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ADAPTIVE ESTIMATION IN THE LINEAR RANDOM COEFFICIENTS
MODEL WHEN REGRESSORS HAVE LIMITED VARIATION

CHRISTOPHE GAILLAC®:(2 AND ERIC GAUTIER™

ABSTRACT. We consider a linear model where the coefficients - intercept and slopes - are ran-
dom and independent from regressors which support is a proper subset. When the density has
finite weighted L? norm, for well chosen weights, the joint density of the random coefficients is
identified. Lower bounds on the supremum risk for the estimation of the density are derived for
this model and a related white noise model. We present an estimator, its rates of convergence,
and a data-driven rule which delivers adaptive estimators. An R package RandomCoefficients

that implements our estimator is available on CRAN.R.

1. INTRODUCTION

For a random variable a and random vectors X and 3 of dimension p x 1, the linear random

coefficients model is

(1) Y=a+p8"X,
(2) (o, ") and X are independent,

from which the researcher has at her disposal n observations (Y;, X)), of (Y, X ) but does
not observe the realizations (a;, 8, ) of (a, 3") for i = 1,...,n. The coefficient @ subsumes the
usual intercept and error term and the vector of slope coefficients 3 is heterogeneous (namely,

it varies across ¢ = 1,...,n). For example, a researcher interested in the effect of class size
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on pupils’ achievements can find it important to allow some pupils to be more sensitive than
others to a decrease in the size and to estimate the density of the effect.

The coefficients («, BT) correspond to multidimensional unobserved heterogeneity and X
to observed heterogeneity. Restricting unobserved heterogeneity to a scalar, as when one only
assumes that « is random, can have undesirable implications on the implied law of the observed
data such as monotonicity in the literature on public policy evaluation (see [22] for a solution
involving random coefficients). Parametric assumptions on unobserved heterogeneity are often
made by convenience and can drive the results (see [27]). For this reason, this paper considers a
nonparametric law of the coefficients. Model (1) is also a type of linear model with homegeneous
slopes and heteroscedasticity, hence the averages of the coefficients are easy to obtain by least
squares. However, the law of coefficients or quantiles can also be of interest. For example, [3]
considers prediction intervals for Y for X = x.

Estimation of the density of random coefficients f, g when the support of X is R and X has
heavy enough tails has been studied in [4, 28]. These papers notice that using a renormalization,
the inverse problem is related to a tomography problem (see, e.g., [10, 11]) involving the Radon
transform. Assuming that the support of X is R? amounts to assuming that the law of angles
has full support, moreover a lower bound on the density of X is assumed so that the law of the
angles is nondegenerate. When p = 1 this is implied by densities of X which follow a Cauchy
distribution. The corresponding tomography problem has a nonuniform and estimable density
of angles and the dimension can be larger than in tomography due to more than one regressor.

This paper considers the case where the support of X is a proper (i.e., strict) subset. This
is a much more useful and realistic framework for the random coefficients model. When p =1,
this is related to limited angle tomography (see, e.g., [18, 29]). There, one has measurements
over a subset of angles and the unknown density has support in the unit disk. This is too
restrictive for a density of random coefficients and implies that o has compact support, ruling
out usual parametric assumptions on error terms. Due to (2), the conditional characteristic
function of Y given X = x at t is the Fourier transform of f, g at (t,tz')". Hence, the
family of conditional characteristic functions indexed by « in the support of X gives access
to the Fourier transform of f, g on a double cone of axis (1,0,...,0) € RPT! and apex 0.
When a = 0, Sg is compact, and X C Sx is an arbitrary compact set of nonempty interior,
this is the problem of out-of-band extrapolation or super-resolution (see, e.g., [5] sections 11.4

and 11.5). Because we allow « to be nonzero, we generalize this approach. Estimation of
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fa,3 is a statistical inverse problem for which the deterministic problem is the inversion of a
truncated Fourier transform (see, e.g., [2] and the references therein). The companion paper
[21] presents conditions on the law of (a, ,BT)T and the support of X that imply nonparametric
identification. It considers weak conditions on « which could have infinite absolute moments
and the marginals of 3 could have heavy tails. In this paper, we obtain rates of convergence
when the marginals of B do not have heavy tails but can have noncompact support.

A somewhat related approach is extrapolation. It is used in [39] to perform deconvolution
of compactly supported densities while allowing the Fourier transform of the error density to
vanish on a set of positive measure. Rather, in this paper, the operator to be inverted is viewed
as a composition of two operators based on partial Fourier transforms. One involves invert-
ing a truncated Fourier transform defined on a weighted space of square-integrable functions
and we make use of properties of its singular value decomposition for inversion rather than
extrapolation of the Fourier transform.

Similar to [23, 24] for the random coefficients binary choice, we study optimality in the
minimax sense. We obtain lower bounds on the supremum risk for the estimation of the
density under weak to strong integrability in the first argument of f, g for this model and a
related white noise model. We present an estimator which involves: series based estimation
of the partial Fourier transform of the density with respect to the first variable, interpolation
around zero, and inversion of the partial Fourier transform. We give rates of convergence
and use a Goldenshluger-Lepski type method (see [26] and the references therein) to obtain
data-driven estimators. We consider estimation of fg in Appendix C. Finally, note that an R
package RandomCoefficients that implements our estimator in the case where the random slope

has compact support is available on CRAN.R.

2. NOTATIONS

The notation Z stands for the integers, N and Ny for the positive and nonnegative integers,
(-)+ for max(-,0), a Ab (resp. a V b) for the minimum (resp. maximum) between a and b,
and 1{-} for the indicator function. Bold letters are used for vectors. For a real number
r, r is the vector, which dimension will be clear from the text, where each entry is r. The
iterated logarithms are defined by Ing(t) = ¢ and, for j > 1, by In;(¢) = In(Inj_(¢)) provided
t is large enough for the quantity to be defined. The notation |- |, for ¢ € [1, 00| stands for

the ¢, norm of a vector. For 3 ¢ Ce, (fm)men, functions with values in C, and m € Ng,
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denote by 8™ = szl B, |ﬂ|m = HZ 1 |Bk|mk, and fm = HZ 1 fm,- For a differentiable
function f of real variables, f(™) denotes H - f and supp(f) its support. C* (Rd) is
the space of infinitely differentiable functions. The inverse of a mapping f, when it exists, is
denoted by f!. We denote the interior of a subset S of R? by fS and its closure by S. When
S is a measurable subset of R? and p is a function from S to [0,00], L?(u) is the space of
complex—valued square integrable functions equipped with the hermitian product (f, g) L2(n) =
Js f( (x)dx. This is denoted by L?(S) when p = 1. For Wg = ]l{S} + oo 1{S¢}, we
have L2 (WS = {f € L? (Rd) : supp(f) C S} and (f, g) 9) 12 (W) fS a)dx. Denote by D
the set of densities, by II : L?(RY) — LQ(Rd) such that I1f(x) = f(— ), and by ® the product
of weighting functions (e.g., W®4(b) = H?:1 W (b;)) or the product of measures. The Fourier
transform of f in L' (R?) is F[f] (x) = [ga e®® @ f(b)db and we also use the notation F [f]
for its Fourier transform in L? (Rd) For ¢ > 0, denote the Paley-Wiener space of bandlimited
functions by PW (c) = {f € L*(R) : supp (F [f]) C [~c,d]}, by P the projector from L?(R) to
PW(c) (Pclf] = J"I [(W[=c, 3 F[f ]])7 and, for ¢ # 0, by

Fer L2(We) — L2([-1,1]%)  and C.: L*(RY) — L*(RY)

® ;o Fller) P e,

With a slight abuse of notations, for f € L? (W®?), we sometimes use F,[f] for both the
function in L? ([—1,1]%) and in L?*(R). Denote by Ext the operator which extends a function
in L? ([-1,1]%) to L? (R?) by assigning the value 0 outside [—1, 1]%, by Fi4 [f] (¢, -) the partial
Fourier transform of f with respect to the first variable. For a random vector X, Px is its law,
[x its density and fx |y the truncated density of X given X € X when they exist, and Sx
its support. Denote by fy|x—, for € € Sx the conditional density. For a sequence of random

variables (X”O:")(no,n)el\%’ Xnon = Op(1) means that, for all € > 0, there exists M such that
u

P(| Xngn| > M) < € for all (ng,n) € N such that U holds. When there is no constraint, we
drop U from the notation and with a single index the O,(1) notation also requires a bound
holding for all value of the index (this is equivalent to the usual notation if all random variables

are bounded in probability).

3. PRELIMINARIES

Assumption 1. (H1.1) fx and f, g exist;
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(H1.2) fap € L? (w® W®P), where w > 1 and W is even, nondecreasing on [0, c0), such that
W(0) > 0 and limy o0 W (x) = 00, 3 pen My 7% = 00 with My, = ([ *W=1(b)db)"/*;

(H1.3) For g € (0,00) and X = [—zp,z]? C Sx, we have at our disposal an i.i.d sam-
ple (Y;, X;)", and an estimator fX|X based on G, = (Xi)?:_no+1 independent of
(Yi, Xi)iy;

(H1.4) € is a set of smooth densities on X such that, for cx,Cx € (0,00), for all f € €&,
[fll ooy < Cx and [|[1/f|| oo 2y < cx, and, for (v(no,&))neen € (0, 1)Y which tends
to 0 When ng tends to infinity, we have

1 ~ 2
gy o s sl =000

When w = 1 in (H1.2), the moments E [of], for k € N might not exist. Due to Theorem
3.14 in [17], if there exist R > 0, (a;)jen, € (0,00)N0, and (pj)jen, € (—o0, 1]N0 equal to 0 for
j large enough, such that, for all x € R,

x’ |z]
W(z) > exp = , 1{|z| > R} (e.g., W(z) = exp ()]1{]3:\ > R})
(H] o logy’ (%‘lﬂd)) ag log(az )
then >, oy 1/ ||z — 2™ /W (2 HlLQOQ(%L)) = oo which implies (H1.2). Each marginal can have an

infinite moment generating function hence be heavy-tailed and their Fourier transforms belong
to a quasi-analytic class but might not be analytic. For simplicity, we use W|_g g and cosh(-/R)
in the rest of the paper. This rules out heavy tails and nonanalytic Fourier transforms. When
W = W|_g g with R > 0, integrability in b amounts to Sg C [~ R, RJP, but other W allow for
non compact Sg. The condition X = [—zg, 2P C Sx in (H1.4) is not restrictive because, for
all x € éx, we can rewrite (1) as Y = a+ B8z + BT(X — ), take & € RP and z( such that
X C Sx_gz, and there is a one-to-one mapping between fa+ﬁT£B and f, 3. We assume (H1.4)
because the estimator considered involves estimators of fx in denominators (more precisely
of fx|x). Alternative solutions exist in the specific case when p = 1 (see, e.g., [32]) only.
Assuming the availability of an estimator of fx |y using the preliminary sample G, is common
in the deconvolution literature (see, e.g., [14]). By using estimators of fx |y for a well chosen
X rather than of fx, the assumption that HfX\XHLoo(X < Cx and H]‘/fXP(HLoo < cx in
(H1.4) becomes very mild. This is feasible because of (2).

3.1. Inverse problem in Hilbert spaces. Estimation of f, g is a statistical ill-posed inverse
problem. The operator depends on the choice of w and W such that f, g € L? (W®P). Now
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on, the functions w and W are those of (H1.2). We have, for all ¢t € R and u € [-1,1]?,
Kfap(t,u) = F [fy|x=rou] (t) [tzo["/?, where

K: L2(we W) — L*(R x [~1,1]7)

@ ¥ = (t,u) = F[f] (¢, tzou) [tzoP?.

Proposition 1. L? (w ® W®P) is continuously embedded into L?(RP*1). Moreover, K is injec-

tive and continuous, and not compact if w = 1.

The case w = 1 corresponds to mild integrability assumptions in the first variable of f, g.
In this situation, the SVD of K does not exist which makes it difficult to prove rates of conver-
gence even for estimators which do not rely explicitly on the SVD such as the Tikhonov and
Landweber method (Gerchberg algorithm in out-of-band extrapolation, see, e.g., [5]). In order
to make mild integrability assumptions in the first variable of f, g, we do not work with K

directly but use that K is the composition of operators which are easier to analyze
(5) for t € R, K[f](t,%) = Frao [Fist [f] (£, )] (%) [tzol”? in L2([—1,1]7).

For f € L? (w® W®P), W either Wi_g,g or cosh(-/R), and t € R, Fis [f](¢,-) belongs to
L?(W®P) and, for ¢ # 0, F.: L2(W®P) — L?([-1,1]P) admits a SVD, where both orthonormal

systems are complete. This is a tensor product of the SVD when p = 1 that we denote by

< W,e Wi W,c)

om’ s ©m’ > gm , Where (U,VT[;’C> € (0, oo)NO is in decreasing order repeated according
meN,

meNg 0

to multiplicity, (@,V,Z’c>

meENy
and L?([—1,1]). This holds for the following reason. Because F. = FC,1 = |c| !C.F, IIF. =
FIL, Ff = WHLF.Ext, and W is even, we obtain F = II (W‘lfcc‘:xt) and

and (g};i{,c) §, e orthonormal systems of, respectively, L?(W)
meNg

FoFi=1F, (W F.Eat)

ey (Cor (WTC FEL))

]

=2nF! (Cor (W) FEat).

The operator Q% = (|c| /(27))F.F; is a compact positive definite hermitian operator (see [42]

and [17] for the two choices of W). Its eigenvalues in decreasing order repeated according to

multiplicity are denoted by (p,,VZ’C> and a basis of eigenfunctions by (gXK’C) . The
meENy meENy
other elements of the SVD are o = 1/2mpm/ |c| and om® = Frgm /om®.



Proposition 2. For ¢ # 0, ((p%,c) is a basis of L2(W).

meENy

The singular vectors (gfg [_1’1]’0) N are the Prolate Spheroidal Wave Functions (hereafter
PSWF, see, e.g., [42]). They can bén eextoended as entire functions in L?(R) and form a complete
orthogonal system of PW/(c) for which we use the same notation. They are useful to carry
interpolation and extrapolation (see, e.g., [38]) with Hilbertian techniques. In this paper, for
all t # 0, Fist [fa8] (t,-) plays the role of the Fourier transform in the definition of PW (c).
The weight cosh(-/R) allows for larger classes than PW (c¢) and noncompact Sg. This is useful
even if Sg is compact when the researcher does not know a superset containing Sg. The useful

results on the corresponding SVD and a numerical algorithm to compute it are given in [20].

3.2. Sets of smooth and integrable functions. Define, for (¢(t)):>0 and (wm),,cn, increas-
ing, (0) =wp=1,1,M >0,q€ {1,000}, t € R, m e N}, k € Ny, and ¢(t) = two,

‘%Q(R) < 27rl2, Hf||L2(w®W®p) <M

MO0 =12 32 [ S0 3 it

keNg keNy

and HZJ%U(Z) when we replace || f|| 2wewery < M by || fll12(wewer) < 00, where
1/2

(6)  bn(®) = (Fia [f] (1, ), om  Ogp(t) = > pm)P

meNg: |m| =k

(')>L2(W®p)

The first inequality in the definition of ”HZJ%” (I, M) defines the notion of smoothness for func-
tions in L2 (1 ® W®p) analyzed in this paper. It involves a maximum of two terms, thus two
inequalities: the first corresponds to smoothness in the first variable and the second to smooth-
ness in the other variables. The additional inequality imposes integrability in the first variable.
The asymmetry in the treatment of the first and remaining variables is due to the fact that, in
the statistical problem, only the random slopes are multiplied by regressors which have limited
variation and we make integrability assumptions in the first variable which are as mild as possi-
ble. The use of the Fourier transform to express smoothness in the first variable is classical. For
the remaining variables, we choose a framework that allows for both functions with compact

and noncompact support and work with the bases <g0mc(t)> ) for t # 0. For functions with
0

meN
compact support, it is possible to use Fourier series and we make a comparison in Section A.3.

The use of different bases for different values of ¢ is motivated by (5). Though the spaces are
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chosen for mathematical convenience, we analyze all types of smoothness. The smoothness be-
ing unknown anyway, we provide an adaptive estimator. We analyze two values of ¢ and show

that the choice of the £, norm matters for the rates of convergence for supersmooth functions.

Remark 1. The next model is related to (1) under Assumption 1 when fx is known:

o
7 dzZ(t) =K t,-)dt + —dG(t teR

™ (6= K16 )t + 7-dG(0), e,

where f € L? (w ® W®P) plays the role of f, g, ¢ > 0 is known, and (G(t)):er is a complex
two-sided cylindrical Gaussian process on L?([—1, 1]P). This means that, for ® Hilbert-Schmidt
from L?([—1,1]P) to a separable Hilbert space H, (®G(t));cr is a Gaussian process in H of
covariance ®P* (see [16]). Taking ®G(t) = ZmeNg ® [gmc(t)] B (t), where By, (t) = B2 (t) +

iB3, (1), (BR(t))ier and (B3, (1)) +er are independent two-sided Brownian motions, the system

. . . W,c(t) D
of independent equations, for Z,,(t) = <Z(t),gm >L2([_171}p) and m € N,
t
o
(8) Zon(l) = / o)y ($)ds + = B(t), teR
o vn

is equivalent to (7). The coefficient oels)

is small when |m/, is large or s is small (see Lemma
A.1). This is why the estimator of Section 4.1 truncates large values of |m|, and does not rely

on small values of s in absolute value but uses interpolation.

Remark 2. [29] considers the Gaussian sequence model corresponding to (7), when K is the
Radon transform, p = 1, G is a two-sided cylindrical Wiener process, and L? (W®P) is instead
a weighted L? space of functions with support in the disk of R? for which K has a SVD with a

known rate of decay of the singular values.

3.3. Interpolation. We present the interpolation procedure with Hilbertian techniques and

the main results which can be of independent interest. Define, for a, e > 0, the operator

—1,1],a€

W,
(9) Loe[f1() = Z ( meiV[l,l]vae) € <f(*)7gn”;[—1»l}’ﬁe (€>>L2(R\(—e,6)) gnvf[‘l’”’@e (E)

meENy 1— Pm

on L?*(R) with domain PW (a). For an arbitrary function f € L?(R), Z, [f] is a distribution

(i.e., a generalized function). The following proposition clarifies this statement.



9

Proposition 3. For a,e > 0, Z, (L*(R)) C L*([—¢,€]). Moreover, we have, for g € PW (a)
Toclg] = g in L2(R) and, for C(a, ¢) = 4ac/ (71' (1 — p/mr “) ) and all f,h € L2(R),

(10) Hf _Iae HLQ( 66]) (1 v C CL 6 Hf 7) Hiﬂ(R) + 20(@7 6) Hf - h”%Q(R\(—QE)) :

If f € PW(a), Z,[f] only relies on fI{R \ (—¢,¢)} and Z, [f] = f on R\ (—¢,¢€), so (9)
provides an analytic formula to carry interpolation on [—e, €] of functions in PW (a). Else, (10)
provides an upper bound on the error made by approximating f by Z, . [h] on [—¢, €] when h
approximates f outside [—¢,€]. We use interpolation When the variance of an initial estimator

Ja] of f is large due to its values near 0 but H f— AO‘ is small and work with

L2(R\(—¢))
Ve R, () = PO = e} + Ty 1] (1{]t] < e},
in which case, (10) yields
2

> -1, ——
When supp (F[f]) is compact, we take a such that supp (F[f]) C [—a,a]. Else, we take a going

(1+2C(a, ) Hf ‘

e +2(1V C(a,¢)) Hf_Pg[f]Hi?(]R)

to infinity so the second term in (11) goes to 0. We take e such that ae is constant because,
due to (3.87) in [42], limgey00 C'(a, €) = 0o and (10) and (11) become useless. Then C(a,¢€) is
constant and we set C' =2 (1V (2C(a,¢€))). For ae = 1, we get pgv[_l’”’ge ~ 0.3019 and C = 2.

3.4. Risk. The risk of an estimator fa 3 is the mean integrated squared error (MISE)

Rt (Gosfos) =2 |7 G

Jop — faﬁ‘

L2(1W®P)

When W = W|_g g and supp (fa”@> CRx[—R,R]P, therisk is E [ faﬁ fa’g‘ e g O],
else,
(12) B (ot = Ju] o G| < I iy R (T s

We consider a risk conditional on gno for simplicity of the treatment of the random regressors

with unknown law. We adopt the minimax approach and consider the supremum risk.

4. ESTIMATION

The sets of densities in the supremum risk and of estimators in this section depend on

q € {1,00}. The rates of convergence depend on ¢ via k;, =1+ (p — 1)1{g = oo}.
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4.1. Estimator considered. For ¢ € {1,00}, 0 < e <1 < T and N : R — Ny such that
N(t) = N(e) for t € [—¢,€¢] and N(t) = N(T) for |t| > T, a regularized inverse is obtained by:

(S.1) for all ¢ # 0, obtain a preliminary approximation of Fi(t,-) = Fis [fa,8] (t,-)

(13) FENTOG ) — 1| < T} 2 cm(t) Qo).

O_W,t:ro m
Im|,<N(t) =™

where Cm(t) = <-F [fY‘X,X:xO-] (t)vgfvz7tx0(.)>[/2([_171]p)7
€,

(S.2) refine for ¢t € [—¢, €]

7N7T’E 7N)T70 ,N,T,O
FPNT(, ) = FPNTO( 01 > e+ Tae [FEVT00 )] (0141 < e},

(8:3) take 2571, 2) = Fly [FFN (e 0)| (1),
To deal with the statistical problem, we carry (S.1)-(S.3) replacing ¢, by the estimator

n itY;

—~ - 1 & W txo <X]> )
14 ) =-S5 T W () qex. e x),
(14) Cm(t) ;:1 nggqx(xj)g {X; €}

Lo

where J?gc\x(Xj) = fX|X(Xj) V4/0(no) and d(ngp) is a trimming factor converging to zero with
ng. This yields the estimators ﬁf’N’T’O, ﬁf’N’T’E, and fg’g’T’g. We use (fg’g’T’e) as a final
) b +

estimator of f, g which always has a smaller risk than fz’g’T’G (see [23, 16]).

4.2. Effective sample size. We use n. = n A (6(ng)/v(no,)) for the sample size required for

an ideal estimator when fx|y is known to achieve the same rate as the estimator in this paper.

4.3. Logarithmic rates when w is a power. The first result below involves, for ¢,u > 0 and
R, zo > 0, the inverse Q¢ of z € (0,00) = zIn(1V (7w (2z + 1)/(Rxzot))) + uIn(2z + 1) which

is such that, for all z,u € (0,00), t € (0,00) — Q¢ () is increasing.

Theorem 1. Make Assumption 1. Take ¢(-) = 1V |-]°, (wk)ken, = (7 )keng, ¢ € {1,00},

w(:) =1V ||, ,M,s,R>0,0>1/2,Sg C [-R,RJF, N(t) = [N(t)] for e < |t| < T, and

a=1/e.

(T1.1) When W = W_ga, N(t) = Quaosp1)74 (In(ne)/(Bk)), T = ne/ ®P*) and e =
(In (ne) /Ing (ne)) 27, we have

N 1 o 20’
(15) sup R}% ( g’N’T7€,fa,ﬁ> ( n (ne) ) = 0,(1),
fa,ﬁeﬂg;ﬁ; (I,M)ND ’ In (ne)
fx|x€E
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(T1.2) When W(-) = cosh(-/R),

Y (S
2 20+p*kq+ﬁkq% 2U+p—kq+2kq(2—1H(R$0|t|)) ’

T= ni/(z(p+2)), and € = In(n.) 727, then (15) also holds.

Theorem 2. Take ¢ € {1,00}, ¢(-) = 1V |[-|°, (wi)ken, = (K7)keny, w(-) = 1V ||, and
0<l,s, R < .

(1) Let W = W_g g}, 0 > 2+kq/2, assume that fx is known, Sx = X, and |[fx|| oo (x) <

;o@pm] <llrlt(gl73)>2o -

(2) In model (8) with W = cosh(-/R) and o > 1/2, there exists v > 0 such that

2 n 20
In >y
L2(RP+1)] (ln(n) )

Theorem 2 shows that the rate in Theorem 1 (T1.1) is minimax optimal in model (1) where

oo, there exists v > 0 such that

J};ﬁ - faﬁ’

====N—>00

lim inf sup E “
fap  fogeHLGY (1)ND

FoofensSeo

fx is known and Sx = X'. This is the same rate as in [39] for deconvolution on the line with a
known characteristic function of the noise on a bounded interval when the density of the signal
has compact support, though for different smoothness assumptions. The rate in (T1.2) is for
densities where we do not assume Sg is compact but [ [ fa.g(a, b)?w(a)WP(b)dadb < co. In
a similar spirit, the discussion after Theorem 2 in [39] considers classes of densities with non
compact support but with a pointwise bound on the density outside [—1,1]. Using (12) and
Theorem 2-(2), we obtain a lower bound for the risk 73,‘% (j?a,g, fa,@) for a class of densities
with unbounded support. This lower bound differs slightly from the bound in Theorem 1
(T1.2), hence the minimax rate is somewhere between both rates. The rates in Theorem 1 are

independent of p as is common for severely ill-posed problems (see [13, 20]).

4.4. Polynomial and nearly parametric rates when w is exponential. Here )y, is the

inverse of the increasing function x € (0,00) — zIn (1 V (77 (x 4+ 1)/(Rxot))) + vz In(z + 1).

Theorem 3. Make Assumption 1 and take s, k,v,l, M,R,a >0, r,p>1and q € {1,00}.
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(T3.1) When W = Wi, Sp € [FREP, 6() = LV, (@idie, = (E00H0)
k > kg, N(t) = |[N(t)] for e < |t| < T, N(t) = Qe ek, (In (1e) /(2ky)), and T' =
TretNEOWNEOT)/s /(Rag), we have
(T3.1.1) for r = p = 1, w(-) = OVID" "y > 1/(4k,), s > K/(2k,), €a = Tr/(Rxo),

and € = Tmlng(n)/(1 ( )Rxg),

/(k+2kq)
(16) sup RV (fq7N7T,6 f ) ne! T _0,0)
fosentteaannp N 1108 ) 0 (ng ) 2erp 1+ E{g=00} p(L),
o,B w, W \"
fx|x€E

(T3.1.2) for r =1, w = W_g 4, Sa C [~a,4a], s > k/ky, and € = Tr /(Rx),

r/(rtkq)

w 4,N,T,e Ne .
(17) . Rno(a o) 1 oy = 0D
o,B
fX\Xeg

(T3.2) When W = Wi_g g}, Sg C [-R, RJP, for r > 1, w(-) = Y (HmQAVED® -y > oy > g,
o(+) = el a = 1/e, v > 0 large enough (to satisfy (A.118)), N(t) = m fore <|t| <T,
e = 14n/ (R:co (1 —l—N)), T = exp (2N1n (1 —i—N)),

1/r
NQOO,l((l(lnne Zdln )@/ )) )

where k/(k+1) < 1/r < (k+1)/(k+2), do = 4/(2k)"/" and (d;)¥_, are such that

A=1)F (). (A )r— 41
_()Z(/) (1/ J+)Z

Ui 1/r il
(2Rl = J: 1t py=i

dp1—1 R dpj—h

and ¢ (-) = exp (Zf:o d; In (')(Hl)/r%) /ln(-)4p/r, we have

sup (quTE7fa,,6) @ (ne) ne = Op(1).
a8 €EMEGE (1,M)ND
Ix|x€€

(T3.3) When W (-) = cosh(-/R), () = 1V[|", (wk)keno = (€"")rerg, £ > kqg(m(s/(p+1)+1) /4~
1) and Rxg > 75/(2(p+ 1)), w = Wi_gq], Sa C [—a,a], € = 7/(4Rxq), N(t) = [N(t)|
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for e <|t| <T, N(t) = In(n.) /(26 + 7ky/ (2R |t])), and T = "N (/5 /(Rxy), we have

sup s Ja,B — = =0, 1).
fa,ﬁeﬂgf;y(z)mp In(n,)2(P+1)—pl{g=cc}

fx|x€E

We relax the assumption that Sg is compact maintained in (T3.1) in (T3.3). Similarly,
we can extend (T3.2) to noncompact Sg. The results of Theorem 3 are related to those for
the “2exp-severely ill-posed problems” (see [12] for a survey and [415] which obtains the same
polynomial rates up to logarithmic factor as in (T3.1.2) when 1/v(ng,€) > nand p = 1). When
1/v(no, £) > n, the rate in (T3.1.2) matches that of the lower bound in model (8) given below.

Theorem 4. Consider model (8) with ¢(-) =1V |-|*, w(:) =1V |, s,k,[, R > 0.
(1) When W = W|_g g}, and (wg)ken, = (er® ln(Hk))keNo, there exists v > 0 such that

il (k) >

I f E ‘
e I T | LA

(2) When W = cosh(-/R), and (wy)ken, = (€°F) there exists v > 0 such that

keNg’

Kl (kthe) > o

lim,, . inf sup E [Hf f‘ L2(]RP+1):| >

f fEHq XN w

4.5. Data-driven estimator. We present a type of Goldenshluger-Lepski method (see [26]
and the references therein) following a variant proposed by [36] to determine data-driven
smoothing parameters. Let € > 0, Kpnax = [(olog(n)/log(2)|, where {y > 0 depends on p
and W and which value is given in Theorem 5, and Tiax = 25max. Theorems 1 and 3 are

obtained by optimizing over functions N & Ng& We consider the class
N, = {N eNE: VteR\ (—e,6), N(t) € {0, ..., Numaxq(W, t)}} .
N is obtained by solving univariate minimisation problems

(18) VteR\ (—e,e), N(t)€  argmin  (Byi(t,N)+c13(t, N)),
0<N< Nmax,q(Wt)

where c; > 31/30 is greater than 1 to handle the estimation of fx|x and

-~ 2
t
B (t,N) = max ) Lem®F o ny |
Nmax,q(Wit)2N'>N N<|m| <N’ <0mt$0>
<lml,<
+
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84(1 + 2((21 V3 tI\?
n 2
Define T as
(19) T € argmin z (t, ]\7(7&)) dt |,
T€Tn <\t|<T
where
~ 2
B, (T N max Mt)'? > <t7 ]\7(1&)) at |
T TET ST T<|t\<T' % ( W,txo>
(t) om n
2’“. k=1,. max

The parameters v, (W, N, txg) and Nyax,q are defined, for ¢t # 0 and ¢ € {1, 00}, by
(N.1) when W(-) = cosh(-/R),

p+1 — 1)1 T
1/1(VV,N,t)=2+(1v((;V_+1§)! 1)) <1vﬁf|t|>exp<w>n{w>

_1))P-1 22\ P
(1V(1\(fp+_p1)!1>> <4> exp (22— In (RI) Ny 1 {11 < -1

Voo (W, N, t) = 4P (1 v \/§f|t|>pexp <w> {!t! 4R}

+ <7f>pexp (2p (2 = In (R|t[)) N) 1 {|t| = ﬁ}

Noal 12002 LW B J {l1> 5} + bkq 2 lil(lz)(R\tD)J 1{l1 < 75}

(N.2) when W = W|_g ) and W the inverse of = € [0, 00) > xe®,

2050 = g it e @ (Y () V1))

(Grmv) o (e () v1))
5O () )

Voo (W, N, t)

Nmax,q (VV, t)
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4.5.1. Heuristic behind (18)-(19). The method selects N and 7' as solutions of minimisation
problems that mimic the upper bound on the bias-variance trade-off which allows to obtain
theorems 1 and 3. Assume, for simplicity, that fx|x is known and remove the index ng from
the risk. Let N € Ni and T € Ny. Denote by ¢, (t) and fg’g’T’E the ideal estimators ¢, (t) and

fq MTE with fg{\x = fx|x and A (t) = Gm(t) — cm(t). Proposition 3 and Lemma A.10 yield
2T w q,N,T,e q N,T,0 2 27TM2
il < > _
RV (P57 o) <[00 2 0 (B0~ Fralfug) )] +
~ 2 21 M>
— E FQ=N7T70 D) . .
/]R\(e,e) I:H 1 <t7 ) -Flst [fa,,B] (ta )’ L2(Wep) dt w(g)

Using (A.69) and denoting by NV N’ : ¢t — N(t) V N'(t), the first term can be written as

e [

(20)
= /R\(—e,e> (H (PN = Fioi [ful) (1 ')‘ 2

L2(Wer)

2 2

| at
L2(Wer)

[(FNT0 = P [fasl) (8]

L2(Wer)

dt + (t, N)I{|t]| < T}> dt

(21)

= / <sup
R\(—¢,e) \ N’

For all t € R\ (—¢, €), N(t) minimizes an estimator of the integrand in (21) obtained by replacing

2

,NVN'".T,0 ,N,T,0
(R - ) )

L2(Wep)

S(t, N)I{|t| < T}) dt

sup (R0 YT )
by
2
(22) Sup (H (F‘LN\/N , 1,0 F‘LNTO) (t7 .)‘ LQ(W®p) Dy (t, N/)>
+

and, using Proposition 2, by replacing the supremum in (22) by the maximum B (¢, N) over
the grid {0,..., Nmax,q(W,t)}. Indeed, we have

2
,NVN'T,0 ,N,T,0
| (7 - FENTO) (1)

L2(Wer)

2 [Em (B)]* — lem (8)]”
—-E
L2(w®p):| Z

Witxo 2
N<|m|,<NVN’ T

) [H (ﬁlq,NngT,o . ﬁlq,N,T,()) (t, .)‘
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and, using Lemma (A.12), E [yan(t)y? ~ ycm(t)ﬂ —E [\Em(t) . cm(t)\Q], and (A.69), we can
show that the second term is larger than —¥ (¢, N').
T is obtained by (19) and minimises in T an estimator of (20) given N. Because the first term

in (20) is equal to

/ 2
23 sup/ ’(Fq’N’TVT 0 —Fq’OO’T’(]) t,- ‘ dt,
(23) P fn oo IV 1 (t,) La(wen)
and using
/ ’(qu,]\Af,T\/T’,O _ qu,]\A/,T,O) (t, )) 2
R\ (—¢,€) L2(Wer)
S, NTVT'0  75¢,NT,0 2 Em()]* = lem ()]
—E / (B0 — BT (1, dt —/ El Y O | at
R\ (—¢,¢) L2(wer) T<|t|<TVT - ( W,t:co>
Im|, <N Om

and we can show that the second term above is larger than _fT<|t|<T\/T’ by (t,ﬁ) dt (see
(A.69)), we replace (23) in (20) by a maximum Bs(T, N) over a grid.

4.5.2. Adaptation.

Theorem 5. Make Assumption 1. Take 0 < I, M,s,R,a < oo, H € N, g € {1,00}, ¢ > 1/12,

¢() =1V [

(T5.1) When (wg)ken, = (K7)ken,, 0 > p/2, for all og such that o9 >0, s > 1, w(-) =1V ||,
and € = (Ing (n) /In (n)) 27 , we have

(a) for W = W[—R,R]a SB - [_R7 R]p’ and CO = 1/(6]9),

N In (n) \*°
(21) sw R (ST e) () = 0, ),
fa,p€HY S (1LM)ND 2 (no,E)/8(no)<n— 2+
fx|\x€E ne>e

(b) for W(-) = cosh(-/R), e = (Ing (n)) 27, and ¢y = 1/(14p) then (24) holds.
(T5.2) When W = W[—R,R}? Sﬁ - [—R, R]p, (wk)keNO = (enkln(lJrk))keNo’ w = W[_g&}, Sa -
[—a,a], e =Tn/(Rxg), k > kq, s > 3p, and {p = 1/(6p), we have
S 4 K/ (Ktkq)
W ( 74,N,Te n _
(25) sup Ruo ( 2 Ja,ﬁ) In(n)2etpt2+i{g=c0} — Op (1).

fagEHELGE (HND v(no,E)/8(no)<n=(2+9)
Ix|\x€E ne>e
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(T5.3) When W(-) = cosh(:/R), (wk)ken, = (€™ )rengs k& > kg(m(s/(p+ 1) +1)/4 — 1), Ry >

7T/€/(2(p+ 1)); w = W[_Q&}, Sa C [—Q,Q], € = 7T/(4R:L'0)7 s > 7p,.{/(,§+ kq)’ and
Co = 1/(14p), we have

k) (kthq)

n

(26) sup RrRY FolTe fop — = 0, (1).

Fa g €HLS (OND ( P >1n(n)2p+3 PHIZ0}  0.8)f6(ng)<n=@+O
Ix|x€E ne>e

The results in Theorem 5 are for v(ng,£)/d(ng) < n~3+) with ¢ > 1/12, in which case
ne = n. Theorem 2 and (T5.1) (a) show that chzﬂﬁfg is adaptive. The rate in (T5.2) matches,
up to a logarithmic factor, the lower bound in Theorem 4 (1) for model (8). For the other
cases, the risk is different for the lower bounds and the upper bounds in Theorem 5, but using

(12) we obtain the same rate up to logarithmic factors for the risk involving the weight W.

5. SIMULATIONS

We take p =1, ¢ = 00, and (a, 8) " = D +&(1—D) with P(D = 1) = P(D = 0) = 0.5. The
law of X is a truncated normal based on a normal of mean 0 and variance 2.5 and truncated to X

with 29 = 1.5. The laws of & and & are either: (Case 1) truncated normals based on normals

-2 3 2 1
with means p; = ( 5 > and py = < 0 ), same covariance ( 9 ), and truncated to

[—6,6]PT! or (Case 2) not truncated. Figure 1 (resp. Figure 2) displays summaries of the law
of the estimator based on (anV > with W = W|_g pj (resp. W = cosh(-/R)) with R = 7.5

mENO

OONTE_fa

] and the risk

in Case 1 (resp. in Case 2). Table 1 compares E [ ,5’

L2([~7.5,7.5]2)

of the oracle min E “ faooﬁanT,e —

NENn,H
T€Tn
with the same data and the risk is not conditional on Gy, .

The estimator requires the SVD of F. for ¢ # 0. By Proposition A.1 (i), we have gW('/R)’c =
WRC for all m € Ng. When W = W|_yj, the first coefficients of the decomposition of the

} for cases 1 and 2. fX|X€X is obtained

2([—7.5,7.5]2)

elgenfunctlons on the Legendre polynomials can be obtained by solving for the eigenvectors of
two tridiagonal symmetric Toeplitz matrices (for even and odd values of m, see Section 2.6 in
[42]). When W = cosh, we refer to Section 7 in [20]. We use that F* (gnVK’RC> = g et

and that @an’RC has norm 1 to obtain the remaining of the SVD. Note that F} (gm’ C) is easy
to compute when W = W_; ) using that 7 = 1{[-1,1]}F_.Ext applied to the Legendre
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polynomials has a closed form involving the Bessel functions of the first kind (see (18.17.19) in

[41]). The Fourier inverse is computed using the fast Fourier transform (FFT).

W =W|_gr,R], Case 1, R=17.5 W(-) = cosh(-/R), Case 2, R=17.5
n =300 n=500 n=1000 n =300 n =500 n = 1000
MISE (data-driven) 0.092 0.086 0.083 0.089 0.087 0.085
MISE (oracle) 0.091 0.086 0.082 0.088 0.087 0.085

TABLE 1. Risk of the data-driven estimator and of the oracle with 1000 simu-

lations (to guarantee the use of three digits with a 95% confidence level).

0.03

q97,5(fa,s)0'02
0.01

(¢) 97.5% quantile of estimates (d) 2.5% quantile of estimates

FI1GURE 1. Truth and data-driven estimator for case 1 and estimator based on
gm® with W = W[_g g, 1000 simulations, n = 1000.



q97,5(fa,[3) o

(¢) 97.5% quantile of estimates (d) 2.5% quantile of estimates

FIGURE 2. Truth and data-driven estimator for case 2 and estimator based on
g with W (-) = cosh (-/6), 1000 simulations, n = 1000.

APPENDIX

APPENDIX A. USEFUL RESULTS FROM HARMONIC ANALYSIS

W— )
A.1. Preliminaries. In this appendix, we denote, for m € Ny, by 1¢, the function gm, """ ¢

and use p&, = ™o 7. Tt is notable that ¢S, = Fa(Ext[ys,])/uS, in L2([~1,1]). This is
the reason why ¢, can be extended as an entire function which we denote with the same
notation. Also, using the injectivity of F. (see the proof of Proposition 1 below), we have

nvl/[_l’l]’c = i"MExt[S,). Also, P, is the m'™ normalized Legendre polynomial, normalized so

that || Ppnllz2(—1,1)) = 1. We make use of the following proposition.

Proposition A.1. For all weighting function W, ¢ € R, R > 0, m € Ny, we have
(i) gm /¢ = g in L2([-1,1)),
(11) O.K('/R)vc — O.TVX,RC\/R’
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(iif) o ) = G (4 /R) /VR ace.

Proof of Proposition A.1. (i) follows from QW /R ow.

(ii) follows from

Now, for almost every t € R, we have
t t
et (&) = Fio[ae] () - (where Fs 201 = £207)

= F o] (5) oy )

=7 |G e (1) (where Fp i LA(1=1,1]) = LA(W(/R))

= oW/ R)e W/ R)e )

= o RVRRACPe() (by (i),
hence (iii) when we divide by o' which is nonzero.
A.2. Properties of the PSWF and eigenvalues.

Lemma A.1. For all m € Ny and ¢ # 0, we have

| < 2me/? elc| "
Fml =" \4m+1/2)) -

Proof of Lemma A.1. This follows from the following inequalities, for m € Ny and ¢ # 0,
VT [e]™ (ml)?
2m)!IT'(m + 3/2)
7 |c|™ I'(m+1)
AT (m+3/2)T (m+1/2)
7™
— 4mT(m + 3/2)
_ Vad (el (m + 1)/
- 4m\/§(m+ 3/2)m+1

|| < (

(m + 1)1/2




< ome/? e|c| "
=73 \Um+12)

using respectively (69) in [43], 6.1.18 in [1], (7) in [25], (1.3) in [40], and sup,>q(z + DY2(z +
1/2)%/(z + 3/2)**1 < 2/3. O

Lemma A.2. The following lower bound on pnmj[fl’”’c holds for ¢ # 0
Wit 3 if 0 <m < max([2]¢| /7] —1,0)

(A1) Pm > o)ed . 2m
v <7w(m+1>> if m > [2]c| /x] V1

Proof of Lemma A.2. This is a consequence of Proposition 2.1 in [7] and pL2I Il/l]J > 1/2
(see [37]). O

Lemma A.3. For all ¢ # 0 and m > 2, we have
’ Hin
Hin—2

Proof of Lemma A.3. Consider the case ¢ > 0. From Theorem 8.1 in [412] we have that, for

all m € Ng and ¢ > 0,

Vret(m)?®  p o

(A-2) il = BT om 1 3/2)¢
where

c t 2 _ m
(A.3) Fu(c) = /O (2(%(212)1 - t) dt.

Moreover, using (65) in [9], we have for all m € Ny and t > 0,

: 2 2 t ) 1 /2 2
(W ‘mm) =) (W*W)

which yields, for m > 2,
(60 (1) = (1 5(1))
1 t 1
§<\1m+ +\f\/m> < m—2)+§ \f\/T)
442 ¢t ( 1

<24
Y R Py m—3/2>
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@

7

Using sup,so2®(z — 1)/ ((2? — 1/4)(z — 1/2)(z — 3/2)) < 3 and (A.3)-(A.4), we obtain for
m > 2,

(A.4) <24

c? m(m — 1)

16 (m2 — 1/4)(m — 1/2)(m — 3/2

32 ()" = (W 5(1)° 2
16m2 P (/0 ( t - t) dt)
(1)
~ 16m2 V3)’
which yields the result for ¢ > 0. For all ¢ < 0, we obtain the same results using uf, = p," and
Ext[ty, ] = Ext[yy,]. O

C

Hm
P —2

] exp (Fp(¢) — Frp—2(c))

IN

Lemma A.4. For all ¢ # 0 and k € N, we have (¢5(1))* < (k4 1/2) (1 —1—202/33/2)2 and
2

||1/1,§H%00([_1’1]) < (k+1/2) (1+4c?/3%2)". For all ¢ # 0 and k > ¢, we have ||¢,‘;||%Oo([_171]) <

k+1/2. We also have ”7/’8”200([_1,1]) < 2|c|/m.

Proof of Lemma A.4. For all ¢ > 0 and k € N, we obtain the first assertion using (65) in
[9]. For all ¢ > 0 and k € N, we obtain using (66) in [9] for the first display, and 22.14.7 and
22.2.10 in [1] which yield || Pg||poc(j=1,1)) < v/k + 1/2 for the second display,

- c? 3/2
lechL ([-1,1]) < HPkHLoo([_l,l]) + W (1 + k/1/2>
c 3/2
< VE+LZ (1 W +1/2) <1 ki —|—1/2>>

4c?
<Vk+1/2 <1 + 33/2> (for k € N).

This yields the second assertion for all ¢ > 0 and k£ € N. We obtain the third one with (3.4)
and (3.125) in [42]. We obtain the last one using the proof of Proposition 1 in [31] which yields
|W(C)”2LO<>([71 ) < 2/(u§)? and we conclude using Lemma A.2. For all ¢ < 0, we obtain the same

results using pf, = pm’ and Extly, ] = Ext[yy,]. O
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Lemma A.5. For all ¢ # 0 and N > H(c), where H(c) = /2II(c) V 2 and II is defined in
Lemma A.3, using

1 9
0= 1 (1 + 3@
2|¢|

0= (s o+ (1 7) (1 7m))

C()—4Cf”1+21_11()

and cy = 4/3, we have
B

< (4C\(H,¢) + Cy(H, ¢)) C3(H, ¢) || VN.

Lo ([~1,1])

Proof of Lemma A.5. Take N > H(c) and w € [—1,1]. Theorem 7.11 in [412] yields

My 2y (1) [ 1, ¢ (11
(A.5) (w) = — o k(YE(w).
oc g %me?—m@” k

Using that pu$/uS € Rif k = N [2], Lemma A.4, and denoting by f: = € (—=1,1) = |z|/(1—2?)
and by r(c) = (1 + 462/33/2) (1+ 202/33/2), we obtain

e
AN 12 2lc|1{N = 0[2 1 s
< ()P 2 () (ea) s 2o () (o
Ho 0<k<N Hi k>N HN
k=N [2] k=N [2]
Lemma A.3 yields, if k < N and k = N [2],
(& C H 1
(A.6) il < | < 5D (<3)
Fi HN—2
while, if K > N and k = N [2],
1, II(c) 1
A. < <-].
(A7) pS |~ (N +2)k=N 7 2

Using that, for all z € [-1/2,1/2], f(x) < cf |x|, where ¢y = 4/3, (A.6), (A.7), and that

2 > @k+1)< ) (2k+1)=(N-1)7

0<k<N 0<k<N-2
k=N [2]
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we obtain

w8 5w

2 2 3/2 k=N
) 4N + 2 2| +T(C)(N*1) 2¢ N Z E+1/2 [2°/%¢c
- |c] T 2 N 2(k=N)/2 \ N

k>N
k=N [2]

cpVAN 42 9 2| r(c) 8c? 1\ 12
— | (2 — I+ N+-]2
i el ca -t 2 )T HR

>2
VAN ¥ 2 2
< YV E2 <2c202(c) 4 8¢ (N + 9))

(A.9)

IN

1=0 [2]
Ic] N2 2

(A.10)  <dcpy[1+ 2Hl(c) (CQ(C) + H%C) (1 + QHQ(C)» | V/N.

Lemma A.6. For all ¢ # 0 and N > H(c), where H is defined in Lemma A.5, using Cj(c),
Cy(c), and C3(c) defined in Lemma A.5, we have

1
<4, 14 ———— (Cu(c)N®? + C5(c)N3/? 4+ Cg(c)V'N + C7(c) ),
‘ reeryy 0 2H() ( )

where Cy(c) = 4 (Ca(c) — 4C4(c)),

0

025,
Oc?

Cs(c) =4 <<1 + %f) Ca(c) +16 (2? - 1> Cl(c)> + 622 ((4C1(¢) + Ca(c)) Ca(c))? (1 + ;ﬁ) :

CG(C) :g (401(6) + CQ(C)) <C2 + 3) + %(401(6) + CQ(C))(CQ(C) + 801(6))62,

Ca(c) = ;’;(C) (14+ Iﬁi’))

Proof of Lemma A.6. Consider first the case where ¢ > 0. Using that, for z € [—1,1],
c € (0,00) — 9§ (z) is analytic (see [19] page 320) and (7.99) in [42], we differentiate with

respect to ¢ and z, using the Lebesgue dominated convergence theorem, the equality

1

(A.11) i) = [ i o

-1



We obtain
(A12)
82 Ous, O 82 c 1 82 c Oe
(Tpvot+ 220 1y D0 ) (@) = [ ot (T )+ im0 ~ (ot () o
9 Lo
(A.13) S (;”;V( )= / ity (1)
32%\[ — ! 2 icxt, ) c
(A14) i
~1

For k # N, multiplying both sides of (A.12) by v{(x), integrating with respect to = over [—1, 1],
and using successively (A.11), (A.13) and (A.14), we obtain

c 2
28”N/18¢N< s+ [ I e

Jc
1 2 c 1 o o 62
=i [ S w125 [ P i [ a0 R

-1

Recombining and using that, for k # N, uf # u% (see (3.45) in [4: ]) we obtain
Loty L (g [ v o
dz = 2tk - k(2)d
e b / O (1) S (a)da

2 c
=1 augy0) 2 @) —2855/ PN () () )
-1

This yields, for k # N[2], using (A.5), (7.69)-(7.70), and Theorem 7.11 in [12],
1 82’1,[)?\[
-1 802

while, for k = N [2], using (7.69)-(7.70) and Theorem 7.11 and (7.99) in [12],

PP e 2 boows oYy
(‘)c?(x)wk(x)dx_c,uﬁv—ug/ T (2) 9z

(z)¢i(z)dz = 0,

(a;)d:c + EN,k:7

e (M?vui(xi —XR) M <2+ (2v5,(1) - 1) u%)) SR ()YE(1)
| (=) (8)” = ()’ M~ M ¢

Wi_ . . . .
and (X% /)nen, are the eigenvalues of L. ", Also, differentiating (7.114) in [42] with respect

)

to ¢ yields

[ Eh = [ (%) a
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We obtain, using Lemma A.4 for the first term and for all w € [—1,1],

0% 1( 4c2>/1 (WC 2
GN+ -1+ =5 N(@) dx + =%
‘ ¢ oo (-1,1) 2 33/2) J_1 \ Oc k;\,
k=N [2]
2 || /1 Ny O
A.15 + T x z)dx| || YVE|| Loo(1—1.17)-
(A.15) ];:V el — ] 1™ e (@) @)dz| [Vl Lo (-1,17)
k=N [2]

For the first term on the right-hand side of (A.15), using Lemma A.5, we obtain

N / <6¢N > dz < 2 (4C4 (¢) + Ca(c)) Cs(e))’ 1+2H( N

For the second term in (A.15), using that for k = N [2], u§ /5, € R, (A.6), (A.7), and denoting
by f: 2 €(~1,1) || /(1—2?)and by g: z € (=1,1) — \x!/(l—x)2, we obtain, for k < N,

|5N,k§W(g(’“@><xk >+2< ML) )f(“fv))
c Ho, ‘MN /‘k‘ H

and, for k > N,

— ‘Qp]c\/(lﬂ ‘¢l§(1)’ <M2> c c |2wN 1‘ “u’?\f’ <MZ)
= <" 7 & — +2 .
| NJi“ = 2 (g ?V (Xk: XN) ‘ ¢ — k‘ f (]:V

Then, using that for & = N [2], if & < N, |u§|/|ps — w5l < 1 (using (A.6)), if & > N,
oL/ 1y — ] < 2 (using (A7), that [x& —x§| < IN — k| (h+ N + 1) + ¢ (see (13) in
[8]), that [2¢%(1)? — 1| < 2N (using Lemma A.4), Remark A.4, that for all z € [~1/2,1/2]
f(x) < cflx| where ¢y = 4/3 and g(x) < ¢g|x| where ¢, = 4, using (A.9) for the second
inequality, and denoting by 7(c) = (1 + 402/33/2) (1+ 202/33/2) we have

> Enwl 19l 1,1

k#£N
k=N (2]

< CoVAN +2I{N = 02]} |p

e[ 7

I
n cgVAN + 2 < )
0<k<N

c
EN

4c
<N(N+1)+c +L

3o, (N 1)>

c

HN
c
M

(N—k)(k+N+1)+c2+§Cf(N+1)>

2
C Cqg

c2

N cgVAN +2 < 1
k>N 2

4ey
<|N klk+ N+ 1] + ¢ +5 (2N+1)>

Cg



4
< 2¢,Co(c)VAN + 2 (N(N +1)+ e+ 3—?(N + 1))
g

N
cgV/AN +2 (k4 1/2) cf 23/2¢
s > SN (k—N)(k+ N +1) +c? +30g(2N+1) ¥

k>N
k=N [2]

4
< 2¢yVAN +2C3(c) (N(N+ D+ + ch

Cg

(N + 1))

+ 8¢y VAN +2C4(c) <02 + LN +1) - N - N2>

Cq
| L6 V1+1/(2H(c)) 1 _ :
g Ng/g > (k +N+ 2) k(k+1)27%2  (using (A.10))
k>2
k=0 [2]

<dey |14 2H1(C)N5/2 (Ca(c) — 4C1(e))

i (1450 w4 (5 1) )

+degy [1+ ! \/N(Cg(c) <02—|—40f) +4C(c) <C +40f>>

3¢y 3¢y

32¢, 1 ( 123 > Y o k2 — k
+ 1+ 14+ —— usin — = 26, — =6, and —=2].
H(o) 2H (c) H(c) ( 8 ; ok ; ok ; ok

For the third term in (A.15), using (A.5), the triangle inequality, and (7.74) in [42], we obtain

‘/ 31/)1\1 a¢k( )daz‘ < 4[5 ()] [YE(1)] Z |MN\|Mm||T/)fn(12|2 C’M%\ .
¢ m=nN [2] |(H5) —(M?v)““m+“k}

m#N

(A.16) < 8cr [P (D] YE(D] (4C1(e) + Ca(e)) e (using (A.10)).

Using (A.6) and (A.7), we have that for k = N [2] and N > H(c),if k < N, |ug| / |nf — g <1
and if & > N, |pg| /|5 — pg) < 2|pj/pS |, which yields,
921 1¢ 1 e e
Z 7C|Mk| - / x Uy (x) ;’k (x)dx
k=N [2] clufy = | 1Ja 0c .
k#£N
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< 8cpVAN +2(4C1 (c) + Calc)) > W’M‘Wk( M RNZ e (-1.11)

k=N [2] ‘“ N
k£N

< 8¢ VAN + 2(4C (c) + Ca(c)) (2c2C2(c) + @ <N + 9)) (using (A.9))

N2 2
1
< 32cpy |1+ e )(401( ¢) + Ca(¢))(Ca(c) 4+ 8C1(c))*VN.
For ¢ < 0, we obtain the same result using puf, = it and Ext,,C] = Ext[Ys,]. O

Lemma A.7. For all N > H(Rc(U)) and t € R, where H is defined in Lemma A.5 and U > 0,
there exists Cs(Rzg,p,U) > 0 such that,

2 (0" s (5))

where H1(U) = [H(Rc(U))] = [+/2II(Re(U)) V 2], ¢ : t +— txg, ¢ is defined in (A.31),
N(1) = (N,Hy(U)) € N?, N(c0) = N € N, and k, = 1+ (p — 1)1{gq = oo}.

sup < HU/2 < |t| < UYCs(Rag, p, U)N*a/>+2,

be[—R,R]P

Proof of Lemma A.7. Consider the case ¢ = 1. Similar computations yield the result when
q = oo. Denote, for (¢,b) € R x [-R, RJP, by

82 R t P/2 . b
R(t.5) = |5 <<‘27E>‘> OV <R>)‘
We have
Rxg p/2 /2 p|p_2’ 1" Rc(t) b
rew <(32) | (S e+ ool o)) i (7))
e b RIS
p / N(q) 2 N(q)
+ (Ba) <W(t>+2'¢(“'> . ()| + e o0]| =% .

Using that, for b € [-R, R]P and ¢ # 0,

NG (b P b\ | Ov§ b;
(9) c 1(U)
az\éq <R> ZJZQM\Z( ) H¢H1(U < l> gCU <}%)
l#]

' (llin (% )) 2 (%)




ﬁ g0 (b Wi w) (b;\ Winw) (br
mU) \ R dc R dc R
l

p P 2,/,.C
e (b ¢ by PV wy (b
+jz;¢N (R) ll:[Qle(U) (R) D2 R/’
1#]

the third assertion of Lemma A.4, that N + 1/2 < 3N/2, and Lemma A.6, we obtain, for
(ta b) € {[_Uv _U/Q] U [U/Qa U}} X [_Ra R]p’

p/2 _
Rit.b) < (P10 N1/2<H1(U>><p—”/2< (2222 2 +-cuo)

U? U

+ (o) (% 4200 ) p (UG (e0) + CalelV) Calel) + (Ran)* Cua(plp — 1)

+ (Rao)® dpy [ 1+ M(iw)) <C4(C(U))N5/2 + Cs(c(U))N*2 4 Cy(c(U))VN + C7(c(U))> > :

where we use that N > H;(U), denote by Co = supyja<|y<ir |9/ ()], C10 = supy ja<iy<ur 19" (1)1,
and C11(U) = (4C1(c(U)) + Ca(e(U)))? C3(e(U))*.

Thus, because supp(¢) C [-U,—-U/2] U [U/2,U], there exists Cs(Rxo,p,U) which only de-
pends on Rzg, p, and U, such that, for all t € R, suppei_p pp R(t,b) < {U/2 < [t <
U}Cs(Rxq,p, U)N?*+1/2, O

Lemma A.8. For R,z9 >0, 0 > kq/2+ 2, and ¢ € {1, 00}, we have

3
vr s Bertnziipy / 2 (S mf2 e o) ] ar < S2EE00P),
8 R ’7']{?
meN) q

where

1
C'II:‘L(t) = <a¢$7(1t)> )
2r/? L2([-1,1]7)
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2r=1p1(2 1) /8\%tP 3p20/3  T(2 1/2
Cia(Rro.0.p) = pl'(20 +p + )( ) +7Tep V3 (20 +p+1/2)

(20 + p) 3 91 (204 p—1/2)20+p+1/2°

Proof of Lemma A.8. When ¢ = 1, we make use of |m|; < p|m|, . When ¢ = oo, using
that Py (-) = 1{|-|,, < 1}/2P/2, that for all m € Ny,

<P07¢21>L2([_171]) < 1, that for m > |C|,

‘<P0,1/}$n>L2([_1,1])‘ < |uS,| /V2 (see Proposition 3 in [8]), that for all m € Ng |uS,| < /27 /c(t)
(see (3.45) in [42]), and using Lemma A.1, we obtain

/| S imf [ch @) | dt
R

meNg
|m‘20 MC(t) )
< / e N i mZ ) =11+ ) mlel | ar.
R m| o <le(®)] [ o> e(®)]
_o9r - m|%med [ ec(t 2mloo
< / L D ST TS W S ‘9 (4‘772’) ) dt.
R |  <le(®)] [ >e(?)] >
Then, using for the third inequality that (see (1.3) in [40])
o I'2m+1) _ 2m +1
27t,2m 34 2m 2mIn(2m+1)
2t = <
/0 € (2r)zmt =° ¢ (27)2m+1
we have, for 7 > 3e7+P/2-1/4 Ry /8,
/e_zTM S i | | at
R meNj
o0 20 3 20 t) 2m
<9 —2rt M qflet)] > 1)+ T m ec{ dt
- p/o € ;t) (m+1)t-p e =1} + 9 ;t) (m+1)=r \ 4m

00 c(t)+1
< 2pp/ €2Tt/ w? P gull{|c(t)| > 1}dt
0 1

3 +1 2m  poo
2P R
4 Te'p Z m2otp—1 <€ fUO) / o 2Tty2m gy
9 0

4m
m>1
< 22(0’+p)p /oo C(t)20+pe—27tdt + W63p2p\/§ Z m2a+p—l/2€2m ln(BRmo/(&r))‘
20 + D 1/(Rzo) 97

m>1
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Then, we have, for 7 > 3¢7tP/2=1/4 Rz, /8,

Lot S ime el | ai
R

P
meN;

< 271p T'(20 + p+ 1)(Rw)?7 P n Tep2P/3 Z 20 Hp=1/2,~(20+p=1/2)m

= o tptl
20 +p TOTP 97 o]
2r—lp 8\ 20 tP we3p2P/3 [
F 2 1 e t2a+p—1/2 —t(20’+p—1/2)dt
= (20 +p)T (2o +p+ )<3> * 97 0 ‘
< Ci2(Rxo,0,p)
- Tkga '

0

A.3. Relation between ”H%%}L{ . and Sobolev ellipsoids. Define, for ¢ € {1,000}, the
Sobolev ellipsoid

H1o5(1) = {f S IFUC R R (v < W} ,

kezp

where
1 ita itk
(A.17) F[fI(t, k) = (21%)”/2/Ret /[RR]pe kTO/R f(q, b)dadb.

Lemma A.9. For all 0,0,[, M,R> 0,0 =0 +1/2+96, (¢,q) € {1,00}%, ¢ = (1V |-])*, where
s> 0’ +p/2, and (Wk)pen, = (K7)pen,  there exists a finite constant A such that
q,s,0' q,0,w
HO () cHige (VAL
where kg =14 (p — 1)1{q = oo}.
In Lemma A.9, we do not explicit A as a function of 0,0, 4, s,1, M, R for simplicity but it is

given in (A.24) in the proof.
Proof of Lemma A.9. Take f € H?%9 (I). We have

/ > o) (v i) de= [ IR (1 112)
meNg

= [ S AR (1P at

R gezp

< 27l (because fe Hq,’s’al(l)) .
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Thus, f satisfies the first the first inequality in the definition of H‘{’(‘é{,“[iR . (VAI).

Let us now check the second inequality in the definition of Hq ¢’ o (VAL), i.e.
(A.18) / D Im b ()| dt < 2w AP,
meNp

To show (A.18), we show that, there exists a finite A’ > 1 such that for all N € N,

2w A'l?
(A.19) / > lbm@®)dt < N

|m| >N

and then denote by A = A’ (koo /kq)* (14 1/(20)), which yields

- im|?
/ > I bm (D] dt = / > |20 [bm (£) [ dt

meNj meNj m;éO o0

2 1.20"
-[x vz om0 27

k= 1mENg,|m|oo*k

Z 1 .
S 27TA/Z2 ( k1+26> (usmg (A].g))
72 1 o
(A.20) <2rAl (1 + 2(5> (using integral test for convergence).

Thus, when ¢ = 1, using |m|; < p|m|_, we have

/Z 2 [brn |dt<p2“/ S [l oo ()] d

meN) meNp

(A.21) < <k]‘:°>20 2 A'l? (1 + 215> (using (A.20))

q
< 2 Al?

hence (A.18). When ¢ = oo, (A.21) yields (A.18).

Note that (A.19) is true for N = 1, hence we now show (A.19) for N > 2. For ¢ € L? (W[@;% R])
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we denote the projection of ¢ on the vector space spanned by <¢,cq(f) (+/ R))| e by
1 et) (- 1 et) [ -
e = X {oth il (7)) il ().
(®) |m%O:<N (2R)p/2 m <R> L2 R.RIP) (QR)p/2 m (R)
meNp

2
Then, using that || Fie [/] (¢,+) — P2 Fist [/] (¢,)|

be rewritten as

. 2
vty = Simlz (), (A.19) can

2 2r A'l?
N
, D) — . < 2
(A.22) /RHE“ 1) = Py Fase (A1 )) L2(-RRpP) N2
Proof of (A.22). Define (¢m, ('/R))meNg = (e”mT'/R/(QR)pm) w which is an orthonormal
meN,

basis of L?([— R, RJP) and denote, for m € N§, by F[f](m) = f[_R Ry € eimmb/R £ (b)db/(2R)P/?
the decomposition on (¢m, ('/R))meNg by

F m) T
o)1= 3. (2[2])2/2)6 "

|m| <N
meNf

For ¢t # 0, consider the function ¢ € L? (W[_R’R}p) defined by ¢(-) = Fig [f] (¢,-) and denote
by N = [ON] with § > 0. This yields

0= 2020 2
<21~ ~ 20 (6= 17 el )
< 2o~ 6l % - 20 }

satisfies

Th dt hich we denote by Kp = (2R)? [£¥¢ - P, )
e second term, which we denote by Kr = Y- ('OLZ[RR})

Kp = Z <90(')a Pk (§>>L2([—Rﬂ]p) Ok (%)

|k|oo <N
kezp

> 3 A0 (7)) i (4 (B () o (R)

[m| >N |k|oo <N
meNy  kezP

L*([-R,R]?)
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This yields, using the Cauchy-Schwarz inequality for the third display,

2
kel T o) (T () ) ()
g v LA REP)
2
:meNP:zlr;z >N k|ZN <¢(')’¢k (§>>L2([—R,R}P> <¢k (§> v <§)>L2<[—R,R]P)
R
S ( DR CORE (ém?) ( > [(on () wn (}MQ)
meN?: |m| >N \ |kloo<N K|oo <N
kezZP keZP
| 2 teomtar (z T o) <é>>2)
kezp meN] koeo;?
< (Z | [ (k)!2> Iyn(),
kezpr
where

2

Iyn(t) = > > <¢’"’ (E) o (§>>L2<[—R,R1p) '

meNL: |m| >N  keZp: |k|loo<N

2

We now compute the coefficients : as the product of coeffi-

(on /B C/R)

cients in the case p = 1. Denote, for (n,m) € N3, by g7 = <¢§§t) P

’ ”>L2<[—1,1]>
<¢k (E) ! <§)>L2([—R,R])

/2 r1
= <R> / e”kzlﬁggt) (z)dx
2 -1

. We have
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n>|m/M |

P2 [l k
:<2> Z & < >L2([ 1,1])+ Z Bn \/7\/: Iny1/2(km)

< (2R)1/2 (Im,k V Jm,k) ,

where
|m/M|—-1

Im,k — Z ﬁn < zwkx’Pn>
Tk =Y 5m\f\/n+1 /241 /2(T).

n>|m/M |
Using that for all £ € Ny Ke”’“ , Pn>’ < 1, Proposition 3 in [8] for the second inequality, we
obtain, for m > M V (e|c(t)|) and M =8/5 > 1.4,

lm/M]—1
n=0
lm /M| -1 PO
5 24/ Xm
< o 2| e)
=\ g |Fm ’ nzo ( EG] )
[ ) [ o4/xi!
< 2, ,c) / 2 fy(lt)
Vi ’um ‘ ; )] dx (because Xm~ > |c(t)]
1 )

S -

/0 lm/M)|
c(t)
c(t) 4z Hm |e(t)] '
In {24/ xm [ |e(®)]

Thus, for m > M V (e?|c(t)])), using Lemma A.1 and (3.4) page 34 in [42] which yields

In {2 Xﬁs,t) /le(t)] ) > In(2) + 2 for the first inequality, and decomposing the exponent as
m =m/M + (1 — 1/M)m for the third inequality, we obtain

’Im,k’

5t 1 2 /mm+ D+ e )" <€|C(t)| m
18 In(2) + 2 lc()] A(m + 1 /2)>

PN <2¢1+1/e2<m+1>)mm<e|c<t>|>m
- 2

le(t)] 4m
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m/M
< 21 ¢? +1(m+1) / AR (- M (2™
= V18 (@) + 2 @2m+1) 4 P M) ele)]
5e3 vez+1(M+1) 1 m
— exp|—(1——|mln| ——
18 (In(2) + 247 1(2M + 1) M e |c(0)]

< apexp <— (1 - ]\14> min <e\zzt)\>> ’

where

5e3 ve2+1(M+1)
18 (In(2) + 2)4M=1(2M + 1)

Using that, for « > —1/2 and = € R, |Jo(x)| < |2/ (2°T(a+ 1)) (see 9.1.20 in [1]) and that
|6 < 1 for the first display, then that m > M for the third display, we obtain, for all k£ € Ny,

gl <D i, (lm)

n>|m/M |

G (5) " o ()

m 1 m 2m km n\”"
<4y/ 27rM9M/m7 exp <1n <k7reM9M/m>) exp <2> (because n! > (E) 27m) ,

where 057/, = 1 — M/m. We have, taking N = |ON], where § > 0, for all ¢ such that
N > MV (e?e(t)]),

)N —

Iy (@) <2R)P (L(t) v J),

where

= %5 watew (<2 (15 ) min ()

|| oo <N m>N
kezr mENy

- ¥ 3 oI (5rer (57 (o) e tom).

|k|oo<N m2N j=1
kezp mMENg

Then, denoting by

= iln 2
M= P et
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and using that N —1 < N and that sup,»; m*e ™™ = ¢((2p — 1) /(pyare))? for the second
display, taking 8 = 2/(me?M) for the last display, and v = vy — f7 > 3/4, we obtain

m 9M/m o2m om —\
Z Z 2w Me2 exp —Mln NreM eXp(N7r)
\k| <N m=2N
kezr mEeNg

HM/m exXp (GN‘() b 2 2p
< —
< E ( Y > ( ) /N exp (—pm~yar) dm

— EYM
|eoo <N
kezZP

< D < exp (—pyN)
M~2,e?
\k|oo<Np7M TM Y€

ke7zP
< (20N + 1)P apg, g exp (—pyN)

where

L)
ap,g =
pym \wM~32 et

= (1 37) 0 ()

and using for the second display that sup,,>; mPe P*M m — (gpr(t)e)~P, yields, for N >

MV (e?|e(t)]),
L(t) < (2N +1)P ngNmpexp< (1 ]\14)mln(e\iv(t)\>>

m&No
<W>p/;° exp (—prar(t)m) dm
<(29N+ 1)aM>P 1

ka(t)e prar(t)

Then, denoting by

IN

IA

exp (—prar(t)N) .

Thus, we obtain

Inw(t) <(2R(20N + 1)) <aM,JemN \/ (( O‘M) )p 1 (t)epwa)zv))

kn(t)e) prm

p
<NP(2R(20 + 1 (QMJV (( e) 1 )) o P(YARN (8)N

pr(t)
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hence

(A.23)

p
am 1 - 1—1/M))N
sup I.~(t) < NP(2R(20+1 p(a : << ) ))ep(%( )
t: [t|<N/(e2a0) ) (R eV (1-1/M)e/) p(1—-1/M)

Denote by

0= (20+1)" (aM,J V <<(1 —a1A/4M)e>p p(1 —11/]‘4))>
F=py A (1= 1/M).

We conclude, using that for |t| > N/(e%xq),
Iyg@ <R* > lée OlTaqnip

keZp: \k|oo<ﬁ

< R(2N +1)?,

and for the last display that sup,s; t*/e’ = (a/(be))*, where a,b > 0, that we have

2

dt
L*([-R,R]?)

/R H}—lst [£1 (¢, ) — PRy Fuse [F] (2, .)‘
2
<

o [ S 1 Fw i o
< sup I t/ Fist [f] (t, k)|" dt
CR)P 4. jen/(e2a) N N/ (e2a0) Pt

L 220+ 1PNPRY 1 /
2p (LV (N/(€220))?)% Jit|>—N/(e20)

Z | Fist [f] (6, K) |2 (1 [t]?)*dt
kezr

dt

n Q/R H}'lst 1) — ENFia [£1 1, -)( 2

L2([~R,R}?)
4(20 + 1) RPxl2 NP

< AGNP e 2
= foite T 2 (1V (V/(e2z0) )27 +7)

47Tl202a.l . q/ s.o! ’
W (USIHg f e HT* (l), S>0 +p/2, and |m|1 > |m|oo)

(A.24)

< (o5 (P2 p+2“’+2(20+1)PRP N2o'+p N 262"\ 2712
- Ype 2 (1 v (N/(e2x0))?"*+7) ~ (2R)P | N27"

This yields (A.22) hence (A.19) then (A.18), hence the result. O
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A.4. Properties of the SVD for W (-) = cosh(-/R). The following proposition is from [20].

Proposition A.2. For m € N}, R > 0, and t # 0, we have

p
Hth:EOHLOO([—LHP) S HW(t) H \/mj + 1/27
j=1

where
(1) when W = W_p g, using (66) in [9], Hw (t) = H} (1+ (Jt|zo)?)", where Ho = 2(1 +
1/V3),
(2) when W(-) = cosh(-/R), Hw (t) = HY((|t|x0)® V (1/+/[t|x0))P from Corollary 1 in [20],
where H; > 0.

Proposition A.2 is used to prove the adaptive selection of the parameters.

APPENDIX B. PROOFS

A.1. Proofs of Proposition 1, 2 and 3.

Proof of Proposition 1. The first assertion comes from the fact that W is nondecreasing on
[0,00) and W (0) > 0. For the rest, we use that, for every h € L2(W®P), if we do not restrict
the argument in the definition of F.[h] to [—1, 1]?, F.[h] can be defined as a function in L?(RP).
In what follows, for simplicity, we use F.[h] for both the function in L?*([—1,1]?) and in L?(RP).
Let us now show that, for all ¢ # 0, F. defined in (3) is injective. Take h € L? (W®P) C L?(RP)
such that F.[h] = 0 in L? ([-1,1]?). When W~! vanishes at one point, this implies that h is
compactly supported, thus, by the Paley-Wiener theorem (see, e.g., Theorem 7.23 (a) in [44]),
its Fourier transform can be extended as an entire function which restriction to R? belongs
to L? (RP). Because the Fourier transform vanishes on a subset with nonempty interior, then
Flh] = 0 on RP, thus h = 0 in L?(RP). Now, consider the case where W~1(z) > 0 for all
x € R. F.[h] belongs to C*°(RP) by the Lebesgue dominated convergence theorem because, for

all (k,u) € N x R,
L

We obtain, for all (k,u) € Nj x RP,

iS]

c‘khbke“bT“h(b)‘ db < ¥ 1] oy H

p

[Fe[R ) ()| < bl ey T M
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Theorem B.1 in [17] and the fact that, by the Cauchy-Schwarz inequality, for all j € {1,...,p},
k e Np, My; < My; 1My, 11 yield that F.[h] is zero on RP. Thus, F[h] and h are zero almost
everywhere on RP.
We now show that K is injective. Take f € L? (w ® W®P) such that K[f] = 0. By the Plancherel
identity and the fact that w > 1, we have

/ | Fist [f] (¢, b)|* WEP(b)dtdb < 27 / |f(a,b)|* w(a) WP (b)dadb < oo

Rp+1 Rp+1

thus, there exists 21 C R of Lebesgue measure 1, such that, for all ¢t € Q1, b — Fig [f] (£,b) €
L? (W®P). Hence, by the above, for all t € Q1 and ¢ € R, w — F.[Fig [f] (t,-)] (u) is con-
tinuous. Also, because |[K[f][| 2rxj—1,1p) = 0, there exists Qy € R of Lebesgue measure 1,
such that, for all t € Qa, [[KC[f](¢, )|l 12(j—1,1jp) = O- As a result, using (5), we have that, for all
(t,u) € Q1 N Qe x [-1,17, K[f](t,u) = 0. Using again (5) and the injectivity of F. for ¢ # 0,
we obtain that for all ¢ € (23 N Q) \ {0}, Fist [f] (£,+) = 0 in L2 (W®P), thus Fig [f] (x,-) =0
in L2 (1@ W®P) and f = 0in L? (1 ® W®P), hence in L? (w @ W®P).
We now show that K is continuous by showing it is continuous at 0. Indeed, for f € L? (w @ W®P),
by using successively the change of variables, the Plancherel identity, and the lower bounds on

the weights, we have

KU o gy < [ VFLA ) (¢ o)t

— 2n)P /R 1(@b) (a.b)dadb

2r " a,b)* (a, b)w(a) WP a
< (ymi) [ @O @byt )dads

2w p 2
=\ 1122 wzwer) -

Consider the particular case where w = 1. To show that K is not compact, we exhibit a

bounded sequence (fx)yen, in L?(1 ® W®P) such that there does not exist a subsequence of
(K [f#])ken, Which converges in L*(R x [—1,1]"). Take vy : R — R with supp(vg) C [1,2]
and |lvo|z2wy = 1. For k € Ny, define vg(-) = 27k/2y(27%.) and, for (a,b")" € RPH
fr(a,b) = F! [vk(-)gog/’xo'(b)} (a). The sequence (fy)en, is bounded in L? (1 ® W®P) because
of the Plancherel identity and the fact that, for k£ € Ny,

1

2 2

f S ¢

H kHL2(1®]/V®p) 5 /Uk( ) /p

2
o ’mo(b)‘ WP (b)dtdb
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1
< —.
27
Moreover, using that & [fi] (-, *) = Ungo vk(-)gg/’xo'(*) |Jio-|p/2 for the first display, that for
m € Ny, ¢ € (0,00) — pi® is nondecreasing (see Lemma 1 in [20] for the case of W = cosh,
which can be directly extended to weight W that satisfies Assumption 1 (H1.2)) for the third

display, and that, for all j € Ny, [vj]|z2@®) = 1 for the fourth display, we obtain, for all

2
‘O_(I;V,tmg |tzol?

I 1£5] = K Ul 1) = /R W(Qﬂ)p (v;(t)? + vy (t)?) dt
= [ A eny (0,02 + onte)
> pgv’y””o(%)f’ / (vj()* + vi(t)?) dt

R
2(27T)ppwxo > 0.

O
Proof of Proposition 2. This holds by Theorem 15.16 in [33] and the injectivity of F. (see
the proof above). O

Proof of Proposition 3. Take f € L?(R) and start by showing that Z,, [f] € L*([—¢,¢€]).

W(_1,1],a0€

First, note that the terms 1 — pp, in the denominator of (9) are nonzero because

WiZ14) . . . WiZ1,1)s . .
(pm[ b a06> y. 18 nonincreasing and p, Y "¢ < 1 (see (3.49) in [42]). Now, using that
meNg

<g,V,[:[ RIS (/) /\f) i~ is a basis of L?([—e¢, €]) for the first display, that <p¥[71‘1]’a06)meNo is
nonincreasing for the second display, using the Cauchy-Schwarz inequality for the third display,
and that >y, EL/[ LI — 9q0e/m (see (3.55) in [42]) and ‘ P=11),00¢ ; - 1/ o
(see (3) in [8]) for the fourth display, we obtain “
5 () o () T O
e (1 _ an‘:[—l,MOE) ¢ ’ €/ /] L2(R\[—¢,e]) e/ 11L2([—e,q)

Ly b 1”’%6)2 < " (o) 2
meENg <1 — pm a0€)2 \/g L2(R\[—¢,¢€])
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HfHL2 (R\[—¢,¢€]) ~ Z ( a06>2Hg’I’IV}L/[7171]7a06

- (1 _pW[ 1,1 aoe) e L2(R)

(A.25)

2

2aq€
< -
- (1 — oy [~1,1],@0€

)2 ||f”%2(]R\[—e,eD :

Let us now show the second statement in the proposition. Take ¢ > 0 and g € PW (ag).
W1 1) .
Because g(e-) € PW (ape) and (gm[ b aoe) N 52 complete orthogonal system of PW (age),
meNg
there exists a unique sequence (auy,)men such that, in L2(R),

(A.26) ge) =3 amgm ().

meENg

Hence, because <g¥[_l’”’aoe> is a basis of L?([—1, 1]), we have a,,, = <g(€'),grvr‘z/[_1’1]’aoe (')>L2([ L)

Moreover, we have

oo
W, Wi_111,
Z amgm' () = g 2 1)+ Y g ()] < 1),
m=0
Taking the Hermitian product in L?(R) with gg =L ) on both sides yields
Am

- v = . . W[_171]7(10€ . >
= (M 2 b O) L e

Hence, we obtain Z,, [g] = ¢ in L*(R).
Now, for f and h in L?(R), using Za, [Pay [f]] = Pao [f] in the second display, we have

1 = Zuoe (B3 2cy < 2 (1 = PaolflZ2(cy + 1PaolF] = Zaose A1)
(A.27) < 2 (I1f = Paol A2y + Zane [Pao [F1 = Rl 2y ) -
Replacing f by Pg, [f] — h in (A.25) yields

Clag, €
(A.28) oo P 1]~ ey < 2 10 1] Bl

Using (A.27) and (A.28) for the first display, P, [f] — h = (Pao[f] — f) + (f —h) and the
triangle inequality for the second display, we obtain
1F = Zag.e (I 72y < 21F = Pag 117 2(—c.q) + Cla0, ) [|Paolf] = Pl 72\ (-e.)
< 2(1V Ca0: ) |Lf = Pao [f1lI72z) +2C (a0, €) |Lf = hll72 ey -
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O

Lemma A.10. For f € L2 (R), where w is even, nondecreasing on [0, 00), such that w(0) > 0,
and with R > 0, we have

PR 7 (11 = F 1172y <

27
w(R)
Proof of Lemma A.10. The result follows by the Plancherel identity

[PalF L7 = F11]}ey =27 [ Mlal > RIS (@) da

2 9
< w(R)/R\f(cw

0

A.2. Lower bounds. We consider the problem of nonparametric estimation of a function f
in a class H C L?(RPH1). We use

fjn ;

inf supE[
fn fEH

-1];

> inf max
L2(Rrt1) frn fin€H, j6{1,2}

L2 Rp+1)]

where f;,,, for j = 1,2, are two well chosen functions. We denote by IP;,, the law of the data
implied by a function fj,, for j = 1,2. We use the following lemma (see Theorem 2.2, (2.5),
and (2.9) in [16]), where x2 and K denote respectively the x2 and Kullback-Leibler divergences.

Lemma A.11. If, for £ < v/2, we have

(i) Ym € {1,2}, fmn € H,
(11) Hfl,n - f2,n”%2(Rp+1) > 4h% > O,
(iii) XQ(PZnaPl,n) < 52 or K(PQ’n’PLn) < 527

then
L?(RP“)] e \/< (1 - >> '

Proof of Theorem 2 (1). Here, for j = 1,2, IP;, is the law of an i.i.d sample of (Y, X;)i",

inf max [
fn fim€H, je{1,2}

— fim

when f, g = fjn and for the same marginal fx|y. We use the notation Cx = HfX\XHLoo(X)'

We show that conditions (i)-(iii) in Lemma A.11 are satisfied for n large enough using

(A.29) fin = foand fo,, = fo +vHnN,
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where N is odd and + are chosen later as a function of n, for (a,b) € RPHL,

p/ ~
(A.30) Hy(a,b) = Fi, [<6(2|fr|)> Zi_’N(Q)h(p(t)ch(t) <b>

— <

— T

N(1) = <N, Hl(U)T> € NP, where H1(U) = [H(Rc(U))] where U > 0 is chosen later
independently of n, H(Rc(U)) > 2 is defined in Lemma A5, N(00) = N € N?, R > 0,
c:t e R txg, p € C°(R) with supp(¢) C [-U, U]\ [-U/2,U/2] and

(A.31) Vt € [~U U\ [-U/2,U/2], é(t) = exp <1 T _13U/4)2 /U2> )

and, for 7 € (0,00) chosen later independently of n,

1 I{|b|, < R}
T <1 + (CL/T)Q) (2R)P/2

f()(a, b) =

Clearly Py, is absolutely continuous with respect to P1,. We denote by b, and b2, the coef-

ficients (bm('))meNg of f1, and fa .

Step 1. We start by showing that fi, and fs, satisfy (i) in Lemma A.11.
Step 1.1. We prove that fi, and f2, are densities when N > H;(U) and + satisfies

~U Uz p/2 1 kq/Z_ 1
A.32 N + — =,(U) < h <1
A32) a7 ( o ) T3) =Gty ekt

2a2 —20/27(1 + (a/7)?)

where Z,(U) = (H1(U) + 1/2)<P*1)/2+(1 — (Hy(U) + 1/2)@*1)/2) 1{q = oo} and Cs(Rxo, p, U)
is defined in Lemma A.7. We show that (A.32) and (A.33) imply that, for all (a,b) €
R x [-R, R?, fo(a,b) > |vHn(a,b)| which ensures that fa,(-) is nonnegative.

Using the third assertion in Lemma A.4, we obtain that, for N > H;(U) and all (a,b) €
R x [~R, R,

(o) < ()" (v 1) =) 1o ar
T Ton \2n 2 e R

’YU Uw[) p/2 1 kq/Q’—
Sw(l /) ( . > N + 5 =(U) <because 161l oo () < 1) .
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This yields the condition (A.32) in the case |a| < 1. Additionally, because for all b € RP,
t— th"”O (b/R) is analytic (see [19] page 320),

((ID) N hﬂ>wi§><g>

belongs to C*°(R) and its derivatives are square integrable because their support is compact.

Thus, by integration by parts, we obtain, for |a| > 1 and b € R,

/_my RN 0 (2 ngioy < my ) as
Re ot? 27 N@ \ R o=

U

1 0’ Re([t]) p/2 Re(t) (b
< 7m2RP/2/U/2 o2 << o > QL <R> 1{|b|, < R} ||dt

Using Lemma A.7, for N > H,(U) we have

1
2mwa?Rr/?

|Hx (a,b)| =

UGs(Bzo,p,U) \ iy j2+2,

> p <
(A.34) Via| 21, ¥b € R, |Hy(a,b)| < — 00

Thus, (A.34) yields the condition (A.33). Due to (A.32) and (A.33), f1, and f5, are nonneg-
ative.

Step 1.2. fi, integrates to one because prH fo(a,b)dadb =1 and f5,, as well by the Fubini
theorem and because for odd values of N the functions b € [—1, 1] — 5, (b) are odd.

Step 1.3: We prove that f1, and f2, belong to in HZ ¢w(l).

Clearly, we have that [p, [p fin(a,b)? (1V |a]) W, RR](b)dbda < 00. The same inequality
holds for f, when (A.32) and (A.33) hold. Indeed, we then have for all (a,b) € RPT!
fon(a,b)® < 4f1 n(a,b)% Thus, fi, and f2, belong to L? (w ® I/V[@)Z;2 R])

Let us show that if

F2s+1) 1 o (Rxo\? (1VvU?*)Urt )
A. ) [ i N < 7l
(A.35) ( (27 )25+ 4'27-+7 < o p+1 =7
2U (1{q = 271{q = 1}) y*N*° P
(A.36) Ciz(Rwo,0,p) | (1{g = oo} + p*U{q =1}) v URwo\" _ o
Tk2o p+1 2

then because supp (b — [ fan(a,b)da) C [-R, RJP, fa, belongs to H?U(?;(l) and because fi
corresponds to fa,, when ~ = 0, this holds for both f;, and fa,. Using the definition of b2, ()
for the first equality, then Proposition A.1-(iii) for the second equality, a change of variables,
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and that for t € R, Fig [fo(-,%)] (t) = e HT1{|x|_, < R}/(2R)?/?, we have for m € Nj,

Biat) = {Fise o 0] (1) 7Pt [HN G 0] (1), om0 ) (W)
[-R.R]

i—Iml 01 [ *
- <.7:1st [fo(-s%)] () +vFuse [Hn (-, %)] (1), RP/2 T [ m )} <R>> (
L2

W )

(A.37)
= et (Lt )

Thus, using that (1#516@)) w is a basis of L2([—1,1]P) and that [|1/2?/2
me
obtain that, for all ¢ #£ 0, ’

S pR)) §2<627|t+72 <R(;(7Lt|)>p¢(t)2>'

meN

NN @], (Bt
iy, T M= N @) (F2DY o0

HL2([—1,1]P) =1, We

Thus, using the Fubini-Tonelli theorem for the first equality we obtain

Z/ 1\/|t|25 162, ()| dt

meNp

/(1\/|t|25> S |2t dt

meNp

<2 </R 2l (1 + \t\25> dt + <1§?>1’/R (1 v |t|25) 1t[? ¢2(t)dt)

P 1 25 p+1
§4(I’(28+1)+1+72<Rx0) (1vUu>) U )

(27)2s+1 2 o p+1

which yields (A.35). Moreover, using the Fubini-Tonelli theorem, (A.37), denoting by

1 Rc(t)>
7 P
<2”/ 2T e

and using Lemma A.8, there exists Ci2(Rxo, 0, p) > 0 such that, for 7 > 3e”+p/2_1/4Ra:0/8 and
N > Hl(U),

S fmf [ ol

meNp

2

Cl3q(7—7R$070p / —2rl Z |m|2U dta

mENP
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<013q(7' Rzo,0,p) ++° (2%) / 2 (t) |t* dt)

<2 <012(R330a0'7p) L (1{g = oo} + p*"1{q = 1}) ¥’ N** <UR:co>p> .

Tk2o p+1 27

This yields (A.36).
Step 2. fi, and fa,, satisfy (ii) in Lemma A.11 with 4h2 = 421,(U)/(27) (Rzo/(27))? where
I,(U) =2 f([JJ/2 [t|P ¢(t)?dt because

214(U) ( Rxo\”
(A38) Hfl,n - f2,nH%2(Rp+1) == 7 ¢( ) <0>

2 21

Step 3. Let us now show that the functions f;, and fs, satisfy (iii) in Lemma A.11. Let
¢ < V2. The x? divergence between Py, = (P1)®" and Py, = (P2)®" is (see (ii) page 97 in
[46])

x2(P2n, Prg) = (1 + x2 (P2, Py))" — 1
x2(P2,P1)
Zn/ (1+u)"Ldu
0
S nxo (IP)Q,Pl) exp ((n — 1)X2 (PQ,]P)l)) .

Thus, if x2 (P2n,P1) < 1/n, we have x2(P2pn,P1,) < enxa (P2,P1). Then, the following in-
equalities hold

2
fyx Yy, x f}%x(yaw)>
2 (2 B /sx/ fyx<y,> ddy

2
(1 x wle) = 12 x (wl))
< /S ) /R Fxix(@) oS dady.

Using (1)-(2) and that under fy the components of (a, ,BT) are independent we obtain, for all
y € R and « € R? such that « € Sx,

Rrxtle) = [ fiy=0) fhe, @) do

) LA o) i (2
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P 1 1 P
) (H %) mr(2R)? /Rp ((y— S0y w) /7" + [ o] < ] Ry

1 k=1

1
>— inf .
7T <z, R (Jy —u| /7)? + 1

This yields, using that Sx = [—x0, zo]P for the third inequality,

2
x2 (P2,P1) < m7Cx /Sx A \u\I?@c}fR ((|y — | /7—)2 + 1) (f31,|X(y\:1:) - f12,|X(y|az)> dxdy

<mcx/ ) x]p/ (29 \wh R)* +1> (Fx i) — Fx(vl)) dady
s2f&z;ww<éﬁkﬁxﬁm)wmf@
(o + ) [ (i~ Be) W) ) do

(277)20)( 2
s(A%mPAwmﬂnu—fmdﬂm@|mﬁ

+ <(x0pR ) / . Io]p/ |(F [fon] — F [f1.0]) (t,tcc)]Qda:dt>

2
SWCXW</[ ]/|at [Hy] (¢, trox)|? dadt
1,1]p

2
- <(x0pR)2 + T) / / | F [Hy] (t, tzox)| dadt
2 ) Jimiap Jr
2 P2 2
< W <11 + <(acopR)2 + 72) IQ> .

The term I; is bounded using that, for € [—1, 1],

F [Hy) (¢, taox) = (C(Qy;y) )p/z iTNOh o) F [ () Wl < BY (trow)

- (ﬁ’i”) 071 [15] 2

27 1/2
AL — p/2 c(t) RC(t) : Re(t) _ ;m ﬁc(t)
(A.39) =R Nia) wN(q using g, i Re(lf]) p ,
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which yields

Rc(t) RC( )

Y0 ()
/%ﬁl (@W”+¢“>P%m VRO @)+ [ 60— |

(9) N(q)

Using (7.114) in [412] and that cross-products terms of the last inequality are zero, we obtain

N(q) N (q) dt

Rc(t) 2 Rc t)
PN (‘1) 2 Re(t) Rc(t PN )
< Lo | | e [ | @) i 2010 VN |,

PO )\ ”
S N@© 7 2 Re(t)
(A.40) + /R /[w( o ) da | o(1)prg .

Then, using (7.100) in [42] for the second equality yields, for |t| > e,

dyon xR dpy
dt 9 pRc() de | —pe
p]IfTC(t) Re(t) 2
(v Om)

hence, using the first and the last assertions of Lemma A.4, for U/2 < |t| < U,

Rc(t)

dy/py” 3N 2(Re(U))? 220R
: < ———— | I{N I{N =
o D R (| Yy () e,
For g=1and N > H,(U), we have
Re(t —2 Re(t) -1 Re(t)
ayen _ 1 v \ e | W Pm e (AP
& (p—1) P, (U) PN dt PHy(U) dt

3N (|, 2R\ [ hetr
= 2] 33/2 N(q)

Because N > H;(U), the same inequality holds for ¢ = oo. Hence, denoting by Ci5(U) =

[-1,1]»¢

SUPseiu/2,0) 19/ ()], using (A.41) and that for m € N, ¢ € (0,00) p,vg is nondecreasing
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(using a direct adaptation of Lemma 1 in [20]), we have

Y ‘ p%f((;; 2 Re(t) R(t \/RT‘; Re(U)
2 U/QW)Q — | T0) ry Cq +2|0O]y/on dt < Cro(H,U)N?pl "),
where
Cro(H, U) =2p <1 n W)z <§g (1 T 2<R32(/Z>>2>2  %nlt) 1n<2>) 20

Using Lemma A.5 and (7.114) in [42] we have, for ¢ =1, N > H(U), and U/2 < |t| < U,

Re(t) 2
/ awﬁ(q)('z) i
[,171]1) 8t
= (Rzxp)? —
(o) (<p .

< NC17(U).

2
: dz
c=Rc(t)

where C17(H,U) = 2p(4Cy(H) + Co(H,URxg))? C3(H)2U?(Rxo)*. Because N > Hy(U),

the same inequality holds for ¢ = oo. Thus, denoting by Ci9(H,U) = RP(Cis(H,U) +

UC17(H,U)/H1(U)) and using (A.40), we obtain for N > Hy(U)

(A.42) I, < C1o(H,U)N?p Rc(g’
y (A.39),

2= //[11 N(q 1/1 (2) dtdz

< /]R RP gb(t)thpfﬁc ((5) (pcﬁ @ is nonincreasing in ¢, see Lemma 1 in [20])

<RrUpEY).

=Y R
Using the upper bounds on I; and Iy and Lemma A.1, we have, for U such that 4/(eRc(U)) > 1
and N > Hy(U),

Y.Z oY.Z il
(A.43) X2 (P2 Py ) < Coo(H, U, 20, R, 7)y*N? exp <—2qu In <e}%(U))> ;



A-33

where
(2m)*(woRe(U))PCx e (Ci9(H,U) + RP(U(zopR)? + 72/2)/H1(U)?)
9p7(exp (2(p — 1)H1(U) In (4H1(U)/(eRe(U)))) M{g = 1} + 1{g = oo})

As a result, (iii) is satisfied if

CQO(Ha Ua xo, Ra 7-) =

AN
(A.44) Coo(H, U, 0, R, T)er? N? exp <—2qu In <M>> n < €2

Step 4. We tune the parameters as follows. We take U = 4/(Rxge), 7 > 1 such that

1/(2s+1) o+p/2—1/4
S 2 (T(2s+1) +1 \/ 2C12(Rxo,0,Dp) \/ 3Rxpe ?
ml? 22s ml2k2o 8

N = [N], where N = 3(In(n)/ Inz(n))/(4kq), and v = C,/N’, where C, = My A /My A /M,

where

Uxo P2Q1(14p/2) 2Qs
Mi="ay 1/7‘ V2820 (( q(U)RP/2> A (Cs(Rxo,p,U))) ’

7l?(p + 1)U [ URxy 1
Mo =
2 4 < 1\/U2S /\]l{q:oo}+p2"]l{q:1} ’

M3 =

Cao(H, U, xo0, R, T)e’

where, using that ¢ > 2 + k,;/2, Q1 and Q2 are such that N° /(N 4 1/2)%/2 < @, and
N7 /N?tka/2 < Qy. Hence, (A.32)-(A.33) and (A.35)-(A.36) are satisfied. Moreover, this yields
that, for N > Hj(c(U)) (this is satisfied for n large enough),

=2
ny?N%exp (—2k,N1n (N)) < 2(2277;0]\7 exp (—2keN In(N))
202 31n(n) In(4k, Ina(n)/3) 31n(n)
= P <2 Iny(n) o - <4k‘q 1112(”))) ’

which yields
lim nvy? exp (—2k,N In (N)) N? = 0.
n—o0
Thus, we have the required condition (A.44) for n large enough.
For this choice of v, we have h2 = _QJCQI¢(U)/(8W) ((Rzo/(27))?). Using Lemma A.11,

there exists v > 0 independent of n such that, for n large enough,

~ 2
inf sup E / (fn - faﬂ) (a,b) dadb] > uh2,
L2(RP+1)

fn fog€HLYE (DND




A-34 GAILLAC AND GAUTIER

g
Proof of Theorem 2 (2). We underline the differences with the proof of Theorem 2 (1).
Equip L?(R) x L?(R) with <g,h>%z(R)XL2(R) = <917h1>%2(11g) + (g, h2>%2(R). It is a separable
Hilbert space. Denote by P7), the law of (9% (Zﬂn(t)) ,Jm (an(t)>> . in L2(R) x L*(R)
and by P; , the law on the space 2 (L?(R) x L*(R)) of square summable sequences with values
in L2(R) x L(R) of (Zz'n(t)) - (me (Z,%(t)) ,Jm (Zzn(t))) defined using

meNp, teR meNE, teR

fjn, hence (bin(t)) ,for j=1,2.

meNp, teR s .
Take fi, = 0 and fa,, like (A.29) replacing N(1) by N(1) = (N,0")" € Np, where N is
odd and N and « are chosen as a function of n. Using (A.37), this yields, for all m € Nb
B2,(8) = 71{m = N (@)} (- )N Ol (Re((t]) /2072 6(2).
By independence, we have, for j = 1,2, P;,, = ®m€N€ P77, hence
dPy,, dpfrfq)
APy, dpﬁgq)'

Because Py, is absolutely continuous with respect to Py ,, we have

dPs,,
() ety

K(PQ,n; Pl,n) - /

2(L2(R)x L2(R

N(q) _
ap
-/ | =2 ) | arl 0 ).
L2(R)x L2(R) dP] éq)

Step 1. We derive conditions so that f; , and fa,, satisfy (i) in Lemma A.11. Unlike in the proof
of Theorem 2, we do not have to ensure that f; , and fs, are densities but simply that fi, and
f2,n belong to va(?;(l) Using (A.34), we have that [ [ fon(a,b)* (1V |a]) Wf(’;}s’h(./R)(b)dadb <
oo. Like in (A.35)-(A.36), we obtain the following conditions

R \P (1V U?) Ur+!
A4 22 < nl?
(A.45) 7(27r> i1 =
2U (1{q = 271{q = 1}) 2 N%* P
(A.46) U (1{g = oo} + p* " {g = 1}) v URo\" _ o
p+1 o

Step 2. This is the same as for Theorem 2.
Step 3. Let ¢ < v/2. We give conditions which imply that f, and fa,, satisfy (iii).
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We start by proving that, for y € L%(R) x L?(R) and pi\”n(q) a.s

aP N(g)
N(tz)
dp!
. W,c(s) c(s) 2
= exp <y fo%( N N (q)(s)) ds > | fome (o N NG >(5)> ds
- ’ W,c(s Y ~ (s ’
JoIm ( )62 (q)(s)) ds vo 2|\ Jodm ("'ﬁ(q() )b?vw(s)) PN

where <',*>Pﬁ( o is the scalar product on

H x = {;ﬁ < f‘) :;ES;ZS ) . heI2(R)x L2(R)}
1,n 0 S)as

defined, for f; = ([, hj,(s)ds, [ hjy(s ds) , hj € L*(R) x L*(R), j € {1,2} (the functions h;

are unique a.e. because they are the derivatives of f; in the sense of distributions), as
2 n 2 2
<.f17 f2>P;ﬁTS,Q) = ﬁ (<h117 h21>L2(1R) + <h127 h’22>L2(R))

( )

and using (2.12) page 41 in [16] when one function belongs to H PN @ and for Py ;" a.e. other

17L

function in L?(R) x L?(R). Indeed, the reproducing kernel Hilbert space H PN @ of ]PN(Q) on

17L

L%(R) x L?(R) is the image of Q'/2? with the scalar product of the image structure and where
Q is its covariance operator. Using Corollary B.3 in [16] and that Q = LL*, where

L*(R) x L2(R) — L2(R) x L?(R)

L: W O fo hi(s)ds \ ,
Vn fo ha(s)ds
Hpﬁ(q) is also the image of £ with the norm of the image structure (i.e., ||f\|2~1\7(q) = ||l |5 +
1,n

|hsll5, where £ = L[h]). Finally, we use the Cameron-Martin formula (Proposition 2.26 in

[16]).
This yields

: R K’C(S)bg\, d
KPyp,P1 ) =E <Zl( ) Jo ( (q()) N(q)($)> ) > 5.2 / ‘ (@ (s) 2ds
My M N(q ) 2 2 ) N q .

Jo "m( N(g) bN(q)(S)) ds ) [ v 7 N

1,77.
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Using that
. W,c(s) 1.2
<zl ( Jo e ("'J\ﬂq) b’ﬁ@(s)) ds )>
N(q)’ % Wie(s)p2
Jo9m (9356 Wiy (5)) P

. W,c(s 2 : Wie(s
_ ( Jo e ("mq())bgﬁ(q)(s)) s ) 4+ <( BRw ) ( Jo%e (U’ﬁ<;>)bgﬁ(q)(s)) ds )>
a g (o2 _ n\\ BL "\ fom (oep2 _
JoIm (”Mq) bN<q>(5)) ds PN v N(q) JoIm (”N@) bN(q>(S)> s )] v

and that the second term in the right-hand side is a limit in quadratic mean of mean zero

Gaussian random variables, hence has mean zero (see the arguments page 41 in [16]), we have

_n We(t),2 2
(A.47) K (o, PLo) = 55 /R ‘amq) bN(q)(t)‘ dt.

Using Proposition A.1 (ii) we obtain

2 D ” 2 p
KB P =y [ (™) (T2 ) otra
R

202 N(q) 27
2
v an Wcosh(»)ch(t) 2
=Ll N t)“dt.
202 /RpN(q) o(t)

Using Theorem 3 in [20], we have that, for all U/2 < |t| < U and U = 2/(Rxge),

Wcosh(.),Rc(t)< RxgUe P _ 2
PR _<7r(1—(R:B0U/2)2) exp | =2k Nlog |

< <7r<1_26_2)>pexp (=2k,N) .

Hence, we have

2R P U~%n
K(Pop,P1y) < <7T(1 — 62)> 7 exp (—2kyN).

As a result, (iii) is satisfied if

2R P U2
(A.48) <7r i 62)> 222” exp (—2k,N) < €2,

Step 4. We tune the parameters as follows. We take U = 1/(Rxpe), N = [N], where
N =1n(n/In(n))/2ky, v = Cy1/N° and

2
C%I

~((otees) | (5 )N =i F i) ) A G (i) )
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which guarantee that (A.45)-(A.46) are satisfied and f; ,, and fa,, belong to 7—[‘{,)[}‘1)([). Moreover,
(A.51) is also satisfied because

v exp (—2k,N) < C’,aln exp(—In(n) + Ina(n) — 20 Ina(n) + 20 Inz(n))

<C2, (usingo>1/2).

For this choice of vy, we have h2 = 6’371 In(n/In(n))?*?1,(U)/(87) (Rzo/(27))P, hence the result.
U

Proof of Theorem 4 (1). We underline the differences with the proof of Theorem 2 (1).
Step 1. We derive conditions so that f; , and fa,, satisfy (i) in Lemma A.11. Unlike in the proof
of Theorem 2, we do not have to ensure that f; , and fs, are densities but simply that fi, and
fa,n belong to Hiﬁ;(l) Using (A.34), we have that [ [p, fon(a,b)? (1V |a|) WS%R](b)dadb <
oo. Like for (A.35)-(A.36), we obtain the following conditions

R.%'() p (1 vV UZS) Up+1
A4 272 < nl?
(A.49) 7 ( o > pr1 =
(A 50) 2U,.)/262/4N In(N) URx p - l2
' p+1 2m =T

Step 2. This is the same as for Theorem 2.
Step 3. Let ¢ < /2. We give conditions which imply that fi, and fa,, satisfy (iii).
Using (A.47) then Proposition A.1 (ii) we have

2 D . 2 p
KB =T [ (o ™) (507 ) otwrae
R

202 N(q) o

Using Lemma A.1, we have, for all U/2 < |[t| < U such that 4/(eRc(U)) > 1,

Wi_y 1),Re(t) 2< 2med\? B AN
(“Mq) ) S\ 7o ) e\ RN\ Ry ) )

hence

R2$063 p Up+1
> ( 27271 exp (—2kgNIn(N)).

K]PJTIJ]P)TLS
(Pa.n, Prn) ( 9 p+ o

As a result, (iii) is satisfied if

(szoe?,)p p+l
(

(A51) 5 P

57 nexp (—2kgNIn (N)) < &2,
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Step 4. We tune the parameters as follows. We take U = 4/(Rxpe), N = [N], where
NIn(N) =In(n)/(2(k + kq)), ¥ = Cy2exp(—xN In(N)) and

¢~ () |y );5)) A <W> A (Rge3>p)]

which guarantee that (A.49)-(A.50) are satisfied and f; , and fo ,, belong to H‘{j[}(b(l). Moreover,

(A.51) is also satisfied because

v nexp (—2k,N1n (N)) < 037271 exp(—2(k + kg)N In(N))
< C2,.

For this choice of v, we have h2 = 0372n_”/(’“‘+kq)1¢(U)/(87r) (Rxzo/(27))P, hence the result. O

Proof of Theorem 4 (2). We underline the differences with the proof of Theorem 2 (1).
Step 1. We derive conditions so that f1, and fa,, satisfy (i) in Lemma A.11. Unlike in the proof
of Theorem 2, we do not have to ensure that f; , and fs, are densities but simply that fi, and
f2,n belong to 7—[3}’?{,’;([) Using (A.34), we have that [ o, fon(a,b)* (1V |a]) Wgsh(./R)(b)dadb <
oo. Like for (A.35)-(A.36), we obtain the following conditions

R.’IJQ P (1 vV U2S) Up+1
A.52 2~2 < 72
(A.52) 7<2w> Pt <l
2 2N p
(A.53) 2Un"e URzo\" _ 2
p+1 27

Step 2. This is the same as for Theorem 2.

Step 3. Let ¢ < /2. We give conditions which imply that fin and fo, satisfy (iii).

This is the same reasoning as for Theorem 2 (2), hence (iii) is satisfied if (A.48) holds.

Step 4. We tune the parameters as follows. We take U = 2/(Rxoe), N = [N], where
NIn(N) =In(n)/(2(k + kq)), ¥ = Cy3exp(—£N) and

o= <<2U§?U+Rizo)p> [(2 (TJIIZS)) A G em? ZQ)D A <2<0U§)2 CgQ;oZ_j )>”>

which guarantee that (A.52)-(A.53) are satisfied and f; , and fo,, belong to H“;l}¢(l). Moreover,
(A.48) is also satisfied because

v nexp (—2k,N) < 03,371 exp(—2(k + kq)N)

2
< 07,3'
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For this choice of v, we have h2 = 0373n_”/(“+k4)1¢(U)/(87r) (Rxzo/(27))?, hence the result. O

A.3. Upper bounds. Throughout this section we use the notation

2

Zny = Sup — fXJ

fxxet f)aqx Loo()

Lemma A.12. Form € N{, G (t) = n~" 37, ™% tho (Xj/2z0) {X; € X}/ (2 fx x(X5))
satisfies

(A.54) E [Gm(t)] = cm(t) and E[Em(t)—cm(t)l2 S;xxo

Proof of Lemma A.12. The first assertion comes from

eitY Wi X
E [Cm(t —IE — g 0 <> X e X] the observations are i.i.d.
em(0)] = 0 [fXX(X) " o ( )
1 " Wtzo
=— [ E [e”a“tﬁTw} gt <m> dx (by the law of iterated expectations)
ZL‘O X i)

Z/[ " F [ fy)a, X =wou) (t)gfnvm (u) du.

Similarly, the second assertion follows from

N 1 ety <X> 2
E ||Gm(t) — em(t)?]| < E m (=) | X eXx
[t m<>|]_m§p ”f“(x)g X
T 2
<— e (2] da
n:co fxpc o

Si

2
5 thzo (u)‘ du.
nxo [71’1}1)

Lemma A.13. For g € {1,000}, we have, for ¢ # 0 and N € Ny

1
(A.55) > v < va(W, N, ),
|m|, <N P
mENg
where

(1) vg(W,N,c) is defined in (N.1) in Section 4.5 when W (-) = cosh(-/R) for R > 0,
(2) v4(W, N, c) is defined in (N.2) in Section 4.5 when W = W|_p g
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Proof of Lemma A.13. Let us start by proving (A.55) in case (1).
Case |c| > 7/4. Let m € Ny and ¢, = w(m + 1)/2. Using Equation (8) in [20] (note the

difference between normalisations for Q., with a factor 1/(27)), we have, for all m € Ny,

1 m(m + 1)
cosh().c > _mT Y
(A.56) P, 5 ¢ < 27c] ) .

Consider the case ¢ = 1. Using Theorem 5.2 in [6] for the second display, (k +p — 1)!/k! <
(k4 p — 1)P~! for the third display, and that

= (oo () -
- 2]1{' < T >} * S)s(f)nf(/ﬁ!ifﬁ“{l 2 217r<2>}

(A.57) <2]1{y |721n( )}+2\/f|c‘n{\cy

for the fifth display, we obtain,

(Iml, +p)
Z cosh()c—2pz Z exp( n;‘lc’ p)

|m|, <N Pm k<N |m|,=k

k -1 m(k
SQPZ( U )eXp< 5)

2 S -t (422

P22 (120 5 (o)

k<N

p+1 _ 1)1 c T

cosh(-),R _ pfr:r(zsh(/R)

(using sinh(|z|) > |z])

which yields the result using pn, . for all m € Ny.

Consider now the case ¢ = co. Using (A.58) with p = 1, we have

N
(A.59) Z Coi() <4 (1 \/ \/i’d) exp (W) (using sinh(z) > x for x > 0).
m=0 Pm
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Then, we have

1 b 1
(A.60) > w<II e

which, using (A.59), yields the result.
Case |c| < w/4. Consider now the case ¢ = 1. Then, using Theorem 1 in [20] we have, for all

m € Ny,

(A.61) plVe > ;12 exp ( ( +1n <|i|>) m> .

Hence, we obtain

(A.62)

1
Z Wi

|m[; <N pm

(2 5 E () m)
(B ())

it () e mle(oen ()1

O (5 e oo (1)) o ()
O (Y enlo (o))

yields the result. Consider now the case ¢ = co. Using (A.58) with p = 1, we have

N 2

(A.63) Z % o &P ( ( +1In (|e|>> N> (using sinh(x) > z for x > 0).
cosh(-),c c

m=0 Mm

sh(-),Re _ p;:)gsh(/R),c

Using again (A.60) and using pp, , for all m € Ny, yields the result.

Let us now prove (A.55) in case (2). We use Lemma A.2 which yields that for all m € Ny,
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c# 0,

Consider the case ¢ = 1. Using Theorem 5.2. in [6] for the third inequality and (k+p—1)!/k! <
(k +p — 1)P~! for the fourth inequality, we obtain

Y it <y 2 3 e (2 () V)

|m|, <N Pm k<N |m|,=k j=1

< 3, 2o (o () V)

k<N |m|,=k

s (e (e (G2 Vi)
v & (o () V)

k<N

= (el v 12;8: —+1];!<_11—)pe>ip<—2>> exp <2N " ((W) % 1))

which yields the result.
Now, consider the case ¢ = co. We use Lemma A.2 and (A.60). If N > |2|¢| /7] V 1, we use

N N
1 2 Tr(N +1
> e s e (v (TEY)) Y
m=|2|c|/n |Vl Pm 2 2 m=|2|c|/m|V1
2N A1) (Tr(N +1) 2N
e[ v1 c]
and conclude using pnvg[_l’ll’Rc pW[ RS for all m € No. O

Lemma A.14. If fX|X satisfies (H1.3) and (H1.4) then Z,, = O, (v(no,&)/d6(no)).

Proof of Lemma A.14. We use
2
_ Ixx
)
X2 Lo ()

2
|3 = £

Lo ()
- d(no)
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~ 2
Fxixe = Ixix|,
() -
<2 5(n0) +21 {HwaHLOO(X) < 5(710)}
~ 2
Ixix — fxix|| ~
<2 — LX) oy {HwaHLoo(X) || - fX\XHLOO(X) < 5(n0)}
-~ 2
fxix — xx

<ot o = S 2 ex — VBT

Hence, we have, for ng large enough,

2

~ 2
- ]ix\x < 2 fopc B fX\XH 1+ d(no)
o B e s
¥ 1l oo () X 0
4 [~ 2
< _
~ d(ng) HfX|X fX‘XHLoo(X)
else
Ifxx : HJ?XW B fXWHioo(;c)
1-— ~ <2 5(no) + 2.
n
Fx )2 Lo () 0
We conclude using (H1.4). O

Proof of Theorem 1. We take f,3 € HZ;?,’{}J(Z,M ). Using the Plancherel and Chasles

N 2
identities, we obtain g’g’T’G - faﬁ‘ < (K1 + K2)/(2m), where

L2(1@Wer) —
(A.65) K, = HII{H > e} (E‘LN’T’O — Fist [fa,,@]) ('7*)’ ;(1®W®p)
(469 Ko= 1011 < & (Taoe [F] - P lasl) )y

Let us consider Ky. Because for almost every b € RP, a — f, g(a,b) € L2(R), for those b
we have Fig [fa.p] (,b) € L*(R). Using (10) in Proposition 3 for the first display and Lemma
A.10 for the second display, we obtain

Ko < [ 209 Clas0) | Fic ) () = P s ) (58] O ey WP B

+ /R 20(a0)

1411 2 € (B = Fis aal) )]

WEP (b)db
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1\/0
/Hfa,ﬁ B)[172(uy WP (b)db + 2C(a, ) K

(A67)  <(1VC(a,6)) 5(]‘5; +20(a, K,
hence
(A.68) K+ K < (1—|—20(a,6))K1+(1\/C(a,e))étu7r(j\a4)2.

Then, by the Jensen inequality, we have

4
2
K; < 42 “Rj”L2(1®W®p) s
Jj=1

where

Ry : (t,b) s e < [t} (FoNTO _ F%NTO)

(
Ro : (t,b) — 1I{e < |t|} ( q,N,T,0 FqNTO)

Ry : (t,b) = e < [t} (FONTO — pacoT0) (¢

(
Ry (t,b) = 1{e < [t|} (F9T0 — Fig [fa @]) (t b),

ﬁq’N’T’O is defined like F\{I’N’T’O replacing ¢y, (t) by ¢m(f) (c.f. Lemma A.12), fg’g’T’e is defined
as fq NI replacing F\f”N’T’O by ﬁlq’N’T’O.
Term R;. Using Proposition 2 for the second display and Lemma A.12 for the third display,

we obtain

~ 2
E IR 32 aomwen | = /R I{e < |t| < T} /R E [\Ff’N’”(t, b) — F{N O, b)| } WP (b)dtdb

E | [om(t) = em ()P’
e < |t] < T}
/ e m|Z<:N<> (om0’

< X /ﬂ{e<\t\<T} > 1"
~(2m)Pn Jp - = Witzo =

[m[,<N(t) P

dt

Using Lemma A.13, we have

C
(A.69) & [Im0ewen] < Gom /R Ue < [t < T}t v (W, N (1), to)dt.
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Term R,. Denoting by

2 1
(A.70) V) = sup —e
(&) [l <N () oo

we have, denoting by Ay : x — (1/};‘“)( — 1/fX|X> (x),

2
HRZ HL2(1®W®p)

~ —~q,N,T,0 2
:// ]l{eg\t\gT}‘Ff’N’T’O(t,b)—qu (t,b)‘ WEP(b)dtdb
R JRP

2
o™ (b) o~ € T T X5\
Af(X ) gm'™ (7>]1 X e X} WeP(b)dtdb
/<t|<T/RP mlZN () W.tzo ; nah 7(X5)gm 70 {X; e} (b)
Y . 2
1 " eitY; W <X>
—— A (X j)gm ™ [ =L ) I{X; € X}| dt
/<t|<T k:<N| W,t:co ; n:Ug f( ]) 0 { j }
2 2
B A T—
: / Do D A g (J> {X; € X}
e<[t|<T (2m)P imlL<N @) =1 n 70
taol” (3 ’W“’”) o |
= L ) <o)

~ T 2
< s (w?\}%t 0) (e dt
~ Jesp<r (2m)P R e

where S (-,t) = EmeN" <N gm0 () A (t) and

" ety 1 1 Wiz [ X
Ap(t) = — (X ) gm™° <]> {X; eXx}.
" ; nag (ﬁ)scx fXX) ’ o ’

Then, we have E [HS(J)V("t)Hi2([—1,1]p)} =E [HS{V('J)H;([—LHP)} tE [HSéV(vt)Hiz([_l,mJ7
where

ST = D g CE[Am(t)|Gn].

Im[, <N (t)

SVt = > gh() (Am(t) = E[Am(t)|Gnol) -

Im[, <N (t)
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First, considering S{V (+,t), we obtain

182 (5 )| Loy aym)

= Z G 7O (- )/[_1 e F [fY|X,X:x0u] (t) (gx (zow) — 1) thzO(u)du

|m|,<N(t) X|x

2

L2([-1,1]7)
2

<AF [fyix,x=z0-) (£) (fé{x (xo-) — 1)
Fx )

< Zng H]:[fa,ﬂ] (tatxo')HiZ([_Lup)
(A.71)

2T
< 2 () W ) (0 -

L2([-1,1]7)

Second, denoting by

w1 1 X;
Zmt = & - X»gW’tm()(])]l X, e X},
. (@X f“)< Do (0 )X € X}

and using independence of the Z;.n’t for j =1,...,n, we have
N 2 2
E S5 Ol |Gn] = D2 E[|Am(t) = E[Am(8)(Gno] | Gn
|m|, <N (t)
< > 1k Zm’t—E[Zm’t G } "l
= n ] ] no no
Im|, <N (t)
N
S / ,Vn”xo () dx
N nwo fX|X o

| <

CXZn() /
< X “no
S Dl

|m[, <N ()
CXZn()
< D> S
nxo
|m[, <N ()

naf

— 2
m (u)‘ du
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where 35, <y 1= (V)7)1{g = 1} + (N + 1)P1{g = oo} < (N +1)".
Collecting (A.71) and (A.72) and denoting by L%(t) = (27)P || Fist [fa.8] (¢, ')||ig(Rp), we obtain

Zny 2 CX (N(t) + 1)p |t|p ~q,Wtxo 2
g’“’] = @y /eStIST <L 0+ n > (wN ® ) "

Term R3. We have, for m € Njj and ¢ # 0, when W (-) = cosh(-/R)

t _/ / itzob " u]'—lt fa,ﬁ]( ) WtIO( )dudb
[~1,1]p JRP

(A73) E [HRaHim@W@p)

11

= [, T [fa8] (£,0) ((W®p)_1(b) /[ e itwob gt () dU> WP (b)db

= | Fialfosl 007, [g,VnV t‘”ﬂ} (b)WP (b) db

o Witz / Fiat [fap) (£ B)pia™ (b) WP (b) db
= oWitmop, (1),

while when W = W_g g

em(t) = / / eitrob u (£, 5] (¢, b) gan IO (u) dudb
1,1]p JRP

= /IR U{Jbly, < R} Fise[foug] (10)F, [gm ™| (B)db (because S € [~ R, RI?)

W[ R,R] txo

- ) Wi_ tx
o / Fist o] (£, b) o= () db
[_R7R]p

W(_R,Rr),tZo

:O’m7 ’ ’ bm(t>.

Thus, in both cases, using that (ngWn’tx‘)) , is a basis of L2,5, (RP), we obtain

meNy

2
1Rs[17 2 1cowen) = /R /R ﬂ{esltléT}\F{”N’T’O(t,b)—flst [fa,8] (t,B)| WP (b)dtdb
P
-/ S ) dt,
SHIST |y SN ()
hence

HR3HL2 1@W®p) / Z Z ‘ dt

k>N (t) |m|, =k



A-48 GAILLAC AND GAUTIER

1
< /R 3w

WN(t) E>N(t)

(A.74) < 212 sup

(because faB € Hg;%u(l, M)) :
teR Wi (p) ’

Term R4. We obtain

IRl cwen = [ e <M} | 1140 < T)Fua g () = Fie o) (1D WP ()t

/ It > T} Z b (£)|? dt (because (go%mo)meNg is a basis of L? (W®p)>
meNp
_Z/]l{]t]>T}Z ()| dt
keNp |m\ =k
<mm X [ e
keNp
(A.75) <2Ll2
' ~A(T)
Thus we have
sup 72,‘%( q’NTejfa,ﬁ>
fapEHL G (1,M)ND
fX‘XES
<C 2 Cpry (W N(t) i )+ 7 L2(t) 4 CX(l + N(t))p ‘t‘p (wq,W,txo)Q dt
> e<t|<T 71_(271_)10 n q ) » LLO no n N(t)
(A.76)

1 1 M?
+C | 42 | su + + .
( <te£w§wﬂ ¢<T>2> w<a>>

Proof of (T1.2). We now consider the above equation in each different smoothness case.

2
Case ¢ = 1. Using (A.56) and (A.61), we obtain the upper bound on (w]lv‘é/)m“) , which is
defined in (A.70) and enters (A.73),

2 2\ P
~1,W,txg < l (& < s
(wN(t) ) < < . > exp <2 (1 +In (Rm't‘)) N(t)> 1 {m < TR
N
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In order to collect the upper bounds on E |:HR1HL2
1® w®p

G, | and 2| al
w®p 1®
denote, for z > 0, N € N, and a.e. t # 0, for |t| > w/(4Rx0) by
dex (N — 1P L¢P
Aq(t,N,n,z) = cx(N+p-1) |t (1\/<\/§Rxo]t!>>exp<w>
T

mPtin(p —1)! 2 |t| Rxo
2z ex (N +1)P[tP ©(N +p)
L3t —_—
P+l < () + n P 2|t| Rxg )’
and, for |t| < w/(4Rxo), by

ex (N +p—1)P7L|t|P 2rP~t e
A(t, N = 21141
1t Nym, 2) n(p—1)! g P T o)) Y

+2 <L2(t) + CX(N—;l)p |t|p> 27;’:1 exp (2 (1 +1n (R;Om)) N) .

Using (A.69), (A.73)-(A.75), and the definition of C' (i.e C' = 2(1V (2C(a,¢)))), we have
(A.TT)

gn0:| , We

_l’_

~ 4l2
RW< o NTe ) <C / AL(t,N(t),n, Zn,)dt + 412 sup N(t) 727 + ———— + M?¢ | .
no a,B fOtu@ — <|t|<T 1( ( ) n n()) + ?g}g ( ) + (1 \/T)QS + €

Take £ and n > 0. Using Lemma A.14, there exists Mg, € R, such that, for all ng,
P (E (gnovgan)) >1- 7, where E/ (gnoaga 77) = {Zno < Ml,gﬂ]v(noa 5)/5(710)}
Step 1. We show that, on E (Gy,,&,n), f€<|t|<T A1(t, N(t),n, Zno)N(t)*dt < My 1, where

dexpP~t TP\ 27 V2Rzxg TP\, Ty
M. - 11 P2 M L — )
2.Em,1 m(p+1)(p—1)! ( 8p \/ 184 \/ T + ALEn 8P \/ P !

TP 71\ 4Mi g ncx <p )p
) IEne R (B g
+<8p \/ﬂ-p> m(p+1) e+ ’
1 =exp(2(p+1)) 41, and 7] = * (80/€)*” + 1, from which we deduce
(A.78)

~ 4[2

sup R,‘fg < 2:g’T’e, faﬁ) <C << sup N(t)2‘7> (Mag i+ 412) + EEVE RS + M26> )

Fa g EHLEE (LMD e<[t<T (1vT)
fX"Xeé'

Step 1.1. Inequalities for |t| > 7/(4Rzp). Indeed, on E (Gy,,E,n), we have using (N(t) +
p— 1P~ < (pN(t))P~1, for a.e. t such that |t| > 7/(4Rxo),

(A.79) gAl(t,N(t),n, Zno )N (£)%°



A-50 GAILLAC AND GAUTIER

< (W) (1 y Y2E t!) PNt (<0 )

™ (p —1)In Ne 2 |t| Rxo

. <M175,7,v(n0,5)n6> 12 (t)N(t)Q" e <7r(N (t) +p)>

7P Ne 2t| Rxo
ex (N () + 1)PMi g ynev(no, €)\ [t N(#)* T(N(t) +p)
+ exp | ———=——=
nmP Ne 2t| Rxo
Using that for N(t) > 1, N(t) + p < N(t)(p + 2) and N(t)2 =1 < (2N(£))* ™" for the
first display and that, for all ¢ > 0, In(t) < ¢t — 1 for the second display, we obtain, for
[t] > (e V (7/(4Rx0)),

Nt Ry

Ne 2 ‘t‘ Rzxg
1 = T 1 20+p—1 B - B
< {N(:L)el} exp (2(|f| ;;3) + Ve >n1}2 exp ((20 +p—1)ln (N(t)) + m
< H{N(Z:l}exp@(p—i- 1))+ ]I{N(Z>1}exp ((20 +p—1+ m> N(t))

< %/2 (because ne > 1 and by definition of N) .
Ne

For the remaining terms we use
20 204+p—1
NP (N +p))  NOPT (N )
2 |t| Rxo Ne 2 |t| Rxo
which holds for N(¢) = 0 and when N(¢) > 1.
Then, using that ne/n < 1, nev(ne, £)/d(no) < 1, we obtain

e

™

2 /<ev<w/(4Rwo>>>s|t|gT

TdexpP~! V2Rzo\ 1 [T
< - = p
— wP(p—1)! <1\/ T ) ni/? /( EF VIt

eV(mw/(4Rx0)))

Ai(t, N(t),n, Zn, )N (t)*7dt

(A.80)

2ex M T tP (1 + N(t))P
(eV(m/(4R=0)))

1/2 n

T1
+ Mgy /
™ (eV(m/(4Rxo))<|t|I<T TPne

Step 1.2. Inequalities for [t| < 7/(4Rzq). On E (Gp,, £, 1), we have using (N (¢)+p—1)P~1 <
(pN(t))P~L, for a.e. t such that [t| < 7/(4Rxy),

(A.81) gm(t,N(t),n,ZnO)N(t)z“

0
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expP e |tP 7P N(t)20+r+l e
< 2(1+1 N(t
~ n(p-1)8 ne P i Raot| ©)

e

| exMiggnev(ng, E)N(H) + DP(H 7 N(O)* <2 <1 +1n <R:U€o|t|>> Nm) '

8Pn Ne

Using that for N(t) > 1, N(t)2°tP=1 < (2N(¢))?? P! and, for all ¢+ > 0, In(t) <t — 1 for the
first display, we obtain, for € < |¢t| < (e V (7/(4Rx0))),

Iy oo 5 )

HMO=I (LN VO (0 () 50)

N (1) = et In(ne)* | 1N (1) > 1}

(because ne > 1 and by definition of N)

- (Rxp)2ne né/Q

7" In(t)® a\e
<y :(7) b>0).
< < ecause 2121[1) " o) >

For the remaining terms we use

U o1+ ) ) = 2 o ) )

which holds for N(¢) = 0 and when N(¢) > 1.
Then, using that ne/n <1, ne.v(no,£)/d(no) < 1, we obtain

™

2 /€<t|<(ev(7r/(4RfL“0)))
2r{cxpP~ P 1

A1(t, N(t),n, Zn, )N (t)* dt

TP

P dt + Mg, / L2(t)dt
(p—1)18 172 /eﬁtS(eV(W/MRxo))) d PR Jecuevin (4Rao)) "
(A.82) + W/ W—N(t))pdt.

nl/%gp e<t<(eV(r/(4Rwo)) n

Step 1.3. Conclusion. We have

/T 11+ NP, T (inn) +2)7

n (p+1)n

Tp+l In(t)®
(A.83) < 1 (g + 2)p <because n > n, and 2;}3 nib) = (%)a, a,b > 0) ;

(because N(t) +1 < N(t) +2 < In(nc) + 2)
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hence with (A.80) and (A.82) we obtain

™

2 /egt|g(ev(4/(erxo)))

QCxppfl T{?Tp 27 \@Rl’o 1 2 1
< e TP 4
“(p—-Dl(p+2) < 8p \/ﬂp \/ T ni/? +p+1

+ M1 £ T{ﬂ-p \/ 2 / LQ(t)dt + T{ﬂ—p \/ 1 2M175,77€XTP+1 <£ 4 2)]7
TS Vot ) Jeqp<r g Vomr ) plPpy1) \e

A1(t,N(t),n, Zn,)N(t)*dt

Then, using that f6<|t‘<T L2(t)dt < (2m)PTI2 (because fo5 € Hu%e (1, M)) and ¢ > 1) and
that 772 = ng/?, we have [, _p A1(t, N(t),n, Zng) N (t)*dt < My g , hence (A.78).
Step 2. Using supyeje,7) N(t)727 = N(e)~27 < N(e)727 and (A.78), we obtain on E (G,,, &, n),

(A.84)
~ . C 412N (€)% —
sup RZ[(/) ( g:g,T’ 7fo¢7ﬁ> < = % <M2,5,n,1 + 4l2 + gj)Qs + M2€N(6)20> .
f q,p,w N(E) (1 V )
a,Beny G (LM)ND
Ix|x€E

Because, € = 1/ In(n,)?, then for ne > ny, where n; = exp ((Rzo/e??+P2)1/27) v exp(exp(1)),

we have 20 + p + 1 + In (In(ne)*?e/(Rzo)) > 1 which yields

In(ne) )2‘7
(20 + p+ 1+ 1In(In(ne)??e/(Rxo)))

GN(6>20 = (ln(ne))_z‘7 (2
<1.
We also obtain, for n, > nq,

. In(ne) w7
N(e)™ = (2 (20 +p+ 1+ 4o1ns(ne) + 21n(€/(Rx0)))>

< (12(:;3))20 (1 v <2 <6a +p+1+2n (};())»20)

Thus, using, the definition of N(e), TP2 = n;/Z, and n. > n1, we have

N(e)* < 1 In(ne)%
(1VT)2s =220 s/(+2)

S
€

2)\ % In(t)® a
< <a(p+)> (because sup n(?) = (%) for a,b > 0) )

se t>1 tb
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Finally using (A.84) we obtain, for all ng, on E (Gp,,E,n), if ne > n,

1 2o N
(A85) (ln(ne) > sup R%( §7g7T767fa,ﬂ> < M3,S,n,1,
na(7e) FapEHL G (1LM)ND ’
Ix|x€E
where

20 20
2
Msgen1 =C (1 v (2 (60 tp+1+2n (RZ))) ) (MZ&?7 A% 442 (‘T(PS:)) N Mz) |
0

Case ¢ = co. Similarly, using that
2 P e ™
~o00,W,txg < (E <
(oJN ) < 8) exp <2p <1+11n (Razo\t>>N) ]1{]75| < 1R
mp(N + 1) 7r
2P — U< |t > ——
+ xp ( QRZ'() ‘t‘ | | > 4R.%'0 ’

we obtain (A.85) in the case ¢ = oo with

20 20
p
Ms ¢ oo =C (1 v (2 <6a +2p (1 +1In <Rio>)>>> (Mg,g,y, 412 142 <”(1;:;)> + M2> ,

Proof of (T1.1). Case ¢ = 1.
Using (A.64), for all t # 0, we obtain

w0 ) (V)

and, using (A.73), we have

E [HRQH%Q(l@W@p) gno]
(A.87)
Zn ex (N +1)P |t 1 P (N + 1)\
< Zho / (L )2 + 1 — dt.
T Je<p<r (*) n 1V |Rxot| \/ Ruxolt|

In order to collect the upper bounds on E [HRlHLz(1®W®p)
we denote, for z > 0, N € N, and a.e. t # 0, by

gno] and E [”R2”L2(1®W®p)

G|

_ ex (N(t)p)P— i ’
Ao 4(t,N,n,z) =As4(t,N) 2r)P(p— 11— e2)n (1 V (Rzxo ﬂ))

p ¢ P 4P
(A.88) + 2Au4(t, N) <w(1v(11%$0 M))) (LW N X(N(t)n+ il )
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and by

(A.89) Az, (t,N) = % <1 \ (W))QN.

Using Lemma A.13 (2), (A.76), and (N(t) +p — 1)P~1 < (pN(t))P~1, we have, for all N € Ny,

(A.90)

Ry (Ag;g’Tﬁ fa”@> <C (/ Ao q(t, N(t),n, Zny)dt + 412 sup N(t) =2 + Lzs + M26> .
e<|t|<T teR (1vT)

Step 1. We show that, on E (Gp,,E,n) = {Z,, < Mignv(no,€)/06(ng)} and for all n, >

exp(exp(1)), we have | Ao o(t, N(t),n, Zny)N(t)??dt < My ,, where

<|t|<T

47’2 Cpr—l D » ) )
7TP+1(R1»0)P <2p(p — 1)[(1 _ 672) + 17£7ncX e + + T2 1’8777

and 79 = 1+ (80 /€)% (1 V (147 /(Rx0))?), from which we deduce that

Mg n1 =
(A.91) R (FENTE fug) < C (supN(1) 2 (Mag,y +41%) + 4
. no \/a,3 yJa,B ) = teﬂg 4,Em (1\/T)23 .

Using that n./n <1 and n.v(ng,&)/d(ng) < 1, we obtain for all ¢ > 0,

(52 v

< I{N(t) =1} (1 v (Jvléjrze)f

+N(E) > 1) exp (4 <N(t) In (1 v (W)) + %m (2N (1) + 1)))

< UN(t) =1} (1 v (?))Qni/ ? (lnf;?;%) + 1{N(t) > 1}n}/? (by definition of N(t)),

0
In(¢)® a
< T2ni/2 (because igll) nib) = (%) , a,b> 0> .
This yields, on E (Gy,,&,n) and for a.e. t # 0,
2 T cxpP~t |t] p
Ao y(t, N(t),n, Zn,)N(1)* <=
2t N1 2o MUY 20 (oo — DU — %) \TV (o 1]

_l’_

z To M ¢ 9 ex(N(t)+ 1)P ‘t‘p
7 72 (L (t] Rao)) P (L“) * " > '
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Then, using that n./n <1, n.v(ng, £)/d(ng) < 1, and that

Y1 ANy T (n(n) 1P, _
/E (1V (tRxo))? n U= R - (using N(t) + 1 < N(t) + 1 < In(n,) + 1)
T p p ln(t)“ _[(a a
(A.92) < oy (g + 1) (i'ﬁ? = %) Cab> 0) ,
we obtain

= / Ag(t,N(t),n, Zny )N (t)*°dt
2 Je<p<r

- 2rexpP T T2M1,g77,/ L(t)QdH%XTQMLgm T (3+1)p.
T nP@mpp - DI - e2)(Ray  nPar Jesier ne*zv (Bxo)? \e

Using that f€<|t|<T L2(t)dt < (27)P+112 and using that TP+ = n/? we obtain, for ¢ # 0,

/ Aoy (t, N(t),n, Zn, )N ()% dt
e<|t|<T

47y cxp?! p p 1 2 2
< M (£+1) 20, My gl
= il <2p(p_ DI —e2y T Memex o (Rag)p = >Vem
= Maygena,
which yields (A.91).
Step 2. Using supjyjce,1] N(t)727 = N(€)727 < N(e)72 and (A.91), we obtain on E (G, &, 1),

412N (e)>

w AQ7N5T7€ NT —20 2
s sup R ( a,B ’faﬂ) < CN(e) <M4,5777,1 + 417 + (1VT)2s

q,P,w
aBenL G (1.M)ND
fx|x€E

+ M%N(e)2"> .

Because € = (In (ne) /1ng (ne)) ™27, then

N()n <77T(2]};(32)€+ 1)) N 20 —|—4p -1

< N(e)In (RZ]G) + <2U+4p_1 + N(e)> In (2N(e) + 1)

7 \% In(ne o+p— ~ ~
<2 ((20]\7(6) In <<];UO> 11112((n6))>> \/ <1 + 2%—4])1) (2N(e) +1)In (2N (e) + 1))

? <1 * 20+4p_1> (2N + 1) In (2N+ 1) _ h;(]:ce)
q

In (2N (e) + 1)
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~ 7 \* In Ne In(n.
40Ny In <<];x0> lng((ne))> = S(k:q )
Denoting by 72 4 = 4k(3 + 20 + p), by W the W-Lambert function (satisfying VAOW (2) = 2
for z € [0,00)), and using that W(z) < In(z + 1) for x > 0 (see Theorem 2.3 in [30]), we have
In(ne)

T2,1
In(ne)
“ 11 In (In(ne) + 72,1)
In(n,)
121 (L+In(1+721)) Ina(ne)

and

(A.93)

(for ne > exp(exp(1))).

Moreover, denoting by 73 , = 4ok, <1 + (ln <(77r/(Rx0))1/2‘7> v 1)) > 0, we have

N> In(n,) 1
= Ing () 4o, (1 ¥ (ln ((77r/(Rx0))1/2‘7 /1ns (ne)> v 1) /1 (ne)>
In(n)

- 73,1 1n2 (ne) )

Thus, using (A.93) and denoting by 744 = 72,4(1 + In(1 + 724)), we have

— . \—20 In(n,) In(ne) —2
(1+DN(e) g( )/\ )> .

74,1 Ing(ne 731 Ing (ne

Then, using N(e) < N(e), hence 2727(1V N(e))~2 < (1 +W(e))_2a, and N(e) > 1 we obtain

(A.94) N(e) > < <;< 1 A 1 > In(n.) )_20‘

?,1 ;,1 Ina(ne)

For n, > 1, we have

N (€)% <ln(ne)2‘7
(LvT)2s = s/ (et1)

2 1)\* In(t)® a
< (a(p—i—)) <because sup n(t) = (g) for a,b > O) .

se i>1 b

Moreover, denoting by 6 = 77w /(Rx) and using that

N(e)In (9 (NG9 + 1)> + 20+p-1 In (2N(e) +1) > N(e) In <29N(6)> )

€
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we have, similarly to (A.93) and using that for z > e, W(x) > In(z) — Ing(z) for z > 0 (see
Corollary 2.4 in [30]), for all n, such that n. > exp(2ek;(In(n.)/Ina(ne))=27/0) V e

— In(n,)

N(e) <

(€)= oW (n(n0)0/ @ e)
In(ne) 1
= 4ky Ing(ne) (1 +1In(6/(2k1€))/ Ina(ne) — Ina(In(ne )/ (2k1€)/ Ina(ne))’

hence there exists 751 > 0 such that for n. large enough we have eN(€)* < 1/(4k175.1
Thus, we obtain on F (Gp,,E,n)

)20"

In(ne) \* W (74N, T,e
(A95) <1H (?; )> sup Rno ( 2”3 afaﬂ) < M5,5,77,q>
2\ Te fo,gEHL G (1,M)ND
fx|x€E

where

1 1 —20 2% 20 M2
A M = — a1+ (= M T
(4.96) sem1=C <274,1 /\ 273,1) < ( i (56> ) e (4k17—5’1)20>

which yields the result. Similar computations in the case ¢ = co using

@) < () OV (Fe)

also yield (A.95). O
Proof of Theorem 3. Take £ and 7 > 0.
Proof of (T3.1.1). Case ¢ = 1. Using (A.76), (A.88), and (A.89) we obtain

W ([ za,N,Te
Rno ( g,ﬁ 7fa,ﬁ>

(A.97)

r 412 M?
<C / Ao (t, N(t),n, Zy, )dt + 412 supe_%(N(t)ln(HN(t))) + + .
( cer 2t N Zm) it Ao VTP T w(@

Hereafter, we denote by § = 7w /(Rx). Using Lemma A.14, there exists M ¢, € R, such that,
for all ng € N, P(E (Gny,E,m)) > 1 —n, where E (Gpny,E,n) = {Zny < Mi,gqv(no,£)/6(no)}-
Using (A.88), ne/n < 1, nev(ng, £))/d(np) < 1, and that, for ¢ # 0,
2N
Ly (T4 N@)) “ 25N (1) In(14N (1))
Rl‘o ‘t’

< exp (QN(t) In (1 Vv (W)) +2&N(t)In (1+ N(t)))
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< n, (by definition of N(t)),

we have, on £ (gnoagv 17)7
Agy(t, N(t),n, Zpny)e? N O MAFN D))
(LV N ()P~ (1 + N(T))0) v [¢])?

2 expr L7 Mugy (+ s ex(N(t) + P[P
7r<ev|t|>2<1v(|t|Ra:o>>p((mr)puo—l)!(l—e-?)+ - (L“) * n ))

Hence, on E (G, E,n) and using that (N(¢) + 1)?/n < (In(n.) + 1)?/n < (p/e + 1)P, we have
T (N(t) + 1)Ptp (In(ne) +1)P (T 1
/e OV RN (tRzo) Pt = n(Rao)? / v

< 9(310) ( + 1) (using 212111) lng)“ = (%)a, a,b> O) .

Then, we obtain using that f€<|t‘<T L2(t)dt < (2m)PTL2,

/ Aoy (t, N(t), 1, Zpny )N O mIFN(?)
<p<r (LV N(@)P=L ((1+N(T)) 0) V [¢])?

dt < Mg g 5.4

where

8 expP™!
O (Rxo)P (2m)P(p — DI(1 — e~

M6,5,77,1 - )
S AM 21912+C¥2 (—+1>p
LEm 7+ (Rag)? 0 ‘

Thus, we obtain in (A.97)

(fq NT67 fa,ﬂ)
(A.98)

1V N@®)PL(((1+N(T)) 6) Vv |t])° ) AP M2
=¢ (ﬂselffﬂ e2r N (LN () (Mozon +45) + 978 * i@ )

Using that for ¢ # 0, N(t) — 1 < N(t) < N(t), we obtain, for n. € N,
exp (2kN () In(1+ N(t))) S XP (26N (t)In(1 + N(t)) — 26 In(1 + N(t)))
(14 N()P—! - (14 N(t))»-1
exp (2N (t)In (1 4+ N(t))) — 1
> (11 N ()2 exp <—2/<;N(t) In <1 + N(t)>>
o €xXp (26N(t)In (1 + N(1)))
e2v (14 N(t))2str-1

(using In(1+x) < x)
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exp (26N (t)In (1 + N(¢)))
= SUDsefe.1] ezn(l + N(t))2n+p71.

Thus, denoting by
(((1+N(D)0) v It)*

g:teleT]m 2e(N(H In(I+N (1)
we have
— 2
(LVN@)P(((1+ N(T))0) Vv |t]) ) o
sup < | sup e*(1+ N(t))**P sup g(t
Wit S2R(N (D) (1N () o ( (1)) B (t)
(A.99) < sup (14 N(#)* P71 g(e),
tele,T]
because we show below that [|g]| ey = 9(€). Indeed, for z € (0,00), differentiating
Q[&(Qtu(x)) = z with respect to ¢ yields
0Q; 0Q; Qi
o (Quu(@)) + — = (Quu() = (2) = 0
thus
Q1 .
ot Q. '

Hence, for t # 0 such that [t| < (14 N(t)), we obtain

_ N(t)
[t (1 + /KN (8)/(1+ N(1) + In((1+ N(£))20/ [t]))”

(A.100) N'(t)

which is positive, while for |t| > (1+N(£))8, N (t) = 0. Thus, we have, for |¢| < (1+N(T)) 6,

g'(t) = —2kN'(t) <1n(N(t) +1)+ N?Z;’L) (14 N(T)) ) e 2N O W(N(O)+1),

which yields that g is decreasing for [t| < (14 N(T))0, and for |t| > (1 + N(T))8, N(-) being

independent of |t|, g is increasing. This yields, using that g is positive,

(A.101) 190l oo ey = 9(€) V 9(T).
Moreover, we have

7m (N(e) +1)
Ra:oe

(A.102)  kyN(e)ln ( ) + KkN(€)In (N(e) +1) > (kg + £) N(e)In (N(e) + 1)
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which yields that N(e) < Ny, where

(A.103) Ny In (N 4+ 1) = 21{:5?/5;2/1)

Then, using that T > (14 N(T)) 6 (see (A.109)-(A.110)) and the definition of N(T'), we have
(A.104) KN(T)In (N(T) +1) = In (2"6)

and with (A.102) and the definition of N(e), this yields

(A.105) ln(zne) > (kg + k) N(e)In (N(e) +1)

hence using (A.104)-(A.105), we obtain
1 N(T)In(N(T)+1) 1 ky+k

(A.106) St Ron@me+) - s s
>1 <using s> ;q)
Thus we have
(A.107) 9(T) = exp (‘2’*]\7(6) In(N(e) +1) [_i * ]\17\5(13 Egg)j ll))D

hence HgHLOO([e,TD =g(e).
Now, by definition of N, for all t € [¢,T], N(t) < In(n.)/(2x), hence we have

. B ln(ne) 2k+p—1
sup (14 N(t))>+P-1 < <1 <>> ,
te[eﬂ( (1)) \V P
which yields using (A.99)

(LY NP (V1) + 1) 0) vIH)* _ 621V (In(ne)/(26)) >+

(A.108) sup 4e2rN () In(1+N (1) = 426N (€) In(N(€)+1)

ltl€[e,T)
Then, distinguishing the case In(n.)/Ins(ne) < 1+ N(e) from In(ne)/Ina(ne) > 1 4+ N(e) we

have

Tn(N(e) + 1)
R:C()é

£, N(€)In < > RN () In (N(e) + 1)

In (ne)
Ing (1)

< <(,€ 2% )N () In ( )) \/ (5 + 2k (9 In (W () + 1))
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which yields N(e) > N; A N, where

(A.109) (k + 2k,) Ny In (llan((n;e))) _ 1H(2ne)
and
(A.110) (s + 2N n (N 1) = 1n<;e>,

This yields

I FOB(ATQ) 5 s/ 2k) (s In(na(n) /(20 + 2ky) In(In(n,) / Ins(ne)))
R <1/\< p(” o (in(n,),/ I () >>)

hence for large enough n., using (A.108) on E (ng,E), we obtain

nn/(n+2kq) N,

e w q, €
e S (v )
(e P, entteaanmn

fX|X€5

e2r02 ) eQnﬁ(e) In(14+N(e)) 4]2 M2
<’ <(2,€)2,@+%L1 (4l + MG,S,n,q) + In(n, ) 2etptl <(1 VT + QQ’YGIH(1+G))

Then, using ae = 7w/ Rz, the definitions of € and N (¢) for the first display, and that v > 1/(4k,)
for the second display, there exists Mﬁ’gm such that

exp (—2yaln (1 + a) + 26N (e)In (1 + N(e))) < exp (_27 i ln( T ) N ln(ne)>

Rxge Rxge 2kq
1 In(ne) Ing(ne)
< — — 27 | In(n. 2y—————F
_exp((% 7) ane) + 2y G
< Mﬁ,é‘,n'

Denoting by Mz ¢ 1 = C (4l2 + 2702 (2r)~ (2rtptl) (4% + M g q) + M2M6,5m), on the event
E (ng, &) we obtain

! (52)

e su RW( N, Te ) <M _
(o2 Pt f(l . fog” " faB) < Mrgga
fX|X€S

Similar computations in the case ¢ = oo yield

ng/(n+2p) W NT
sup R (foo Evfaﬁ) SM'?E %)
2 2 ﬁ » T,
In(ne)*++ Fap R (1LM)ND
fx|x€E
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Proof of (T3.1.2). Consider the case ¢ = 1 and denote by 0 = 7w /(Rxp). Proceeding like
in the proof of (16) in (T3.1) to obtain (A.98) and using that w = W4, we have, on the event
E (no, 5),

sup RZZ (EQQ’T‘, fa,ﬁ)
fop€HL G (1,M)ND
fx|x €€
(A.111)
— 2
(LVN@)P(((N(T) +1)0) V[t]) 2 A
=2V ecleo) <e<s|1tl§cr 2rR(N(O) In(1+N (1)) (Ms,gmq +45%) + v )

Then, using (A.101-A.107), that N(T)In(1 4+ N(T)) = In(n.)/(2k), that

N(e)In (1 + N(e)) = ;ngi N f{“éz/ )
0/e =1, and that s > r/kg, we obtain [|g|| ;e ((e77) = 9(€). Thus, we have (A.108). Then, for
q € {1,000}, denoting by Mg ¢ ;4 = 2(1+C(a, 1/0)) (41> + €262 (2k) =P+ (Mg ¢ o + 41%)),
by definition of N (¢), and using that (A.111) we have, for all n, and on E (G, ),

n:/(n-ﬁ-l)

ln(ne)Qﬁ"‘p‘i‘l

w 71,N,Te
sup Rnom, <fa7ﬁ 7fa,ﬁ> < M8,5,7],1-
fapE€H 5 (DND
fx|x€€

Proceeding similarly for the case ¢ = oo yields

&/ (k+p)
e s RW (foNTe ¢ ) < M,
ln(n )2H+p+2 lfbp no a,ﬂ ) OL,,@ — 87577]:00'
€ fa,g€H LW (M)ND
fx|x€E

Proof of (T3.2). Consider the case ¢ = 1 and denote by § = 7n/(Rzo) and by n. =
ne/In(ne)P/". We follow the arguments in [34]. Using (A.97), and denoting by

®,, = sup[eﬁT] exp <2N1n (1 Vv (W») (1V (Rxzq [t]))?,

teR: |t|e ’t’

we have

A7N7T7
RT‘%( qwg 67fa,ﬁ>

<C / Aoy (t,N,n, Z )dt+412€—2/@(N1n(1+N))r+£+ M?
T \Jegper T o(1) " w(a)
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<0 ®,. 41%n, N 412
= Te By, 28 (NI(+N)™ T T
N Py, Ao g(t, Nyny, Zng)Tie it + M?
Me Jesr (1V (R [t]))2e2N InQENO/I) = e2ylain(ta))?

Now, we study ®,,. We use that

g1t € (0,00) — exp (2]\7 In (1 v <(1+N)9>>> (1V (Rao [t]))?

2]
is nonincreasing on [e, (1 + N)6] and increasing on [(1 + N)#, c0), hence we obtain | g1 || Lo ([eT]) =
91(e) V g1(T). Then, using that N < N+ 1 and 14+ N < 2(1+ N) for the first display and
that 0/ |t| < 0/e = (1 + N)/2 for the second display, we have for ¢ # 0,

erlonn 1o (452 e s (4572)) o (#5))
< exp <2N1n (1 v (W))) (1 +N)3.

Thus, using 26/e = (1+ N), N < (ln(ne)/(2li))1/T, and T? = exp (4N In (N + 1)), we have

(A.112) ®,, <exp (4NIn (N +1))2 <1\/ <W)) (1V (Rxo))>.

Now, we show that there exists D < oo such that

N +1)0 ~
(A.113) exp (2]\7 In ((H>> exp (2k(N In((N +1)))") > Dne
€
Define d; recursively by the equations Do = D1 = --- = Dy = 0, where Dy = —dy + 4/(2&)1/’“,
and for 1 <<k +1,
A(-1)F KS1/r. (I)r—j+1)
(A.114) Di=—di+ o 3 i Y dpieedy
j=1 p1+-+p;=i

and di4+1 = 0. Denote by u,, = Z?—o d; In (ne)(”l)/r*(iﬂ) and, for t # 0, by
g (ne,d,r,t) = In(n) — Zdln Hl/r ‘

Using §/e = N + 1, that N > N, and using the definition of N, we obtain

exp (26(NIn((N +1))" + 2N In ((N + 1) 0/€)) > exp (2(NIn(N + 1))" + 4N In (N + 1))
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> h(ne,d, r, t),
where
4
(A.115) h(ne,d,r) = exp <g (ne,d,r) + Wg (ne, d, 7‘)1/7’)
K
k . .
= neexp (— Z d; In (ne)(zﬂ)/r_l)
i=0
% exp (= (In (ne) 7 (1 = w(no, €,1)
p (2/{/)1/7, n ne l/n07 7n )
with

1/r...(1/r—k)

k k+1 k+1
e+ 1)1 U, +0(unE )
Thus, denoting by 74 = (k + 1)r — (k + 2), we have

1
v(ng,E,n) = ;une +-- 4 (=1

k+1
(A.116) h(ne,d,r) = ne exp (1 + Z D;1n (ne)) D 4 6 ((In (ne))T4)>

i=1
which yields (A.113) with D depending only on (Di)fill thus on r, k, and p. Then, we have on
E (gnm g’ 77)7
A27q(t7 N(t)7 n, Zno)ﬁe
(1 v ‘Rxot’)QeQN1n(1\/((N+1)9/|t|))
2 1P M N(t) + 1)P [t]P
. N T Y P L (GRS VAUANY
m(1V (Rxg |t])PT2 \ (2m)P(p — DI(1 — e72) P n

Hence, we obtain, on E (G, E,n),

Ao q(t, N(t),n, Zng)ee
e<|t|<T (1 vV ]Ra:ot\)QeQNln(lv((N“‘l)@/‘tD)

dt S M9757777Q7

where

4 1 cxpl~t P\P
Mo gy = 1 2 Mgy (1+2)
SENL T m) P (Rag)P 2 ( T 1) <(p Sz T e (BT ) ex

+ 2PN g 12

Thus, we obtain

A7N7T7
R}%( qﬁ 67fa,,3>

Ce4ﬁln(1+ﬁ)

= 1 In(ne)3P/T

1 412 In(ne) =P/,
(2 <1 Y W) (1V (Rzo))? (41 + Mog 1 + M?) + o ) '

e*Texp (4N In(1+ N))
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Then, using the definition of N for the first equality, then (A.115)-(A.116) for the second
inequality yields that there exists Mg g, such that

Ne

exp (4N In(1 4+ N))

. 4
= Ne €XP <—1/TQ (nea d,r, t)l/r>

(2r)

Mo e
> W exp (g (ne, d,r,t))
MlO,é',nne
(A].].?) = WGXP (_Z(Tle)) )
where

k
Y(ne) = Z d; In (ne)(i+1)/T_i .
i=0

Then, using that,

Te exp ((26(NIn(1 4+ N))") )
oxp (4N1n(1 n N)) < 5ln(ne)P/T (using (A.113))
< NeXP (==(rc)) (by definition of N),

DIn(n, )P/

and using that there exists D depending only on {d; }¥_; such that exp (X(n.)) > exp (D 1n(ne)'/"),

we obtain
Ne 1 < MeexXp (—3(ne)) 1
e!T exp (4N In(1 + W)) In(ne)3®/r = D exp (vT) In(ne )4/
ne exp (—X(ne)) 1

Eexp (Vﬁ exp (E(ne))) In(ne)4/r
< Ne exp (—X(ne))
=~ Eexp (Vﬁ exp (ﬁln(ne)l/r)>

LoD _ 1
Dln(ne)*/m — D

bl

for v such that

(A.118) In(v) > r <ln <1T)) - 1) —In (5) ,
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where we use that sup,,>. Ina(n) — Dn(n)/" =r (In (r/D) —1). Thus, using (A.117), p > r,

v > K, and the aforementioned choice of a, we have, for all n, > 1 and on E (G,,, ),

R (FE57 fup) C

In(ne )%/ exp (X(ne)) = Mo ey <2 <1 (2k)3p/T
hence the result. Similar computations yield the result in the case ¢ = oco.

Proof of (T3.3). Denote by 61 = m/(4Rxo). We start from equation (A.77), where, using
that w = Wy, we have, for all N € Ny,

(A.119) RV (ﬁ;ﬁj’ifa,ﬁ)

472
> (1V (Rxo))? (412 + My.g y1 + M?) + 5) ,

2
<21V (2C(a,¢))) / Ay(t, N(t),n, Zny )dt + 412 sup e 2N 4 LQ .
e<|t|<T teR (1vT)

Consider the case ¢ = 1. Then, using (A.79), then for |t| # 0,

1 N 2 _

— exp (ﬂ( () + ) + 2/€N(t)> < &P (mp/(2Rz0c)) exp (2 (4 ]t]ﬂRx + /€> N(t)>
0

Ne 2 |t| Rxo Ne

< exp (27p) | using the definition of N(t) and € = il ,
4Rw0

and using that N(t) <In(n.)/(2x), we obtain, for |t| > e,

Ai(t,N(t),n, Zpny)e? N 8cxpP 1k V2Rx 2(2k)%P My ¢,
(A.120) - O < | [ 1/ + 1 LA(t)
e™((In(ne)/(26)) V [t))? = \@P+i(p —1)! ™ P
N 2(2k)PpPex My g
mPtin '
Thus, using (A.120) and , we obtain
Ay (t, N(t),n, Zp,)e> N1
A121 RS dt < M ,
(A120) L e T ey e 2 < Moneng
where
Mg =2 (SO (V2R iz, oy 220X e
11,877’],1 - 7Tp+1(p o 1)! T 17(9»77 ﬂ-p-l-ln .

Then, we have

A7N7T7
R}%( qﬁ 67fa,,3>

—2kN (t ln(ne) 2(p+1) K 412
<20viecton g (=0 ((52) V) ") e s + )
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The next step consists in showing that, denoting by g : t — e 2:N®) (In(n,)/(2k) V [t])2P+D),
we have |[g]| oo e 77) = e~25N() (In(n,) /(2)) 2PV Indeed, using that, for [¢| > e,

01kqIn(ne)
2(K [t] + kq01)?

-/

N'(t) =

where 01 = 7/(4Rx), we have, for t € R,

J(t) = ,( b+ 1)1 {mz1“5?}—”giﬁff;)ﬁ'i')g(t).

Using that t € [0,00) + at/(bt + ¢)? for a,b,c > 0 is decreasing for ¢ > ¢/b and increasing on
(0,¢/b), for t > In(n.)/(2x), we have
(1) if In(ne)/(2k) > 61/k, then using (p + 1) > 2k6;

702 o (040 = g )0 >0

(2) if In(ne)/(2k) < 601/k, then using (p+ 1) > kb /4

/0= o (2040 - 5 ) ot >0

hence ¢ is positive for ¢t > In(ne)/(2x). Thus, g is positive and also decreasing on [e, In(n.)/(2k)]
and increasing on [In(n.)/(2k), c0) which yields

_ [ ,—26N(e) In(n.) 2t —2kN(T)2(p+1)
9l Lo ey = | € o e T :
& 2K

Using that 72¢ = €2°V(9) /(R10)%*, we have

e—QHN(T)TQ(p—f—l) _ 1 —QNN(E)€—2HN(T)+2(p+1)5N(e)/8+2/{ﬁ(5)
(Rxg)2(p+1)

and using N(t) —1 < N(t) < N(t), N(T) = In(ne)/(2(k+ kq01/T)), N(€) = In(n.)/(2(k +kq)),

and € = 01 we have

—2kN(T)+2(p+ 1)kN(€)/s + 26N (€) < 2k — 26N(T) + 2(p + 1)kN(€) /s + 26N ()

+
<9 /<;ln ne <p+1 )

Hlnne p+1 _ k/kg+1
K+ ky k/kg + /4

K _
<2 i — > — —-1].
<2k <usmg e 4 < p+1> )

<2k +
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This yields ||g poo () = e=26N () (In(ne)/(26)) 2@,
Using N(t) — 1 < N(t) < N(t), this yields

ne/U Y W [ FLN,T
€ K b 76
In(n,)2(F+1) Sup Rong (foc,ﬁ ’faﬁ) < Mz gm0
¢ fopEHL G (HND
fx|x€E

where Mo g1 = 2(1V (2C(a, €)))e?"(2k) 2P +1) (4(e*® +1)I2 + Mi1,£1). Similar computa-

tions, considering

26N (t)
(A122) / Aoo(t’ N(t)7 n, Zno)e
e<[t|I<T

dt < M o
((In(ne)/(2K) V |t]|)Pt2 < Maygn,

instead of (A.121) yield the result for ¢ = co.
O

A.4. Data-driven choice of the parameters. For ¢t € R\ (—¢,¢) and arbitrary T € T,
and N € Ny, we use in this section an abuse of notations and denote by ﬁlq’N’T’O(t, -) (resp.
ﬁlq’N’T’O(t, -) and qu’N’T’O(t, -)) the function

=q,N(),T,0 Cm(t)

FPNOTN ) =Ml < TY DD mamem )

Witxg T
m

im|,<N(t)

(resp. [t < T} S, <o) G (hpm ™ () /rm ™™ and W1t < T} Xy <oviy om (Opm™ () om™),
where the difference between the two notations will be clear from the text. Denote, for ¢ € R

and N € Ny, by
6]

The upper bounds that we derive depend on the parameters of the class quv’d;,’{})(l,M ). For

Ro.4(Gng, N, t) = E [H (ﬁf’N’T’O — Fist [fa,,@]) (t, )‘ ;(W@m)

t € [-T,T]\ [—¢,¢] and N € Ny, using the convexity of z — x2, we have
(A.123) Ro,4(Gny, N, t)
SE[E(# N)|Gnol + 3 (E[S1(t, N)|Gnol + E [S2(t, N)[Gno] + E [S3(£, N)|Gnol) ,

where

cm (1) ?
Witxo
Om

E:(t,N)— Z

meNg: |m| >N

9
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2

Sy:(t,N) > ’E[Am(t)’gno] , Ay 1t G (1) — Em(t),

Witxg
m

meND: |m|, <N

2

)

SN Y ‘Amw) — E[Am(t)[Gn,]

Wtz
O’m’ 0

P,
meNg: |m| <N

~ 2
Sy:(t,N)— | |FONTO¢ by — peNT0x, b)’ WP (b)db
Rp
Am(t)|
= 2 Wi |+ Bt Em(t) = cm().
meNE: |m|, <N Im

Lemma A.15. Let ¢ € {1,00}, for t € [T, T]\ (—¢,€) with 0 < € < 1 < T < Typay = 25max,
m € N2, N(t) chosen from (18), and N € {0, ..., Nmax,q(W,t)}, the following inequalities hold
Gro| < Zong |1 F1s o) ()3 sy 1ol E [ (W, N (0), 820 ) |G|

gno} < Zng <|t2x0|>p ex Vg (W; Nimax.q (W, 1), t0)
T

(A124) E :51 (t, N(t))

(A.125) E :52 (t, N(t))

nal) ’
(A126) E | (S5t N)— =N Y g ] o 8ex [t ve(Wo N, tao) o -
. _ 3T, 202 + o) . no | = (2r)n 0n(t),

where

Wop :t— xhexp (—py) +

294c5 K2(t) Ki\/pnn
zhn P K, (t)

1\?
K, :t— Hy(t) (Nmax,q(W, t) + 2> :
pn = (2In(n)) Vv 3, K1 = /22}/3/(42,/cx), and Hy (¢) is defined in Proposition A.2.

Proof of Lemma A.15.
Proof of (A.124). For m € N}, we have, like in (A.71),

2
EAm@lGll* = | [ F ] 0 (Jiff * (wgu) - 1) g () du

fX\X

2
<|F [fy)x, x=z0-) (£) (Jf?X(%') - 1)

x|x 12(]-1,1)7)
(A.127) <oy (2P | Fist L) (1) 22 g -
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Then, using Lemma A.13-(2), we obtain

1 tao|P
(A.128) 3 < [t2dl vy (W, N, tzg),

Witzo 2= (27{)}3
meNg: |m[ <N (Om

hence the result.
Proof of (A.125). Using (A.128) and (A.72) for the second display, we have

Gno| < 3

2
Witxo
mENg: |m|qSNmax,q(W7t) (Um )

E [|Am(t) B [Am(6)|Ga,)?

Gro|

E [52 (t,ﬁ(t))

cx Zng |txolP
= nab (2m)p

Proof of (A.126). For N € {0,..., Nmax,q(W,t)} and t € [-T,T] \ [—¢, €], we have

Vq(VVy Nmax,q(VVa t)’ tCC()).

Ane] /
o (Ummo)Q ~ Jre

(A.129) = sup ‘I/Z(u)
ucl

~ 2
PPN, b) — RPNt b)| WP (b)db

2

)

where

¢ _ /NI, \ _ g, NTO/, .
Vn(u) - <Fl (t7 ) Fl (t7 )’u( )>L2(W®p)

= 2 (0% %) - E[£05,X)]).

n -

fulx) = / > L gm'"" <> sOKLO(b)ﬂ<b>W®”(b)db
o RplmquN(t)ngXIX(') To) o0

and U is countable dense class of functions of {u tlull 2 wery = 1}. Then, we obtain

E [(Sg(t,N) - E(t’N)>+ (sup |4 (u)|* — Z(t’N)>+ gm)] :

2(2+ o) ueld 2(2+ )
We now verify the conditions of the Talagrand inequality given in Lemma A.16.

gn0:| =E

Condition (A.130). For u € U, using Proposition A.2 and the Cauchy-Schwarz inequality, we

have

1l oo ey
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1/2
. 2
< / Z 1t Wiz p gnVZ’txo <> ’@mmo(b)lzw(@p(b)db ||u||L2(W®p)
RP ml, <N () (2m)p fX|X( )om T o Loe()
1/2
o ) VsV 4127 P ex (5~ 1
- (272q)P/2 e pmtmo
< M(t, N),
where M (t,N) = K, (t) [t|P/* cx (vg(W, N, tzo))Y? /(2mmo)P/2.,
Condition (A.131). Using (A.69) we have
2 ~,N,T,0 N,T,0 2 2
E <E HF" t..) — FeNT, t,-‘
sup vt | < 8 fsup | F5T00) - V0|7l
Y(N,t)
= 8(2+ co)pn
60}( ’txo‘p
= XX 0L (W, N
n(27r)p Vq(W> ,tLL'())
= H>

Condition (A.132). We have, using the Cauchy-Schwarz inequality and that (gpmtx()) W is
me
an orthonormal basis of L? (W®P) for the second display and Lemma A.13 for the third display

Var (/45 X))V Var (m(£50%5, ) < [ [fi@)f frx o )dyde
’tl'[)‘ tho 2 d
- |mZ<N (@mol™ /[— @

cx |txolf

) vg(W, N, txg).

Then, using Lemma A.16 yields, with 7 = p,,

2 X(t,N)
(sup w4 —me

42 N, t t|P 204¢3% K, (t)? K »
< vg(W, N, tzg)cx |t] <~’C‘86Xp(pn)+90X()exp (1 w/np>>’

- (2m)Pn nA(py)2a

E
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which yields the result with A(p,) > 1. O

Lemma A.16 is the Talagrand inequality, as formulated in Lemma 7.1 in [15] (see also Lemma

5 in [35]), for complex functions.

Lemma A.16. Let n € N, n > 0, Xj,..., X, be independent random variables and v, (u) =
Yoy (u(X;) — Efu(X;)]) /n, for u in a countable class U of complex measurable functions, and
if there exist My, H,v > 0 such that

(A.130) Sup [ull o gy < M,
ueU
(A.131) E [Sup |1/n(u)|] < H,
ueU
1 n
(A.132) sup — Z max (Var (Re(u(X;))), Var (Im(u(X5)))) < v,
ueld i—1
then
E (sup [ (u)* — 4(1 + 277)H2> ]
ueU +
8 (v nH? 49 M2 V2EK1A(n)\/inH
<2 (2 _K i Bt VAV R
K (n P ( 77 > " KA (n)*n? P ( 7 M) )’

where Ko =1/6 and A(n) = (/1+n—1) AL

Proof of Lemma A.16. We use that

E

(sup Vi (u)[* = 4(1 + 277)H2>J

uel

<E (sup Re (v (u))? + sup Im (v, (u))? — 4(1 + 277)H2> ]
ueU ueU +

<E <sup Re(vy(u))? —2(1 + 277)H2> +E (sup Jm (v (u))? — 2(1 + 277)H2> ]
ueU 4 ueU 4

and then apply Lemma 7.1 in [15] to both terms. O
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Lemma A.17. Assume that || f|z2qgwer) < M and M, e > 0. For weights W given in Section
4.5, q € {1, 00}, N chosen from (18), and all T € T,, we have

(5 + 200) 5 o 2 CM?
W q,N T € 70 7 q7N7T70 — - . N
R ( 7f0< ﬂ) o <1 + Co> E |:HF1 flst [fa,ﬁ]‘ L2(1®W®P) gno:| + UJ(Q)
C(2+ N
+ 0241—[(”7 ZnomiaXa Nmax,q) + (T‘-CO)/ | | E [E (t, N(t)) gn0:| dta
<[t|<T

where Cyy = 2(2+CO)2C/TU H(TL, Zno s Tmaxs Nmax,q) =1 (’I’L, Zno, Tnaxs Nmax,q)+H2 (na Tnax, NmaX,Q)7

I (TL, Znovaa)u Nmax,q) = Zno / \Ifn(t)dt,
<|t‘<Tmax

(1 + 2¢0)48¢x Krnax
(2m)Pn

W) = (24— 1\ [ xxo| ”CXVq(WNman(W,*),*xO)
2 na,

Hz(n, TmaX7 Nmax,q) = / " Niax q(W t) |t|p Vq( Nmax q(W t) tvIO)\IIO n( )d ,
<|t|<Tmax

1 9 ~
+ (2 o) 1 ] ) ey bl [ (7. 50, w0)

gno} .

Proof of Lemma A.17. Using Proposition 3 and Lemma A.10, R}% <J/c\§’g’T’€, fa,ﬁ) is smaller
than

RW < q7gT€> fa,ﬁ)

o0 (750t

2

Then, for arbitrary T° € T,, consider the term Fq’NTO Fist [fa,8] = 23:1 Rj, where Ry =
ﬁlqu7T’0 _F\{LN)T\/T:O’ R2 — quvN’T\/T)O _FfaN7T7O, and R3 e F\lq’N7T’O —flst [fa,,@]' FOI' arbitrary

T € T,, using the Young inequality for products with ¢y > 0, we have

gno :|

2
Gu | + <1 i co> E[IRsllE2emwen

L2(1@W®P)

2

{H]lﬂ | > €} (F‘Iﬁf — Flst [faﬁ]> (.’*)‘

L2(1QW®P)

< (2+CO)ZE [HRjH%m@w@p) gn0:| '

Jj=1

For T € 7, and N € N, denote by

S35(T, N) = / g N
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For arbitrary T € 7, and using fro the second display that by definition of By (T, N ),

~ ~ AT / ~, AT 2 ~
Bs <T, N) — max / H (qu’N VIO _ el 7T7°) (t, )H > (t, N(t)) dt| |
T'€Tn \ Je<|t| L2(wer) n

we have

E [||R1||%2(1®W®p) gno}

~_ N A~ _ AT I 2
A / H (qu,N,T,O _ qu,N,T \/T,O) (")
T'€Tn Je<|t| L2(W®p

/€<|t|<T > (t’ N(t)) dt

< E [BQ (f N)

<E

Ml =Ty (t,ﬁ(t))) dt

+

.

+E

Gno

gno} +E [22 (T, N)

Gro|

and

E [||Rell72wor) (G|

sup / <
T'eTn Je<|t|

+E [22 (f N)

~ A ~_ A7 / 2
<E ‘(F{;,N,T,O _ F{],N,TVT ,o) (t, )H

L2(1@W®p

i < T (t,]\?(t)

N—

) a
+

gno]

i)

< E [Bg (T, Kr) gno] +E [22 (f JV)

Gro| -

Thus, using the definition of T for the second inequality, we have

gn0:|

Gro| +E B (T, W)

g [H]I{H > €} (ﬁlqﬁ’f’o — Fist [fa,ﬁ]) ('7*)H2

L2(1@W©P)

< (2+ co) <E |:BQ (T N)

Gro| +E [ (T, V)

gno} +E [22 (f JV)

Gro| )

2 2
+ (14 2 ) E[IRulEsgerwen)
(A.133)

<202+) (E[B: (7.N)

gno] +E [22 <T, 1\7)

o)) + (14 2 ) B[Rl iomon o)
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Let us consider E [BQ (T, N )

Qno}. Denoting, for all 7" € T, by K1 = ﬁlq’N’TVT/’O—Fl’N’TVT/’O,

_ L o _
Ky = qu’N’T’O — qu’N7T’0, and by K3 = qu’N’TVT 0 _ qu’N’T’O, we obtain, for all TV € T,

Bs (T, N)

2
2 ~
< [ e e I Mo + (14 2 ) ot My — 10 < 75 (1. 50) |
e<|t j=1

+
Using that F{Z’OO’OO’O = Fist [fa,3] we have, for t € R\ (—¢,€),
2 / Cm(t) ?
1Ks(t ) ewery = HT <[t <T VT ) Witzo
0<|m|, <N "
< 2
q7N7T70 _ .
= H (Fl Fist [fa"g]) (¢, )‘ L2(Wer)
hence we obtain
By (T, N)
Saleald ~ AT ! 2 ~
< su 2(2 + co ‘(F%N’T’O—F‘J’N’Tvo) t,-‘ —1 th’E(t,Nt)) dt
T/e%/egt(( e ) ) gy, M TIE (1 F0)) )
P g g 2
+ <1 + > sup / ‘(F{I’N’T\/T 0 _ Ff’N’T’()) (t, )‘
€0/ T'eTn Je<|t] L2(Wer)
N ald ~_ N 2 ~
< sup / (2 2+ ¢ ‘(F%N’T’O—F%N’T’O) £, ‘ — Wl < T E<t,N(t)>> dt
s [ (e re)|(m V) (0] e, — 1 < T )
2 N,T,0 2
v o) M ) )
(0 2) LN A o) @)
Finally, we have
PR 2
Aq7N7T70
. [H]I{H = (Fl st [f""ﬁD ("*)’ L2(19W®P) gno:|
9 5. N T'.0 N0 2 ' E<t’ﬁ(t))
< 4(2+ ¢)2E | su / H(Fq”’—Fq”’>t,*’ <7V ——— 1 |g
( 0) T’el%l 6§‘t| 1 1 ( ) LQ(W®p) {‘ ’ } 2(2+CO) no
Jr

+2(2 4+ o)E [22 <T, N)

2
gno} + (1 + CO) (5+ 2co)E [HRsHi'Z(@W@P) g”(’} ‘



A-76 GAILLAC AND GAUTIER

Using Young inequality for products for the second display, andLemma A.15 for the third

display, we have

~ AT 5 2 E(t,ﬁ(t))

E H FONT0 _ paN.T'0 t,*‘ S < T — | ailg,

Ts’lel%/eﬂt ( ! ! >( ) L2(Wep) {lt =T 2(2 4 ¢o) Gno

+
<E | sup / Z [Cm(t) — cm(t)|2 _ > (t’N(t)) dt|G
N T'€Tn Je<|t|<T’ ‘. Witzo 2 2(24—00) 1o
|m|, <N(t) Om .
~ 2 ~

(1+2¢)E Z ‘Am(t)‘ Z<t’N(t)> dtlg

< (1+2c¢ sup / — tG,,
° T'eTy Je<|t|<T’ ‘. o Witzo 2 2(2+ ¢o) 0
|m|,<N(t) m N

1 ~ ~
24— |E s, (N Sy (N (), 1) dt|Grg
+< +CO> [752%/5§|t|§T/ 1( (t)7t)+ 2( (t),t> t|G ]

~ 2 ~
A (1) Y (t,N(t)
< (14 2c0)E Ts;lelg)i1 /e§|t|§T/ Z é W,tmo>2 B 252 + CO)> 4G

ml, <N () \om .
+ Zng / W, (t)dt.
€<t <Timas

We now focus on the first term of the last inequality. Using (A.126) for the third display, we

have
- 2 N
‘Am(t)’ 2 (t,N(t))
E sup/ _ dt\G,
T'eT,, Je<|t|<T" A Witzo ) 2 2(2 + co) 0
lm[,<N(t) {9m N

‘Am(t)f 5 (t,ﬁ(f))
=E Z /e§t|§T' Z ) (a,v,[{’txO)Q 22+ ) 16

T €Tn

’& (t)‘2 Z(t ﬁ(t)) )
< / E e N Gno | dt
TIeT, Y eSIHST |m|§V(t) (afn”””O)Q 2(2 + co) X ’
~ 2
3 3 Bm s
< / E — ) G | dt
7T =T 0< N < Ny g (Wit) |qu<;vu) (ommof 2(2+ ) ) °
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48cx [tPP v, (W, N, t
S / Z CX| | 2’/q(p EAR} xO)\I/(]m(t)dt
TeTn  SHUST 0< N < Nopax o (Wit) (2m)Pn
4SCmeaX

(27T>pn /<t|<T Nmax,q(W7 t) ’t’p Vq(VVa Nmax,q(W, t), txo)\IJO,n (t)dt

This yields the result. U

Lemma A.18. For the two weights W given in Section 4.5, ¢ € {1,00}, and for all T' € T,
and N € N,, we have

/esltlgT Roq (Qno, N, t) @+ Ce /esltlg e [Z (T’ N(t))

< 4(2 + ¢0)*TL(n, Zng s Tinax> Nmax.q)

gno] dt

—+ (5 + 200) (1 + 020> /<|t<T (Ro,q (gn07 N(t), t) + Cco,lE [E(ta N(t))’gno]) dtv

where Cgy 1 = (2(24¢o) + Cgy) /(54 2c0) (1 +2/cp)) and Cey, = 2(24¢o)/[(5+ 2¢0)(14+2/co)].

Proof of Lemma A.18. For t € [-T,T]\ (—¢,¢) and arbitrary N € Ny and T' € 7,,, denote
by

- 3
- 7N 7T70 ’(Do’ K
(F{I ®),70 Fo TO) (t,-) = ZRj(tv ),
j=1

where R (t,) = (ﬁ{LN(t),T,O B F‘{;,N(t)vN,Tﬁ) (t,4), Raolt,") = <I3{1,N(t)vN,T,0 _ F‘{],N,T,O) (t,-),
and Rs(t,:) = (ﬁf’N’T’O - Ff’oo’T’()) (t,-) (here, note that for ¢ such that |t| € [¢,T], we have
Flfapl(t,-) = FLoT0(4 1)), For arbitrary T € T,,, N € Ny, using the Young inequality for

products, we have

2
Rog (Gnor N(),) < 2+ c0) 3 B[Rt ) 320000 |Gno | + <1 + ;) E[I1Rs(t, )22 0pon)|Gno |-
j=1

We proceed similarly to (A.133). For arbitrary N € {0,..., Nmaxq(W,t)} and t € [-T,T] \

[—e€, €], using the definition of By (¢, N), which can be rewritten as

Z ’/C\m(t)’22 iy (t, N’)

Bi(t, N) =
1 ( ) ) Wtzo
N<|m|,<N'VN (om

max
N’: N’<Nmax,q(W,t)
+



A-78 GAILLAC AND GAUTIER

and the definition of N(t) (we take co = 1/6 in the definition of (18), hence 14Cl, /(2(2+cp)) =
31/30), we obtain

Ro.q (gno, N(t), t) + OB [2 ( )]

22+ co) (E By (6 N(1)|Gno | +E[3 (1. N ()
+ CoE [E <t, ]\Af(t)ﬂ

< 2(2+¢) (E [B1(t, N)|Gne] + (1 +

gno}) <1 + C20) E [”R3(ta ')H%Q(W@m) gno}

C.

5o ) B V)G

2
+ <1 + Co> E |:HR3(t> ')”%Q(W&D) gn01| ’

Consider E [By(t,N)|Gyp,]. For t € [-T,T]\ [—¢,¢], N € Ny, and denoting, for N’ € Ny, by
Ki(t,”) = (ﬁf,NvN/,T,O _ qu,N\/N/,T,O> (t,-), Kalt,") = (qu,N,T,o _ ﬁlq,N,Tp) (t,-), and Ks(t, ) =

!
(qu’NVN 40 _ Ff’N’T’()) (t,+), we obtain

Bl (t7N)
< |@te Z I Bagom + (1+ 2 ) 1Kt agwer) = S(07)
0< N’ < Nuax,q(Wit)
_l’_
Using F20(t,2) = Figt [fa.s] (£, +), we have
em(t) |7
Kt wen = D0 |
N<|m|,<(NVN') om’
2
q7N7T7O _ .
S H <F1 Jrlst [fa,ﬂ]) (t7 )‘ L2(W®P) )
hence
/ ~ / 2
Bi(t,N) < sup < (2+ ¢p) H Fq’N’T’O—Fq’N’T’O) t,-‘ —Zt,N’)
(t,N) veren o 1 (t,-) L (wen) (t,N') N
2 2
(e 2) e (g el
€0/ 0<N'<Nmax.q(Wit) L2(Wwer)
2
< sup < (2 + ¢p) H(Fq’N 10 _ qN TO) (t,-)‘ —E(t,N’))
0<N’<Ninax,q(W,t) L2(Wer) T
2 2
. q7N7T70 . .
# (14 2 (0 = A lasl) €0
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Finally, we have for arbitrary N € {0, ..., Nmaxq(W. 1)},
Rog (Guos N(8),) + CoB [2 (1, 8(1)) |

N
0 (70877 )

9 /
<424 ¢)’E S L2wer) ?(12(2_](\;§>+ gn()]
+ (22 + o) + Cog)E [3 (£, N(2)) | o]
+ (54 2cp) (1 + 620> E [H (ﬁf’N’T’O — Fist [fa,B]) (t, ')‘ ;(W®p) Qno}
Using Lemma A.15 for the third display, we obtain
2 S(t, N')

E

Fa.N'T0 _ pa,N'T,0
sup H<F1 - B (&)
OSN’SNrnax,q(Wt)

.

2wer)  2(2 + co)

<E sup Em(t) —em(t)]®  B(t,N') G
— n
0N/ <Nua,a(Wit) \ | < (UTVnV,ta:O)2 2(2 + ¢o) 0

+

An®] )
(O_y[r{,txo>2 T 2(2+¢p)

.

W () + Zng Un ().

<(1+2¢)E sup
OSN’SNmax,q(VVvt)

1
+(2+>]E
o

< (1 + 2¢0)48 Nmax. (W, t)ex [t]F vg(W, Nmax,q(W, ), txo)
- (2m)Pn

|m[, <N’

sup (S1(N',t) + So(N', 1))
OSN’SNmax,q(VVat)

Thus, this yields that for all N € N,

/e<|t|<T Roa (Qno, N t> At Ca /e<|t|<T & [E <t’ mt)>

<4(2 + 60)2 / <(1 + 200)48Nmaxvq(mf’ t)CX |t|p Vq(Wa Nmax,q(VV, t), txo)
B e<|t|<T (2m)Pn

gno} dt

\Ifo’n(t) + ZnO\Ijn(t)> dt

+ (5 + 2¢p) (1 + 2)

€o

* /e§|t|§T (E [H (ﬁ{%N(t)’T’O = St [f“ﬁ]) (¢, ')‘ 2

L2(Wer)

gno} T GBS, N(t>>|gno1) i,

hence the result. O
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Lemma A.19. Assume that v(ng, &) < n~(+9 with ¢ > 0. For the weights W given in Section
4.5 and q € {1, 00}, there exists Cas(W, ¢) independent of n and ¢ such that for € < [t| < Tiyax,

t p
(' "“’) Uy (W, Nosae.gs £20) 0(10, €) <Cos (W, g) In(n)?~1 (

WW=W_gppr} LYW= COSh('/R)})
27 .

nl+¢—plo nl+¢—(+1)¢o
Proof of Lemma A.19. Consider the case W = W|_g ) and ¢ = 1. The choice of Niax 4
ensures ((77/(|t| R0)) Nuax.g(W, £))PVmexa WV < and Ny o (W, ) < 2[t] Rao In(n)/(nky),
thus, using the definition of v (W, N, tzg), we have, for € < [t| < Tiax < 10,

t| 2o \*
<‘2‘ﬂ_0> V(VVaNmax,q,tmO)

w0l ) Naag(W,8) +p— 1P Tr(Naa (W, 1) + 1)
S(%(lvmazom) (- DI(I-ec?) exf’(sza"’q(”/’“l“( i ”))

< Cos(W, )T In(n)P"'n, - (using (Nimax,g (W, 1) +p = 1P < (pNmax.g(W )77

(A.134)
< Oa5(W, 1) In(n)P~1ntHrco,

where Cas(W, 1) = (2/(1k,))PpP~Lab /7P (p—1)!(1—e~?), hence the result. Similar computations
yield the result in case ¢ = oc.
Consider now the case W = cosh(-/R) and ¢ = 1. We have, for € < |t| < Tax,

p 2 2 P, p—1
(’ﬂ :B()) v (W, Nmax,q, tTo) < (?)pTI’g; (1 \/ fR) Zop” nln(n)P~t
T

27 - Ay
< C5(W, 1) ln(n)p_ln(P-H)Co’

where Co5(W,1) = (1V (V2R/7)) 2zhpP~! /(7P (p—1)!), hence the result. Similar computations

yields the result in the case ¢ = oco. (Il

Proof of Theorem 5. Use the notations of Theorem (T1.1). Take £ and n > 0, using
Lemma A.14, there exists M ¢, € R such that, for all ng € N, P(E (Gy,,E)) > 1 — 1, where
B (Gugs €) = {Zuy < Myg.0(n0,)/5(n0)}.

Proof of (24). Consider the case W = W|_g ) and ¢ = 1, as the other cases can be treated
similarly. Note that we take ¢p = 1/6 in the definition of (18). Denote by C¢,1 = (2(2 + co) +
Ceo)/((542cp) (1 +2/cp)), Cep2 = C(542c) (1 +2/co) /(27), and Ce, 3 = C(2+¢p) /7. Using
Lemma A.17 and (A.68) for the first display, C¢, = C¢, 3/Ce, 2 for the second one, and Lemma
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A .18 for the third one, we have for all T' € 7,, and N € N,,,
Y ,N,f,e
RZ‘S( z,,ﬁ vfaﬂ>

~ 2
< CegaE [HF%N’T’O ~ Frat lfagl]

gno} dt

gno} +Clys /eStISTE = (LN®)

L2(1@W®p)
CM?
w(a)

< Cop2 ( / o R0 (Gnos N(),) + CuE [2 (1N (1))

e
w(a)

+ 024H(n> Znoa Tmaxa Nmax,q) +

Gro| dt)

+ 0241_[(”7 Z’nov TmaXa Nmax,q) +

2w C2
< [ (PN R (G N0+ Cura 22+ )+ CELD(E NG )
i<\ C

CM?

+ (024 + 4(2 + 00)200072) [Hl (n7 Znovaam Nmax,q) + HQ(TmaX7 Nmax,q)] + m

Step 1: upper bound on II;(n, Z,, Tmax, Nmax,qg)-
The choice of Npyax 4 ensures that, for all ¢ # 0,

< n.

777Nmax,q(VVa t) 2Nmax,q(VV7t)
‘t‘ R.QZ()

Then, on E (Gy,, ) using Lemma A.19, we obtain
Zng Un(t)

1\ ex [/ |twol\? v(no, &)
<M 24+ — )| =S || =— Nmax 1),
- LEm < + CO) nmg |:< 21 ) l/q(W7 7Q(W t) tl‘o) 5(”0)
1 [tzo|\” S
ey (24 ) 0P 1P gl () s B [ () 0 (W50 20) (0.

< 026,8,71 (t) hl(n)p_l

6]

where Cagg(t) = Mie,Cos(W,q)(2 + 1/co) (CX/ﬂfg + 2m)P || Fst [fa,8] (¢, ')||iz(Rp)>- Thus,
using Tinax < n%° and fegmgT | Fist [fa,8] (t, -)||iQ(Rp) dt < 2ml?, there exists Car ¢y such that

/ C26,€,n(t)dt < TLCO(1 vV l2)027’g,,7.
GSMSTmax
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This yields, using that sup,s; In(¢)?/t" = (a/(eb))* for a,b > 0,

Core (0= 1)/(e(C = @)~ 1V )

n

TN 0 TmaX7 Nmax,q) S
Step 2: upper bound on II>(Tiax; Nmax,q)-
Using that Nmax,q(t) < 2 |t| Rzoln(n)/(nk,), that for all € < [t| < Tiax,

4Ra;0H0(1 + x%) P
Tky ’

Kn(t) <13

max

and that Tyax < n°, for all [t| < Tinax, we obtain
Ki\/pnnt - K (mkq)?+/21og(n)n
Kn(t) ~ HP(4Rzo)P(1 + 22)P In(n)PTib
V2K (kg )Pn(1—6%0p)/2
~ HYJ(4Rz)P(1 + 22)P In(n)p—1/2
(A.135) > ChgIn(n)?,

where, using that sup;s In(t)®/t* = (a/(eb))® for a,b > 0, we have
V2K (mkq)P (e(1 — 6pCo)) /2
28 = .
HP(4Rxo)P(1 4 2)P (2p 4 3)PT5/2
Then, using (A.69) and (A.134), we obtain

(A.136)

H2 (Tmaxa Nmax,q)
(1 + 2¢0)8¢x Kmax
Niax.g(W, t) [t]P vg(W, Nax.q(W, t), tzo)dt sup Wo o, (t
Ky (2m)Pn €<[t|<Tinax oW 1) 1l o(:8), o) teR: [teleTmax] "
< 16(1 + QCo)Rxocxfo log(n)2
- Ky (2m)Prkylog(2)n
16(1 + 2co) Rzocx (oCas (W, q)

/ P 0y (W, N (W, 8), tzo)dt sup Won(t)
e<t<Tinax teR: [t|€le,Tmax]

10g(n)p+1n(p+2)Co sup Ton (t)

B Ky (2m)Prkq log(2) t€R: [t|€]e,Tamax]
1+2 1 pH1 2
< 96(1 4 2¢o) Rrocx (oCa5(W, q) (log(n) n sup Wo (1),
(2m)Pmkylog(2) nSo n2=(P+3)C0 | p. tleleTma]

where 2 — (p+3)(o > 4/3. Finally, using that Tk, < n, (A.135) and SUP,~0 (6_028 ln(”)2n2> =

el/C2  we obtain

H2 (TmaXa Nmax,q)
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< 96(1+ 2c0) Rroex GoCas(Wrg) [, N 204c% exp(1/Cag)af (ARHo(1+ 22)\ )\ [(p+1\""
- (2m)Prky log(2)n?/3 0 (2m)P kg eo

Ca9
— n4/3 )

where

Cog =

96(1 + 2¢9) Rzocx CoCas (W, q)ah <1 N 294¢% exp(1/Cag) <4RH0(1 +x3)>”> <p—|— 1)7’“'
(2m)Prkg log(2) (2m)P kg eCo

Step 3: upper bound on R}% (/z:gf’e,fa,g) using Steps 1, Step 2, and the proof of

Theorem 1.

Finally, using v(no,£)/6(ng) < n~3+9, the definition of ¥, and (A.88-A.90), we obtain on

E (Gny, E), that for all T € T, and N € N,,,

o R T e cCM? C 2nC2 1 4
R (fg’,g’T’ 7fa,,3) < 2208 | T e <4l2 sup + >

w(a) n C ter V()% (1VT)%
27702 ) ~ Mlg U(TL() 5)
A.137 + — A (t,N t),n, ”) dt,
( ) ¢ e<|t|<T 24 Q d(no)
where
AQ,q(ta N,n,z)

= A3 ,4(t,N) <1 + 60(1 + 2pn)C(2(2 + co) + C'CO)> cx (N (t)p)P~! ( It] >p

TCe 2 2m)P(p— D1 —e2)n \ 1V |Rxot]
) LV (e, ex (V) + 1P
e (e (s )

(1 V |Rxot| n

A3 4(t,N) is given in (A.89), and

-1 p—1
Cs0,6.0 = (Coa +4(2+ ¢9)*Cyy 2) (C’zzs,n (6(12 — Co)) (1VI*) + CQg) .

Denote by T* = ne/ G D) and N* (t) = N (t)] the choice of N made in Theorem 1 (T1.1)
replacing N(t) by N (t) = Q). 204p)/2 (In(ne)/4) (where (20 + p)/2 replace (20 +p — 1)/2
to take into account the logarithmic penalty p,). We have that N*(t) < Npaxq(W,t) for
t € R\ (—¢,¢), thus N* € N,,. We also have that T* < Ty = n° for s > 1. Then, we have
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on E (Gp,, E) and for all (n,ng) such that v(ng, £)/d(ng) < n~-G+0),

sup <fq N T € fa,ﬁ)
fa,ﬁeﬂg;f;’;(z,M)np
fx|x€s
CM? C 2w C2 ~ M &
< g+ —ooEn T o Asg (t,N*(t),n, Mgnv(no, ) )> dt
(In(n)/ Ing(n))?7° n C Je<p<r d(no)

271'02 2 1 4l2
= <4l2 Sup 20 + * 23> :
ter N*(1) (1vT¥)

Finally, we obtain an upper bound on the above infimum using the proof of Theorem 1 (T1.1),
only with a minor adaptation of the constants to take into account the new value of the

;/(68(p+1)) 1/(2 (p+1)))

parameter T (n instead of ne

have, on E (Gp,,&) and for all (n,ng) such that v(ng, £)/d(ng) < n~=+9),

q, N T € ln(n) 2
(f 5 fa,ﬁ) 1n2 (n) < M13,5,1’],qa

. Namely, there exists M3 ¢, 4 such that we

where
1 1\ % 6o(p+1)\*’ M?
2 2 ety / -
]\41375’777 271'060, <2T471 /\ 27_371> <4l (1 + ( B ) + M4,€JI:1 + (4k17’571)20
and

o (1 N 60(1 + 2p,)C(2(2 + co) + CCO)> 4 ToexpP !
4Em1 TCey 2 7 (2m)P(p — D)1 — e=2)(Rao)P

cCx P p
4M W24 —= (f 1) .
T AMLEn ( * 7Pt (Rxo)P \e *

Proof of (25). Consider the case ¢ = 1, as the other cases can be treated similarly. Start from
(A.137), where, because w = W4, the term M?/w(ag) is zero and, using (A.97) this yields, on
E (G, E), for all (n,ng) such that v(ng, E)/6(ng) < n~ 2+, and for all N € N, and T € Ty,

oo R (PSP )
fo,pEHL G (1,M)ND

fX‘XES
< CSO,E,n + 27TCC(), su 4l2
=, C o 2 (NO (N

21 C? ~ M ¢ pv(ng, &) 412
([ (o M), )
C ( <|t|<T 2 0 d(no) (LvT)2s
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Denote by T and N* the choices of 7" and N made in Theorem 3 (T3.2). This yields directly
that N*(t) < Nmax,q(W,t) hence N* € N,, and that T* < né/(%) < Toax = nt/(6P) because
s > 3p. Thus, we obtain

N,
s R[5 fup)
fa,p€HLSY (1,M)ND
Ix|x €€
< C30,€,77 + 27TCCO, 4l2
=", C ok s O W(N(0+)

27C2 ~ M ¢ pv(ng, &) 412
L w2 / A <t,N*t,n,”’7’>dt+ .
c ( e<|t|<T* 2 ®) d(no) (1vT*)%s

This upper bound yields the result, using (A.111) where we replace (1 V N(t))P~! by (1 Vv
N (t))P~1p, to take into account the logarithmic penalty py,.

Proof of (26). The proof is similar to the proof of (25), using that with the choices of 7™ and
N* as the choices of T'and N made in Theorem 3 (T3.3), we have 7% < n'{/(QS(KJer)) < Tax =
n!/(14P) because s > Tpr/(k + ky), where (o < 1/(14p) and replace Cag in (A.136) by

V2K, (kg )P (e(1 — 14pCy) )PH3/2

Cs1 = .
HE(ARxo)P (2§ v (4R/m)1/2)P (2p + 3)PT3/2
U
APPENDIX C. ESTIMATION OF THE MARGINAL fg
For g € {1, 00}, let us work with the set of smooth functions,
HIW (M) = S f 2 [ fll2wsweny < M, Y wp |0kl 72@ < 270° 0,
keNy
where w = 1. Because fg(:) = Fist [fa,8] (0,-), we consider the estimator
(A.138) FENE() = FPN(e, ).
Proposition A.3. Take ¢ € {1,00}, W = W_gp}, ¢(-) = 1V |- %) (wr) ke, = (k‘z")kGNO,

w(-) =1V |-]3+51, o >2 Rd,s>0,0<,M < oo, ¢ =(In(ne)/Ina(ne))= % ne = nA
(8(no)/v(no,€)), N = |N], and N = In(n.)/(4kq(1 + o) Inz(n.)), we have
20
sup |:/Rp (que( ) _ fB(b))de gn0:| < ln(ne) ) _ Op(l)

faEHLE (1, M)ND Inz(ne)
fX|XEE
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Proof of Proposition A.3. We prove this result assuming that fx|y is known, the general
case can be handled like in the proof of Theorem 1 (T3.1). Denote by f5 = Fi(e, ) and fg’E’N =
FPN(e, ), where F&N (resp. FEN ) is defined like FN with Gy (t) (resp. cm(t)) defined in
T = 1] gy < 3T 1R ey
where By = fg — f&™, Ry = f3™ — fg, and Rs = f5 — fs.

Consider the case ¢ = 1, as the case ¢ = oo can be treated using similar computations. Using
(A.69) and (N +p —1)? < (pN)P~! we have

= lin) <525 gy e (V0 (e ) v1)

ng—l exp <2N1n <(7Wg;1)) % 1)) :

cxp?!
(Rao)P(2m)P(p — DI(1 —e72)

We directly have HRQH%Q(RZJ+1) < 2712 /wy. We also have

Lemma A.12 instead of ¢, (t). Use the decomposition ‘

(A.139)

IN

where

B=

1Rs 1172 oy = | F1st [fa8] (€, ) = Fist [fa,8] (0, )72 oy

2
<)
[7R7R]P

db

/ |ei6“ — 1‘ fa,p(a,b)da
R

2

Sez/ / |a| fup(a,b)da| db
[-R,.R? | /R
(A.140) <e2M? <1 + 511> .
Thus, using (A.139) and (A.140) we obtain
)
Fa€HL L (1L, M)ND L2(Re)

fx|x€€

BNP~' [ (7x(N 41) N 1
< _ —
_3< ’ (( ot >v1> +N20+6M(1+51)

3 (BNP7! [ (Tn(N +1)1+% N 1
< 1 M (14—
N20< T (PR ) s (14 )
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Thus, using (A.94), we have

[1]

s E[qu,N,e ol } o <1n(n)>2”
p— 6 =
TRy (LM)ND o L2(Re) Ina ()

fx|x€E
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