Alexander Gomilko 
email: gomilko@mat.umk.pl
  
Mariusz Lemańczyk 
  
Thierry De 
  
L A Rue 
  
Möbius orthogonality in density for zero entropy dynamical systems

 

Introduction

Following P. Sarnak [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF], we say that a topological system pX, T q is Möbius orthogonal if [START_REF] El Abdalaoui | Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals[END_REF] lim

N Ñ8 1 N ÿ nďN f pT n xqµpnq " 0
for all f P CpXq and x P X (here µ stands for the classical arithmetic Möbius function). By the standard trick of summation by parts (which we recall below for the reader's convenience), we obtain that the Möbius orthogonality of pX, T q implies the logarithmic Möbius orthogonality of pX, T q:

(2) lim

N Ñ8 1 log N ÿ nďN 1 n f pT n xqµpnq " 0
for all f P CpXq and x P X. The celebrated Sarnak's conjecture [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF] claims that all zero entropy systems are Möbius orthogonal, but this statement has been established only for some selected classes (we refer the reader to the bibliography in survey [START_REF] Ferenczi | Sarnak's conjecture, what's new[END_REF] to see for which classes). In some contrast to this, a considerable progress has been made recently in our understanding of the logarithmic Sarnak's conjecture: Frantzikinakis and Host [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF] proved that each zero entropy system whose set of ergodic measures is countable is logarithmic Möbius orthogonal. Earlier, Tao [START_REF] Tao | Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF] proved that the logarithmic Sarnak's conjecture is equivalent to the logarithmic version of the classical Chowla conjecture (from 1965) on auto-correlations of the Möbius function. 1 While it looked rather odd to expect that we can say anything interesting about Cesàro type averaging knowing the convergence of logarithmic averages, it has been proved in [START_REF] Gomilko | Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics[END_REF] that the logarithmic Chowla conjecture implies the validity of the Chowla conjecture along a subsequence. In fact, the result was a consequence of some general mechanism when a certain sequence (in a locally convex space) of logarithmic 1 Sarnak's conjecture itself was motivated by the fact that the Chowla conjecture implies Sarnak's conjecture [START_REF] El Abdalaoui | Möbius disjointness for models of an ergodic system and beyond[END_REF], [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF], [START_REF] Tao | [END_REF]. See also [START_REF] Tao | The logarithmically averaged Chowla and Elliot conjectures for two-point correlations[END_REF], [START_REF] Tao | The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliot conjectures[END_REF], [START_REF] Tao | Odd order cases of the logarithmically averaged Chowla conjecture[END_REF], where special cases of the validity of the logarithmic Chowla conjecture have been proved. averages 2 converges to an extremal point. This approach seems to fail if (what perhaps is natural), we would like to prove that the logarithmic Möbius orthogonality of a fixed system implies its Möbius orthogonality along a subsequence. However, commenting on [START_REF] Gomilko | Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics[END_REF], Tao [START_REF] Tao | [END_REF] was able to prove a stronger result using a different method (second moment type argument). Namely, he proved that if the logarithmic Chowla conjecture holds then the Chowla conjecture holds along a subsequence of full logarithmic density; in particular of upper density 1.

The aim of this note is to show how to adapt Tao's argument (this is done in Theorem 2.1 below) to be able to apply it to systems satisfying some (seemingly) stronger condition than the logarithmic Möbius orthogonality and which allows one to deduce Möbius orthogonality in full logarithmic density. In order to formulate such a result we first recall the strong MOMO notion introduced in [START_REF] El Abdalaoui | Möbius disjointness for models of an ergodic system and beyond[END_REF]. Namely, a system pX, T q satisfies this property if for all increasing sequences pb k q Ă N with b k`1 ´bk Ñ 8, all px k q Ă X and f P CpXq, we have

(3) 1 b K`1 ÿ kďK ˇˇˇˇˇÿ b k ďnăb k`1 f pT n´b k x k qµpnq ˇˇˇˇˇÝ ÝÝÝ Ñ KÑ8 0,
while if under the same assumptions we have (4)

1 log b K`1 ÿ kďK ˇˇˇˇˇÿ b k ďnăb k`1 1 n f pT n´b k x k qµpnq ˇˇˇˇˇÝ ÝÝÝ Ñ KÑ8 0,
then we say that pX, T q satisfies the logarithmic strong MOMO property. It has been proved in [START_REF] El Abdalaoui | Möbius disjointness for models of an ergodic system and beyond[END_REF] that Sarnak's conjecture is equivalent to the fact that all zero entropy systems enjoy the strong MOMO property. Note that (3) is equivalent to

(5) lim KÑ8 1 b K`1 ÿ kďK › › › › › › ÿ b k ďnăb k`1 µpnqf ˝T n › › › › › › CpXq " 0,
and (4) is equivalent to [START_REF] Cellarosi | Ergodic properties of square-free numbers[END_REF] lim

KÑ8 1 log b K`1 ÿ kďK › › › › › › ÿ b k ďnăb k`1 µpnq n f ˝T n › › › › › › CpXq " 0,
for all increasing sequences pb k q Ă N with b k`1 ´bk Ñ 8 and f P CpXq. From ( 5) and the triangular inequality we obtain

(7) lim kÑ8 1 b k`1 › › › › › › ÿ năb k`1 µpnqf ˝T n › › › › › › CpXq " 0, whenever b k`1 ´bk Ñ 8 as k Ñ 8.
Then it is easy to deduce that (7) holds for b k :" k, that is, the uniform convergence in Möbius orthogonality (1) holds. Analogously, we 2 The Chowla conjecture can be reformulated using the language of quasi-generic points for invariant measures in a certain shift space; it is then equivalent to the fact that that the empiric measures determined by µ converge to a certain natural measure which is ergodic, hence to an extremal point, see e.g. the survey [START_REF] Ferenczi | Sarnak's conjecture, what's new[END_REF]. Similarly, we deal with the logarithmic Chowla conjecture.

obtain that the logarithmic strong MOMO property implies the uniform convergence in the logarithmic Möbius orthogonality [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF].

Here is our main result:

Theorem 1.1. Assume that a topological system pX, T q satisfies the logarithmic strong MOMO property. Then there exists A " ApX, T q Ă N with full logarithmic density such that, for each f P CpXq,

(8) lim AQN Ñ8 › › › › › 1 N ÿ nďN µpnqf ˝T n › › › › › CpXq " 0.
In particular, Möbius orthogonality holds along a subsequence (of N ) of full logarithmic density.

One of the main results in [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF] states that, if a system pX, T q has zero entropy and if its set of ergodic measures is countable, then the system is logarithmic Möbius orthogonal. We will show that such systems satisfy the strong logarithmic MOMO property, hence obtaining the following: 3 Corollary 1.2. Let pX, T q be a zero entropy ergodic dynamical system such that the set M e pX, T q of ergodic T -invariant measures is countable. Then, there exists A " ApX, T q Ă N with full logarithmic density along which Möbius orthogonality holds uniformly in x P X.

In particular, the above holds for all zero entropy uniquely ergodic systems. Corollary 1.2 is slightly surprising even for horocycle flows (in the cocompact case), where we know that Möbius orthogonality holds [START_REF] Bourgain | Disjointness of Möbius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry[END_REF] but it is open (see questions in [START_REF] Ferenczi | Sarnak's conjecture, what's new[END_REF], [START_REF] Kanigowski | On disjointness of some parabolic flows[END_REF]) whether Möbius orthogonality holds in its uniform form. By Corollary 1.2, we have that a uniform version holds along a subsequence of logarithmic density 1 (let alone the upper density of this subsequence is 1). A use of [START_REF] Frantzikinakis | Furstenberg systems of bounded multiplicative functions and applications[END_REF] shows that Corollary 1.2 remains valid when µ is replaced by any multiplicative function which is strongly aperiodic.

The rest of the note is devoted to give some illustrations how Theorem 2.1 (which is an adaptation of Tao's result) can be applied in other situations. For example, we will show how in the main result in [START_REF] Gomilko | Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics[END_REF] we can achieve full logarithmic density. Besides, we note that in the classical Davenport-Erdös theorem on the existence of the logarithmic density [START_REF] Davenport | On sequences of positive integers[END_REF] of sets of multiples, the upper asymptotic density is achieved along a set of full logarithmic density. Finally, we note in passing the logical implication: Chowla conjecture of order 2 ñ PNT along a subsequence of logarithmic density 1.

A few words on basic concepts and notation: Given a subset C Ă N, we denote by δpCq its logarithmic density: δpCq :" lim N Ñ8 p1{ log N q ř nďN, nPC 1 n , assuming that the limit exists. It is classical that dpCq ď δpCq ď dpCq, where dpCq :" lim sup N Ñ8 1 N |r1, N s X C| stands for the upper asymptotic density, and similarly the lower (asymptotic) density dpCq is defined as the lim inf. In fact, these inequalities are direct consequences of the classical relationship between Cesàro averages and harmonic averages: given a sequence pa n q and setting s n :" ř jďn a j , s 0 :" 0, 3 We were informed by N. Frantzikinakis during the workshop "Sarnak's Conjecture" at the American Institute of Mathematics in mid-December 2018 that, independently of us, he can prove Corollary 1.2 by modifying some arguments in [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF].

we have:

ÿ 1ďnďN a n n " ÿ 1ďnďN 1 n ps n ´sn´1 q " ÿ 1ďnďN ´1 s n ˆ1 n ´1 n `1 ˙`s N N " ÿ nďN ´1 s n n 1 n `1 `sN N (9) 
which basically says that the logarithmic averages of pa n q are the logarithmic averages of Cesàro averages (sometimes, we only use the fact that the harmonic averages are convex combinations of Cesàro averages).

In what follows when we speak about subsequences of natural numbers, we always mean increasing sequences of natural numbers (so that subsequences are the same as infinite subsets). In Corollary 1.2, we find a subsequence of full logarithmic density which depends however on the system pX, T q. The methods used in this note do not seem to get one universal subsequence along which Sarnak's conjecture (i.e. Möbius orthogonality for zero entropy systems) holds. We could get such a universal sequence (see Proposition 1.3 below) if we were able to prove Sarnak's conjecture along a full logarithmic density sequence for each zero entropy system, that is, by [START_REF] Tao | Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF], if the logarithmic Chowla conjecture holds. More precisely: Proposition 1.3. Assume that for each zero entropy dynamical system pX, T q there exists a subsequence pN k pX, T qq k of natural numbers with δptN k pX, T q : k ě 1uq " 1 such that

(10) lim kÑ8 1 N k pX, T q ÿ nďN k pX,T q f pT n xqµpnq " 0
for all f P CpXq and x P X. Then there exists a subsequence pN k q of natural numbers, δptN k : k ě 1uq " 1 such that for each zero entropy dynamical system pX, T q, (10) holds along pN k q.

To see the proof of Proposition 1.3, we have: a) By assumption and the classical Lemma 2.5, we obtain that for each zero entropy dynamical system pX, T q, we have lim N Ñ8 p1{ log N q ř nďN 1 n f pT n xqµpnq " 0 for each f P CpXq and x P X.

(b) By (a) and Tao's result ("logarithmic Sarnak implies logarithmic Chowla") [START_REF] Tao | Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF], in the space M pX µ q of measures on X µ , we obtain that p1{ log N q ř nďN p1{nqδ S n µ Ñ p ν S , where we consider the Möbius subshift pX µ , Sq and p ν S stands for the relatively independent extension of the Mirsky measure ν S of the square-free system pX µ 2 , Sq. 4 (c) By (b) and Theorem 5.1, we obtain that there exists a subsequence pN k q with δptN k : k ě 1uq " 1 such that p1{N k q ř nďN k δ S n µ Ñ p ν S . (d) By (c) and the proof of the implication "Chowla implies Sarnak" in [START_REF] El Abdalaoui | The Chowla and the Sarnak conjectures from ergodic theory point of view[END_REF], it follows that for each zero entropy pX, T q, we have lim kÑ8 p1{N k q ř nďN k f pT n xqµpnq " 0 for all f P CpXq and x P X, so Proposition 1.3 follows.

Functional formulation of Tao's result

Our aim in this section is to prove a slight extension of Tao's result from [START_REF] Tao | [END_REF]: 4 The measure-theoretic investigations of the square-free system pX µ 2 , ν S , Sq have been originated by Sarnak [START_REF] Sarnak | Three lectures on the Möbius function, randomness and dynamics[END_REF] and Cellarosi and Sinai [START_REF] Cellarosi | Ergodic properties of square-free numbers[END_REF]: the Mirsky measure is ergodic and so is its relatively independent extension. Theorem 2.1. Let pB j , } ¨}j q, j " 1, 2, be normed vector spaces and assume that B 1 is separable. Let pS k q kě1 be a sequence of linear bounded operators from B 1 to B 2 , such that for some M we have, for each f P B 1 and each k ě 1,

(11) }S k f } 2 ď M }f } 1 . 5
Let φ be a continuous, positive, strictly increasing and convex function on r0, 8q with φp0q " 0. Suppose that there exists a subsequence pN s q Ă N such that for any f P B 1 , setting

(12) R f pHq :" lim sup sÑ8 1 log N s ÿ 1ďnďNs 1 n φ ˜› › › › › 1 H ÿ 1ďhďH S n`h f › › › › › 2 ¸,
we have

(13) lim HÑ8 R f pHq " 0.
Then there exists a set N of natural numbers with the property

(14) lim sÑ8 1 log N s ÿ N QN ďNs 1 N " 1,
such that, for any f P B 1 , we have

(15) lim N Ñ8, N PN › › › › › 1 N ÿ 1ďnďN S n f › › › › › 2 " 0.
Moreover, if pN s q " N, then δpN q " 1 and

(16) lim N Ñ8 › › › › › 1 log N ÿ 1ďnďN S n f n › › › › › 2 " 0.
The proof of the above theorem requires a few lemmas. Lemma 2.2. Let G : N Ñ R `. Suppose that for some γ P p0, 1q and for some subsequence pN s q Ă N, we have [START_REF] Tao | Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number Theory -Diophantine Problems, Uniform Distribution and Applications[END_REF] lim sup

sÑ8 1 log N s ÿ 1ďnďNs Gpnq n ď γ.
Then, for the set M Ă N given by M :" n : Gpnq ă ? γ ( , we have Then, by Lemma 2.2, we obtain (21) for the set T defined by [START_REF] Tao | Odd order cases of the logarithmically averaged Chowla conjecture[END_REF].

(18) lim inf sÑ8 1 log N s ÿ nďNs, nPM 1 n ě 1 ´?γ. Proof. Let Q " NzM , so that Q " n : Gpnq ě ? γ ( .
Lemma 2.4 (see Tao [START_REF] Tao | [END_REF]). Assume that M k Ă N, k P N, and that there exists an increasing sequence pN s q Ă N such that, for each k,

lim sÑ8 1 log N s ÿ nPM k , nďNs 1 n " 1, k P N.
Then there exists a subset M Ă N such that

(22) lim sÑ8 1 log N s ÿ nPM, nďNs 1 n " 1,
and such that, for any k P N, there exists s k with

(23) M X tn : n ě N s k u Ă M k . Proof. Replacing, if necessary, each M k by M k X Ş k 1 ăk M k 1 , we may assume without loss of generality that M k`1 Ă M k , k P N.
Let us choose an increasing sequence ps k q such that, for each k,

s ě s k ñ 1 log N s ÿ nPM k , nďNs 1 n ě 1 ´1 k . We set M :" M 1 X r1, N s 1 s Y Ť 8 k"2 `Mk X `Ns k´1 , N s k ‰˘a
nd verify that M satisfies the desired properties ( 22) and (23).

The following is classical. Lemma 2.5. Let pa n q ně1 be a bounded sequence in a normed vector space pB, } ¨}q. Suppose that there exists a subsequence N Ă N, δpN q " 1, such that

(24) lim N Ñ8,N PN › › › › › 1 N ÿ 1ďnďN a n › › › › › " 0. Then (25) lim N Ñ8 › › › › › 1 log N ÿ 1ďnďN a n n › › › › › " 0. Proof. Let M " NzN , so that (26) lim N Ñ8 1 log N ÿ nďN, nPM 1 n " 0.
By (9), we have

ÿ 1ďnďN a n n " E N `ÿ 1ďnďN ´1 E n n `1
, where E n :"

1 n ÿ 1ďmďn a m . Setting C :" sup n }E n }, we obtain › › › › › 1 log N ÿ 1ďnďN a n n › › › › › ď C log N `› › › › › 1 log N ÿ nďN, nPM E n n `1 › › › › › `› › › › › 1 log N ÿ nďN, nPN E n n `1 › › › › › ď C log N `C log N ÿ nďN, nPM 1 n `› › › › › 1 log N ÿ nďN, nPN E n n `1 › › › › › ,
and then assertion (25) follows from (26) and (24).

Proof of Theorem 2.1. Let f P B 1 . By ( 12), ( 13) and Lemma 2.3, we obtain that for any fixed large H P N, there exists a set N f,H with the property

lim inf sÑ8 1 log N s ÿ N f,H QN ďNs 1 N ě 1 ´bR f pHq,
and such that, for N P N f,H , we have

1 N ÿ 1ďnďN φ ˜› › › › › 1 H ÿ 1ďhďH S n`h f › › › › › 2 ¸ď b R f pHq.
By deleting at most finitely many elements, we may assume that N f,H consists only of elements of size at least H 2 . For any H 0 , if we set N f,ěH 0 :"

Ť HěH 0 N f,H , then N f,ěH 0 satisfies lim sÑ8 p1{ log N s q ř N f,ěH 0 QN ďNs 1 
N " 1. By Lemma 2.4, we can find a set N f of natural numbers with

lim sÑ8 1 log N s ÿ N f QN ďNs 1 N " 1,
and such that, for every H 0 , every sufficiently large element of N f lies in N f,ěH 0 . Thus, for every sufficiently large N P N f , one has

1 N ÿ 1ďnďN φ ˜› › › › › 1 H ÿ 1ďhďH S n`h f › › › › › 2 ¸ď b R f pHq,
for some H ě H 0 with N ě H 2 . By the monotonicity of φ and Jensen's inequality, this implies that

φ ˜1 N H › › › › › ÿ 1ďnďN ÿ 1ďhďH S n`h f › › › › › 2 ¸ď φ ˜1 N ÿ 1ďnďN › › › › › 1 H ÿ 1ďhďH S n`h f › › › › › 2 ḑ 1 N ÿ 1ďnďN φ ˜› › › › › 1 H ÿ 1ďhďH S n`h f › › › › › 2 ¸ď b R f pHq,
so that, setting ψpsq :" φ ´1p ? sq, s ą 0, we get

(27) 1 N H › › › › › ÿ 1ďnďN ÿ 1ďhďH S n`h f › › › › › 2 ď ψpR f pHqq Ñ 0, H Ñ 8.
Next, by computation, we get

ÿ 1ďnďN ÿ 1ďhďH S n`h f " ÿ 1ďhďH ÿ 1ďnďN S n`h f " ÿ 1ďhďH h`N ÿ m"h`1 S m f " H N ÿ m"1 S m f `ÿ 1ďhďH N `h ÿ m"N `1 S m f ´ÿ 1ďhďH ÿ 1ďmďh S m f, which gives 1 N N ÿ m"1 S m f " 1 HN ÿ 1ďnďN ÿ 1ďhďH S n`h ´1 HN ÿ 1ďhďH N `h ÿ m"N `1 S m f `1 HN ÿ 1ďhďH ÿ 1ďmďh S m f.
Now, let us fix H 0 . For any sufficiently large N P N f , there exists H ě H 0 , with H 2 ď N , such that N P N f,H . The triangular inequality yields

1 N › › › › › N ÿ m"1 S m f › › › › › 2 ď 1 HN › › › › › ÿ 1ďnďN ÿ 1ďhďH S n`h f › › › › › 2 `1 HN › › › › › ÿ 1ďhďH N `h ÿ m"N `1 S m f › › › › › 2 `1 HN › › › › › ÿ 1ďhďH ÿ 1ďmďh S m f › › › › › 2 .
Using (27), we can upper bound the first term in the right-hand side by ψpR f pHqq.

The sum of the other two terms can be upper bounded by

M }f } 1 HN ˜ÿ 1ďhďH N `h ÿ m"N `1 1 `ÿ 1ďhďH ÿ 1ďmďh 1 ¸ď 2HM }f } 1 N ď 2M }f } 1 H .
We thus get that

1 N › › › › › N ÿ m"1 S m f › › › › › 2 ď sup HěH 0 ψpR f pHqq `2M }f } 1 H 0 .
By letting H 0 go to infinity, we conclude that lim N Ñ8,

N PN f › › ›p1{N q ř N m"1 S m f › › › 2 " 0.
Let now pf k q kě1 be a dense set in B 1 . Then, by Lemma 2.4, we get a set N of natural numbers with the property lim sÑ8 p1{ log N s q ř N QN ďNs 1

N " 1, such that for any k P N,

lim N Ñ8, N PN 1 N › › › › › N ÿ m"1 S m f k › › › › › 2 " 0.
Take g P B 1 . Then for any ǫ ą 0 there exists f k such that }g ´fk } 1 ď ǫ{M, and then

1 N › › › › › N ÿ m"1 S m g › › › › › 2 ď 1 N › › › › › N ÿ m"1 S m f k › › › › › 2 `ǫ,
which, by the above, yields

lim N Ñ8, N PN 1 N › › › › › N ÿ m"1 S m g › › › › › 2 " 0.
So, statement ( 15) is proved. Assertion ( 16) follows from ( 15) by Lemma 2.5.

Note that in the sequel we will use Theorem 2.1 mainly for φpsq " s (or sometimes for φpsq " s 2 ).

Proof of Theorem 1.1

To prove Theorem 1.1 we will show a stronger result: Theorem 3.1. Let pB j , } ¨}j q, j " 1, 2, be normed vector spaces and assume that B 1 is separable. Let pS k q kě1 be a sequence of linear bounded operators from B 1 to B 2 , such that for some M ą 0 we have, for each f P B 1 and each k ě 1,

}S k f } 2 ď M }f } 1 .
Assume that pS k q kě1 satisfies the property: for all increasing sequences pb k q Ă N with b k`1 ´bk Ñ 8 and f P B 1 , we have

lim KÑ8 1 log b K`1 ÿ kďK › › › › › › ÿ b k ďnăb k`1 1 n S n f › › › › › › 2 " 0,
Then there exists A Ă N with full logarithmic density: δpAq " 1, such that for each

f P B 1 , lim AQN Ñ8 › › › › › 1 N ÿ nďN S n f › › › › › 2 " 0.
The proof of Theorem 3.1 will use the following intermediate result.

Proposition 3.2. Let pB j , } ¨}j q, j " 1, 2 be normed vector spaces. Let pS n q ně1 be a sequence of linear bounded operators from B 1 to B 2 , such that for any pb k q Ă N with 0 ă b k`1 ´bk Ñ 8 as k Ñ 8, and any f P B 1 we have

(28) 1 log b K`1 ÿ kďK › › › › › › ÿ b k ďnăb k`1 1 n S n f › › › › › › 2 Ý ÝÝÝ Ñ KÑ8 0. Then (29) lim HÑ8 lim N Ñ8 1 log N ÿ nďN 1 n › › › › › 1 H ÿ hďH S n`h f › › › › › 2 " 0.
Proof of Proposition 3.2. Suppose that for some f P B 1 , (29) does not hold. Then, there exist γ ą 0 and a sequence pH ℓ q, H ℓ Ñ 8 as ℓ Ñ 8, such that for each ℓ ě 1, we have

lim N Ñ8 1 log N ÿ 1ďnďN 1 n › › › › › 1 H ℓ ÿ 1ďhďH ℓ S n`h f › › › › › 2 ě γ.
We write this in the form

lim N Ñ8 1 log N 1 H ℓ H ℓ ´1 ÿ r"0 ÿ nďN, n"r rH ℓ s 1 n › › › › › ÿ 1ďhďH ℓ S n`h f › › › › › 2 ě γ.
Then there exists r ℓ , 0 ď r ℓ ă H ℓ , such that

lim N Ñ8 1 log N ÿ nďN, n"r ℓ rH ℓ s 1 n › › › › › ÿ 1ďhďH ℓ S n`h f › › › › › 2 ě γ. Using 1 n " 1 n `h `h npn `hq , lim N Ñ8 1 log N ÿ nďN, n"r ℓ rH ℓ s H 2 ℓ n 2 " 0, we obtain lim N Ñ8 1 log N ÿ nďN, n"r ℓ rH ℓ s › › › › › ÿ 1ďhďH ℓ 1 n `h S n`h f › › › › › 2 ě γ, or lim N Ñ8 1 log N ÿ nďN, n"r ℓ rH ℓ s › › › › › ÿ nămďn`H ℓ 1 m S m f › › › › › 2 ě γ.
Rewrite this inequality in the form

lim N Ñ8 1 log N rN {H ℓ s ÿ k"1 › › › › › › ÿ kH ℓ `rℓ ămďpk`1qH ℓ `rℓ 1 m S m f › › › › › › 2 ě γ,
and take, for a fixed ℓ, the sequence pb k,ℓ q kě1 defined by b k,ℓ :" kH ℓ `rℓ `1. Setting K N :" rN {H ℓ s for each N , we have

log b K N `1,ℓ { log N Ý ÝÝÝ Ñ N Ñ8 1, hence lim sup KÑ8 1 log b K`1,ℓ ÿ kďK › › › › › › ÿ b k,ℓ ďmăb k`1,ℓ 1 m S m f › › › › › › 2 ě γ.
We can now apply the Diagonalization Lemma 3.3 with the sequences g n,m :"

› › › › › ÿ nďjăm 1 j S j f › › › › › 2 .
We obtain that there exists a sequence pb k q kě1 with 0 ă b k`1 ´bk Ý ÝÝ Ñ kÑ8 8, such that

lim KÑ8 1 log b K`1 ÿ kďK › › › › › › ÿ b k ďmăb k`1 1 m S m f › › › › › › 2 ě γ{2.
Hence (28) is not satisfied Proof of Theorem 3.1. By Proposition 3.2, we obtain that if we set R f pHq :" lim sup

N Ñ8 1 log N ÿ 1ďnďN 1 n › › › › › 1 H ÿ 1ďhďH S n`h f › › › › › 2 ,
then lim HÑ8 R f pHq " 0, so the result follows from Theorem 2.1 with φpsq " s.

Proof of Theorem 1.1. We apply Theorem 3.1 to B 1 " B 2 " CpXq and S k pf q :" µpkqf ˝T k .

Proof of Corollary 1.2 and related results

Recall that a point y in a topological dynamical system pY, Sq is quasi-generic for some measure ν if, for some subsequence pN k q of integers and all f P CpY q, we have

1 N k ÿ 1ďnďN k f pS n yq Ý ÝÝ Ñ kÑ8 ż Y f dν.
Likewise, we say that y is logarithmically quasi-generic for ν if, for some subsequence pN k q of integers and for all f P CpY q, we have

1 log N k ÿ 1ďnďN k 1 n f pS n yq Ý ÝÝ Ñ kÑ8 ż Y f dν.
Observe that any measure for which y is logarithmically quasi-generic is S-invariant.

We will use here the following result from [START_REF] Frantzikinakis | The logarithmic Sarnak conjecture for ergodic weights[END_REF] (see the remark after Theorem 1.3 therein). Theorem 4.1 (Frantzikinakis and Host). Let pY, Sq be a topological dynamical system, and let y P Y . Assume that, for any measure ν for which y is logarithmically quasi-generic, the system pY, ν, Sq has zero entropy and countably many ergodic components. Then for any g P CpY q, we have

(36) lim N Ñ8 1 log N ÿ 1ďnďN 1 n
gpS n yqµpnq " 0.

Proof of Corollary 1.2. Let us consider a dynamical system pX, T q with zero topological entropy, and such that M e pX, T q is countable. In view of Theorem 1.1, all we need to prove is that pX, T q satisfies the logarithmic strong MOMO property. That is, we fix an increasing sequence pb k q Ă N with b k`1 ´bk Ñ 8 (and we assume without loss of generality that b 1 " 1), a sequence px k q Ă X and f P CpXq, and we have to show the following convergence (37)

1 log b K`1 ÿ kďK ˇˇˇˇˇÿ b k ďnăb k`1 1 n f pT n x k qµpnq ˇˇˇˇˇÝ ÝÝÝ Ñ KÑ8 0.
According to [START_REF] El Abdalaoui | Möbius disjointness for models of an ergodic system and beyond[END_REF]Lemma 18], it is sufficient to show that (38)

1 log b K`1 ÿ kďK e k ÿ b k ďnăb k`1 1 n f pT n x k qµpnq Ý ÝÝÝ Ñ KÑ8 0,
where e k P Σ 3 :" te 2πij{3 : j " 0, 1, 2u is chosen so that the product

e k ÿ b k ďnăb k`1 1 n f pT n x k qµpnq
belongs to the closed cone t0u Y tz P C : argpzq P r´π{3, π{3su.

In order to show (38), we consider the space Y :" pX ˆΣ3 q N with the shift S, and in this system the point y " py n q nPN defined by

y n :" pT n x k , e k q if b k ď n ă b k`1 pk ě 1q.
Let ν be a measure for which y is logarithmically quasi-generic. The same argument as in [START_REF] El Abdalaoui | Möbius disjointness for models of an ergodic system and beyond[END_REF] (see the proof of (P2 ñ P3)) shows that ν must be concentrated on the set of sequences of the form `px, aq, pT x, aq, pT 2 x, aq, . . . ˘px P X, a P Σ 3 q. Now, let us consider an ergodic component ρ of ν. The marginal of ρ on the first coordinate x must be an ergodic T -invariant measure on X. By assumption, there are only countably many of them, and all of them give rise to zero-entropy systems. The marginal of ρ on the second coordinate a is one of the three Dirac measures δ 1 , δ e i2π{3 , δ e i4π{3 . Moreover these two marginals must be independent by the disjointness of ergodic systems with the identity, thus, these two marginals completely determine ρ. Hence, we see that there can be only countably many possible ergodic components of ν, and all of them have zero entropy. Thus y satisfies the assumptions of Theorem 4.1, and we have (36) for each g P CpY q. In particular, if we take the continuous function g defined by gpzq :" a 0 f pz 0 q for each z " ppz 0 , a 0 q, pz 1 , a 1 q, . . .q P Y , we obtain (38).

Remark 4.2. We can characterize uniform convergence for Möbius orthogonality in terms of a MOMO type convergence. Indeed:

The uniform convergence in Möbius orthogonality (1) holds if and only if for all pb k q satisfying b k {b k`1 Ñ 0, we have

1 b k`1 › › › › › › ÿ b k ďnăb k`1 µpnqf ˝T n › › › › › › CpXq Ý ÝÝ Ñ kÑ8 0.
To see this equivalence, it is sufficient to note that for each x P X,

1 b k`1 ÿ b k ďnăb k`1 f pT n xqµpnq " 1 b k`1 ÿ 1ďnăb k`1 f pT n xqµpnq ´bk b k`1 1 b k ÿ 1ďnăb k f pT n xqµpnq.
Remark also that the same arguments work for the logarithmic averages (replacing

b k {b k`1 Ñ 0 with log b k { log b k`1 Ñ 0).

Miscellanea

Ergodic measures.

In this section, we show that Tao's approach persists, if we consider the main observation from [START_REF] Gomilko | Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics[END_REF].

Let pX, T q be a dynamical system. Given x P X and n P N, we write δ T n pxq for the Dirac measure concentrated at the point T n pxq. Let Epx, N q :" 1 N ÿ 1ďnďN δ T n pxq , E log px, N q :" 1 log N ÿ 1ďnďN 1 n δ T n pxq .

We consider here the convergence of these empirical measures in the weak* topology. Note that any accumulation point of the above sequences is always a T -invariant probability measure on pX, T q.

Theorem 5.1. Suppose that for some x P X and some subsequence pN s q sě1 of natural numbers, we have (39) lim sÑ8 E log px, N s q " κ, where κ is ergodic.

Then there exists a set N of natural numbers with the property Hence, directly by the von Neumann ergodic theorem, and using the ergodicity of κ, we obtain lim HÑ8 R f pHq " 0. Take now B 1 " CpXq, B 2 " C with the sequence of functionals S k f :" f pT k xq ´Sf , k P N, and we obtain statement (41) by Theorem 2.1.

5.2. Davenport-Erdös theorem. Davenport-Erdös theorem [START_REF] Davenport | On sequences of positive integers[END_REF] is the fact that, given B Ă N, the B-free set F B , i.e. the set of those numbers that have no divisor in B, has logarithmic density and, moreover, δpF B q " dpF B q. In fact, see [START_REF] Dymek | B-free sets and dynamics[END_REF], the point ½ F B is logarithmically generic for the relevant Mirsky measure which is ergodic. Hence, by Theorem 5.1, we obtain that the upper asymptotic density dpF B q is obtained along a subsequence of logarithmic density 1. We can however obtain this result in an elementary way. Indeed, for a subset A Ă N and N P N, set 

Nf 1 f

 1 Ñ8, N PN Epx, N q " κ.Proof. The condition (39) means that for any f P CpXq we have Let f P CpXq be fixed, and set Sf :" ş X f dκ. For H P N, we consider the limiting of the second moment R f pHq :" lim pT n`m xq ´Sf ˇˇˇˇ2 .The limit does exist by (39), as the internal is given by a continuous function sum sampled at x. So, by condition (42), we have (43) R f pHq " pT m xq ´Sf ˇˇˇˇ2 dκpxq.

1 n

 1 ½ A pnq. More generally, given a " pa n q nPN a sequence of real numbers, set d N paq :" 1 N ř 1ďnďN a n and d log N paq :"

Proved by Tao in[START_REF] Tao | The logarithmically averaged Chowla and Elliot conjectures for two-point correlations[END_REF].

We will prove this result by contraposition, and we will need the following lemma. Lemma 3.3 (Diagonalization Lemma). Consider a family of sequences pg n,m q Ă R `, m ą n, m, n ě 1. Suppose that for some families pb k,ℓ q k,ℓě1 Ă N with (30) 0 ă b k,ℓ ă b k`1,ℓ , lim ℓÑ8 lim kÑ8 pb k`1,ℓ ´bk,ℓ q " 8, and some γ ą 0, we have

Then there exists a sequence pb k q kě1 Ă N such that

and

Proof. Note that by (30), we have b k`1,1 ´bk,1 ě 1 for each k ě 1, and that without loss of generality we may assume that for each ℓ ě 1, we have lim kÑ8 pb k`1,ℓ ´bk,ℓ q ě ℓ. By (31) for ℓ " 1, we can choose the value K 1 so that

and take then, for k " 1, . . . , K 1 `1, b k :" b k,1 , to obtain

We continue the above process by induction. Suppose that for some ℓ ě 1 we already have sequences 0

and

(35)

Then, by (31), we can choose K ℓ`1 ą K ℓ `2 large enough so that

and we take for k " K ℓ `2, . . . , K ℓ`1 `1 :

Then assertions (34) and (35) are valid up to s " ℓ `1, and this allows us to construct inductively the sequences pb k q kě1 with the required properties (32), (33). Proposition 5.2. Let a " pa n q nPN be a bounded sequence of real numbers, and let

Step 1 For any ε ą 0, set B ε :" tN P N : d N paq ą ℓ ´εu. Then lim N Ñ8 d log N pB ε q " 1. Indeed, let us introduce the sequence b " pb n q nPN defined by b 1 :" 0, and for each n ě 2, b n :" d n´1 paq. The Abel summation formula yields

By assumption, we thus have

In the computation of d log N pbq, the contribution of Ă A ε is bounded above by

On the other hand, using the fact that lim sup N Ñ8 b N " ℓ, the contribution of Ă B ε to d log N pbq is bounded above by ℓd log N ´Ă B ε ¯`op1q. Therefore, we have for each N P N

But we know that lim N Ñ8 d log N pbq " ℓ, and it follows that lim N Ñ8 d log N ´Ă B ε ¯" 1. Finally, since Ă B ε " B ε `1, we also get lim N Ñ8 d log N pB ε q " 1.

Step 2 We construct the announced set B as follows. First we fix a decreasing sequence pε k q of positive numbers going to 0 as k Ñ 8. By Step 1, we know that

1. Then we construct a strictly increasing sequence pN k q of integers such that @k, @N ě N k , d log N pB ε k q ą 1 ´εk . Finally we define B by B X t1, . . . , N 1 ´1u :" t1, . . . , N 1 ´1u, and for each k ě 1, B X tN k , . . . , N k`1 ´1u :" B ε k X tN k , . . . , N k`1 ´1u.

5.3.

Deriving a density version of the PNT from the logarithmic Chowla conjecture of order 2. Lemma 5.3. Assume that A Ă N with δpAq " 1. For each m P N set (44) A m :" tn P N : rn{ms P Au.

Then δpA m q " 1 for all m P N.

Proof. Let m ě 2 be fixed. Note that if n P A, then (45) mn `j P A m , j " 0, 1, . . . , m ´1, and (46)

Given ǫ P p0, 1q, we have

, we may assume that c 2 log N ǫ ď ǫ{2 and log N log mN ě 1 ´ǫ for all N ě N ǫ .

It follows that for any N ě N ǫ , by ( 46) and (45), we have

Therefore, for all N ě N ǫ , we have

Letting ǫ Ñ 0, we obtain lim N Ñ8 Given u : N Ñ C, let U pxq :" ř nďx upnq, for x ě 0, denote the corresponding summation function. Lemma 5.5. Let A Ă N with δpAq " 1, and let u :

Then there exists r A Ă A, δp r Aq " 1 such that, for each a ě 1 and ε ą 0, we can find X " Xpa, ǫq ą 1 for which @x ě X, rxs P Ã ùñ ÿ nďa |U px{nq| ď εx.

Proof. We set r A as in Lemma 5.4, so δp r Aq " 1. Let a ě 1 be fixed. Denote C :"

Taking m " ras and using Lemma 5.4, we choose N m such that (47) holds, i.e. rns, rn{2s, . . . , rn{ms P A whenever n P Ã and n ě N m . Then for x ě pm 1q maxtN m , Ku with rxs P Ã, by (48), we have

Proposition 5.6. The statement logarithmic Chowla conjecture (for µ) holds 6 for auto-correlations of length 2 implies that there exists a sequence A Ă N, δpAq " 1, such that ř nďx Λpnq " x `opxq for A Q x Ñ 8. Proof. By Theorem 2.1 7 (or directly by Tao's proof in [START_REF] Tao | [END_REF]), we obtain that 1 N ř nďN µpnq Ñ 0 when A Q N Ñ 8, where δpAq " 1.

Following [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF], we repeat the proof that M pµq :" lim We fix ε ą 0 and choose a ě 1, so that B 1 { ? a ă ε which yields the first summand ă εx for all x ě 1. To majorate the second summand, we use ˇˇˇˇÿ nďa f pnqM px{nq ˇˇˇˇď F a ÿ nďa |M px{nq|, F a :" maxt|f pnq| : n ď au, and Lemma 5.5 (with u " µ). Finally, the third summand is majorated in the same way as in [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF]. 7 Note that if pcnq is a bounded sequence of complex numbers with limNÑ8