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Abstract
Computing a skeleton for a discretized boundary typically produces a noisy output, with a skeletal branch produced for each
boundary pixel. A simplification step often follows to reduce these noisy branches. As a result, generating a clean skeleton is
usually a 2-step process. In this article, we propose a skeletonization process that produces a clean skeleton in the first step,
avoiding the creation of branches due to noise. The resulting skeleton compares favorably with the most common pruning
methods on a large database of shapes. Our process also reduces execution time and requires only one parameter, ε, that
designates the desired boundary precision in the Hausdorff distance.

1. Introduction

The interior Blum medial axis [Blu67] captures the geometry of
the boundary of a two- or three-dimensional shape in a lower-
dimensional skeleton together with a radius function defined on
the skeleton that encodes the distance to the boundary. The skele-
ton is given by the closure of the set of centers of the maxi-
mal balls inside the shape, where a maximal ball passes through
at least two boundary points. The radius function stores the as-
sociated radius of each maximal ball. The medial axis is use-
ful in shape recognition and analysis applications, primarily in
2D [Sid99, Sun03, Bai08, Xu,10, Leo16], in part because the skele-
tal branches decompose a shape into sub-parts. A major drawback
is that skeletonization of discretized boundaries typically creates
branches that describe the small fluctuations of the boundary gen-
erated by discretization, and as such are uninformative about the
shape. Our work introduces a new method that constructs only in-
formative branches that capture meaningful geometry of the bound-
ary. See Figure 1.

(a) Classical Voronoï skeleton (b) Proposed skeletonization

Figure 1: Illustration of the classical problem of skeletons on a
rasterized shape: the presence of uninformative branches.

Many skeletonization methods have been proposed (see [Sah15]
for a survey), some of which compute a clean skeleton directly.
For example, [LMT15] combines the ridges of the distance map
and the centers of the maximal balls to compute the skeleton on
the grid of pixels. As happens with thinning methods, the skele-
ton is a subset of the pixel grid and therefore has width of one
pixel. Another approach that produces point skeletons modifies the
boundary itself, as in the circular boundary representation [Aic09]
proposed by Aichholzer et al.. The resulting skeleton avoids many
uninformative branches, but the construction is complicated: con-
verting the boundary into arcs requires that the boundary is repre-
sented by polynomial splines, which are then converted into circu-
lar arcs based on a chosen parameter. In contrast, our method uses
the information of the discrete boundary directly without any pre-
processing.

In this article, we build on one of the most common methods, the
Voronoï skeletonization [Ogn92], that estimates a Voronoï diagram
from a sampling of the boundary and approximates the medial axis
using the diagram’s interior vertices and edges. A medial point is
then a Voronoï vertex, with radius equal to the distance from the
Voronoï vertex to the associated boundary points. This method is
very precise if the sampling of the boundary is finer than the local
feature size [Att97]. It is also fast due to the optimization of the
Voronoï diagram algorithm.

Unfortunately, the Voronoï approach often produces a skeleton
with many uninformative branches. The usual approach to this
problem is to prune the less important parts of the skeleton. The
pruning criteria typically rely on evaluating properties of the medial
circle centered at the Voronoï point. We present the three most com-
mon pruning criteria. The λ-medial axis [Cha05] removes a circle
if its associated boundary points are contained in a circle of radius
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λ (later extended to a new definition of the medial axis [Cha09]).
The θ-homotopy medial axis [Sud05], evaluates the angle between
the medial point and its associated boundary points. If the angle is
less than θ, the circle is removed. Finally, the scale-axis-transform
[Gie09] expands each circle by a multiplicative factor s and then
removes any circle contained inside another one.

These three methods have the same disadvantages. First, the
topology of the resulting skeleton can be modified by the prun-
ing algorithm: for example holes can be closed with the scale-axis-
transform. Second, the choice of the parameter used for the prun-
ing is difficult, because it does not have an intuitive interpretation
(cf. Figure 2). Third, these pruning methods do not distinguish reli-
ably between noise and small geometric details (cf. Figure 3) which
means that important details can be lost in pruning. Finally, these
methods are applied after the computation of the skeleton, so addi-
tional computation time is necessary.

(a) θ-homotopy medial axis,

θ =
6π

18
, 47 branches

(b) θ-homotopy medial axis,

θ =
7π

18
, 17 branches

(c) Proposed Propagation,
ε = 1px, 23 branches

(d) Proposed Propagation,
ε = 1.5px, 13 branches

Figure 2: (Top) Difficulty of selecting the θ parameter: here, it is
hard to predict that increasing θ will erase the branches represent-
ing the top of the head. (Bottom) In the proposed skeletonization,
the parameter ε is the Hausdorff distance (HD) between the origi-
nal shape and the approximated shape represented by the skeleton.
It therefore describes the desired precision of the approximation.

In this article, we propose a novel 2D skeletonization method,
an improved version of a propagation algorithm introduced
in [Dur19]. This algorithm avoids generating uninformative
branches and therefore requires no pruning. The approach propa-
gates a Voronoï-generated medial circle inside the shape, insuring
continuous contact with the boundary. Furthermore, the circle is
propagated only in so-called informative directions as determined
by the desired precision ε. This threshold, ε, is the only param-
eter of our algorithm. We guarantee that the resulting skeleton-
generated shape represents an ε-approximation of the original
shape, in terms of the Hausdorff distance, as in [ZSC∗14], but with-
out pruning. For pixelated shapes, such as those extracted from im-
ages, we will have an ε-px approximation of the shape. We intro-
duce the proposed algorithm in Section 2 and then compare our
results with pruning methods in Section 3.

(a) Scale-Axis-Transform,
s = 1.3, 45 branches

(b) λ-medial axis,
λ = 5px, 61 branches

(c) Proposed propagation,
ε = 1px, 35 branches

(d) Proposed propagation,
ε = 1px, 23 branches

Figure 3: Some pruning methods (here scale-axis-transform and λ-
medial axis) delete shape details while keeping noise on the skele-
ton. The proposed method preserves all details of the shape while
removing the noise.

2. Voronoï skeletonization by propagation

We construct the skeletonization by propagating the skeleton from
an initial circle. Every skeletal circle passes through three or more
boundary points. For each pair of these points, a potential neighbor
circle can be computed that passes through both points (e.g., be-
tween B1 and B2 in Figure 4). We avoid propagating in directions
due to noise by ensuring that the boundary points between the two
points are not too close to the original circle (for example between
B0 and B1 on Figure 4). Algorithm 1 elaborates on this reasoning.
We first describe the goal of each algorithmic function, then present
the properties of the algorithm.

P

B0B1

B2

2ε

Figure 4: Desirable (open) directions on the circle. The red dashed
circle has radius 2ε larger than the black circle. The sequence of
points between B0, B1 is inside the red dashed circle, thus these
points are ε-points, and the direction between B0 and B1 is not
open. Here, two open directions remain (between B1 and B2, and,
B2 and B0).

2.1. Functions

Algorithm 1 is based on the following functions:
f irst_center: provides a first circle center in the shape that passes
through three boundary points. Starting with any point in the shape
interior and its inscribed circle, we can perturb the point until the
inscribed circle passes through three points of the boundary and is
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Algorithm 1: Propagating skeleton algorithm
Data: B : Boundary of the shape
Result: S : Shape skeleton

1 P0 = f irst_point(B)
2 push_back(lp,P0)
3 while not_empty(lp) do
4 P = pop_ f ront(lp)
5 {B1, · · · ,Bn}= closest_points(P,B)
6 Pε = {B1, · · · ,Bn}
7 For each i ∈ [1;n] do
8 If open_direction(Bi,Bi+1)
9 If loop_closure(P,Bi,Bi+1, lp)

10 Close skeletal loop
11 Else
12 Pi = propagate(P,Bi,Bi+1)
13 push_back(lp,Pi)

14 End
15 Else
16 Add epsilon_points(Bi,Bi+1) to Pε

17 End
18 rad = radius(P,Pε)
19 Add (P,rad) to the S
20 End
21 end

therefore maximal. See Figure 5. This step returns the circle center,
which initializes the algorithm. Note that the resulting skeleton is
independent of the starting point.
closest_points: returns the points of the boundary that lie on the
circle. As the distances on a computer cannot be exact, we use the
machine precision as a threshold on the distance to the circle to de-
termine which points are on the circle.
epsilon_points: Between two boundary points Bk and Bk+1 be-
longing to a circle, if all intermediate boundary points between Bk
and Bk+1 are at most at distance 2ε to the circle, we call them ε-
points associated to that circle (cf. Figure 4) and they are considered
covered (these boundary points will be at most at distance 2ε of the
circle). If there exists at least one point that is beyond 2ε, then no
ε-point exists between the two closest points.
radius: estimates the radius associated with a circle. We take the
average between the circle radius and the distance to the farthest
ε-point, in order to minimize the Hausdorff distance between the
shape modeled by the skeleton and the initial shape.
loop_closure: handles the loops in the skeleton. For each circle
center, we check if there exists a neighbor circle center in the list of
centers lp. By definition, neighboring centers share a pair of closest
points.
open_direction: determines directions for possible propagation.
We use ε-points is to check whether or not a direction is open, as
explained in Figure 4.
propagate: finds the next circle. Given an open direction Bk,
Bk+1, we seek the next circle center on the bisector of [BkBk+1]
(cf. Fig. 5(c)). The next circle passes through Bk, Bk+1, and a
new point of the boundary, and does not strictly contain any other
boundary point.

A
B

C

D

Pa

(a)

A
B

C

Pa

Pb

(b)

A
B

C

Pb
Pc

(c)

Figure 5: First circle center estimation. (a) Identifying the shape
interior using a corner D of the bounding box and the closest point
A on the boundary. The first point will be on the semi-line passing
through A with direction ~DA. (b) Identifying a point Pb on the semi-
line [APb), such that the circle centered in Pb with radius ‖APb‖,
contains a point C of the boundary and there is no point of the
boundary inside the circle. (c) Identifying Pc on the line bisector of
[AC] so that the circle centered in Pc is maximal.

2.2. Properties

The resulting skeleton guarantees the following properties:

1. Each circle found is a circle of the Voronoï diagram: it is a
circle that passes through three or more boundary points and
does not contain any other point.

2. Each edge between two circles is a Voronoï edge: since two
circles share two boundary points, their Voronoï cells are neigh-
bors, thus the edge is joining their centers is a Voronoï edge.

3. The distance from each point of the boundary to a circle is
at most ε: each ε-point is at most at distance ε to the associated
circle, according to the radius computation.

4. Choosing ε = 0 returns the full Voronoï diagram: a circle
cannot have any ε-point, thus all circles have only closest points.
Thus, every point of the boundary is on a Voronoï circle, which
means that we have the full internal Voronoï diagram.

5. The connectivity of the skeleton is the same as the full in-
ternal Voronoï diagram: Our method consists in computing
only a partial Voronoï diagram, closing some propagation di-
rections. Closing a direction, made of consecutive ε-points, is
topologically equivalent to replacing the consecutive ε-points by
the closest points they link. Thus, our skeletonization method
returns a skeleton that is the Voronoï skeleton on a simplified
boundary that is homotopy equivalent to the original boundary.

6. The complexity is proportional to N2, where N is the number
of boundary points: The propagation explores at most all the
points of the boundary for each skeletal point, and the number
of skeletal points is of the same order as the number of boundary
points.

3. Results and comparison

In this section, we compare the skeletonization by propagation
with the Voronoï skeletonization pruned by scale-axis transform,
λ-medial axis, and θ medial axis. As stated previously, the Voronoï
skeletonization is one of the most commonly used methods to con-
struct the skeleton of a discretized shape that produces a graph, like
our skeleton.

Figure 6 presents a comparison between the proposed method
and the Voronoï skeleton pruned by different methods. Each
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method has one parameter: s for scale-axis-transform, λ for λ-
medial axis, θ for θ-medial axis, and ε for our skeletonization. Dif-
ferent choices for parameter values will produce a different number
of branches. We compare results on 1282 images from the MPEG-
7 database [Lat00]. By quantifying the loss of information as a
function of the number of branches in the skeleton produced, we
evaluate the relevance of the discarded branches to the shape: if
a method removes fewer informative branches, the loss of infor-
mation should be stable as the number of branches decreases. We
observe that only our method respects this criterion, while the prun-
ing methods lose more information. Figure 7 shows some examples
using our method. We can see that there are few branches for each
skeleton and that the shape is approximated well. The mean com-
putation time for each image is 13ms. By comparison, the mean
computation for the full Voronoï is 60ms (i.e. with ε = 0), filtering
with scale-axis-transform takes between 365ms and 1670ms, with
λ-medial axis takes between 103ms and 111ms and with θ-medial
axis takes between 207ms and 1450ms to compute, depending on
the choice of their respective parameters.
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Figure 6: Distance between the original shape and the shape gen-
erated by a simplified skeleton with respect to the number of skele-
ton branches, for three pruning methods, and our proposed skele-
tonization. We consider two criteria: the Hausdorff distance (left)
and the relative area of the symmetric difference (right).

Figure 7: Skeletons of some shapes of the MPEG-7 database, com-
puted with skeletonization by propagation. We use ε = 1 for each
shape. The area modeled by the skeleton is grey, the lost regions
are in red, and the boundary in black.

4. Conclusion

In this article, we have presented a new skeletonization method that
directly computes a simple skeleton with a low number of branches.
We propagate selected Voronoï circles within the shape and discard
directions of propagation that represent negligible information, be-
low a chosen threshold. Our method is simple to tune, as the only
parameter is twice the upper bound of the desired Hausdorff dis-
tance between the output shape and the original shape. We have
also shown that increasing the value of our parameter decreases
the number of branches while limiting loss of shape information
as compared to classical pruning methods. In other words, the pre-
served skeleton branches retained by our method are highly infor-
mative branches.

One direction for future work is the automatic estimation of
boundary noise by determining the ε parameter that maximizes the
ratio between the number of branches and the information loss. We
can see on Figure 6 that there is an elbow in the black curve (a point
with a large change in derivative for each of the graphs). This elbow
point should be close to the optimal ε parameter. A second direction
is to adapt this algorithm for 3D skeletonization. 3D skeletonization
from surface data is even more affected by noise, leading to very
complex structures.
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