Structure learning of Bayesian networks involving cyclic structures
Résumé
Many biological networks include cyclic structures. In such cases, Bayesian networks (BNs), which must be acyclic, are not sound models for structure learning. Dynamic BNs can be used but require relatively large time series data. We discuss an alternative model that embeds cyclic structures within acyclic BNs, allowing us to still use the fac-torization property and informative priors on network structure. We present an implementation in the linear Gaussian case, where cyclic structures are treated as multivariate nodes. We use a Markov Chain Monte Carlo algorithm for inference, allowing us to work with posterior distribution on the space of graphs.
Domaines
Méthodologie [stat.ME]Origine | Fichiers produits par l'(les) auteur(s) |
---|