (2RzoK4(1)),
(T2.1) if ¢ = 1V [, (Wr)keNo = (7)pen,, and w = 1V [-[*; then (15) holds with r(n.) =
(In (ne) / Ing (ne)) ™7,
(T2.2) if ¢ = LV ", (Wr)reny = (e EHY), os = w(p + 1)/ (2kg(WI{W # Wi_g )} +1)),
and A := (p—1)(1 = (k(p+1)/ (25 (k(- +1) + £))) /2,
(T2.2a) w! (62“\'|1H(|'\+1)) =¥, then (15) holds with r(n.) = ne_'i/(2'€+2(y+l>kq) In(ne)A™),
(T2.2b) asuchthatS, C [~a,a], w = W|_g 4, then (15°) holds with r(n.) = ng "/ (2rt2ke) In(ne)2©),
it = el — (er(kIn(k+1))" I (26(-[In(l-+1)") = v
(T2.3) ifp =€l r > 1, (wk)ken, (e >kseNO’ w such that w (e ) ,

do=26(1+(p—-1)/(p+1)" +2kg(1+v)/((p+1)In(p+2))"'), and for k € {1,...,ko},

o (k0 )@ E = 0(mod 2)) <(kq FOprhy =1 ) 1{k = 1(mod 2)} )"
T RO+ Dl +2))) p+1 ) ’

Fo o= /(= 1)), and ¢ i= exp (= SFL, (<1)F dn(-) /DR (et tHE-D/7
then (15) holds with 7(n.) = \/¢ (ne) /ne.-

Theorem 1 shows the rate in (T2.2) is optimal when fx is known and Sx = X. It is the same
as in [12] for deconvolution with a known characteristic function of the noise on an interval
when the signal has compact support. The rates in Theorem 2 are independent of p as common
for severely ill-posed problems (see [13, 23]).

Theorem 3. Let W = cosh(-/R). For all ¢ € {1,00},1,M,s,R,0,k,1u >0, ¢ =1V]|-|*, N solu-
tion of 2k,N In (K,(e)) +In (w&) +(p—1)In(N) /g = In(ne), and e = 7e?/ (4Rzo K, (7€? /),

(T3.1) if (wr)keny = (F7)gen,» and w = 1V|[-[¥, then (15) holds with 7(n.) = (In (ne) /In2 (ne)) ™7,
(T3.2) if (wi)ken, = (€™ )keny, a such that Sq C [—a,a], and w = W_, 4}, then (15°) holds
with r(ne) = ngﬂ/(%ﬂk‘ﬁ In(n)®—Dr/Ra(s+kq))

In (T3.2), we relax the assumption that Sg is compact maintained in (T2.2a). The discussion
after Theorem 2 in [12] considers densities with noncompact support and a pointwise bound
outside [—1, 1]. By inspection of the proof, Rz can vary with n. The results of theorems 2 and
3 are related to those for “2exp-severely ill-posed problems” (see [12] and [49] which obtains
the same polynomial rates up to logarithmic factor as in (T2.2b) when 1/v(ng,&) > n and
p=1). When 1/v(ng,&) > n, the rate in (T3.2) matches the lower bound in model (8).

5.3. Data-driven estimator. We use a Goldenshluger-Lepski method (see [29, 39]). Let
Re >0, g € {1,00}, (o = 1/ (1 +4p(1 + L{W = cosh(-/R)})), Kmax = [(oln(n)/In(2)],
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Trax = 28max T .= {2’C ck=1,..., Knax, 28 > e}, pn = 3V 6(1 + (o) In(n), and, for all
NGNRa NDaTENOat#O maxq [Nrqu )
em (D] /
By (t,Ng) := max Z < Wwog | — 2 (t,N) ,
No <N’<Nmaxq N0§|m‘q§Nl O'mva
+
By (T,N):= max / Z <|E$(xt)t|>2 —X(t,N()dt| ,
T'eTn T'2T \ JT<|t|<T" Im|, <N(t) om’

Jr
2]

S (t, No) := 8(2 + VB)(1 + 2p,) =X ( ) v (wot, No), Eo(T, N) ::/ S(t, N(t))dt;
n \2m <tI<T
(N.1) when W = W|_g gy, NW ., solution of 2k, Ny In(7eNy/(2Rxg¢)) = In(n),

_ 1)1 e .
(No (;p_ 1)1!> n{q=1}+2pﬂ{quo}] <1\/7(2]>;0‘t+1)>

vy’ (t, No) = (No + 1)* [

(N.2) when W = cosh(-/R),

Nimag = h;;q) {6 - 4};0} T o (7122(/()4}23;06)) 1 {6 < 41;70} !
oW (£, No) = 29 <2€R !t!>kq <(No<;f ;ﬂlq)pl +1{q = oo}> exp (W) 1{jt > -}

™

20 ((Ng+p—1)P! 7e2 \ 2halo T
okq (€T g = L < — b
* (2) < p-1g T He=ob) {1gp {| ‘—4R}’

N and T are defined, using ¢; = 1+ 1/(2 + v/5)? (to handle the estimation of fx|x), as

(16) Vt€R\ (—€e,€), N(t)€ argmin (Bi(t,N)+ c1X(t,N)),
0<NSNW, .
(17) T € argmin (132 <T, N) 5, <T, N)) .
TeTn
The upper bounds below take the form
1 NTe
(18) ’I”(TL)2 sup RW ( > afoz B) Op (1)a
FaBEHLGE LM)ND, fx|x€E v(10,E)/6(n0)<n=21In(n) =P, ne>3

and we refer to (18’) when we use the restriction f, g € HP ¢w(l) ND.

Theorem 4. For all I, M,s,R,u,0 >0, He N, g€ {l,00}, 6 =1V ||* if

(T4.1) (wr)ken, = (K7)keny, w =1V ||, (18) holds with r(n) = (In(n) /In (n))"° when
(T4.1a) W =W _gr R}, Sg C [-R, RJ]P, a = 1/¢, and € = Te/(2Rxo In(n)),
(T4.1b) W = cosh(-/R), a = 1/¢ and € = 7e?/(4RzqIn(n)),
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(T4.2) (wr)ren, = (e0+R)), ., a such that S, C [—a,a], w = W[ aas W = W_rnR
Sg € [-R,RJP, e = Te/(2Rxy), and s > (2p+1/2) V (k(p+1)/(2ky)), (18’) holds with
r(n) = n="/ (25+2ka) I (n)1/2+M0) and A defined in (T2.2),

(T4.3) (Wk‘)kGNo = (eﬁk)kENo) a such that S, C [—a,qa], w = W[—g,g}’ W = cosh(-/R), ¢
7/(4Rxg), and s > 4p+1/2, (18’) holds with r(n) = n =/ (2x42ke) I () 1/2+ (= 1)k/ Ra(r+kq )).

The results in Theorem 4 are for v(no,&)/d(ng) < n~2In(n)~P, in which case n. = n.

Theorem 1 and (T4.1a) show that fg’g’T’e is adaptive. The rate in (T4.2) matches, up to a
logarithmic factor, the lower bound in Theorem (T.1.1b) for model (8). For the other cases,
the risk is different for the lower bounds and the upper bounds in Theorem 4, but using (12) we

obtain the same rate up to logarithmic factors for the risk involving the weight W. (T4.2) and

(T4.2) rely on S, C [—a,a] because, else, the choice a = w! (wQM) in Section 5.2 dependents

on the parameters of the smoothness class. However, it is possible to check that we can obtain
the rate in (T2.2a) up to a 4/In(n) factor when v = 1 for a choice of a independent of the
parameters of the smoothness class.

To gain insight, let us sketch the proof when f Xlx = = fxx (hence we simply write R"). Let

Wt eR, N eNE, T e[0,00), LV (t,N,T) := H (ﬁf’N’Tvo — Fist [fa,g]) (t, ~z)( i

L2(wer)’
w = Ww # W_gq}/w, and T' € Tp,. The Plancherel identity and (A.24) yield
C

= or

(19) RY (57 fo) < / E (£ (1. 8).7)] dt + OM2i(a).

The upper bound in (19) with nonrandom N and 7 is the one we use to obtain theorems 2 and
3. The idea behind (17) is that it allows to obtain an upper bound with a similar quantity but

with arbitrary nonrandom T. By arguments in the proof of Lemma A.5 for the first inequality
and (17) for the second,

/ E[ﬁg‘/(t,ﬁ(t),fﬂdt

e<|t|

< <1+55) /e<|t|E [EZV (t,ﬁ(t),T)] dt

8 (o0 (1.5) 5. (15)) 5[ 1) 5
T,N) +

§(1+55>/€<|t|E[£g" t,N(t),T )]dt+2(2+\[ [ (

and, by a Talagrand’s inequality,

E [32 (T,N)} < <1+55> /€<t|E [Egv(t,]\Af(t),T)} dt + O (;)

7.8)))
)+ (7.5)]
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W = Wi_7.5,.5), Case 1 W = cosh (-/7.5), Case 2
n =300 n =500 n=1000 n =300 n=>500 n=1000
MISE (data-driven) 0.092 0.086 0.083 0.089 0.087 0.085
MISE (oracle) 0.091 0.086 0.082 0.088 0.087 0.085

TABLE 1. Risk

where the O (1/n) term is independent of T and N. (16) allows to obtain yet another upper
bound which replaces N by an arbitrary nonrandom N. We conclude because the final upper
bound (A.38) has a similar form as (A.32) when we deal with nonrandom N and 7.

6. SIMULATIONS

Let p=1, ¢ =00, and (a, B)" = & D + &(1 — D) with P(D = 1) = P(D = 0) = 0.5. The
law of X is a truncated normal based on a normal of mean 0 and variance 2.5 and truncated
to X with g = 1.5. The laws of & and & are either: (Case 1) truncated normals based on

normals with means u; = ( 3 ) and puo = ( g >, same covariance < ? é >, and truncated

6,617 or (C t truncated. Table 1 E || £V - ‘
o [~6,6] or (Case 2) not truncate able 1 compares [ fap L2([-7.5,7.5]2)

and the risk of the oracle min [H fOO VT — fa 5) for cases 1 and 2. The
TeTn,NeNn o IL2([-7.5,7.5]2)

Monte-Carlo use 1000 simulations. Figure 1 (resp. Figure 2) displays summaries of the law of
the estimator for W = Wi_7 575 (resp. W = cosh(-/7.5)) in Case 1 (resp. Case 2) and n =
1000. As standard in the literature (see, e.g., [15, 19]), the multiplicative constant appearing

in ¥ is in practice calibrated from a simulation study. fx|xex is obtained with the same data.

The estimator requires the SVD of F.. By Proposition B.1, we have g, W(/R)e g,v,[l/ e for

all m € Ng. When W = W|_y y}, the first coefficients of the decomposition on the Legendre
polynomials are obtained by solving for the eigenvectors of two tridiagonal symmetric Toeplitz

matrices (see Section 2.6 in [16]). When W = cosh, we refer to Section 7 in [23]. We use
Fr gTI/,IL/’RC = o Rcc,oTVnV e and that Oom’ wHe has norm 1 to get the rest of the SVD. The Fourier

inverse is obtained by fast Fourier transform.

APPENDIX - PROOFS

R and denote the real and imaginary parts. We denote, for all m € Ny, by ¢, the function
W[ T and pg, = im O’W[ VI Because ¢S, = Fo(Ext[s,])/us, in L2([—1,1]), ¢, can be

extended as an entire function which we denote with the same notation. Using the injectivity
W11, .
of F. (see the proof of Proposition 1), we have @, """ = i~mExt[1)¢,]. We make use of

In(t)* /a\a
(A.1) Va,b > 0, 21211? m _(£> ,
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(c) 97.5% quantile of estimates
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0.03

0.025

0.02

- 0.015
E[fapl

.01

0.00s

(b) Mean of estimates

0.03
0.025
0.02
2 0.015
‘h,s(fa,;s)
0.01

0.00s

(d) 2.5% quantile of estimates

FIGURE 1. Case 1, W = W|_7575

qg7,5(ﬁx.[&)

(c¢) 97.5% quantile of estimates

0.03
0.025
0.02
' 0.015
E[fapl
0.01

0.00s

(d) 2.5% quantile of estimates

FIGURE 2. Case 2, W = cosh (-/7.5)

(A.2)

2 e

Ve>0, Ya,beR, ab< = 4+ 2-C.

2c 2

All expectations are conditional on G, when fx |y is unknown and we rely on Gy, to estimate
it. We remove the conditioning in the notations for simplicity.
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A.1. Proofs of Proposition 1, 2 and 3.

Proof of Proposition 1. The first assertion comes from the fact that W is nondecreasing on
[0,00) and W (0) > 0. For the rest, we use that, for every h € L?(W®P), if we do not restrict
the argument in the definition of F.[h] to [—1, 1]?, F.[h] can be defined as a function in L?(RP).
In what follows, for simplicity, we use F.[h] for both the function in L?*([—1,1]?) and in L?(RP).
Let us now show that, for all ¢ # 0, F, defined in (3) is injective. Take h € L? (W®P) C L?(RP)
such that F.[h] = 0 in L?([~1,1]?). When (1/W) vanishes at one point, h is compactly sup-
ported, thus, by the Paley-Wiener theorem its Fourier transform can be extended as an entire
function which restriction to RP belongs to L? (RP). Because the Fourier transform vanishes
on a subset with nonempty interior, then F[h] = 0 on RP, thus h = 0 in L? (R?). Now, con-
sider the case where (1/W)(x) > 0 for all x € R. F.[h] belongs to C*°(RP) by the Lebesgue

dominated convergence theorem because, for all (k,u) € Nj x RP, [0, ‘c'k‘lbkeiCbT“h(b)‘ db <

c* 1B L2 ewy TT)—) Mi, and, for all (k, u) € NgxRP, [ F.[n]®) (w)| < &l ||A]l 1o gpep [Ty M-
Theorem B.1 in [18] and the fact that, by the Cauchy-Schwarz inequality, for all j € {1,...,p},

k € Ny, My, < My; 1My, 1 yield that F[h] is zero on RP. Thus, F[h] and h are zero a.e.

We now show that K is injective. Take f € L? (w ® W®P) such that K[f] = 0. By the Plancherel
identity and the fact that w > 1, we have

/ | Fist [f] (£, b) > WEP(b)dtdb < 27 / |£(a, b)|* w(a)WEP(b)dadb < oo

Rp+1 Rp+1

thus, there exists 3 C R of Lebesgue measure 1, such that, for all ¢t € Qq, b+— Fig [f] (¢,b) €
L? (W®P). Hence, by the above, for all t € Q; and ¢ € R, u — F.[Fig [f] (t,2)] (u) is
continuous. Also, because [[KC[f]|| 2(rx[—1,1p) = 0, there exists 23 € R of Lebesgue measure 1,
such that, for all ¢ € Qa, [[K[f](¢,2)[ L2(j—1,1jp) = 0. As a result, using (5), we have , for all
(t,u) € Q1NQ x[—1, 1], K[f](t,u) = 0. Using again (5) and the injectivity of F. for all ¢ # 0,
we obtain that for all t € (3 N Q) \ {0}, Fist [f] (,-2) = 0 in L2 (W®P), thus Fig [f] = 0 in
L2(1@ W®P) and f = 0in L% (1 ® W®P), hence in L? (w @ W®P).

We show that K is continuous at 0. Let f € L? (w ® W®P). By the change of variables, the
Plancherel identity, and the lower bounds on the weights, we have

2
N esnry < |

p
[ VA oo < () 1 B qun

Let w = 1. We exhibit a bounded sequence (f);ey, in L?(1 ® W®P) for which there does
not exist a convergent subsequence of (K[fy])rcn,- Take wvo such that supp(vo) C [1,2],

||v0||L2(R) =1 and, for all k € Ny and (a,b")" € RPHL v (-) = 27%/2y9(27%.) and fi,(a, b) =
Fl vk(-)cpg/’xo'(b)] (a). (fk)pen, 18 bounded by the Plancherel identity and

2 - Lo
= — | vg(t
1kl z2ewenr o Je k(t) -

Using K [fx] (,2) = Ugv’xo'vk(-)ggw’mo'(-g) lzo-|P/2, ¢ € (0,00) pgv,c is nondecreasing (by
Lemma 1 in [23] which holds for all W satisfying (H1.2)), and using for all j € Ny, HUJ-HLQ(R) =1,

2 1
%th(b)( WEP(b)dtdb < o—.
s
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we obtain, for all (j, k) € N3, j <k,

K15 = K Ul ageragey = o 2@ [ (0302 + (o)) de

R
> 2(2m)P pWI0 > 0,

so KC is not compact. O
Proof of Proposition 2. This holds by Theorem 15.16 in [38] and the injectivity of F.. O
Proof of Proposition 3. Take f € L?(R) and start by showing that Z, [f] € L*([—e,¢]).

[—1,1],@€

124 . . Wi_1,1].a .
The terms 1 — pp, in the denominator of (9) are nonzero because (pm[ b ae) is

meNy
nonincreasing and Po P ] (see (3.49) in [46]). Using that (g;/,i/[*l'”’g6 (-/€) /ﬁ)
Wi_1,1).a

meENy

is a basis of L%([—e,¢€]), that ( is nonincreasing, and the Cauchy-Schwarz in-

>m€N0
equality for the first display, using that > . p,v,‘l/[ P = 2ae/m (see (3.55) in [46]) and
H Wi_1,1),a€

=1 / L2 (see (3) in [7]) for the second inequality, we obtain
2

= (2 ) st O B0
7 m
metio \ (1= pm ) € €/ / L2R\[—ed) ¢

2
HfHL2 R\[—e €]) W[ 1,1] W[,lyl],ge 2 < 2Q6 |’f”L2(R\[—575})
Wi_11p.a€) 2 Z ( > Hgm L2(R) Wi_11pae) 2’
(17,00[ ) meNy Tr(lfpolf’]”>

Let us now show the second statement. Take € > 0 and g € PW(a). Let (am)men be the

2

L2([—e.€])

(A3) <

sequence of coefficients of g(e-) € PW (ae) on the complete orthogonal system <g = ae) N
meNg

Wi_q 17,a€
Because (gm[ L )
meENy

W,
L2 e, amgm[ LIPS < 1}, We identify the coefficients by taking the Hermitian product

in L?(R) with gm “11U% and obtain Toclg) = g in L*(R) and, for all f,h € L*(R),

(A.4) [ [h]Hiz([—e,e]) <2 (Hf - P@[f]H;([_e,e]) + || Zae [Pa[f] = 1] HiQ([—e,eD) :
Replacing f by P, [f] — h in (A.3) yields

is a basis of L*([—1,1]), we have >\ ar,hbgm[’l‘”’QE = g(e)1{|-| >

Co(ae

(A.5) HIg,e [7)9 [f] = h] Hi%[—e,e]) =

Using (A.4) and (A.5) for the first display, Py [f] — h = (Pa[f] — f) + (f — h) and the Jensen
inequality for the second display, we obtain

[ [hﬂliz([_“) < 2||f = Palf HL2[ ed) + Colae) || Palf] hH;(R\[—e,e])

|Pa [f] - hHi2(R\[—e,e]) :
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< 2(1+ Co(ae)) || f — Pal HLz +2Co(ae) |f = Pl 2@ eqy - O

A.2. Lower bounds. We denote by P; the law of density f;, and by P;, the law of an iid
sample of size n, and use

inf supE [Hf f‘

[ feH
and the next lemma (see Theorem 2.2, (2.5), and (2.9) in [50]).

inf max [Hf fin

>
LQ(R”“)] f fim€M, je{1,2} L2 RP“)]

Lemma A.1. If there exists £ < v/2 such that
(i) vj e {1,2}, gj,n €EH,
(i) [l fron = fol 2o, > 4r(n)? > 0,
(iil) x2(P2n,Prn) < €% or K(Pap, P1y,) < €2
then we have

1 inf max [H f—Ffin

>
r(n)2 7 fiaeH, jef1,2}

1
L2®re+1)| — 2

(Fv0-5)

Proof of (T1.1a). For j = 1,2, f;, is a possible f, g, (bfqz) , the sequence of its coeffi-

‘ meN
cients (see (6)), P;, have marginal fx|r, and f1j/| x (y|z) are the implied conditional densities.
Steps 1-3 give conditions under which (i)-(iii) in Lemma A.1 are satisfied when

1 1{[8l,. < R}
wr (14 (a/r)?) GRS

(A7) V(a.b) € B, Flab) = F, [(“'*“)m A= (3)

(A.6)  fin:=foand fo, = fo+ F, fo(a,b):=

<

1
1— (4]t| - 3U)? JU?

(A.8) YU/2<|t| < U, A(t) :=exp <1 - ) , else \(t) :=0,

(A9)  N(1):= (N,N(Ra:OU)T)T, N(c):= N € NP, N(RaoU) := [H(RxoU)],

for H from Section B.1.2, n large enough, N (odd), v, 7 > 1, and U from Step 4 and such that
N > N(RzoU), hence N > RxoU V2 by the discussion before Lemma B.6. Note [[A| foo(gy < 1.

Step 1.1. We prove that fi, and fa, are nonnegative when
(A.10)

1 RJ}()U
U NFka/2
K 14p/2 ( ™ >

[MS]

kq p—1
5 2 5 2q 2_1 2 1
= e <
(4) (4N(R:c0U)> \/ (22 Cs(RxoU,p,U)N ) S —

where Cg(RzoU,p,U) is defined in Lemma B.10. Let (a,b) € R x [-R, R]P. We show that
(A.10) yield fo(a,b) > |F(a,b)| which ensures that fa, is nonnegative. The first bound in
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(A.10) yields the result when |a| < 1 because, by the third assertion in Lemma B.7,
k)2

(TP 1 -1/a) [ (p/2
F(a,b)] <, (%) <N+ 2) (N(RzoU) +1/2) 172 At
)/(20)

e <7 <Ux0>p/2 (%) N <5N<Rwov>>(p_l

Because t — meOt (b/R) is analytic (see [22] page 320), t — (xo |t| /(27))P/% A(¢) Rxot (b/R)

C*(R) and its derlvatlves have compact support. By integration by parts, we obtaln

— A=t | = ) 1{|b| . < R dt

ot? (( 27 ) ()¢N(‘1)<R> {lblo < R}

The result when |a| > 1 is obtained by 1+ (a/7)? < (1 + 1/72)a?, so by the second bound in

(A.10), yUCs(RxoU, p, U)N*t*a/2 /(2a%) < 1/ (2¢/27(1 + (a/7)?)), and by Lemma B.10

YU Cs(RxoU,p,U)
2ma? RP/2

fi,n = fo has integral 1 and so has f5, by Fubini’s theorem and that 1§ is odd when N is odd.

Step 1.2. We give conditions for fi,, fon € ’Hq’d)w(l). By (A.6)-(A.7), and because, by Step

L1, for all (a,b) € RPFL, f5,.(a,b)? < 4f1,(a,b)?, fi, and f2,, belong to L? (w Q@ WEP )

U
Va £0, |F(a,b)] < 7/
U/2

wa2Rp/?

(A.12) V(a,b) € RPTL: Ja| > 1, |F(a,b)| < N*ka/2q{|b|_ < R}.

[-R.R]
Let us show that f5 ., hence fi, (f2, with v = 0), satisfy the first condition in %i’%(l) if
— RxoU b d)( )
Al e 2Tt < ml?
(A.13) (/ o(t) +7 2m p+1 =7
2) 20/qN20 P
(A.14) C”ga’ p) , ,22Up ReoUN" 2.
Tp2o/a p+1 2m
Let m € N} and ¢k, (t) := (1/2P/2, ¢ B0 t>L2([_17”p). By Proposition B.1 (iii), change of vari-
ables, and for all t € R, Fist [fo(-, %) (t) = e M7 1{|x| , < R}/(2R)?/?, we have
__ t p/2
(A.15) b2, (t) = i"I™mh (wltcf;(t) +y1{m = N(q)} (R“;O”> A(t)) .
T
Because ( ﬁfot)m cne 18 an orthonormal basis, we have
0
_ Rxo [t|\?
Al t B2 <2 (e 2l 442 (200 N#)2) .
(A16) w0 3 fiof < (2 (F521) a0
meEly

The first part of the first condition in Hi%”(l) holds by (A.13) and because, by (A.16),

Z/qﬁ )2 (b2, (¢ |dt<4</ d(t)%e~ 2t dt + A2 (Rx0> UZqﬁ(t)Qtp/\z(t)dt).

meNj
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The second part of the first condition holds by (A.14) and because, by (A.15) and Lemma B.11,
for all 7> (3e}/2Rxo/8) V (1/2) and N > N(RzoU),

3 \m|2°'/ 1b2,()]* dt < 2 /R 27N m)27 (b (1) dt + (?)p\ﬁ(q)\zaév(t)wdt

meNj meNj

20/q N 20 p
52(clg(a,p)+722Up N (Raon>>.

Tp2o/a p+1 27

Step 2. (ii) holds with 4r(n)? = 42 (Rxo/(27)) fU/2 tPA(t)2dt /7.
Step 3. By (ii) page 97 in [50], we have x2(P2n,P1,) = (1 + x2 (P2,P1))" — 1 so

x2(P2,P1) )
x2(P2pn, P1 ) = n/ (14+u)" "du < nxa (P2, P1)exp ((n — 1)x2 (P2, P1)).

[e=]

Thus, if x2 (P2,P1) < 1/n, we have x2 (P2, P1,) < enxa (P2,P1). Moreover, we have

2
Cury= /fx(w) (1 xwl2) - £ x ) o

f}1,|X(y\a:)
and, for all (y,x) € R x Sx such that zt # 0,

P < p/2
f}lf\X(y|m) _ 1 —— k=1 {‘uk“ = ‘kaR} du > (2R) inf 1 5 ‘
mr2R)P2 @] Jro ((y — P wg) /1) + 1 T ful<lel R ((y —u)/7)? +1
This yields, using Sx = [—x0, zo|? and Parseval’s identity,
m7Cx 2y ]m|1 R)? 1 2 2
x2 (P2,P1) < (2R) o2 / » xo]p/ < +1 (fy|X(y’x) - fy\x(y‘w)> dxdy
CX$0'7 2 2
= |y | (T 1ot (op? + 5 ) 17 181 ot0) ) dt
2R p/2 1 l]p

By lemmas B.12 and B.4, we have 2 (P2, P1) < C15(U, o, R, 7)72]\72 exp (—2kqN In (4N/(eRzoU))),

2(p—1)N(RzqU)

3/2 3\ 7P 9 ) v
Cis(U, x0, R, 7) := Cx <W> (Cn(RxoU,p, U)+ p2@opR)” + 7 ) ( eRx U )

T 9\/§ 2N(R$0U)2 4N(R1‘0U)
As a result, (iii) is satisfied if
4N £2
A7 ZN? —2k,NIn (| ——— ] ] < :
( ) " P < 7 . (6R$0U>> B eclg(U, xo,R, T)

Step 4. We take U = 4/(eRxp), N =2 [N]+1 for N going to infinity with n, and 7 such that
2

Cia(o 7Tl
2 o 2Tt 12(0,p)
/ ¢ dt\/ 27-p20'/q - 4 ’
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Thus N(RzoU) is universal and N > N(RxoU) and N < (9/2)N for n large enough. (A.10),
(A.13)-(A.14) (by the pigeonhole principle), and (A.17) hold for n large enough if

1
A8 i |
(A.18) e T (r+1/7) (9/2) 1+ HR)2C5 (4 /e, p, U)U
] m(p+1) fem\p/2 l w(p+1) rem\r/2
. 7 < 2 - 2
(A.19) TN? < 2p7/1(9/2)20 U ( 2 ) e v ( ¥ )

52

' 2 N2 oxp (—4kyN In (N)) <
(A 20) nry N exp( 4 qiV 11(7)) — (9/2)26018(U,1U07R77—)’

and ~ goes to 0 with n. By taking v = Cyﬂ_(%kqm)v"/ ((C’g(4/€,p, U)U) A \/U) for a small

enough C, depending on [, ¢, o, p, and ¢, (A.18)-(A.19) hold because Rz, hence U is fixed.
Then, with N = 31In(n)/ (8kqIna(n)), (A.20) becomes

o (BRI (1. ) o) 250)) £ GLLER

which holds for n large enough and r(n)2 = N ~2((2+ke/2)vo) C2 (Rxo/(2m)) fU/2 tPA(t)2dt/ (47).0
All other steps 2 are the same as for (T1. 1a)
Proof of (T1.2a). Denote by E := L*(R) x L?(R). Equip F with <g,h>E = (g, h1>L2(R) +

2 m J J
(g2, h2)?2(z). Denote by P™ the law of ((m (Zm( ))) . (J (Zm( ))) tER) in E and by
P;,, the law on /5 (E) of the sequence indexed by m € Nf. The latter can be defined as

a function of f;, or (bzn(t)) ,for j = 1,2. Take fi, = 0 and fo, like (A.6)
’ meNp, teR ’

with N(1) := (N,0")T e NB. (A.15) yields, for all m € NE, b2,(t) = i"™hiyI{m =
N(q)} (Rao |t] /27)P/? A(t). By independence, we have, for j = 1,2, P, n = Qmene Pl
Step 1. Using (A.11) and (A.12), we have fy, € L? (w ® cosh(-/R)®p) and fo,, € HZ)”Q;,’V (1) if

RxoU\? 2U~?
27 p+1

(A.21) (p(U) v N°)? < xl2,

-
w _ W,z0-7.2 . ~ W,xg-1.2 .

Step 3. Let & < V2, GN( ) (i)‘i (U’ﬁ(q) bN(q)( )) ,J (O'N( )b (q)( ))) , Q the covariance

operator of P N@ o E, and, for all h € E, LIh] := (o//n) ([ hi(s)ds, [ hg(s)ds)T. The

)

reproducing kernel Hilbert space H N<q of lP’N(q on E is the image of Q'/2 with the scalar

product of the image structure. By Corollary B.3in [17] and Q = LL*, it is the image of £
with the norm ||f||*<, . = (n/o?) (”hll|2 + Hh2||2) for f = L[h] and derived scalar product.

N(q

By (2.12) in [17], the scalar product is also defined when one function belongs to H PN @ for

1n
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IP’?’;(Q) a.e. other function in FE. By the Cameron-Martin formula (Proposition 2.26 in [17]),

N(q) 2
dP Vi T aw LIvn [ aw N(g)
PN (y) = exp <<y o £ [G (q)} >qu> T3~ [G'N((n] N | Tim 08
1n 1,n 1,n

,n

2 @ w Waosy2 2
<Zﬁ(q)’ o £|:GN((I):|>PN(¢1)] /’ N(q) bN(q ’ ds.
Because

2 BX
72 Ynelaw _ N(q) w
< N(@)’' o ﬁ[GN(q)} PN (@ ]P’i(fn—'— B’jﬁ(q) ’E[GN(Q)] PN(‘”’
’ ’ 1,n

and the second term in the right-hand side is a limit in quadratic mean of mean zero Gaussian
random variables, hence has mean zero (see the arguments page 41 in [17]), we have

and, because K (Py,,P1,) = [;In (dpgygq)/dP{\’;(q) (y)) dIPéV(q) (y), we have

K(]P)2,n7 Pl,n) =EK

Lefoy, |

N(q)

_n Wiaoty2 ‘2
(A.22) Ko, Prn) = 5 /R oty (o) ar

By Proposition B.1 (ii), we have K (P2, P1,,) = v?nRP [ ( cosh, Rwot) (Rxo |t| /(2m))P A(t)2dt/(202) =

N(q)
V*nRP [, p(]ivgs(};’)Rxot)\(t)th/ (20%) and, by Theorem 3 in [23] (there is difference of normalisa-

tion for Q; by a factor 1/(27)), for all U/2 < |t| < U and 2/(RxoU) > 1, pr?S(};’)RW <

(2RzoUe/ (m(1 — (RaoU/2)%)))" exp (2kyN In (RzoU/2)) . Thus Lemma A.1 (iii) holds if

2 (1 — (RxoU/2)?)\? 202
A.23 2 —2k,N'1 < &2 —.
(4.23) e ( g% 0 (Rx0U>> =¢ < 2R2zoUe U

Step 4. Let U = 2/(eRxo), N = [N], v = C,{oveRx (7T (1 — 6_2) /(ZLR))p/2 /N°V for & >
1/2and C, =1 (8eR/ (1 — 6_2))p/2 V(p+ 1)erRao/ (2° ¢o\/eRag), and N = In(n/In(n))/(2kq).
(A.23) holds if nC2 exp (—2k,N — 2 (a7 V o) In (N)) = 03(21@1)2(“0) In(n)'=2(V0) Iny (n)2@Vo) <

1, so (A.21) and (A.23) hold for n large enough. O

The proof of theorems (T1.1b) and (T1.2b) are similar and postponed to Section B.2.

A.3. Upper bounds. We use, for all e > 0, N € NX, Ny € Ny, T > 0, ﬁlq’N’T’O and fg’g’T’e
which are defined like ﬁlq’N’T’O and fg’g’T’e replacing ¢, by Cm and ﬁlq’N’T’O by ﬁlq’N’T’O, Ty =

~ 2
Supfx|/y€5 HAffX|XHioo(X)7 Kl = H]l{ﬁ < |*’} (F{LN:F’O _Flst [fa,ﬁ]) (*7 2)’

) K2 =
L2(1oW®p)
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14041 < & ([ = Fia o) )]

L2(1@W®P)

WAVESS 1/J?§(|X —1/fx)x

Mg (X m) {X € XY e

1 2
Cm ‘= , W = sup A L= (27 P Fist [f Bl ,
" nonJX\X(Xj) NG) I, <N (%) pm* B 1P el Q)HLQ(RP)

Ri(%,2) = M{e < ||} (ﬁIq,N,T,O B Ff,N,T,O) (%,+2), Ra(x,-2) :=1{e <|*|} (ﬁ{],N,T,O . ﬁlq,N,T,0> (%, 2),

Ryl 2) i= Ie < [ [} (FPNT0 = FEooT0) (5, 2), Rl 2) o= e < [ [} (FE0 = Fig [fuss]) (5 -2)
N W,zox m,x ei*yj W,zox Xj
SN(2) = S G () Am(x), 2 = S AKX )t (ZL) 1(X; € &),
jml, <N) o o
P

n

1 N,T,
Am = — - ZZm* R,‘% sup ‘= sup <fq € fa,ﬁ) ,
j=1 fo ﬁeH‘l 7 (1L,M)ND, fx|x€E

SV2) = Y g™ (2DE[Am®)], 57 (k2) = Y g™ (2) (Am(x) — E[Am(X)]),

Im|,<N(x) |m|,<N(x)

2 p No + 1)P |«[?
AY (x, No,n, z) == (CX*| VqVV(xo*,No)+z<L(*)+CX( 0+ 1)1 )@%va()*).

(2m)P n n 0

Lemma A.2. For allm € Nfj, we have E [¢p, (t)] = ¢, (t) and E ng(t) — cm(t)ﬂ < cx/(nxf).

Proof. This comes from
ity

- 1 e Waot [ X 1 / tatitBTa] Wot [ &
E m(t = _—_F|— L0 21X X _ E ita+it3 ' x %) ~\d
(em ()] g [fXX(X)gm <90o> {xe }] zb Jy [e ]gm I

1 2

E [[om(t) = cm(t))’] < m?pE
0

‘ eitY 791/‘/,1015 <X>

fX\X(X) " To
—— |2
m’xot(u)’ du. O

2
M/‘ i C
/ " < ) e S Xp / g
nag? fX\X zo nry Ji-1,1p

Lemma A.3. If fX|X satisfies (H1.4) then Z,,, = O, (v(ng,E)/d(no)).

XEX]

IN

Proof. For all ng sufficiently large so that \/3(ng)cx < 1, we have, for all z € X,
(e = 1x1) @)] <[ (P = fx1) (@) 1{ Fxpe(e) = 5("())}
‘\/TO fx|x(z ‘ {J?X|X( ) — fxx(@) < Vo(no) — fxx(z }
<|(Fxx = fxix) @)].

~ 2
hence 6(ng)Zn, < SUD . vee folX — fX‘XHLoo(X)' We conclude by (H1.4). O
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In the remaining, € is a class of densities, fxx € €, 1,1, M >0, and fo g € Hg%‘)(l, M)ND.
By Lemma A.3, there exists Mg, such that, for all ng € N, P(E (Gy,,&,n)) > 1 —n, where
E (Gny, €,m) = {Zny < Mg yv(no,€)/6(no)}. We work on E (G, E,n).

2
Proof of theorems 2 and 3. The Plancherel and Chasles identities yield H f oY T — fa <
THL2(1ewer)
(K7 + K3)/(27). By the Jensen inequality, we have K; < 42]':1 HRJ||L2(1®W®p) and, using
(10) for the first display and Lemma B.1 for the second,
Ko Ky <K+ [ 20 Colae) | Fus o) (5 8) = P e ) (80) (6) [ ) WP )0
RP
~ 2
- / 2C) (ae) Hn{|*| > €} (Fva’T’O—flst [fa,g]) (%, b)H @ )W®”(b)db
RP
<K +4n(1 4 Cy(ae))w / | fa.8( )”L2 W®p(b)db + 2C)(ae) K-
(A.24)  <(1+42Co(ae)) Ky + 47(1 + Co(ae)) Mw(a) < C (K + 2rM*w(a)) -
Using successively Proposition 2 and lemmas A.2 and B.2, we have
) E [[em(t) = em ()]
(4.25) E (IRl qowen] = [ T
e<[t|<T Im|,<N (1) (am’ 0 )
(65'¢ w
A.26 §/ tP v)" (xot, N (t))dt,
(4.26) i oy 17 0t N 1)
also
2 zolt] \" ~g W0t
||R2”L2(1®W®P) = /<|t|<T (277> YN (1) HSO )2 HL2 ([-1,1]» )dt
Nt
£ [HSO )2 HL2[ 1,1]P ] - HSl )2 HL2[ 1,1]) +E [HS2 )2 HL2[ 11}?)}
2
2 €T x
HS{V(t,'z)HLz([,M]p) = Z g ot (F [fy|x=z0) () (Affx|x) (z0-2) g Ot>Lz([_171]p)
[m|, <N(t) L2([-1,1]7)
<|F [fy1x=ne) (1) (Affx )(96‘0'2)”2
= | X =202 fIxix L2([-1,1]p)
27
(A.27) < Zng | F [fa8] (& wot-2) |1 21170y < Zn ( |t|> 1F1se (o8] (& -2) 1 2 gy -

and, by independence and 37, -y 1= (N;p) I{g=1} + (N + 1)PL{g = oo} < (N + 1)P,

BflsY s = X 2B ||z e[

[m|,<N(t)



23

2 P
dz < (N(t) + 11) CXZno'

A28 <
(A.28) -

B N na:o /fX|X

||<

e ( T )
m
zo
Collecting (A.27) and (A.28), we obtain

2 Zn ex (V@) + DP [ g wiaot
(429 E[IBalfaowen) < G N COR . T .

By Lemma B.3 and Proposition 2, we have

Wk k(t 12
(A30) | RslZeuomen < / S ()t </ 3 000 sup -
k>N (t) [ml, =k k>N (t) N t)+1 tER N (#)+1
and, by Proposition 2,
*([t]) o 2ml?
A.31) ||Ry < / b ()2 dt < 0%, (t)dt < .
( ) H HL2 (1eW®r) Z t|>T ’ ( )’ Z R ¢2(T) q,k( ) ¢2<T)
keNo k€N,

Thus, we have

1 1
A32) RV <C / AY (t,N,n, Z,,)dt + 41% | sup + + M?@(a) .
( ) 0,Sup ( <t|<T 0 ( 0) LR w]2v(t)+1 gf)(T)Q ( )

The remaining of the proof is in Section B.2. It particularises (A.32) to the different smoothness.

A.4. Data-driven choice of the parameters. Let N, be the set of functions N € N]g{ such
that, for all t € R\ (—¢,€), N(t) € {0,..., N} .}, A :=Cm — Cm, and Apy := Cm — Cm,

9 2
_ em(t E[An(t
E(t,N):= Z W,Sco)t , S1(t,N) = Z ‘[W:co(t)] ’
|m|,>N 7T |m|, <N om
~ 2
Am(t) —E[Am ()] Am(t)
SQ (t, N) = Z ' UWth ) S3 (t7 N) = Z O_W,x()t )
|m|qSN m ‘m|q§N m

2 42

]ﬁ) . 294cx K2(t) exp (_Lw/pnn> ’

6 zhn K,(t)

1\? 1 227
K,(t) := Hy (t) <Nnvgx7q > , L= =0

Uy n(t) :=exp (—

L R > (t,N(t)
B(N) ) Tsllel%/eqt@ Ss (t,N(t))—Q(gJﬂ/g)) +dt ,

I1(n, Zngs Tmaxs Nimax.q) = Zno / e W ()dt + 1 (1, Tnaxs Nopax.q) -
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Hl(naTmamNW ) =

max,q

Nitiq + D) 0 (zot, Nae o) Yo (t)dt,

max,q max,q

96 ( +2\f)CXKmax/Emax(

(2m)Pn

. 1 2m P ~q,Wx0 2 |*‘ b CXV;/V (xo* NmaX q)
\I’n = <2 + \/5> <<l‘0‘*|> q ||flst [fa ,6] (*7 '2)||L2(Rp) + <27‘[‘) n )

CX(N + 1)p ’*‘p> ~q,W,zo%
n “N ’

CX‘*’p(
n

where Hyy (t) is defined in Proposition B.2. For all t € [-T,T]\ [—¢, €] and N € Ny, using (A.2)
with ¢ = \/5, we have

AV (%,N,n,z) := 14214 2pp)(1+c1)) U;V(ajo*, N)+z <L(*) +

(A.33) LV (t,N) <E@N)+ (1 + \%) (S1(t, N) + Sa(t, N)) + (1 +2v/5)S5(t, N).

Lemma A.4. For all ¢ € {1,00}, 0 < e <1 < T < Tyax = 28max t € [-T,T]\ (—¢,¢), and
N €{0,...,NJ.. .}, we have

a3 E[5 (650)] < 2 (27 S 15 ] 002
(A.35) E :82 (t,ﬁ(t))} < Ty X > (‘2’1) vy (@0t Nas.q)»

[ S(t, N) It|
(A.36) E _(Sg(t, N) — 2(2+\/5)>J < 48X > <2W> v (ot, N)Wou(t).

Proof. Let the parameters in the for all statement be given. (A.34) follows from
T ~ ,Wx 2
Sl (ta N(t)> <w q of H‘F [fY\X To- ] (t) (AffXM’) (xO')HLQ([,LHp)

27 oW
< Zn ( !ﬂ) %HVZ || Fist [fa] (t, Q)H%Q(Rp) (by (A.27)).

By Lemma B.2, Z|m| <N ( ont) < |x0t|PygV(a:0t,N)/(27r)P, so we obtain (A.35) by the

following sequence of 1nequahtles, which uses (A.28) for the second display,

52 0. 50)] < ) E[mm(t)—E[Am(t)n?}<chn0|t|pqu(x0t NY )

max,q
Waot 2 - (2m)Pn
Im|, <N, Om

max ,q

To prove (A.36), we use

S3(t, N) :/RP

vh(w) i= (FPNT0(t, 0) = FENTO(E ), u())

n

Ol

_ 2
qu’N’T’O(t, b) — FI‘I’N’T’O(t, b)‘ W®P(b)db = sup ‘1/
ueU

o fz (£ ) B [£4015. X))
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S (o) s o),
<N

itk
L, )= 1{ € X e/
u( ) { } ngX\X() Rp Zo O_"Wr{,xot Pm
Im|, <
and U is a countable dense set of measurable functions of {u sl 2 wery = 1} and check the

conditions of the Talagrand inequality given in Lemma B.15 with n = p,, and A(p,) = 1. For
all u € U, the Cauchy-Schwarz inequality yield

/ W,xot ( / ) 2 1/2
it \"* ’g"; 'xo‘ Waot (|2 717©
1ill oo e ch< > . [om "' (B)]" WP (b)db
u (RxX) 271'550 |m‘q§N pm,xot - m
Lo2(X)
It| p/2 "
< CXKn(t) <27’[‘$0> 1/l/q (.’I,'Ot, N)
By the Cauchy-Schwarz inequality and the computation leading to (A.26), we have
2 - 2
E |sup [V (u } <E [sup v (u 2] <E {HF(”N’T’O t,9) — FONT0 4 ’ }
sup A0 < 2 [sup i) VIO ) = RN

cx ’t’ p o E(t, N)
=T <27r> vy’ (ot N) = 82+ v5)(1 + 2pn)

Finally, by the Cauchy-Schwarz inequality and Proposition B.2 for the second display and
Lemma B.2 for the third display, we have

Var (R(f, (Y5, X)) V Var (3(f,(Y;, X;))) < /]R » oy, )| fyx (y, @) dyda

t\" w
SCX <27T I/q (x()t,N). O

Lemma A.5. Foralle >0, g € {1,0}, and T € T, we have

~ 2
Ry (E:Z’Tﬁfaﬂ) SM /e§|t|§T]E [LCVIV (t,ﬁ(t),Tﬂ +

o E [z (t, ]V(t))} dt

C2(2 4+ /5)?
+ P S A,
T
Proof. Let ¢ > 0, ¢ € {1,00}, and T € T,,. Start from (19). Using, for all 71, T> > e, R% =

e < i} (FPYT0 = FpRVI0) () and BT i= e < o} (FPY0 = Fig [faal) (5 02),
2

1
24+ 5

(1, Zng, Tomax, NWoo ) + CM>w(a).

max,q

we have Rf = Rg — R; + RT and HRf’

L2(W®p) = I{e < [x} E}J/V (*> N(*)>f) Because

;(W@o) - (t’ NG)) dt) ’

A.37 By (T, N) = HRT’ - )
A () %?g%</ifl<t|<T1vT’ i) +
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<E |:B2 <T1, ]/\\7)} +E {22 (Tg, )] for possibly random 77 and

we have E [H ]
tlz2aewer)
Ty. By (A.2) with ¢ = /5 and (17), we have

[H ‘ R ] <22+v5) (E[B: (T.N)| +E[% (T.N)]) + <1 + \%) E IR e gowen) -

. / g, N, VT 0 N,TVT' 0 / N,T,0 75¢,N,T,0
Using, for all T’ € T,, Ry, = FP 0700 — P00 R, = FPE00 — FPP0 0 and

Rgg = qu’N’TVT/’O — FPNT0 by (A.2), the objective function in (A.37) is smaller than

2
/T<|t<TVT’ 2 * f g HRT] t 2 ‘ ;(W@m) T (1 + jg) HR%:;;(t, 2)‘ i

> (t, N(t)) dt.

L2(Wer)
Jr
Using that qu,oo,oo,o = Fist [fa,3], we have, for all t € R\ (—¢,€),
| ~Ea(t,- )‘2 —r<p<rvry Y | = | (PN~ Fig fas)) & ))2
T3\ "2 L2(Wep) = > > - 7“/[n/’x()t > 1 1st [Ja,B 52 L2(W®p)’
0<|m|, <N
hence
~ ~ AT xr o 2 ~

By <T, N) < max / (2(2 +/5) H (Ff’N’T 0 _ paNT 70> (t, .2)] > (t, N(t))) dt

T'€Tn Jr<pt<1r L2(wer) +

2 T 2
i (1 i \/5> /6§|t| |25 2 ayen)

Finally, we have

2[R o] 224 VO[22 (1.8)] 4 6208 (142 ) B 1 )

~q, N, T N1 2 Z(t’ﬁ(t))
42+ V5)E max/ H(Ff 0 _ e, ’0) (t,'z)’ —
T<|t|<T

ax 2wer)y  2(2++/5)

Using (A.33) and Lemma A .4, we have

Sq. N T N, 2 > (t’ﬁ(t))
E max/ | (BENT0 — ppNT0) (1, )]
T'eTn JT<|t|<T"

L2wer)  2(2 4 +/5)

em®) — (]2 Z(6N0)
<E %Illg%z/eglﬂg’f" Z < oot ) a 2(2 4+ /5) at

‘. om
|m|,<N(?)

(1+2f) ( >+Z,m /<|t<T W, (t)dt.

_l’_
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Considering the first term of the last inequality and using (A.36) for the second display yields

E(N)gﬂa > /egt|gT' Sg(t,ﬁ(t))—zj(t,]\[(t)) dt

T eTn 2(2 4+ /5) .
T »
ex (N w
<Y [ w2 () o M
T'€Tn 0SN<NW, o
96cx Kmax (77w p,W
S W / (Nmax q 1) ¢ Vq (x()t Nmax q) \IIO,TL (t)dt N

Lemma A.6. For all € > 0, ¢ € {1,00}, and (T, N) € 7o x Ny,
/egtlgTE [EZV <t’ mt)’Tﬂ * 2+1\@E [E <T’N(t))} dt

<(2+ \/5)2 </<|t<TE £V (1, N (1), T)] + 21;:;151@ [S(¢, N (1)) dt + 4TI(n, ZnO,Tmax,Nrqu)> .

The proof of Lemma A.6 is similar to that of Lemma A.5 and postponed to Section B.2.

Proof of Theorem 4. Let n,ng such that v(ng, &) /5(ng) < n2In(n) P, T € T,, and N € N,,.
By Lemma A.5 and Lemma A.6, we have

4
R (P57 4,5) < Ce+vE) / E [V (¢, N(1).T)] + ~LE[S(t, N(t)] dt

2m <|t|<T ¢ 2++/5
2(2 +/5)2C (1 +(2+ \/5)2>
+ H(?’L, Znoa Tmaxa Nrnax,q) + CM27:D(Q)
™
The definition of ¥, (A.26), (A.29), (A.30), (A.31), and Lemma B.14 yield
2+ V5) ~ 8ml? 8ml?
RZV q’NTeafoz (/ AV (¢, N(t),n, Zy,)dt + sup
0 ( B> (2m)P <|t|<T o (6N (D) o) te[-T.T) wfv(t)ﬂ o(T)?
22+ V5)C (1+ (2+ V5)?) (Ao + A1)
(A.38) + CM?w(a) + .

™m
The rest of the proof considers the different smoothness and is given in Section B.2.

REFERENCES

[1] M. Abramowitz and I. Stegun. Handbook of mathematical functions: with formulas, graphs, and mathemat-
ical tables. Dover Publications, 1965.

[2] N. Alibaud, P. Maréchal, and Y. Saesor. A variational approach to the inversion of truncated Fourier
operators. Inverse Probl., 25:045002, 2009.

[3] R. Beran. Prediction in random coefficient regression. J. Stat. Plan. Infer., 43:205-213, 1995.

[4] R. Beran, A. Feuerverger, and P. Hall. On nonparametric estimation of intercept and slope distributions in
random coefficient regression. Ann. Stat., 24:2569-2592, 1996.



28

[5]
[6]

GAILLAC AND GAUTIER

M. Bertero and P. Boccacci. Introduction to inverse problems in imaging. CRC press, 1998.

A. Bonami, P. Jaming, and A. Karoui. Non-asymptotic behaviour of the spectrum of the sinc kernel operator
and related applications. 2018. Preprint hal-01756828.

A. Bonami and A. Karoui. Spectral decay of the sinc kernel operator and approximations by Prolate
Spheroidal Wave Functions. 2014. Preprint arXiv:1012.3881.

A. Bonami and A. Karoui. Uniform approximation and explicit estimates for the prolate spheroidal wave
functions. Constr. Approz., 43:15-45, 2016.

C. Breunig and S. Hoderlein. Specification testing in random coefficient models. Quant. Econ., 9(3):1371—
1417, 2018.

L. Cavalier. Efficient estimation of a density in a problem of tomography. Ann. Stat., 28:630—647, 2000.

L. Cavalier. On the problem of local adaptive estimation in tomography. Bernoulli, 7:63-78, 2001.

L. Cavalier, Y. Golubev, O. Lepski, and A. Tsybakov. Block thresholding and sharp adaptive estimation in
severely ill-posed inverse problems. Theory Probab. Appl., 48:426—-446, 2004.

X. Chen and M. Reiss. On rate optimality for ill-posed inverse problems in econometrics. Economet. Theor.,
27:497-521, 2011.

F. Comte and V. Genon-Catalot. Regression function estimation as a partly inverse problem. Ann. Inst.
Statist. Math., pages 1-32, 2018.

F. Comte, V. Genon-Catalot, and A. Samson. Nonparametric estimation for stochastic differential equations
with random effects. Stochastic Process. Appl., 123(7):2522-2551, 2013.

F. Comte and C. Lacour. Deconvolution with estimated characteristic function of the errors. J. R. Stat.
Soc. Series B, 73:601-627, 2011.

G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, second ed. Cambridge, 2014.

M. De Jeu. Subspaces with equal closure. Constr. Approz., 20:93-157, 2004.

C. Dion. New adaptive strategies for nonparametric estimation in linear mixed models. J. Statist. Plann.
Inference, 150:30-48, 2014.

F. Dunker, K. Eckle, K. Proksch, and J. Schmidt-Hieber. Tests for qualitative features in the random
coefficients model. 2017. Preprint arXiv:1704.01066.

J. Frikel. Sparse regularization in limited angle tomography. Appl. Comput. Harmon. Anal., 34:117-141,
2013.

W. Fuchs. On the eigenvalues of an integral equation arising in the theory of band-limited signals. J. Math.
Anal. Appl., 9:317-330, 1964.

C. Gaillac and E. Gautier. Estimates for the SVD of the truncated fourier transform on L? (cosh(b-)) and
stable analytic continuation. 2019. Preprint arXiv:1905.11338v3.

C. Gaillac and E. Gautier. Identification in some random coefficients models when regressors have limited
variation. Working paper, 2019.

E. Gautier and S. Hoderlein. A triangular treatment effect model with random coefficients in the selection
equation. 2015. Preprint arXiv:1109.0362v4.

E. Gautier and Y. Kitamura. Nonparametric estimation in random coefficients binary choice models. Econo-
metrica, 81:581-607, 2013.

E. Gautier and E. Le Pennec. Adaptive estimation in the nonparametric random coefficients binary choice
model by needlet thresholding. Electron. J. Statist., 12:277-320, 2018.

W. Gautschi. Some elementary inequalities relating to the Gamma and incomplete Gamma function. J.
Math. Phys., 38:77-81, 1959.

A. Goldenshluger and O. Lepski. On adaptive minimax density estimation on R%. Probab. Theory Related
Fields, 159:479-543, 2014.

J. Heckman and B. Singer. A method for minimizing the impact of distributional assumptions in econometric
models for duration data. Econometrica, 52:271-320, 1984.

S. Hoderlein, H. Holzmann, and A. Meister. The triangular model with random coefficients. J. Econometrics,
201:144-169, 2017.


https://hal.archives-ouvertes.fr/hal-01756828/document
https://arxiv.org/pdf/1012.3881
https://arxiv.org/pdf/1704.01066
https://arxiv.org/abs/1905.11338
http://arxiv.org/pdf/1109.0362v4

(32]
(33]
(34]
(35]
(36]

37]

29

S. Hoderlein, J. Klemeld, and E. Mammen. Analyzing the random coefficient model nonparametrically.
FEconomet. Theor., 26:804-837, 2010.

D. Hohmann and H. Holzmann. Weighted angle radon transform: Convergence rates and efficient estimation.
Stat. Sinica, 2015.

H. Holzmann and A. Meister. Rate-optimal nonparametric estimation for random coefficient regression
models. 2019. Preprint arXiv:1902.05261.

A. Hoorfar and M. Hassani. Approximation of the Lambert W function and hyperpower function. Research
report, 10, 2007.

A. Karoui and T. Moumni. New efficient methods of computing the prolate spheroidal wave functions and
their corresponding eigenvalues. Appl. Comput. Harmon. Anal., 24:269-289, 2008.

G. Kerkyacharian and D. Picard. Regression in random design and warped wavelets. Bernoulli, 10:1053—
1105, 2004.

R. Kress. Linear integral equations. Springer, 1999.

C. Lacour and P. Massart. Minimal penalty for Goldenshluger-Lepski method. Stochastic Process. Appl.,
126(12):3774-3789, 2016.

J. Lindberg. Mathematical concepts of optical superresolution. J. Opt., 14:083001, 2012.

M. A. Masten. Random coefficients on endogenous variables in simultaneous equations models. The Review
of Economic Studies, 85(2):1193-1250, 2017.

A. Meister. Deconvolving compactly supported densities. Math. Meth. Statist., 16:63—76, 2007.

C. Mortici and C.-P. Chen. New sharp double inequalities for bounding the gamma and digamma function.
Analele Universitatii de Vest din Timisoara, 49, 2011.

F. L. Nazarov. Complete version of Turdn’s lemma for trigonometric polynomials on the unit circumference.
In Complex Analysis, Operators, and Related Topics, pages 239-246. Springer, 2000.

F. Olver, D. Lozier, R. Boisvert, and C. Clark. NIST handbook of mathematical functions. Cambridge
University Press, 2010.

A. Osipov, V. Rokhlin, and H. Xiao. Prolate spheroidal wave functions of order zero. Springer, 2013.

M. Reed and B. Simon. Methods of Modern Mathematical Physics, I: Functional analysis. Academic Press,
1980.

V. Rokhlin and H. Xiao. Approximate formulae for certain prolate spheroidal wave functions valid for large
values of both order and band-limit. Appl. Comput. Harmon. Anal., 22:105-123, 2007.

A. Tsybakov. On the best rate of adaptive estimation in some inverse problems. C. R. Acad. Sci. Paris Ser.
I Math., 330:835-840, 2000.

A. Tsybakov. Introduction to nonparametric estimation. Springer, 2008.

H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Ration. Mech.
Anal., 17:215-229, 1964.


https://arxiv.org/pdf/1902.05261

SUPPLEMENTAL APPENDIX
APPENDIX B.1. HARMONIC ANALYSIS
B.1.1. Preliminaries. Py, is the Legendre polynomial of degree m with || Py, || p2(—1 1)) = 1.

Lemma B.1. For all f € L2 (R), w even, nondecreasing on [0, 0), and w(0), R > 0, we have
2

[Pr F £ = F [l gy < @r/w(R)) [ fll72 )

Proof. The result uses the Plancherel identity and

[Pa 7151 = F 11l}qq) = 2 [ Mlal > BYIf (@) da <

2 9
(R)/Ru(a)\ w(a)da. O

w
Proposition B.1. For all weighting function W, ¢ € R, R > 0, and m € Ny, we have
(i) gm ¢ = g in L2([-1,1)),
(ii) om /€ = oW Ee /R
(iii) o /B = SWBe (I RY VR ace.

Proof. (i) follows from QWU _ oY and (ii) from o C/Rse QWpTVX('/R)’C/M =
21w/ |c| (by the argument yielding (i)). Now, using (i) in the first display and (ii)
in the last display, we have, for a.e. t € R,

t . JR)e] [T «
ottt (1) = Fi [t /0] (§)  (where T 22(-1.2] > 2207)

=7 [g e (1) (where Fp i LA(1=1,1]) — LA(W(/R))

= o Do IR (t) = ol BV Rl (),
hence (iii) when we divide by o' which is nonzero. O
Proposition B.2. For all m € Nj, R > 0, W = Wi_rg or W = cosh(-/R), t # 0, we

have Hgmzot < Hyy(t) H§:1 m; + 1/2, where Hy_, (1) = HE (1+ (20]t])?)?,

L ([~1,1]p)
Ho =2(141/V/3), Heosn(./ry(t) = HY (1 V (xolt])*)P, Hy > 0.

Proof. When W = W|_p pj, this is (66) in [3] else this is Corollary 1 in [23]. O
Lemma B.2. For all ¢ € {1,00}, t #0, R > 0, N € Ny, in cases (N.1) and (N.2) of Section
5.3, we have 32,1 <y 1/ pmt < ng(t,N).

o<
Proof. Let R > 0. We use repeatedly, for all z > 0 and N € Ny,

exp (N +1/2)z) _ exp((N+1/2)x)
(B.1) kg;\[e){p (k) < 2sinh (z/2) = x

(because sinh(|z|) > |z|),

exp (Nx)

(B.2) S 1 epl—a)
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the cardinal of {m € N§ : |m|, =k} is (k;f D, and (k+p—1)!/k! < (k+p—1)P"1, and for

sh(- Wi_1.1),Rt W,
all m € N p;:ﬁsh Rt pfgsh( /R),t and Pm[ Lt Pm[ R,R]5t

Start by case (N.2). Let [t| > 7/4 and ¢ = 1. By (8) in [23] (there Q, differs by a factor
1/(2m)), we have, for all m € Ny,

1 m(m+1)
B.3 Cosht> _ )
(8.3 gt > e (700

The result is obtained from the above with (B.1) and

Y w2y Y exp< !n;||1t|+p)>

fm|, <N Pm KN [ml,=k
(B.A) 2PN 4 p— 1P et (N +p)
' - m(p —1)! 2 t]

Let |t| < 7/4 and ¢ = 1. By Theorem 1 in [23], we have, for all m € Ny,

2\? 7e?
B. cosh,t> “ 21
®9 itz () oo (o (G m)

The result is obtained from the above with (B.2) and

Y o= (3) L L ew <21“<4\t\>"""1>

jml, <N Pm R<N |ml, =k

(B.6) < <€;)2p (Nn(Lp— 1P exp <2 <4|t|) > - /11462))2.

The results for ¢ = oo are obtained using (B.4) and (B.6) with p =1 and

1 Pl
(B'7) Z cosh,t < H Z cosh,t
Consider case (N.1). Let t # 0. Because 7e/7 > 1 and by Lemma B.5, we have, for all m € Ny,
Wit _ 1 2 ¢ am
B.8 et s 2 (28 A .
(B.8) pm =2 \Ze(m+1) A

When ¢ = 1, the result follows from the following sequence of inequalities

Y Y Y Hexp<2mj <7e(’;|ﬂt|+”\/1>)

|m|, <N Pm k<N |m|,=k j=1
2°(N +p—1)P"HN +1 N+1
< (WA+p— )P (N + )exp<2Nln<7e(+)\/1>>.
(p—1)! 2 t]
When ¢ = oo, we obtain the result using the above with p =1 and (B.7). O

The proof of the next lemma is straightforward.
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Lemma B.3. Let fo g € L? (w® W®P). For all m € Nb, t = 0, we have ¢y, = ooty ae.
B.1.2. Properties of the PSWF and eigenvalues.
Lemma B.4. For all ¢ # 0 and m € Ny, we have |uC,| < v2me3/2 (e|c| / (4(m + 3/2)))™ /3.
Proof. Let ¢ # 0 and m € Ny. By (69) in [48], 6.1.18 in [1], (7) in [28], (1.3) in [43], we obtain
V7 |e™ (ml)?

(2m)!IT'(m + 3/2)
< 7 le|™ '(m+1)

= 4T (m+3/2) T (m + 1/2)

B s _ Vad(ele)™(m + 1)2

= 4mT'(m + 3/2) T 4my/2(m + 3/2)mH1
and conclude using sup,q(x + DY2/(x+3/2) < 2/3. O
Lemma B.5. For all ¢ # 0 and m € Ny, we have

2m
Wi_11).c > 1 1 < 2 ’C’ 1 2c 1 2 ‘C‘
—= —_— = _ > .
pm -2 L - +7e(m+1) mn T

Proof. When m > 2|c| /m — 1, the result follows from the fact that, by Proposition 5.1 in

[6] and the Turdn-Nazarov inequality (see [14] page 240), px[_l’”’c > (2¢/ (Te(m +1)))*™ /2.

For all m < 2|c| /7 — 1, the result follows from Remark 5.2 in [6] and that, for all m € Ny,

¢ € (0,00) — pf, is nondecreasing (by the arguments in the proof of Lemma 1 in [23]). O

We now use I1(c) := 3c exp (2¢2/v/3) /16, H(c) == /2IL(c)V2, (c) := (1 + 4c?/3%/2) (1 + 2c23%/2),

if N> H(c) then N > ¢ (foralle>2, N > c\/3exp(8/\/§)/16 >celse N> H(c) > 2> ¢,

F(@) = lal/ (1 — %), 9(2) = lal /(1 — 22, hl@) = lal/(1 — lal), 5 i= 4/3, ¢g = 4, cn = 2,

(B.9) Vo e [-1/2,1/2], f(x) <cflz|, g(x) <cqlz|, h(z) < cplz|;

(B.10) 2 > 2k+1=N(N-1).
k=N[2], 0<k<N

P | <

(m+1)

;Jvz/f_l 4p+1 and else 2 Zy(go_l)m_l 4p+3.

Lemma B.6. For all ¢ # 0 and m > 2, we have ‘,ufn/,ufn_ﬂ < I(c)/m?.

(B.10) is obtained because for all N even the sumis2 )

Proof. Let ¢ > 0 and m € Ny (for ¢ < 0, we use puf, = ﬁ) By Theorem 8.1 in [46], we have

e /mdmM(m)? o (2@ -1 m
|| = (2m)!r(m+3/2)€F (©), Fm(c)—/O <2t—t> dt.

Moreover, by (65) in [8], for all ¢ > 0,

: 2 2 t ) 1 2 2
( m+2_m> < WalD) SW”TfW)
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which yields, if m > 2,

. ) . ) 1 12 2 1 t?
(Un(1)” = (Ym-a(1) S(\/m+2+m> —( (m—2)+§—\/§\/m

42t 1 1 442
B.11 =24+ — + — - <24 —.
( ) +\/5—’—3<m—i—1/2 m—3/2>_ +\/§

Using sup,>o 2 (z — 1)/ ((#? — 1/4)(z — 1/2)(z — 3/2)) < 3 and (B.11), for all m > 2,

_02 m( _1) F F
16 G 1/ — 17237 P (0~ Fnca(e)

3¢ (Vh,(1)" = (4, 5(1)" 2 3¢ 202
§16m2exp</0 < ; 2 —t>dt)§16erxp<\/§>. U

Lemma B.7. For all ¢ # 0 and k € N, we have (¢5(1))* < (k4 1/2) (1 +202/33/2)2 and
HwkHLw( 1)) S <(k+1/2)(1+ 402/33/2) For all ¢ # 0 and k > ¢, we have ||1/1,§H%oo([_171]) <
k+1/2. We also have ”7/10”200([_171]) < 2|c|/m.

i,
Pon—2

Proof. The first assertion follows from (65) in [8]. For the second, we use (66) in [8] in the first
display, 22.14.7 and 22.2.10 in [1], hence || Pg||poo(j=1,1)) < /K + 1/2, in the second inequality,

c2 3/2
o tan < I Pull o1 + L+
Vel ([-1,1]) = 1P|l 2 ((=1,1]) 3(k +1/2) ( m)

c? m 4c?
<Vk+1/2 (l—i— Vah+1/2) (1—1— F—kl/?)) <Vk+1/2 <1+33/2>

The third uses (3.4) and (3.125) in [16]. We obtain the last by the proof of Proposition 1 in
[36] which yields H@ZJSH%OO(PL”) <2/(p§)? and Lemma B.5. For all ¢ < 0, we use ;¢ = ¢,. O

Lemma B.8. For all ¢ # 0 and N > H(c), we have

H oS < 2¢cy (C(c) 4+ Ca(c)) Cs(c)II(c) JN

L= ([~1,1)) ] ’

CaH@49 2l CIPP 1
A= e o AT mE@mEE - e T

Proof. Take ¢ # 0, N > H(c), and w € [—1,1]. Theorem 7.11 in [406] yields

Ny
oc

()= 2AW )i w)

(B.12) /
g r=na ken (15) " — (1)
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Using uf/p% € R if K = N[2] and Lemma B.7, we obtain

2 | < P e v.0
N f< >2|c\]1{N_o Z f< > <k+;>+2f(’f5> <l<:+2
ogken e M

Lemma B.6 yields, if k = N[2],

My
1,

BN
Py _2o

11 1
(B.13) < SZ\(]?SQifk:<Nand

¢ o) " 1
Pr| < (V229 < Zifk>N.
1Sy N +2

Using (B.10), (B.9), (B.13), and 3",y k27% = 2 in the third display, the result follows from

k—N
¢l  l(e)N(N — II(c k 21(c
C(f,N,c) <c¢y <<2W + © (4 1)> ]\52) + 2(1:1%/22 ( N+(2)> )

k=N[2], k>N

2| l(c) 2 1
<cfn(c)(WH(C)(H(C)1)+4+(N+2)2 > (l+N+ >2l/2>

1=0[2], 1>2

B.14) < ¢/TI(c) (cz(c) + (Nig)? (N + Z)) < ¢4T1(e) (C1(c) + Ca(c)) - 0

Lemma B.9. For all ¢ # 0 and N > H(c), we have

‘ DS < MO (04 (0)N7"2 4 Coe) N2 4 Col VN +C(0))
0 || oo (-1,1) ¢
Ca(c) == cg (Ca(c) — Ci(c)), Cr(c) = (I{(C)C#)l/z (85 + H(i?ig) ’

Cs(c) :=8(cy (C1(c) + Ca(c)) C3(e))*TI(c) + (cq + dcy) Co(c) + (8cy — ¢g) Ci(c) + 2¢y,
Cs(c) = 8cpep(Ci(e) + Ca(c)*T(e) + (Ci(e) + Ca(c)) (cPeg + 4ey) + 19¢q.

Proof. For all ¢ < 0, pul, = pun’ and 9,.¢ = ¢S, hence we only consider ¢ > 0. Using
c € (0,00) = 9§ () is analytic (see [22] page 320) and (7.99) in [46], we have by differentiating

1 .
(B.15) WS () = / SFeTtS (1)t

-1

0 1 .
(B.16) sy S () = / icte s (t)dt,

-1

2 1
(B.17) i ) = [ (et ar

N 81‘2 1
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(B.18)
62 8 c 8 c 82 c 1 (92 a c
(s s 5085 s i T8 o= [ (Gt it - s

Multiplying (B.18) by 9 (x), integrating, and using (B.15)-(B.17), we obtain, for all £ # N,

a o 1 82 c
200 [ O g sy [ O i
1 82 1 o o 82 c
=i [ S w12 [ o2 Sy 2 [ i F K
Recombining and using that, for all k # N, uf, # u% (see (3.45) in [46]), we obtain
82

(s — ) [ T (@)
T L L 1 2 32% ousy 1 W% c
=2l [ 2SR @ S @+ 2 [ o G -2 [ SR @)

This yields, for all k # N[2], using (B.12), (7.69)-(7.70), and Theorem 7.11 in [46], [ 82ﬂ(uc)ng(ac)dx =

1 dc?
0, while, for all K = N[2] and k # N, using (7.69)-(7.70), Theorem 7.11, (7.99) and the eigen-

values (x4 )nen, of the differential operator in (1.1) in [46],

PR e 2 pf [ oov, | 0Uf _
o (@)¢p(x)dr = o - “i/ e (2) o (z)dz + Enk,
S e PR (LDYi (1) (u?vui(xi “XN) o MM (2 L My (205, (1)2 — 1)))
TR 2 c c\2 c \2 c\2 c _ ,cC .
¢ (5 = ui) (#5)" = (1) M~ Hi

c C 2
Differentiating (7.114) in [16] in ¢ yields [*, 2% (2)y5, (2)dz = — [ (%2(x)) da. Also, by
(B.13), for all k = N[2],

C
(B.19) "uiNc <1if k < N and else % < 2.
[y = |1y — i
We obtain, using Lemma B.7 and N > ¢ for the first term,

82¢C 0 — c
’ ac2N \/F/ ( wN > dr + Z IEN gl 1951 oo (=1,17)
Lee([=1.1]) k=N|[2], k#AN
2| s Looys oy
(B.20) + > ‘“Lf" / v ;}g(x) oz (@) ’”WHL% L)
k=N2], kxn CIHN T Pk

For the first term on the right-hand side of (B.20), using Lemma B.8, we obtain

F/ (awzv T ) dz < 8 (c (C1(c) + Ca(c)) Cs(c))? Cs(c) <H£C)>2N3/2‘
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For the second term in (B.20), using that for all k£ = N[2], u%/uj € R and (B.13) we obtain

\EN,H < —wav(l)IQIzb,‘;(l)l (9 (pr) (X — XN) +2 ( ’2¢N —~ 1‘ lﬁv') f(Pk)) )

¢ ‘“ Mk|

where pp = pi/pj, when & < N and pp = puf/py when & > N. Using N > ¢, (B.19),
X% — X5l <IN =kl (k+ N +1) + % (see (13) in [7]), (B.9), and [2¢5,(1)% — 1| < 2N (by
Lemma B.7) for the first inequality, (N —k)(k+ N +1) < N(N +1) for all 0 < & < N,
(B.13), and (B.10) for the second, (k — N)(k+ N +1) = k(k +1) — N?> — N for the third, the
computations in (B.14), 332 k?27% = 6 and > 32, k*27% = 26, and Euclidean division for the
fourth, yield

AN + 21{N =02 dey
Y Ew _J)SCQ\/T{ []}“JX(N(NJrl)Jchr (N + ))
k=N[2], k#£N lc| 7 M Cq
4N 2 1 c
+@ > (k—i—)l(c) Ky <(N k)(k+ N +1)+¢ o (N+1)>
2c B 2 e Py
k=N1[2], 0<k<N
k 4
Vﬁ# . (’Hl)‘uk <\N—k|(k+N+1)+c2+Cf(2N+1)>
¢ k=N[2], k>N N Cqg
cgVAN + 2 4c 2le]  U(e)N(N —1)\ II(c)
< 9y = 2 | xf
< ¥ <N(N—|—1)—|—c+cg (N+1))<7T + ; 3
k—N
cgVAN + 2 k+1/2 (+/20(c) de;
e > 5-M72 \ N 12 (k—N)(k+N+1)+c+cg(2N+1)
k=N|[2], k>N
C 4N+2H(C> 4 9 |C| l(C)
< g
< 5.3 <N(N+1)+c + — . (N+1)> <7TH(C)(H(C) my +
4 @/iN+2 2o LN 4172 (5 A N
22 (N +2)2 Z 912 c+ e (2N+1)-N-N

1=0[2], 1>2

VAN 2 20(c) 1 |
N+ - N N+1
+ 92 (N +2)2 lo%:DQ [+ N+ 5 (I+N)({+ N+ )21/2

< WO 0 (N )+ 2+ L) + 0 (24 LNy - N - v?)
2c Cg Cg
85 246
+2N+19+N+2 + (N 1 2)2
< 09132(0) Cs(c) NB/2 (Ca(c) — C1(c)) + N3/2 <<1 + 4;;) Ca(c) + <8CCgf — > Ci(c) + 2)
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4c 85 246
+VN ((Cl(C) + Ca(c)) <c2 + cgf> + 19) + Ho) 1217 + o +2)3/2].

For the third term in (B.20), using (B.12), the triangle inequality, and (7.74) in [416] for the
first inequality and using |u,| / |uS, + pf| < 1 for the second, we obtain

‘/ %N &bk( )dx‘ < Hea Wl vEQ)| 3 e i 195, (DI L

el

N etz [(6n)? = ()| 1+ ]

- 41§ (1)) W’i(l)'(f(f, N,¢),

]

hence, using (B.14) for the first inequality and (B.9) and (B.14) replacing c; by ¢, for the third,

2 || Loggs o .
> 155 = ‘] / z aCN(m) %k(m)dﬂ? 9l Lo (1= 1,11)
k=N(2, ken CIHN T Hgl 1/ -1
II(c 1 .
< dep VAN +2(C1(c) + Ca(c)) C(Q) Z M“Wk( ) Ykl Leo ((-1,17)

k=N[2], k£N |”N Hie

< 4Cf\/ 4N + 2(01(6) + CQ(C))HC(2C)C(h, N, C)

< denep VAN +2(Ci() + 02(0))2Hi§)2 < 8epepC(c)(Cile) + CQ(C))ZHE?Q VN. O

Lemma B.10. For all u,z9, R > 0, t € R, ¢ € {1,00}, A from (A.8) and N(RzoU) and N(q)
from (A.9), for all N > N(RzoU), we have

82 [ [ Raot\P/? e
6t2<<27r> ADYR G <R>

Sup < 1{U/2 < |t| < U}Cs(RaoU, p, U)N?>Tka/2]
be[—R,R]P
RaoU\P/? C3(RagU)PN(RaoU) P~/ plp — 2| 2p
Cs(RzoU, p,U) := ( - > N (Rrol))? g7+ Cg(U)ﬁ + C1o(U)

i (if i 209(U)> pﬁt%iﬁg) + 20 ;\fl(lzcxlsl(ff)%;w) + PCH(Ron)>,

Co(U) := sup }X(t)|, Co(U) := sup })\"(t)‘,
te[U/2,U] te[U/2,U]

2
Ci1(RaoU) = (Rxﬁgigfo[]) <C4(RJ»‘0U) +

05 (Rl’QU) C@' (RxoU) C7(R$0U) >
N(RxzoU) = N(RxzoU)? ' N(RzoU)5/2
H(Rl’oU)

Ci6(RxoU) := 2cyRag (C1(RxoU) + Co(RxoU)) C3(RaoU) Rl
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Proof. Let ¢ = 1. By symmetry, we take t € [U/2,U], b € [-R, R]?, and ¢ > 0. We have

9% [ [ Raot\ "/ e
8t2<<27r> MO (R))

< <]§?>p/2 tp/2 <p’p_2|/\(t) +§}X(t)| + \X’(t)\)

R(t,b) :=

b
Rxot [ 7
YN <R> ’

At2
oPs. %S
p / __ N b 2 ~ "N b
—I—Rac0<t)\(t)—|—2\)\(t)|>' - <R> + (Reo)” Mt) | — R) ,
c=Ruxot c—Rxot
s P A AN
N (b)) _ ¢ (b1 “YN(RzoU) (b c b\ 9%y
o <R>—§¢N <R>8CO<R>11_£7’Z}N(R$OU) (%)% memm
1#]
2,/,C c
a@/}'1\7(11) b :2Zp:3¢N(RxoU) b\ 9vy Hw b
9 \R o oc R) Oc R NifzoU) \ R
l#]
p p c
e (b1 awN(RxoU) b; 81/’N(RxoU zot
33 (%) e (%) e (5) 1T o (5
_ZJJ;k i

924¢ b b P b 62¢ 20 b
5 () T ¥50me l)+Z¢N(é>i§£U( 5 ()

l;ﬁJ

We conclude using N > RxzoU (by the discussion before Lemma B.6), the third assertion of
Lemma B.7, and Lemma B.9. The case ¢ = oo is obtained with N(RzoU) = N. O

Lemma B.11. For all R,zg >0, 20 > k;+4, g € {1,000}, 27 > (361/2Rm0/4) V 1, we have

/6—27'|t Z ‘m|20 (cﬁ(t))thg C’12(U,p)7
R

20/q
-
meNp p

20 +p \ 3el/2 9

217—1 8 20+4p 3 2]7 3
Crolo.p) =T (20 +p+1/2) (p (e) 4 W) .

Proof. When ¢ = 1, we use /m|; < p|m|_. Let ¢ = oo, R,z9,0,7 as in the lemma.
Because Py = 1{]-| < 1}/27/2, for all m € N, ‘<P{),’¢fn>L2([_171])‘ < 1, and, for all m > |c|,
‘<P0,¢§1)L2([_171])‘ < |us,| /v2 (see Proposition 3 and (13) in [7]) we obtain, for all ¢ # 0,

| ‘20 Rxot 2

Moo |Him)o
2

B21) S mE(hw)’<s Y mENRwpll =1+ Y

meNg ||, <Rolt] |m|>Raolt|
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Using (B.21), Lemma B.4, and Z|m|m:k 1 < p(k + 1)P~! for the first inequality, m + 1 < 2m

when m > 1 for the second, and 2m+1 < 3m, (Rxot+1)2 P < (2Rxot)?° P when m, Rxot > 1,
and (1.3) in [43] for the third, we have

LS i () d

meNj
< / 2pe~ 2 [ ST (m+ 1P ' U Ragt > 1) + % ST (m+ )P (““’ 4“"“ ) dt
0 m<Rxot m>Rxot m
o] Rxot+1 3.,,9D 2m %)
< / 2ppe—27-t/ u2‘7+p_1du]1{Rm0t > 1}dt + me’p2 Z m20+p—1 (6}21'0> / 8_2Ttt2mdt
0 1 9 m>1 4dm 0
2 3
< 2 (Uﬂ’)p /Oo e—th(Rth)zo+pdt i me p2p\/§> Z m20+p—1/2 ,2mIn(3Rwo/(87))
20 +p /(Rzo) 9t 1
2p—1pF(20 +p+ 1) 8 20+p 7Te3p2p\/§ o0 e*tt20+p*1/2dt < 012(0', p) 0
- (20 +p)T 3el/2 971 0 — rp2/e

Lemma B.12. For all N > H(RzoU), R,U > 0, g € {1,00}, and F from (A.7), we have

(B.22) I = / / |8,F [F] (, zotx) | dedt < RPCi7(RxoU, p, U)szﬁ( ;11 Rzl
1,1 R
2pU C16(RzoU)?
Ci7(RxoU,p,U) := Ci5(RxoU, p, U
17(RxoU, p,U) 15(RzoU, p,U) + N{Rool)

 25p? 2(RzoU)2\"'  UCy(U)2  5pCo(U)In(2) 2(RzoU)?\ >
Cia(Raol,p,U) = 317 (1 33/2 NReoU)? | 2N(RwolU) \ T 332 ’

(B.23) I —/ /f (t, zotx)|* dedt < RPU W[(q;1 fnot
1, 1

Proof. Let N > H(RxoU) > 2. For simplicity of notations, we omit W_; ;; from p. We have

[ Rag [t|\""? /2 Raot
F[F) (t, zote) = (% ) RPN Fraor [ | (@)
— 1/2
_ p/2»’N(q)’ Rzot ;. Rxot Rzxot -m 27 Rxot
(B.24) = RP/%q 1A(%) pﬁ((;)wﬁ((;) () (because pp 0" =14 (R:EO m \ pm |

This yields
R%ot a E/xot

o T

R (Q) / Rzot | Rzot Raot N(q)
Iy <RP + —r0 120 Rxo __N(g)" ~ .
' / /[ 1,1]p dt —a OFXO PN wN(Q)(w) pN(q))\(t) ot dtdz



Using (7.114) in [46], cross-products terms are zero and I; < RP(Iy1 + I12), where

p/}ixot 2 R:Eot
Ill :/ )\(t)Q N(‘J) + )\/( )2 R:):ot + 2)\( )|>\/( )| R:J:ot N q dt,
& dt N(g) N(q)
2
DU ()
Ly = | A(t)?pleot / D e | at.
12 /R (t) PN(q) L ot T

Then, using (7.100) in [46] for the second equality yields, for all ¢ # 0,

Rxot Rxot
dyon™  mR  dpf e ( Rﬂfot(l)>2
dt 2 Rzot de c=Rzxot |t| N 7
Rzxot -

in particular p;°" is increasing in ¢ and, by the first assertion of Lemma B.7,

Ay (N 1/24/o8™ ¢ 2(RagU)? 2
(B.25) VU<t <U, N < | 4 HzoU)”

dt |t] 33/2
When ¢ =1, using N +1/2 <5N/4 for all N > 2 and

d p%m((g):(p_l)( Raot ))p_2 pﬁzot d\/pﬁ?%on) +< Rxot ))p_l d\/pfl\%/w

PN(RzoU

dt dt N(RxoU dt )
we have
Rxot
(B.26) VN < 5N () 2ARxl)? * [ o
' dt  — 4]t 33/2 N(q)

The same inequality holds for ¢ = oo (there N = N(RxzoU)). This yields, for all g € {1, 00},

25p2N2 (U gt 2(RzoU)2\* ,  5pNCo(U) 2(RzoU)2\? [V dt\ puu
I < Rl (20 i
1 < ( S /U/2 2\ L~ +UCy(U)” + 5 = /U/2 = PN

< 015(R$0U7 b, U)N2PR$(0()]

Then, by (7.114) in [46] and Lemma B.8, we have, for all U/2 < |t| < U,

Rxot 2 c 2
W™ _ 2 VN (Raot) (@) Iy (2)
——— | dxz = (Rxo) p-1)| ———=r— +
[,171}1) 5t 1’1] aC =Rzt ac
< 2p (Ci6(RzoU))> N (using N > N(RzoU)).

2
dz
[— c=Ruxot
The same holds for ¢ = 0o (there N = N(RxzoU)). This and N > N(RzoU) yield (B.22).
(B.23) follows from (B.24) and the fact that ¢ € (0,00) — pS, is nondecreasing. O
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APPENDIX B.2. COMPLEMENTS ON THE PROOFS OF THE MAIN RESULTS
Proof of (T1.1b). Step 1. By the proof of (T.1a), fa, € L? (w@WE% R]) and fa, €
HEG (1) if

RaoU\? 2U~? 2 9

. < .

(B.27) ( - ) e (gb(U)\/exp(fiNln(N—kl))) < 7l

Step 3. Let ¢ < /2 and 8/(eRxoU) > 1. By Lemma B.4, we have, for all U/2 < |t| < U,
- 2

(UVNV[—L”’R Ot) < (2m¢3/9)” exp (—2ky N In (4(N + 3/2)/(eRaoU))) and, by (A.22) and Propo-

N(q)
sition B.1 (ii), Lemma A.1 (iii) holds if

N3\ p+DE [ 9\
B.2 2exp [ =2k, Nn [ S T2720) ) < .
(B.28) " eXp( & n( eRxoU >> =T U R2U 203

Step 4. Let U = 4/(eRxy), 7 = 57 exp (—kNIn (N + 1)), C’,y = I(me/2)P/2\/(p + 1)en Rxo/8,
= [N, 2(k 4+ kg)NIn (N + 1) = In (C2n), C, = I(2rRe?/9) /2, /7/2/(€0). Under such a
choice, (B.27) and (B.28) hold for n large enough. Moreover, we have r(n) = Cy exp (—kN In (N + 1)),

where C, = C, (Rao/(27))P/? \/fg/z [tP A(t)2dt/(4m), NIn (N) < NIn(N+1) < (N +1)In (N +2)

NIn(N+1) < NIn(N+1)+In(N+1)+1+o0(1)
— I ((C?/n) 1/(2n+2kq)> + (1 + 0(1)) 1n2 ((C?{n) 1/(2n+2kq)) ’

indeed, using iteratively the definition of N, In (N + 1) =In(N)+(14o0(1))/Nsoln(N +1) =
2 \1/(2k+2kq)
In (V) (1 +(1+0(1)/In ((C,Yn) )) and
In(N) =1Iny ((C’

$n 1/(2f-c+2kq)> Ins (N + 1)

=y ((C2n)/ ) —n (14 0(1))/In ((C2n) /*25))

v
— Iny ((02 1/(2,<+2kq)) (14 o(1)) Iny ((an)l/(wrqu))

s0 1/In ((an)(1+0(1))n/(2n+2kq)> < r(n) (an)n/(%wkq) /O, < 1.
Proof of (T.1.2b). Let U = 2/(eRxg), v = 5’7 exp (—kN), 5&, = U(me)?/?\/(p + 1)em R /2,
N = [N], N = In(n)/(2r + 2kg), Cy, = 1 (4me/ (7 (1 — 6*2)))1)/2 V7/2/(&0). Under such a

choice, 4 (RzoU/(2n)) (2U~2/(p + 1)) (¢(U) \ exp (kN))?* < wl? and (A.23) hold for n large
enough, hence steps 1 and 3. By Step 2, we have r(n) = Crexp (—kN) > Crexp (—kN) /e. O

End of proofs of theorems 2, 3. We consider all smoothness cases when ¢ € {1,00}. We
0 := Te/(2Rxq), 0o = 7/(4Rwo), 01 := Te*/(4Rxo), Qq := 2% (1{q = oo} + (p/2)?/(plq)), for
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all k,1>0, N > 1, fo3 € HLG (1 M),

(B.29) (N + D)% < ((L+1)N)¥, / L(t)dt < (2m)PTH2.
e<[|<T
End of proof of Theorem 2. Let t # 0 and z > 0. (B.8) yields
N 1)\ 2kaN
(B.30) Lot < op (1 \ W)

This yields, for all N > 1, Ap "% (¢, N,n, z) < AW-RA(t, N, n, z), where

AWI-R.R) (*,N,n,z):= (1 \/ W>2kQN 2 <Q‘ICXNP |*‘p +2 (L(t) + cx (N + 1)p |*‘p>> ‘

|| s n n

Let ne be large enough to ensure N > (p+1)/k,. Using N < N, e <0 <O(N + 1),

T 2k, N B(N+1) T

/ <1 \/ 0(N+1)> Pdt = (O(N + 1))2’%]\’/ tP=2kaN g L W{O(N + 1) < T}/ tPdt
e t € O(N+1)

(B.31) - Pl O(N +1) 2kqN N Tp+1

' ~2kN-p—1 € p+1

2kq N 2kq N
(B.32) / <1 \/ Q(NH)) L(t)dt < (2m)7 122 (“NH)> (by (B.29)),
e<|t|<T It] €

ne/n < 1, and nev(ng, £)/d(np) < 1, we have
/ AVERE(t N, 0, Zp, )dt
e<[t|<T

lox N (@ (ON T DYEEL T (| Mea2?) | Meg2 02 (O 1)) 25
— qptlp, qu € p+1 q n e .

_ ! (9(N+ 1))2qu N T NP=1p+l

— eZkan, € Te 7
2k +1
) e q4CX9p 2 D p+272 R 4CX P
wi= g, (Gt M) Mg m = e gy Qo M),

(A.32), (N 4 1)%kalN < e2ka N2kalN g /e = K, (1), N +1 > N, and the definition of a, yield

+ Tlﬂp_ 9
Te Ne Wy

n0,Sup

2kq N
N K, (1)) TeHL 812 4 M2M{w £ Wi, .
(B33) RV . < C<70Np—1(()) 1 N (w7 Wiaat)

The choices of N are such that the first and third terms have the same and largest order.
Proof of (T2.1). Let n, > e be large enough so that (In(n.) /7)) (PHD/s+2)+p=1 < 5y where
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T 1= 4kq(20/p + 1)W(1/(4kq(20 /11 4+ 1))). We have

2k N In (Nw' (w})) +In(w}) + (p — 1) In(IV) = 2k, <2: + 1) NIn(N)+20In(N)+ (p—1)In(N)

2
> 2k, <" + 1> Nln (N)
1

and, for all z > 1/e, W (zIn(z)) = In(z). Using as well the definition of W, this yields

(B.34) N< In(ne) < ln(ne)'
Akq(20/p+ )W (In(ne)/ (4ky(20/p +1))) = 7

1)
Using (B.34), we have TPTINP~1/n, = No@TV/stp=1/p < (In(n,)/m) P+ D/stp=1/p, <
(In(ne) /)72 < N727 = wN2 Using the definition of N and (B.33), we obtain

no 7SUP —

C
B.35 RV 7o+ 11 + 812 + M?
N20’

We also have

2qu1n(Nw1(w?v))+1n(w?V)+(p—1)1n(N)g< ( 1)+20+p )Nl()

hence NIn(N) > In(ne)/73, 73 := 2k (20/pn+1) + (20 + p —1)/(p + 1). Similarly to (B.34)
and using for the second inequality, for all x > 0, W(z) < In(x + 1) (see Theorem 2.3 in [35]),
we have

In(n,) In(n,) S In(ne)
W (In(ne)/m3) — msln(In(ne) + 73) — 73lna(ne) (1 +In(1 + 73/e))
This and (B.35) yield the result.
Proof of (T2.2a). We have
(B.37) 2keN In (Nw' (w})) +1n (wi) > 2 (kg(v + 1) + k) NIn (N),

hence NIn (N) < (In(ne) — (p — 1) In(V)) / (2 (kq(v + 1) + k)) and, using 74 := k(p+1)/ (25 (kg(v + 1) + K)),
1 -1 k(p+1)NIn(N+1)/s —1
TP NP _¢€ (DN I+ 1)/s P < erPtD)/spra=1 N (p=1)(1-74)
e Ne
Because s > k(p+1)/(2kq(1 +v)), we have 7y — 1 < —k/ (k + ky(1 + v)) and
cof e R ey TP MW E Wiy )
ng/(ﬁ—i-kq(l-‘ru))* e2rN In(N+1)

(B.36) N >

(B.38) RY

nQo,sup —

Using again 74 — 1 < —k/ (k + kq(1 + 1)), 75 := 2(kq(v + 1) + k) In(2), and

(B.39)  In(ne) — (p—1)In(N) = 2k,NIn (Nw’ (w})) +In(wi) < —=NIn(N +1),

1()

we obtain e2PNIn(N+1) > nw/(wk (1+V))/Mn(p—l)/(kq(u+1)+n) > ng/(n+kq 1+V))/M(p—1)(1—7'4)‘ We
conclude because, by (B.37), N <In(n.)/7s.
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Proof of (T2.2b). It is derived from (B.38) with w = W|_,,

q and v = 0.
Proof of (T2.3). By In(n.) > 2k,N In (ﬂw ( )) + ln< Qﬂ) > 1n< > we have

In(n.
(B.40) (NIn(N +1))" < nén)
K
hence, using the value of T'and N < NIn (N + 1) /In(p + 2),
TPHNPL PN In(N + 1))"@+D ye-! In(ng )P H+He-1)/r
Me - yPtin, = w(P=1)/rop+1+(p=1)/rap+1in(p 4 2)P~1n,

Moreover, because In(n,)PT1+®=1/7 is smaller than ¢(n.) by definition,

812 + M?
v np(ne) ot
(B-41) R sup < C(,i<p—1>/r2p+1+<p—1>/wp+1 n(p 1 2pTn, | 2RNBIFR) |

We also have
(B.42)  2kNIn (Nw' (w})) +In (wi) + (p— 1) In(N) < 2k (NIn (N +1))" (1 + h(N)),
where h = (kg(1+v)-4+p—1)In(-) /(£ (-In(- 4+ 1))"). This yields, for n. large enough,

(B.43)  exp (26 (N In(N +1))") > exp <ln(ne])v)> = ne €xp <Z(—1)kh(N)kln(ne)> .

k=1
By (B.42), we have N In(N+1) > ln(ne)l/r/dl/r We obtain, by (B.40) for the second inequality,

(kg + Dp/(p+ 1)+ kg — L+ kg ((kg+ Dp/(p+ 1)+ kg — 1+ kg)ds "
h(H) < K(NIn(N + 1)1 = k1n(ne)t—1/7 —
h(N) > kg(1 +v) k(1 +v)(2r)! 17

>
AL+ 1/((p+ 1) In(p +1)))" (N In(N))"! = (1 +1/((p+ 1) In(p + 1)))" In(ne) =1/
and we conclude using that, for n. large enough so that the remainder below is smaller in
absolute value than a converging geometric series,

o) ko
exp (Z(—U’%(N)kln(ne)) > exp (Z(—l)kdk In(ne)/r—DE+H 4 0(1)> . O

k=1 k=1
End of proof of Theorem 3. Let ¢t # 0 and z > 0. By (B.3), (B.5), and Proposition B.1
(ii), we have, for ¢ € 1,00 and |t| < 6y

2
(B.44) Gt < (%) " exp (Zk In ( ) N) 1{[t| < 6}

2kq00(N + ky)
——— = ) 1 {|t| > 6o}
G ) 14> 60}

For all N > 1, we have ABOSh('/R) (t, N,n,z) < AP/ B (¢ N n, z), where
ACOSh('/R) (*7 N, n, Z)

+ 2P exp (



B-16 GAILLAC AND GAUTIER

2\P? [ 9p/q (p=1)/q |4|P P | 4|P 2kqN
= 2 (TN (2EQuex NWTUM" (g exWN PPN | (0N g
T\ 8 n n | * |

o [ or/a N@=1)/q |4|Ptka N+ 1)P %P 2k,00(N + k!
T Qycx T l —i—z(L(*)—i—CX( VP [ > exp (q ol q)>]l{|* > 6o}
P (460 /¢)*e n n %]
Let n. > e be large enough so N > (p + 2)/(2k,). We have
(B.45)
"V 14k / +1+k /
/ ‘ Pk g 2kqB0(N+K) [t gy — / 10 ¢2habo(N+kg) du Oy et Mtka)gf qe%q(ﬂﬂf")‘
0o 1/T uPt2tkq qu(ﬂ + ]{2:]) p+ 2(1 + qu‘&)
Then, using N < N, n./n <1, nev(ng, £)/0(no) < 1, and € < 6y, for the first display,
0o 0 2kgN 6p—|—1 ) 2k N
B.4 w2 d<-—— (2
(B.46) /6 (t) _quN—p—1<e> ’
07\ ZkalY
/ <l) L(t)dt + / e ZRaBo N+ (1) g
e<itl<to \ I 0ol <T

2k N, )
< (2m)PT12 ((f) 1{e < 6o} \/e%q(N“fq)) :

and (B.45) for the second display, we obtain

/ Acosh(-/R) (t, N, n, Zno)
e<[t|<T
2 -1 2\P rf 2kq N
- 2 +p/quCXﬂ(p )4 <7re> /Otp <g1> a 0
TN 8 c t
M, 2\"\ /1 61 > :
() vt (8) 7 wecamyenns

I dex 732 p M /90 » ﬁ 2kqN gt 2p/quCXN(p_1)/qekq
TMe 8 .

n

/ kg 2kqb0(N+KL) [t g4
¢ artlgka=1651n,  Jo,
T
dex  2PMg NP 1P o2kab0(N+k)) [t 1y
7rp+1ne n [ ‘
0
(B.47)

k (r—1)/q 2kqN k (r—1)/q ,
S Gl <N q> L (91> ! ]1{6 < 00} + G2 <N q> ﬂ €2kq(ﬂ+kq)’
n Ne € n

Te
ok 1\ (P=1)/a T2\ P dex 6P
=4 et M, —_— P2 =0
Gi=1(21) ea (T ) w2 1= 2

2\ P
) () o
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4cXc9§+l+kq / e \*a

= orla, (-5 9P Mg, .
© = el t ket \ 2 e (490> M | G
Proof of (T3.1). We have, using K,(e) = w! (w&),

In(ne) —

—1 o o (w! (W2 n(w?2) = oln
. In(N) = 2keNIn (w' (w})) + In (w}y) u (N) +20In (N) > [

hence, for n. large enough so that In(N) > u/(kq0),

(ne) In(n.)
(B.48) N= dkqo In(N)/p = dkg

Thus, using (A.1), we have N /n < 1/(4kge). This yields, using (B.47), (A.32), 61 /e = w! (wQM),
N +1 > N, and the definition of a,

2kqN.
kq—1 w! wjzv = kq—1 2kq(N+k) 2 A2
R c(al (kq )Np—l( ( *>> + Gy (kq )Np‘le OV )

n0,Sup — 4eka Ne 4eka Ne wiy

By (B.48), we obtain w3, NP~/ae2ka(N+ky) /- < ln(n )2ot+(p=1)/ag2kaky /(420 +p— 1 /ne). Thus,
using (A.1), we have N<p D/ag2ka(Ntky) 1 < e?Raka (20 4 (p — 1)/q)/(2e))2T@=D/1/0,2 and
using the definition of N,

(B.49)

C ko™t ka1 , /9 1) /g\ 27 H-D/a
Rl%,sup —= NQJ (Gl ( Zekq ) + G2 < Zekq €2quq (W) + 812 +M2 .

We also have

In(ne) = 2k, N In (w’ (w})) +1n (w3) + p; L) < (2 (2’; + 1) o+ EEZ;;D NIn(N),
hence N In(N) > In(ne)/76, 76 := 2 (2kq/p+1) o +2(p—1)/(¢(p+2)). Similarly to (B.36), we
have N > In(ne)/(76 (1 + In(1 + 76/€)) Ina(n.)), which yields the result with (B.49).

Proof of (T3.2). Because Ky(e) =1 then 2(kq+x)N + (p—1)In(N) > 2(k;+ k)N, we obtain
N < In(ne)/(2(ky + )). Thus using n > n, and (A.1), we have Ga(N* /n) < Gg(k‘(];q/(Q(kq +
r)e)ka). Using (A.32), w = Wy, (B.47), € = 6y, yield

kq 2kq(N+ky) 2
k e~ a 8l

RW <cla q N(p_l)/q _ — .
ng,sup — ( 2 (2(kq+li)€kq> T +w]2v

We conclude using the definition of N, which yields N®—1)/4e2kaN /pp — 7'{/(kq+”) r(p—1)/(g(1+))
and w;,Q = e 2N — n;”/(kﬁ“)ﬂﬁ(p—1)/(q(kq+'€))_ O
Proof of Lemma A6. Let t € [-T,T]\ (—€,€), N € {0,...,NJ., .}, T € Tp. Using, for

n
all N1, Ny € Ny, E%ﬁ(t, ) = (ﬁltz,Nl,T,O_ﬁlrz,szNl,T,(J) (t,-2), we have £gv (t,ﬁ(t),T) _
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RN E%(t) + L}V (t,N,T). Using (A.2) yields

N(t)
- 2 P 2
W (¢ N < N : N (4.
E |l (£ N@),T)] <2+ V5) (E [HRN(t)(t, 2) LQ(W%] +E MRN (t,-2)] e,
2
+(14+ = )E[Y ¢ N,T)].
(1) Elet .
Because B; (t,N) = max <Z <lml| <N <|Em(t)| /Jnmi’gmt)2 — X (¢, N’)> , we have
N'eNg: N'<NW,  \TNSIml sNVN N

E [Héxi(t '2)‘ iQ(W‘X’P) -

c1 >1+1/(2+v/5)% and (16) yield
~ 1 ~
E [ﬁ}f’ (t, N(t),T)} + m[ﬁ: [2 (t,N(t))}
< (24 V5) (2E[By (t, N)] + (1 4+ c1)E[Z (¢, N)]) + (1 + %) E[£Y (t,N,T)].
By (A.2) and, for all N’ € Ny, RY'|(t,2) == (ﬁvaVN”T’O - Ff’NVN"T’(J) (t,-2), RNo(t, 2) :=

(FENT0 = FENTO) (8,00), and RNt -2) i= (FPNNTO— FENTO) (), we have

;(W®p) + <1 + 55) HE%;’(L 2>’

] < E[Bj (t,N1)] + E[X (¢, N2)] for possibly random N; and Ny. Using

2
— 3(t, N’)) :
L2(W®r)
Jr

~ 0<N'<NWY.

max,q

N'eNg

Using qu’OO’T’O(t, ) = Fist [fa8] (L, ), we have

Bi(t,N) <  max ((2 +5) 22: Hﬁﬁjj(t, -2)‘
j=1

SN 2 B em(t) |2 &N, T,0 2
HRN’S(]; 2)’ L2 (wer) N<|m2N\/N/ Vot = H <F1 ~Js [fa’ﬂ]) (t, 2)‘ L2(wer)’
Bi(t,N) <  max (2(2 +/5) H (F{”N/’T’O - ﬁva”Tﬂ) (t, .2)’ ? 0 N’)>
OSN’SNH‘Q‘QW L2(W®p) n
N'eNy
o | [ T I
\/5 1 5 o, 5 "2 L2(Wer)

Finally, we have

E[C};V(t,]v(t),Tﬂ—F = E[E(t,ﬁ(t))}

245
A / 2 X(t, N
<42+ V5)E |  max (H (B0 — PN T (1,) _ZBN) )
0<N'<NW. 4 rwer)  22+V5)/

+ 2+ V5)(1+c)E[Z(t,N)] + (2 + \/5)2151 (£l (t,N,T)] .
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Using (A.33) for the second display and Lemma A.4 for the third, we obtain

o [T ol - 2
0SN'<NH I\ ! " Pllwen T 2024+ /5)
= 2
=E| max 3 (!Cm<t>—cm<t>r> )
0SN'<SNW., o ol 2N g Wwot 22+ v/5) )
Y(t, N’
<(t+2v)E| _ma (s - L)
NNl 22+ 5)/
1
2+ % |E S1 (N, 1) + Sa(N',t
< \/5> OSN{%%{%W( 1(N',) + S2(N', 1))
c tI\?
S (NI‘I/I;X#] + ]-) (1 + 2\/5) 48% <£ﬂ|_> V;/V (Scot’NIII/K;X,q) lI’D,n(t) + ZnO\I]n(t)
Hence the result. -

Hereafter, let (n,n9) € N? such that v(ng,)/d(ng) < n=2In(n)"?, n > €7¢*/(2™) Jarge enough
so that Nnvl;x’q > (p+ 1)/kg. Using 01/In(n) < 20p, let (0{W = Wi_gpg} + HI{W =
cosh(-/R)})/In(n) < e < O{W = W_g g} + 2001{W = cosh(-/R)}. Using the definition of

NW.., vields NW_ < NW_and ¢ < 6 yields Ny ™ In (NHVIV;;,I;’R]) < In(n)/(2k,). Then,

max,q — *Ymax,q
using that, for all z > 1/e, W (zIn(z)) = In(z), and the definition of W for the bound on
Nrﬁgﬁ’m and else the definition of N&O;;E (q'/ R), we have, for all ¢ # 0,

(B50)  Npaeg < ln(n), 7 = 2kgW < e’ > W = W_g g} + 2k, {W = cosh(-/R)}.

maxd = A7k,

Using, for all [t| > e and N > 1, 2k,NIn(6(N + 1)/ |t]) < 2kyNIn(6N/e) + 2k,, we have

W 2quXf;[;qR*R] W 2quﬁ;qR’R1
(9 (Nma[;R’R] + 1) / \t\) T < ek <0Nma[;§’m e) . (B.30) and the definition
Wi :
of Nimaxy™ yield
_a,W_ R, g0t
(B.51) V|t| > e, w?vw[ REPEOT < opeZkap,

max,q

Lemma B.13. For all ¢ € {1,000}, € < Tipax < 1%, and W € {W|=R,r),cosh(-/R)}, we have

max,q

Tmax
/ tpugv (zot, NV )dt < A;/V,q In(n)%mn,
€

-1
a0 := pI{W = Wi_p g} + =~ I{W = cosh(/ )},

AW[—R,R]:‘I — 2PQ)q <gp+162kq N e(l—Co(p+1))762/(27T)>
’ T (p+1) kq ’
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. 21/4Q e\ 2p g+t eka  OPF1e2Rakg
ACOSh( /R).q — q en 1 0 0 or (2 0 )
3 K/ ( 2 ) fe<to} "+ (4> p+2(1+ kgkl)

Proof. Let W = W|_g ). Using the definition of Vq BN ¢ > 1, and (B.29) for the first

inequality, (B.31) and (B.50) for the second, and the arguments which yield (B.51) for the last
inequality, the result follows from

AW +_1> 2k NV o

Tmax W p Tmax 0 ( max,q
/E VW (wot, NIV ) dt < 2°Q, ( w q) /e {1\ —= dt
_ 2@y [ et (0N D) ol
- et kgNW Niaxq € p+1
< 2°Q, In(n)P [ GPF1eka N 1
Zp+1) kg n@tDo-1) "
Let now W = cosh(-/R). Using the definition of ng, we have for all N > 1 and ¢ # 0,
V;osh(-/R) (Cﬂot,N) :2P/QQqN(P—1)/q ( 5 ) <|t|> ]1{|t‘ < 00}
w1/ N/ (N /
+2 QqN 0, P (200kq(N + ki) 1{|t| > 6o}
Because of (B.50), we have, for t # 0, e?*a v ™ < n. By definition of Nr%oas)}f(q/R), when
cosh(-/R)

€ < 6y, we also have, for |t| < 6, (61 /¢)?*aNmaxa" " < . Then, using (B.50) for the first display
and using (B.45) and (B.46) for the second, the result follows from

Tinax In(n)\ P/ ey 2p gt
W < p/q —
/E 0" (20t, Nyw,q) dt <27/7Q, < 2%, > (5) ]1{€<9°}/ (Itl> “

(P=1)/4 9p(14+1/q) kg [Tmax
or(14+1/q) gkq 0t ,200ka (%—i—k;) dt
49() kq 90

)> (f)z” e < 00} 2 o <91>2’fm

+Q ln(n> (P=1)/a gp1+1/a) ek 96’*”%2'“"’“" 20N
2k, (460)ka  p 4 2(1 4 koK)

SA:c;)sh(/R)vq ]n(n)(pfl)/qn. O

<op/ 1Q,
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Lemma B.14. For all ¢ € {1,00}, W € {W|_g g, cosh(-/R)}, and (e V 1) < Tiax < n%, we
have II(n, Zpny, Tmax; Nmax,q) < (Ao + A1)/n, where

Mg, 1 4r2\? ) 2ex Ay
AO = 77], (2 + \/g> ((93}0) b(](27T)l + (27T)p6762/(27r) 5

2
bo i= W =W} + (5)7 MW = cosh(-/R)},

A 96 (1+2v/5) ex (AL ag + 2\ "2 . e/"1294cx a2 (ag+ 2(p+ 1)\ 2+
U 2n)pk, In(2 1/17 +7/(7e2))P eCo xb e ’
q 0

1 ™ \?
a := (ﬁ + 762) (Hol{W = W[_Rﬂ]} + H 1{W = cosh(-/R)})P (1 + l’%)p,
o Lvpa (e(l =41+ W = cosh(-/R)})pGo) \ "2
1:= ar 13 .
Proof. Let us show

AO Al

(B.52) Zne e v, (t)dt < — and  II; (7, Tmax, Nmax,q) < —

Let W = W|_g ). Using for the second display v(no,&)/d(no) < n~2In(n)7?, (B.51), € >
6/1n(n), (B.29), and Lemma B.13, we obtain

1 21\ P g Wt |, — 2
Z / U, (t)dt =Z <2+) () / QLW N TP || Fast [fa,8] (t 2 dt
ngo e<t[<Ton n( ) ng \/5 o < |t|<Toae NW. o ‘ ‘ H st[ a,ﬂ]( )”L2(RP)

1 CX w w
Z, 24— ) — t|P t, N, dt
+ no < + \/g> (27r)pn /e<t|<Tmax‘ ‘ Vq (-7}0 ) max,q)

p qu p
Mg, <2+ 1> (( 47r> erqnln(n)p(2ﬂ_)p+1l2 n 2cx A3 " In(n) > .

~n2lIn(n)P V5 Ozo (2m)P

Using n > €7*/(™ and (A.1) yield the first inequality in (B.52). Similarly, by definition of

N&O;)EE/R) and (B.44), we have a?V’CVSSh(‘/R)’xot < (er/2)?n. This and (B.50) yield the first

max,q

inequality in (B.52) for the other instances of W and q.
By (B.50), we have

] 1\ 1 P
(B.53) K,(t) < ( nT(n) i 2) T2 HY ( 7t xg) < ap In(n)PT2P, .
7

max

We obtain, using Tnax < n¢ for the third inequality and (A.1) for the fourth,

(1-4¢op) /2
Lypatt _ Ly/payIn(n)n _ Ly/pan > by In(n)2.

Kn(t) ~ ayIn(n)PTahy —  arln(n)p=1/2
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Using (B.50) for the first inequality, Lemma B.13 for the second, and using the definition of
P, 6(1 + (o) In(n) > 3, (B.53), and TP, < P for the third, we have

Hl (n7 Tma)u Nmax,q)

96 (14+2V5) exCon(n)? (1 7« \P [Tmex
< — W (zot, N dt U, (t
ST @k, @) (H >/ g (w0t Nnwcg) dF_sup Pon(?)

96 (14 2v/5 AP
< ( V5) exGoAs i sup  In(n)P2nW,,(t)
(2m)Pky In(2)n T7 €% ) c<t<Tmax ’

_ 96 (1+2V5) CXCoAgv’q w n)P+2 e, 2) 294cxa? In(n)*+?
= @2n)Pk,In(2)n P +i§%< ) 2 n20-20)

Thus, (A.1), 1-2plo > 1/2, sup,~q (e‘bl ln($)2x2) = /" yield the second inequality in (B.52).
We obtain similarly the bounds for the other instances of W and q. U

End of proof of Theorem 4. We start from (A.38) and use A4 := 2(2++/5)2C (1 + (2+ \/5)2> (Ao+
Ay, T* =28 k* := [In(¢! (wn+))/In(2) |, N*(t) := | N*|, where N* is defined below, and

W,ad NT
Rnoﬁu{; = sup (fq a faﬁ) .

fa,BEHL G (LM)ND, fx)x€E

We have, for all [t| > e, W € {W|_g g}, cosh(-/R)}, and N > 1, 258‘/(15, N,n,Zp,)/(m(2m)P) <
AW (t,N,n, Zn,) where AW is defined like AW replacing Qg by Qgn := Qq (14 2(1 + 2p,) (1 + ¢1)).
Thus, by (A.38), we obtain, for all W € {W[_p g}, cosh(-/R)},

~ Mg nu(ng, &)
RWadp < (94 \/5 / Aw<t,Nt,n,g’"’>dt
0-51P ( ) <[t|I<T () d(no)

4 A 412 A
(B.54) +C(2+\/5) ( sup o + 2)JFCM2 (a) + .
te[-T,T) wN(t)+1 ¢(T)

Proof of (T4.1a). Let N* solution of
(B.55) 2kyN*In (N*In(n)) + In (wN*) +(p—1)In(N*)+ Ina(n) = In(n),

n > €7/™ Jarge enough so N* > 1, and (In(n )/l < n<0/2, where 75 1= 2k,W(e/(2ky)).
By (B.55) and the definition of NJV we have N* < NW_for all t € R\ (—¢,¢), hence

max,q’ max,q

N* € N,. Also T* € T, because, by the arguments in the proof of (T2.1),

. In(n) In(n)
NS e W(ln(n) k) = 7
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so we have T* < (In(n)/75)7/* < nf /2 < Thax. (B.31), (B.32), and p, = 6 (1 + (o) In(n), yield

4
4 / N 8C (2+V5) 12
’ n n CUN*
oOM? A,
In(n) n’

. eZkadexprtl Mg 2P 22

70 1= leq <Qq <i + (Z +6(1+ CO)) 2(1+ cl)) + 6Mg7,72p> + —
T = 46X) (Qq (Z + (i +6(1+ Co)) 2(1 —l—cl)> + Mg’n2p> .

mPH(p+1 e
The computation below gives lower bounds on N*In(/N*) and N*:

In(n) = 2k,N*In(N*In(n)) + (20 +p — 1) In (N*) + Ina(n)
<2 ((Q(kq +0)+p— N*In(N*) \/(2kN* + 1) lng(n))

<2 ((2(/% +0)+p— N*In(N*) \/ (2K, + DN 1n2(n)) .

Using both and W(z) < In(z+1) for all z > 0, we obtain N* > In(n)/((7s \/(2kq+1)) Ina(n)(1+
In(1+ 7g/e)), where 73 := 2(2(ky + o) + p — 1). We conclude proceeding like for (B.35).

Proof of (T4.2). Start from (B.54), where, because w = W 4, the term M?w(a) is zero. Let
N* solution of 2k,N*In (N*) + In (cu]?v*) +(p—1)In(N*) + Ing(n) = In(n). By definition of

N this yields N* < NV

max,q max,q
have T* < n#/((+ka)s) and, using s > 2p+1/2, for n large enough n*/ (2(5tke)s) < p1/(4p+1) /9 <
Tiax, hence T* € 7,. Thus, we obtain

hence N* € N,,. Using arguments from the proof of (T2.2a) we

0

8C (2+V5) 12 A,
5 +

4 . /
Ritete < (2 v5) G (vt (B v 4 D)

n Wi n
This yields the result following the proof of (T2.2a).
Proof of (T4.1b). Starting from (B.54), the proof is similar to that of (T4.1a) with elements

from that of (T3.1), using N* solution of 2k;N Iny (n) + (p — 1) In(NV) /¢ + In (wQMk> = In(n).
Proof of (T4.3). The proof is similar to that of (T4.2). Start from (B.54). Let N* solution
of 2(kg+ K)N* + (p— 1) In(N*) /g + Ina(n) = In(n). Then, using the definition of N}V which

ax,q’

satisfies quNr‘ﬁg&q = In(n), we have N* € N,. Using arguments from the proof of (T3.2), we
have T* < nZ/(ZS(’”’“q)) and, using s > 4p+1/2, for n large enough nZ/(QS(”““q” < nl/(8p+1)/2 <

Tnax, hence T € T,,. This yields the result using the proof of (T3.2). O
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APPENDIX B.3. ESTIMATION OF THE MARGINAL fg

For all (wm),ey, increasing, wo =1, [, M > 0, g € {1, 00}, consider

2
Hiw (M) := ¢ f 2 1 fll 2ewery < M, Z w10, kHLz < 2ml
keNy
. . 7q,N,e . ~ Wiexg ; _W,exo
For brevity, we present the slow rates and the estimator f5" := 371~ n(¢) Cm(€)om™" /om™".

It is based on fg = Figt [fa,8] (0, -2).

Proposition B.3. Let W = W|_g ). Forall g € {1,00},], M,R > 0,0 >2,S5 C [-R, R]P, N
solution of 2(140)kqN In(N)+p(1—0) ln(ﬂ)#—ln(w&) =1In(ne), e = 0/wy, (We)reny = () pen,»
and w such that [ a*/w(a)da < co, we have

In(ne) \*° 24,N e
n2 (1) fa€HL S, (LM)ND, fX‘XEE
Proof. We assume fx/y is known. The general case can be handled like in the proof of (T2.1).

Use f§ := Fust [fa,g] (€, ) and define f3° N Jike fﬂ’e’N with ¢, () (see Lemma A.2) instead of

,N e ,N,e ,N,e
Con(t). Use |74 = S < 350 IRy where Ra i= a3, Ra = £5™ 1,
and Rs := fg — fg. Let n 2 e® large enough so that N > 1\/((¢ — 1)p — 0)/(2kq). By similar
arguments from (A.26), (B.29), N < N, and (N + 1)%ke < ¢2ka N2RalN | e have

2kqN 2kq pp
(B.56) E [||R1||i2(m)] SQ‘ICL P NP ( \/ 95) _ Qaex ™0\ p(1-o)r2(140)kN.

2

] = 0,(1).

L2 (R?)

wPn Pn —

We also obtain HRQH%Q(RI)) < 27rl2/w2M and

||R3||%2(Rp) </ [-R,R]P (/ ’ezea - 1‘ faﬂ a,b)d > db

2 2 2 2
(B.57) gé/ (/ 1 faﬁ(a,b)da> i< M / @
[-R,R» \JR WN r w(a)

Then, using In(n) = 2(1 + 0)k,NIn(N) +p(1 — o) In(N) + In(wF,) > 20k, N In(N) and W(z) <
In(z + 1), we have N < In(n)/(20kqIna(ne)(1 + In(1 + 20k, /e)). The result follows from the
definition of N, (B.56), and (B.57). O

Similar ideas apply for the estimation of f,gj forj=1,...,p

APPENDIX B.4. TALAGRAND INEQUALITY FOR COMPLEX FUNCTIONS

Lemma B.15. Let X;,..., X, n independent random vectors, A := (/1 4+ -—1)A1, U a count-
able set of complex measurable functions, and, for all u € U, vp(u) ==Y 1 (w(X;) — E [u(X5)]) /n.
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If there exist M, H,v > 0 such that

sup H’U,HLOO ®e) S M, E [sup |V ( )@ < H, sup — E Var (R i)))\/Var (J(u(Xy))) <w,
ueld ueld T
then, for all n > 0,

ni?  294M? VA A n
E <Sup v (u)|? — 4(1 + 217)1#) <48 <“e—n e @ ﬁ) .
ueU + n A(T/) n

Proof. The result follows from Theorem 7.3 in [14] and

uel ueU ueU

E [(sup | (u)|? — 4(1 + 277)H2>J <E

(Sup R(vn(w))? + sup I(vn(u))® — 4(1 + 277)H2) ]
+

<E +E O

(sup R(vp(u))? —2(1 + 277)H2> .

ueU

(sup3<un<u>>2 ot 277)H2>
ueU 4

APPENDIX B.5. APPROXIMATION BY PSWF IN SOBOLEV ELLIPSOIDS.

For all 0,s,1 > 0 and ¢ € {1,00}, denote by (¢m (-/R))mezp = <ei’TmT'/R/(2R)p/2)

mEZP,
Flf = Jpe” f[ R,R Wka/R f(a,b)dadb/(2R)P/?, and
H% (] ;:{ / S IFLfIE R (1 v %) dt\// > IFLA 1\/|k|2")dt<27rl2}
kezp R pezr

Denote, for all N € N and ¢ # 0, by PN (resp. £V) the projector in L? (WE};?»RO onto the
vector space spanned by (¥¢, (-/R) /Rp/2)|m\oo<N (resp. (¢m (+/R))jm)<n)- Forall t # 0
and (n,m, N,N) € N§, denote by ¢ i= Fiai [f](t,2), B() 1= (b Pa) payy 7 the
Bessel function of the first kind and order j > —1, KtN’N | Pé\gté’Ngot 2,
S czns il <5 Sl [0 (/R) v (/R)P.

Proposition B.4. For all 0,1, M, R > 0, g € {1,000}, and s > 0+ p/2, we have, for all N > 10,

2 Al2
N20' ’

(o) oo () (22 )

3(In(2) 4 2)211/4 8 \10) e

and INJV =

(B.58) /R 1P ] (1, 2) = P Fraa [ (¢, 2)|| e <
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PUR/(re))” [ 587 (p— 17" (@p—1)8\* 58
2R ¢ (3p)per—1 +( 5pe ) pl6PIn (21/10) |

Proposition B.4 is an analogue of (A.30) with IV constant and (wg)en, = (k7)pen,- It shows
that the approximation error when we use a truncated series expansion in the PSWF basis is

of order N=2° whether we work on the class H%*°(l) or 7—[3}%_1{ . (I, M) with ¢ = 1V [|-]°.

(A.31) can be obtained using the first inequality in the definition of H%*7(l) and, for all ¢ # 0,
Skeze [FUAG R = 1F1st[£1(E 2, /0 op = Y mene |bm (). Thus (T2.1) also holds
L2(WEh ) 0

for functions in the intersection of H?*7 (1) {f (P <w®W®p ) < M} The proof below
[-R,E]

uses techniques from the proof of Lemma 11 in [7].
Proof. In this proof, (-,-) and ||| denote the scalar product and norm in L?([-R, RJP). Take
fe H?%(1). Let N >10 and N := [7N|, where 7 := 1/(we). We have

2 N N 2 N,N
ot = Pt <2 (! - 76! - 2% (o - £501) [+ 527
~ 2 o~
(B.59) SQ(H(pt—EN(ptH +KtN’N>.

Using that (¢! (-/R) /Rp/2)meNp are orthonormal in L?([—R, RJP) and the Cauchy-Schwarz
0

inequality in the second display yield

|y el 3 ) G () b

keZP: [Kloo<N | >N

< ¥ \<¢t,¢k(é)>\21m<t>s(er[f1<t,k>\2)IN,N<t>.
N kezp

keZP: |k|oo<N

We have, using (18.17.19) in [45] for the first equality and for all £ € Z and m € Ny,

(o (7) w3 ()] = 5 Vot + Ornal” < R 1l + 10,

[5m/8|—1
Im,k = Z B:Ln(ﬂjot) <€Z7rk:'7_Pn>L2([_171D , Om,k = ﬁm Jjot Yarn |k “n —|— n+1/2 |]C|7T

n=0 n> L5m/8 |

2

Using, , <e”k', Pn>} < /2, Proposition 3 in [7], and integral test for convergence

(indeed, by (3.4) page 34 in [46], for all m > 2V (e2zg |t]), 2/ Xm0/ (o [t]) > 2€2 > 1), we
obtain, for all m > 2V (e?zq [t|),

|5m/8) ot 5/(27T) 9 :L“ot [5m /8| ot
sl =52 |, ( |t|> W e ) <$0t1> ol
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Let m > 2V (e2xg|t|). Using Lemma B.4 for the first inequality, we obtain

5m /8
sl < Vvbhed 1 2v/m(m + 1) + x2t? / exo |t "
k=TT In(2) + 2 2o [t] 4(m +3/2)

g () ol (50

211/5(m + 3/2) exq |t]

<ae 3m In m
xp | —— .
- P 8 exo |t|

Using, for all j > —1/2, z € R, and n € Ny, |J;(z)| < |z / (2T(j +1 )) (see 9.1.20 in [1]),
|8 (zot)| < 1, and y/n+1/2 < T'(n+3/2)/n! (see (5.6.4) in [15]) for the first inequality and
m > 8/5 and n! > (n/e)" v/27n for the third, we obtain, for all k € Z,

T (k|7 \"
ois ¥ ()

n>|5m/8|

o () = () V% Gani) = (),

Using |(¢, (-/R) , ot (- /R)>‘2 < R for all (k,m) € N3 for the first inequality, D imlemj I <
p(j + 1)P~1 for the second, (B.29) and the convexity of o ++ 2P for the fourth inequality, we
have, for all ¢ such that N > ez [t],

s S 3 S o (7)o ()

keZr: |k|oo<N I=N Im| =jl=1

<p¥' ) Z p(j+ 1) H (151 + 10, °)

keZp: |k|ow<N J=N =1

_ _ t| 31/4 5jelkilm |ky|me 51/4
< pRp2r—1 SIRERVES N e |
< pR E § (J+1) (a ( » + 16 2(55/8 — 1)

e J
kEZP: |k|ow<N J=N

. : S - 5pj/4
< p(4R?TN)P Z p—1,2p ( €T |t] 3pi/4 n 5elV 52 g Nme v/ 1
=" 9r & j 16 2(5;/8 — 1) i

Jj=N

Using k(t) := —31In (exo |t| /N) /8, k(t) > 3/8 for N > 2V (e*z¢|t|), and sup;, P lemprt) =
(1 —1/p)P~1/(k(t)e)P~! for the second inequality, we obtain, for all N > e?xq |t|,

i~ 3pj /4 1 o 1
ij . <e:z: |t|> pj - (1( —(tl/p)p / e PR(ig < ((p— D
K N

ps )T prlt))rert
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Using 1 — 8/(5N) > 1/5, that for j > N, Nwe/(2(55/8 — 1)) < 107we/21 = 10/21, and
SUp;>q §2P=1e=5Pi/8 = ((2p — 1)8/(5pe))?~! for the first inequality, we obtain

~ 5pj/4 1 oo
i jQp—l Nme < (2p—1)8 2 1/ o~ 5Pi 1n(21/10)/8dj
= 2(55/8 = 1) - 5pe

N
2p—1
< (2p — 1)8\™ 8 5PN In(21/10)/8
- 5pe 5pIn(21/10) '
Using (B.59) for the first display, using supy. ;< n(e2z0) INﬁ(t) < eNPe N (because 51n(21/10)/8—
T < 3/8 < k(t)), using s > o+ p/2, f € H¥*(l), and, for all |t| > N/(e2xy), IN,ﬁ(t) <
RPY . ko< N ||¢k|]%2([_1’1]p) < (27 NR)? for the second, we have

/R 1P 1] (£ +2) = PR Fast [f] (8 -2)]|

<2 Hflst [f] - gﬁ]:lst [f]‘ :

M S R R (t
+2/ 1s t, t sup I, ~(t
L?(Rx[-R,R?) —N/(e220) joczp ' t: [t|<N/(e2ao) NN

2(2rNR)? , .
LV (N/(e?20))* /t|>N/(62$0) kgp Fse [F] (8, R) (1Y £7)dt

47l? Aml2eNP  4ml? (27Re*xo)” (e20)%
— (TN _ 1)20 + 6bN + N2o :

Using 7 —1/10 > 0 and (A.1) yield the result.
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