Structure learning of Bayesian networks involving cyclic structures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Structure learning of Bayesian networks involving cyclic structures

Witold Wiecek
  • Fonction : Auteur
Frédéric Bois
  • Fonction : Auteur

Résumé

Many biological networks include cyclic structures. In such cases, Bayesian networks (BNs), which must be acyclic, are not sound models for structure learning. Dynamic BNs can be used but require relatively large time series data. We discuss an alternative model that embeds cyclic structures within acyclic BNs, allowing us to still use the fac-torization property and informative priors on network structure. We present an implementation in the linear Gaussian case, where cyclic structures are treated as multivariate nodes. We use a Markov Chain Monte Carlo algorithm for inference, allowing us to work with posterior distribution on the space of graphs.
Fichier principal
Vignette du fichier
gs_loop_Arxiv.pdf (323.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02130362 , version 1 (15-05-2019)

Identifiants

  • HAL Id : hal-02130362 , version 1

Citer

Witold Wiecek, Frédéric Bois, Ghislaine Gayraud. Structure learning of Bayesian networks involving cyclic structures. 2019. ⟨hal-02130362⟩
58 Consultations
163 Téléchargements

Partager

More