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ARTICLE

Co-translational assembly of mammalian nuclear
multisubunit complexes
Ivanka Kamenova 1,2,3,4,7, Pooja Mukherjee 1,2,3,4,7, Sascha Conic1,2,3,4, Florian Mueller 5,

Farrah El-Saafin1,2,3,4, Paul Bardot1,2,3,4, Jean-Marie Garnier1,2,3,4, Doulaye Dembele 1,2,3,4, Simona Capponi6,

H.T.Marc Timmers6, Stéphane D. Vincent 1,2,3,4 & László Tora 1,2,3,4

Cells dedicate significant energy to build proteins often organized in multiprotein assemblies

with tightly regulated stoichiometries. As genes encoding subunits assembling in a multi-

subunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein

complexes assemble. Here, we show that mammalian nuclear transcription complexes

(TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise

architectural details are built co-translationally. We demonstrate that dimerization domains

and their positions in the interacting subunits determine the co-translational assembly

pathway (simultaneous or sequential). The lack of co-translational interaction can lead to

degradation of the partner protein. Thus, protein synthesis and complex assembly are linked

in building mammalian multisubunit complexes, suggesting that co-translational assembly is

a general principle in mammalian cells to avoid non-specific interactions and protein

aggregation. These findings will also advance structural biology by defining endogenous

co-translational building blocks in the architecture of multisubunit complexes.
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Often proteins do not act alone, instead they function as
components of large multisubunit complexes in a cell. To
better understand cellular functions, investigating the

precise mechanism that guide the formation of these multisubunit
assemblies is of key importance. A cell uses hundreds of different
protein complexes that vary with respect to their complexity.
Some complexes require the association of multiple copies of the
same subunit, while others are constituted of many different
subunits. The latter group includes many transcription regulatory
and chromatin remodelling complexes (see below). In order to
achieve the efficient formation of protein complexes in eukar-
yotes, the genes coding for all the subunits (dispersed in the
eukaryotic genome) have to be transcribed in the nucleus, their
corresponding mRNAs transported to the cytoplasm, translated
into proteins, and the formation of correct interactions among
the subunits must be orchestrated. A polysome is a cluster of
ribosomes acting on a single mRNA to translate its information
into polypeptides. Appropriate translation-based mechanisms
may exist in the cell to regulate the interactions between specific
subunits in order to avoid incorrect non-specific interactions or
subunit aggregations in the absence of the correct partner. Cur-
rently, it is not well understood how functional subunit interac-
tions are regulated in eukaryotic cells. Protein complex formation
is often studied in vitro using purified subunits, assuming that
individually translated subunits assemble stochastically by diffu-
sion, and thus favouring the idea that these multisubunit com-
plexes assemble post-translationally1. However, in the crowded
environment of an eukaryotic cell such simple diffusion-
dependent models may not work, as subunits may engage in
non-specific interactions or form aggregates. Recent studies in
bacteria demonstrated that co-translational building of a func-
tional protein dimer is more efficient than the post-translational
assembly of its individual subunits2,3, and also in yeast co-
translation has been shown to be an efficient assembly pathway to
assemble multiprotein complexes4–8. Consequently, two co-
translational models have been put forward: (i) the simulta-
neous model which suggests that two polysomes in close physical
proximity synthesise subunits, which interact while being trans-
lated and (ii) the sequential model implies that a mature fully
translated subunit interacts co-translationally with its polysome-
bound nascent interaction partner9.

One of the key regulatory steps in the expression of mRNAs is
transcription initiation. Co-activators act together to establish a
chromatin structure favourable for transcription by facilitating
the formation of the preinitiation complex (PIC). PIC is com-
prised of RNA polymerase II (Pol II) and general transcription
factors (GTFs). Many GTFs and co-activators are multisubunit
complexes, in which individual subunits are organised into sev-
eral distinct modules carrying out specific functions. In mam-
malian cells the TFIID GTF nucleates the assembly of the Pol II
preinitiation complex on all protein-coding gene promoters [refs
10,11 and references therein]. Metazoan TFIID is composed of the
TATA-binding protein (TBP) and 13 TBP-associated factors
(TAFs) (Fig. 1a). SAGA (Spt Ada Gcn5 Acetyltrasferase) is a
multisubunit transcriptional coactivator complex, composed of
19 subunits (including a subset of TAFs), required for the tran-
scription of all active genes in yeast12. Moreover, the mammalian
Transcription and mRNA Export 2 complex (TREX-2) is com-
posed of five subunits, including the subunit ENY2, which is
shared with the SAGA complex13.

The majority of TAFs dimerise via their histone-fold domains
(HFDs), which are structurally homologous to histone pairs. In
TFIID, TAFs form five HF pairs (TAF4-12, TAF6-9, TAF8-10,
TAF3-10 and TAF11-13) [ref. 10 and references therein] (Fig. 1a).
Importantly, individual HFD-containing TAFs cannot be
expressed in a soluble form in bacteria. However, HFD-

containing TAFs become soluble when co-expressed with their
corresponding specific interaction partner14, suggesting that
individual HFD-containing TAFs aggregate without their specific
partners.

To test how mammalian cells can avoid the aggregation of
individual subunits following translation and whether co-
translational interactions guide the assembly of transcription
complexes, in this study, we investigate pairwise assembly of
TFIID subunits between TAF8 and TAF10, TAF6 and TAF9 and
TAF1 and TBP in polysome-containing mammalian cell extracts.
By using a large series of complementary experiments, we show
that TAF8-TAF10 and TAF1-TBP assemble co-translationally
according to the sequential assembly pathway, while TAF6-TAF9
assembles co-translationally according to the simultaneous
model. We also demonstrate that the ENY2 subunit assembles co-
translationally with its interaction partner, GANP, in TREX-2,
and with ATXN7L3 in the deubiquitination (DUB) module of
SAGA. Furthermore, our experiments show that the interaction
domain (ID) and the position of the ID in the given subunit solely
drives the co-translational assembly in these complexes. Thus, our
results uncover mechanistic principles in the understanding of
co-translational control of protein complex formation in mam-
malian cells.

Results
TAF10 and TAF8 assemble co-translationally. To test whether
HFD-containing TAFs assemble co-translationally, we used a
monoclonal antibody against the N-terminus of the HFD-
containing TAF10 to immunoprecipitate (IP) endogenous
TAF10 from human HeLa cell cytosolic polysome extracts
(Fig. 1b). Protein–protein interactions between nascent proteins
still associated with translating ribosomes would be revealed by
enrichment of mRNAs coding for the interacting partners in the
IPs. Global microarray analysis of mRNAs precipitated by the
anti-TAF10 RNA IPs (RIPs) revealed enrichment of TAF8
mRNA, suggesting that the well-characterised TAF8-10 HFD
dimer15 forms co-translationally (Fig. 1c). Anti-TAF10 RIP of
cytosolic polysome extracts coupled to RT-qPCR validation
confirmed our microarray results and showed strong enrichment
of the TAF8 mRNA (Fig. 1d). The absence of significant TAF10
mRNA signal in the microarray experiments was due to poor
quality and the high GC-content of the TAF10 probe sets present
on the commercial microarray. Nevertheless, RT-qPCR validation
also revealed the presence of TAF10 mRNA in the nascent anti-
TAF10 RIP. Importantly, cycloheximide, which freezes translat-
ing ribosomes on the mRNA16, stabilised the TAF10-TAF8-TAF8
mRNA interactions, while puromycin, which causes release of
nascent peptides from ribosomes17, resulted in the loss of co-
purified mRNA. Endogenous anti-TAF10 RIP-RT-qPCR from
polysome extracts prepared from mouse embryonic stem cells
(mESCs) gave nearly identical results, which emphasises the
generality of the co-translational pathway for assembly of the
mammalian TAF8-TAF10 heterodimer (Fig. 1e; Supplementary
Fig. 1). Quantification of the TAF8 mRNA in the anti-TAF10 RIP
normalised to the protein IP efficiency indicated that the
enrichment was between 7 and 25%, depending on the cell line
and the antibody used. In contrast, to TAF8, mRNAs encoding
other potential TAF10 dimerization partners, TAF3 and
SUPT7L18, were not enriched in the RT-qPCR validation
experiments, in good agreement with the microarray analysis and
indicating the specificity of the co-translational assembly of the
TA8-TAF10 heterodimer (Fig. 1d, e). Together these results
indicate that TAF10 protein is associated with ribosomes which
are actively translating TAF8 mRNA via the nascent TAF8
protein.
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HFD drives the co-translational assembly of TAF10-TAF8. The
fact that TAF8 has its dimerization HFD at an N-terminal posi-
tion, and that the TAF10 HFD is at the very C-terminus of the
protein, allows the direct testing of the sequential assembly
model, as TAF8 and TAF10 may be expected to only hetero-
dimerise if the TAF10 protein is fully synthesised and freed from
the ribosome. To examine the two assembly models (see Intro-
duction) and to distinguish between the nascent and mature
forms of the TAF8 and TAF10 proteins, we added FLAG-, or HA-

tags to either N- (to carry out nascent IPs) or C termini (to carry
out mature IPs) of these proteins, respectively. Importantly,
exogenous co-expression of N-terminally tagged TAF8 and
TAF10 in HeLa cells followed by nascent anti-HA-TAF10 RIP
from cytosolic polysome extracts recapitulated the findings
obtained with endogenous proteins (Fig. 2a). In contrast, nascent
anti-FLAG-TAF8 RIP resulted in high enrichment of its own
encoding mRNA, but not that of TAF10 (Fig. 2b). Immunopre-
cipitation of mature TAF10-HA protein resulted in TAF8 mRNA,
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but not TAF10 mRNA enrichment (Fig. 2c), supporting the
sequential co-assembly model of mature TAF10 interacting with
nascent TAF8 exiting from ribosomes translating TAF8 mRNA.
In addition, the mature TAF8-FLAG protein did not bring down
any of the tested mRNAs (Fig. 2d). In all cases, protein partners
were co-immunoprecipitated successfully (Supplementary Fig. 2).

Taken together, these results suggest that mature TAF10 binds to
the polysome-bound nascent TAF8 protein, and that the
respective N- (in TAF8) and C-terminal (in TAF10) HFDs are
driving co-translational dimerization.

To test whether the observed co-translational TAF8-TAF10
assembly is specific to the dimerization of their HFDs, we
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engineered a mutation disrupting the dimerization ability of the
TAF8 HFD (see Methods). Anti-TAF10 RIP from cells co-
transfected with TAF10 cDNA and mutant HFD expressing TAF8
cDNA (mtTAF8) resulted in a nearly complete loss of the co-
precipitated TAF8 mRNA and TAF8 protein, as compared with
the wild-type controls (Fig. 3a and Supplementary Fig. 3a),
indicating that the dimerization of TAF8 and TAF10 through
their HFDs is crucial for co-translational assembly.

Next, we tested whether the full exposure of the nascent HF
interaction domain at the ribosomal exit tunnel would be
necessary for co-translational assembly. The ribosome exit tunnel
can accommodate up to 60 amino acids [ref. 19 and references
therein]. Thus, we constructed two truncated versions of TAF8:
one encoding only the TAF8 HFD that would be partially buried
in the ribosome exit tunnel during translation, and a second
encoding the TAF8 HFD and an additional 60 amino acids of
TAF8 (TAF8 HFD+ 60) that would allow the appearance of the
nascent TAF8 HFD from the ribosomal tunnel. Next a TAF10
expressing plasmid was co-transfected either with TAF8 HFD, or
with TAF8 HFD+ 60 expressing plasmids and anti-TAF10 RIPs
were carried out. Importantly, our results show that the TAF8
HFD mRNA is not enriched in the anti-TAF10 RIP, indicating
that the minimal TAF8 HFD protein is released immediately
from translating polysomes without co-translational binding to
TAF10 protein. On the other hand, the TAF8 HFD+ 60 mRNA
was enriched in the anti-TAF10 RIP demonstrating that the
additional 60 amino acids in the longer TAF8 HFD+ 60 protein
kept the nascent protein anchored in polysomes allowing for co-
translational interaction with TAF10 (Fig. 3b and Supplementary
Fig. 3b). Together, our results indicate that TAF8-TAF10 co-
translational assembly is driven by dimerization with nascent
TAF8 protein upon emergence of its entire HFD from actively
translating polysomes. Consequently, these results together

demonstrate the sequential co-translational assembly pathway
where the fully synthesised TAF10 interacts uni-directionally with
the nascent TAF8 polypeptide.

TAF8 is prone to degradation in the absence of TAF10. In the
sequential assembly pathway, if nascent chains of a subunit
cannot co-translationally interact with its partner, it may become
prone to misfolding and degradation by the proteasome, but the
fully translated partner should stay stable. To test this hypothesis,
we used mouse embryonic stem cells (ESCs) in which either the
endogenous Taf10, or Taf8 genes can be conditionally knocked
out20,21. By using these mouse ESCs we observed that the deletion
of Taf10 not only ablated Taf10 mRNA and TAF10 protein levels,
but significantly reduced both Taf8 mRNA and TAF8 protein
expression (Fig. 4a, c). These results were also confirmed in Taf10
KO mouse embryos20. In contrast, the deletion of Taf8, decreased
only its own mRNA and protein levels, without affecting the
Taf10 mRNA expression and TAF10 protein levels (Fig. 4b, d).
Furthermore, in both KO mESCs other tested TFIID subunits
remained unchanged20.

Next we tested whether TAF10 re-expression would rescue
TAF8 from degradation. To this end we used our Taf10−/−:R
mouse F9 cells, where the endogenous Taf10 alleles are
inactivated and the cells are viable due to the doxycyclin (Dox)
inducible expression of the human TAF10 protein22. In this
system cells were grown for 5 days without Dox. As a result
TAF10 was completely depleted and consequently endogenous
TAF8 expression was also abolished (Fig. 4e), in agreement with
our above mESC results. Importantly, however, when after 5 days
Dox was re-added to the cells for 1 or 2 days, the neosynthesised
TAF10 expression re-stabilised the expression of endogenous
TAF8 as both TAF10 and TAF8 proteins could again be detected
by western blot analysis (Fig. 4e).
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Together, these results further indicate that TAF10 interacts
co-translationally with nascent TAF8 and when TAF10 is not
present both TAF8 protein and mRNA could be prone to
degradation. Thus, the nascent TAF8 HFD, in the absence of its
interaction partner TAF10, may serve as a signal for both protein
and mRNA degradation, while TAF10 is stable in the absence of
TAF8. However, the reduction of TAF8 mRNA in the absence of
TAF10 protein due to primary transcriptional response cannot be
ruled out.

TAF10 protein co-localises with TAF8mRNA in the cytoplasm.
To visualise the co-localisation of TAF10 protein with TAF8
mRNA in the cytoplasm, we set out to detect TAF10 protein and
TAF8 mRNA in the cytoplasm of fixed human HeLa cells. To this
end we combined protein detection by immunofluorescence (IF)
with RNA detection by single molecule inexpensive FISH (smi-
FISH)23. Co-localization of protein and mRNA was then
observed by confocal microscopy and quantified. Surprisingly, we
observed a large difference between the number of total (nuclear
and cytoplasmic) endogenous TAF8 and TAF10mRNAs, showing
that there are about four times less TAF8 mRNAs than those of
TAF10 (Supplementary Fig. 4a, b). In good agreement with our

above endogenous anti-TAF10 RIP results (Fig. 1d, e), these IF-
smiFISH experiments showed an about 10% co-localization
between TAF8 mRNA and TAF10 protein in the cytoplasm of
HeLa cells (Supplementary Fig. 4c). To increase the number of
TAF8 mRNA molecules in the cytoplasm of HeLa cells and to be
able to carry out analyses with-wild type (wt) and mutant (mt)
TAF8 proteins, we carried out IF-smiFISH detections in HeLa
cells exogenously expressing TAF8 protein. The IF-smiFISH co-
localization experiments in fixed HeLa cells showed significant
co-localisation between TAF10 protein and TAF8 mRNA in the
cytoplasm (Fig. 5a, e; note that to observe only the cytoplasmic IF
signals the nuclear signal in the green channel was removed).
Importantly, the co-localisation between mtTAF8 mRNA
(Fig. 3a) and TAF10 protein was lost (Fig. 5b, e). In addition,
TAF8 protein detection by IF and TAF10 mRNA by smiFISH,
showed no significant co-localisation (Fig. 5c, e). Moreover, we
could not detect any co-localisation between CTNNB1 (catenin
beta-1) mRNA and TAF10 protein (Fig. 5d, e), which further
rules out any non-specific co-localisation of TAF10 protein with
wt TAF8 mRNA. Importantly, the statistical analysis of the co-
localization enrichment ratio of TAF10 protein-wt TAF8 mRNA
measured in cells was significantly higher compared with all the
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other conditions tested (Fig. 5e). These imaging experiments
demonstrate the physical proximity of TAF10 protein to TAF8
mRNA in the cytoplasm. Moreover, this proximity is dependent
on the ability of the two proteins to interact, lending further
support to the sequential assembly model.

Position of IDs define the co-translational assembly pathway.
To further test whether domain position guides co-translational
assembly of HFD pairs in TFIID, TAF8 and TAF10 expression
vectors were constructed in which the respective HFDs were

exchanged. Our nascent RIP experiments from cells co-
transfected with these swapped cDNA constructs (TAF10-HFD8
and TAF8-HFD10) resulted in comparable TAF8-HFD10 mRNA
and protein enrichments (Fig. 6a, b and Supplementary Fig. 5a,
b); as observed with the corresponding wt constructs (Fig. 2a, b),
indicating that the origin of the HFD does not influence the
sequential order of co-translational assembly. This experiment
also suggested that the position of the HFD (N- or C-terminal),
but not its sequence, determines the co-translational pathway by
which the protein partners interact. Thus, next we tested whether
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the co-translational assembly of TAF6-TAF9 HFD pair would
follow the simultaneous pathway, as they interact through their
N-terminal HFDs (Fig. 6c, d). Our nascent RIPs revealed that
both TAF6 and TAF9 co-IP their partners' mRNA (Fig. 6c, d and
Supplementary Fig. 5c, d), suggesting that they assemble through
the simultaneous assembly pathway, presumably as the neo-
synthesised interaction domains of both proteins are exposed
early during their synthesis on the ribosomes. Such a model
would further suggest that TAF6 and TAF9 mRNAs could be
found in close vicinity in the cytoplasm. To test the simultaneous
co-translational assembly of TAF6-TAF9 HFD pair we have
carried two colour smiFISH co-localization experiments to detect
TAF6 or TAF9 mRNAs in fixed HeLa cells. These experiments
showed a significantly higher co-localisation of the TAF6 and
TAF9 mRNAs in the cytoplasm than several unrelated negative
control mRNAs (Supplementary Fig. 6). These results show that
the simultaneous co-translational assembly of TAF6-TAF9 HFD
is detectable in the cytoplasm, however, with a relatively low
frequency. This can be potentially explained by the fact that TAF6
can interact with TAF9b, and TAF9 with TAF6L13, but the cor-
responding TAF6L and TAF9b mRNA co-localization combina-
tions were not tested. Moreover, we cannot rule out the possibility
that the fully synthesised TAF6 or TAF9 could also find their
respective nascent partners still bound to the ribosomes through
the sequential assembly pathway. Thus, it seems that the position
of the dimerization domain may play a critical role in defining the
order of co-translational assembly pathway of the corresponding
interacting factors.

TBP and TAF1 interact also co-translationally. In TFIID, the
evolutionary conserved core domain of TBP interacts with TAF1
via N-terminal TAND region of TAF1 and this interaction
modulates the DNA-binding activity of TBP within TFIID24,25.
To investigate co-translational assembly of other non-HFD-
dependent interactions, we carried out genome-wide microarray
analysis of TBP-associated RNAs from HeLa cell polysome
extracts using a monoclonal antibody against the N-terminus of
endogenous human TBP. In addition to TBP mRNA, we detected
strong enrichment of 19 coding and non-coding RNAs. Among
these, we found mRNAs coding for known TBP-interacting
proteins: BRF1 coding for a factor important for Pol III tran-
scription26, BTAF1 coding for a B-TFIID subunit27, as well as
TAF1, whose enrichment on the microarray was somewhat
weaker (Fig. 7a). Nevertheless, RIP-qPCR analysis in human
HeLa cells (Fig. 7b) and mouse ESCs (Supplementary Fig. 7a)
confirmed the microarray data and revealed a strong enrichment
of the TAF1 mRNA. Quantification of the TAF1 mRNA in the
anti-TBP RIP normalised to the protein IP efficiency indicated
that the TAF1 mRNA enrichment was around 62%. Consistent
with the need for active translation, enrichment of all specific
mRNAs was lost, or greatly decreased, upon puromycin treatment
(Fig. 7b).

To further investigate the specificity of TBP-TAF1 interaction,
we co-transfected expression vectors coding for the full-length
human TBP with a ΔTAF1 expression vector, in which sequences
coding for the first 168 residues containing the TAND region
were deleted. Anti-TBP RIPs from cells expressing ΔTAF1
resulted in complete loss of TAF1 mRNA enrichment and a
reduction of the co-immunoprecipitated protein (Fig. 7c, d,
Supplementary Fig. 7b, c). These results are consistent with a
requirement of the N-terminal TAF1 domain to recruit TBP to
the nascent TAF1 polypeptide. As the protein interface is formed
by the C-terminal portion of TBP and the very N-terminus of
TAF125,28, we predicted that similarly to TAF8-TAF10 assembly,
a sequential assembly is also involved in the TBP-TAF1

interaction. Indeed, nascent anti-TAF1 RIP from an engineered
GFP-TAF1 HeLa cell line (Fig. 7e, f) resulted in the enrichment of
TAF1 mRNA, but not that of TBP, thus supporting the co-
translational assembly of TBP-TAF1 by the sequential pathway.

TREX-2 and SAGA DUB complexes assemble co-
translationally. To extend our findings beyond TFIID, we
examined co-translational assembly of ENY2 subunit with its
respective partners. ENY2 is subunit of the TREX-2 mRNA-
export complex and the DUB module of the SAGA transcription
coactivator13. In TREX-2, two ENY2 proteins wrap around the
central portion of the large GANP helical scaffold29. Similarly,
human ENY2 wraps around the N-terminal helix of human
ATXN7L3 in the highly intertwined SAGA DUB module30

(Fig. 8a). To test whether the co-translational model is generally
applicable to multisubunit complexes, we analysed ENY2-
associated mRNAs from HeLa cells stably expressing ENY2
with an N-terminal GFP-tag31. Interestingly, we found that an
anti-GFP-ENY2 RIP co-immunoprecipitates predominantly
endogenous GANP mRNA and protein (the partner of ENY2 in
TREX-2), and also endogenous ATXN7L3 mRNA and protein
(the binding partner of ENY2 in the SAGA DUB module)
(Fig. 8b, c). Together, these results demonstrate that co-
translational assembly is involved in the assembly of mamma-
lian transcription complexes of diverse architecture and function.

Discussion
A functional protein must fold, translocate to its site of action and
assemble with the right partners to carry out its function in the
cell. The folding and assembly should be a well-regulated process
in the cell to avoid non-specific interactions, and also because a
single protein might interact with various partners depending on
its interaction domain. Most eukaryotic proteins have more than
one domain, which enables them to associate with their interac-
tion partners. The building of multi-protein complexes in
eukaryotes necessitates co-translational protein folding, the
folding of a particular ID while still attached to translating
ribosomes, to increase the efficiency of protein synthesis and
prevent non-productive interactions32. Importantly, co-
translational folding is aided by the ribosome, which stabilises
specific folding intermediates of a protein33–35. Our results fur-
ther demonstrate that the co-translational dimerization of protein
interaction domains directs the assembly of mammalian nuclear
multisubunit complexes. The cytoplasmic IF-smiFISH experi-
ments indicate that the described co-translational assembly is
clearly occurring in the cytoplasm of human cells and together
with the mRNA enrichment calculations show that co-
translational assembly is not a minor event. We also show that
the position of the heterodimerization domain in a protein could
guide its co-translational assembly either by sequential or
simultaneous pathways. These mechanisms could play an
important role in maintaining cellular health as excess orphan
protein subunits can overburden protein folding and quality
control machineries36. There is a strong correlation between the
amino acid sequence of a protein, its translation rate and co-
translational folding37. Rare codons in the mRNAs decrease the
rate of translation, thereby allowing the protein to fold co-
translationally33. Interestingly, translation pause sites are located
downstream of the ID boundaries in order to regulate proper
folding of multi-domain proteins38, probably by assuring enough
time for the co-translational interaction between the interacting
subunits. In good agreement, our Taf10 and Taf8 KO mESCs, as
well as F9 TAF10 ablation/re-expression experiments suggest that
if the nascent ID exiting from the synthesizing ribosome cannot
bind with its partner, the lack of interaction will lead to its
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translational arrest and consequent degradation of both the
nascent protein and possibly the mRNA coding it. Note that the
translational pausing causing mRNA destabilization could be an
attractive model, however, primary transcriptional instead of
posttranscriptional response cannot be ruled out. Nevertheless, it
is conceivable that when nascent IDs are translated, the ribosome
may pause or slow down until the interaction partner would
arrive and bind, and thus stabilise the nascent ID. However,
further systematic studies need to be carried out in order to study
the role of translational pausing in co-translational protein
assembly.

Co-translational assembly in homomeric proteins can also
cause premature assembly of protein complexes, if two interacting
nascent chains are in close proximity. It has been suggested that
homomeric protein IDs are enriched toward the C termini of
polypeptide chains across diverse proteomes39 and this ID loca-
lisation is essential to prevent the assembly of homomeric pro-
teins before proper folding. In contrast, our preliminary
bioinformatics analyses using a limited curated interaction data-
base39 suggest that in heterodimeric proteins the N-terminal
interaction regions are enriched, further underlining the idea that
co-translational protein assembly in heterodimeric proteins is
beneficial for assembling cellular machineries.

The role of chaperones in ribosome-associated nascent protein
folding is well studied. Hsp70 family of proteins (such as, e.g.,
yeast Ssb) protects the nascent polypeptide from misfolding and
aggregation in eukaryotes39,40. In bacteria and yeast, the
ribosome-associated chaperones have been shown to interact with
the nascent polypeptide chain emerging from the ribosome aiding
in its folding8,41–43. Moreover, recently it has been suggested that
upon emergence of a complete ID, the nascent chain interacts
with its partner subunit and dissociates the chaperone complex
from the nascent chain8.

Our results reveal a systemic co-translational building of
complexes in mammalian cells, but a thorough proteomic
approach is necessary to identify chaperones necessary for these
assembly pathways. It is possible that some of the chromatin
regulatory complexes assemble through other chaperone-based
mechanisms in the cytoplasm or directly in the nucleus.

In summary, we show that building blocks of mammalian
nuclear transcription complexes, such as TFIID, SAGA and
TREX-2, are assembled during translation and the way in which
assembly occurs is consistent with the current knowledge of the
preliminary structural organization of the complexes. Similar
results from yeast, mouse, and human cells demonstrate that co-
translational assembly is a general mechanism in eukaryotes
[ref. 8 and this study]. Thus, the co-translational assembly of
multi-protein complexes pathways seems to be a common reg-
ulatory mechanism in all eukaryotic cells to ensure efficient
solutions to avoid non-specific protein interactions, protein
aggregation and probably also to control the correct stoichio-
metry of subunits belonging to distinct complexes. In addition,
our findings will significantly advance structural biology studies,
because in the future extensive screening experiments will not be
required to identify a real interaction partner(s) of a given subunit
in a multi-protein complex. It will be enough to make an anti-
subunit RIP from polysome extracts coupled to microarray ana-
lyses (or to RT-qPCRs) and the real endogenous interacting
partner(s) can be taken immediately with high confidence for
structural determinations and for building the architecture of
multi-protein complexes.

Methods
Antibodies. Sources, catalogue numbers and concentrations of antibodies used for
RIP, protein IP and western blotting are summarised in Supplementary Table 2.

Preparation of polysome-containing extracts and RIP. Polysome-containing
extracts were prepared from adherent cells harvested at ~90% confluence by
adapting a method for the isolation of ribosomes translating cell type-specific
RNAs44. Briefly, 10 cm plates were treated with cycloheximide (100 µg/ml final) or
puromycin (50 µg/ml final) and returned to the 37 °C incubator for 15 or 30 min,
respectively. Subsequently, plates were placed on ice, washed twice with ice-cold
PBS and scraped in 500 µl lysis buffer (20 mM HEPES KOH pH 7.5, 150 mM KCl,
10 mM MgCl2 and 0.5% (vol/vol) NP-40), supplemented with complete EDTA-free
protease inhibitor cocktail (Roche), 0.5 μM DTT, 40 U/ml RNasin (Promega), and
cycloheximide or puromycin as needed. Extracts were prepared by homogenizing
cells by 10 strokes of a B-type dounce and centrifugation at 17,000 × g. Clarified
extracts were used to start immunoprecipitations, after saving 10% total RNA for
input measurement. For TAF10 and TBP IPs, 20 µl of Protein G Dynabeads
(ThermoFisher Scientific) were equilibrated by washing three times in lysis buffer,
resuspended in 400 µl of lysis buffer and 2 µl of antibody, and incubated for 1 h at
room temperature with end-to-end mixing. Beads were washed twice with IP500
buffer (20 mM Tris-HCl, pH 7.5, 150 mM KCl, 10% glycerol (v/v) and 0.1% NP-40
(v/v)) and three times in lysis buffer. Antibody-bound beads were thus used to
perform RIP with polysome extracts overnight at 4 °C with end-over-end mixing.
Mock RIP was carried out with equal amount of anti-GST antibody. The next day,
beads were washed four times for 10 min at 4 °C with high salt-containing wash
buffer (20 mM HEPES-KOH pH 7.5, 350 mM KCl, 10 mM MgCl2 and 0.1% (vol/
vol) NP-40) and subsequently eluted in 350 µl RA1 Lysis buffer and 7 µl 1M DTT.
RNAs were purified according to the manufacturer’s instructions of the Macherey-
Nagel total RNA purification kit, including the optional on-column DNase
digestion step, and eluted twice in the same 60 µl of RNAse-free water. In the case
of FLAG, HA, or GFP RIPs, 50 µl packed anti-FLAG M2 affinity gel (Sigma), 50 µl
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packed EZviewTM Red Protein A affinity gel (Sigma) or 30 µl GFP-TRAP
(Chromotek) slurry were equilibrated in lysis buffer and used for RIP.

cDNA preparation and RT-qPCR. For cDNA synthesis, 5 µl of purified RIP-RNA
and 5 µl of 1:10 diluted input RNA samples were used. cDNA was synthesised
using random hexamers and SuperScript IV (ThermoFischer Scientific) according
to the manufacturer’s instructions. For RIP performed on transfected cells, RNA
was additionally treated with Turbo DNase (Ambion) according to the manu-
facturer’s instructions in order to ensure complete plasmid removal before cDNA
synthesis. Quantitative PCR was performed with primers (listed in Supplementary
Table 1) on a Roche LightCycler 480 instrument with 45 cycles. In all cases, control
cDNAs prepared without reverse transcriptase (−RT) were at least over 10 Cp
values of the +RT cDNAs. Enrichment relative to input RNA was calculated using
the formula 100 × 2[(Cp(Input)− 6.644)− Cp(IP)] and expressed as “% input RNA”. In
the case of RIPs performed on transfected cells, enrichment values were expressed
as “mRNA fold enrichment” relative to the mock IP using the formula ΔΔCp [IP/
mock], to account for the variability of transient transfections. “Relative mRNA
fold enrichment” is expressed as mRNA fold enrichment of TAF8 relative to
mRNA fold enrichment of TAF10 mRNA. All experiments were performed with a
minimum of two biological and two technical replicates and values are represented
as mean ±SD. Figures panels were prepared with taking in account all these data
points using R (RStudio version 1.1.456 and R version 3.5.1).

Microarray analysis and library preparation. Polysome extracts and RIP from
HeLa cells were performed as described above with mouse monoclonal antibodies
1H8 targeting the N-terminus of TAF10, 3G3 targeting the N terminus of TBP, and
1D10 targeting GST as a nonspecific control (see Supplementary Table 2). Protein
G Sepharose beads were used (100 µl beads coupled to 14 µl antibody). After
quantification and quality controls performed on Agilent’s Bioanalyzer, biotiny-
lated single strand cDNA targets were prepared, starting from 200 ng of total RNA,
using the Ambion WT Expression Kit (Cat # 4411974) and the Affymetrix Gen-
eChip® WT Terminal Labelling Kit (Cat # 900671) according to Affymetrix
recommendations. Following fragmentation and end-labelling, 3 μg of cDNAs were
hybridised for 16 h at 45 °C on GeneChip® Human Gene 2.0 ST arrays (Affyme-
trix) interrogating over 40000 RefSeq transcripts and ~11,000 LncRNAs repre-
sented by ~27 probes spread across the full-length of the transcript. The chips were
washed and stained in the GeneChip® Fluidics Station 450 (Affymetrix) and
scanned with the GeneChip® Scanner 3000 7 G (Affymetrix) at a resolution of 0.7
µm. Raw data (.CEL Intensity files) were extracted from the scanned images using
the Affymetrix GeneChip® Command Console (AGCC) version 4.0. CEL files were
further processed with Affymetrix Expression Console software version 1.3.1 to
calculate probe set signal intensities using Robust Multi-array Average (RMA)
algorithms with default settings (Sketch quantile normalization). Statistical analysis
was performed using the FCROS package version 1.5.445. Differences are con-
sidered significant for p value below 0.025. Volcano plots were performed using
RStudio software version 3.3.2. Ribosomal RNA transcripts were filtered out. The
microarray results reported in this paper are available in the Gene Expression
Omnibus (GEO) under accession number GSE106299.

Cell lines, cell culture and transfections. HeLa cells (ATCC® CCL-2TM) grown
on adherent plates were obtained from the IGBMC cell culture facility and cultured
in a 37 °C humidified/5% CO2 incubator. Culture media consisted of Dulbecco’s
modified Eagle’s medium (DMEM), supplemented with 1 g/l glucose, 5% fetal calf
serum (FCS), and 40 µg/ml Gentamycin. The GFP-TAF1 cell line was generated by
transferring full length human TAF1 fused at its N-terminus to EGFP into HeLa
Flp-In/T-REx cells following procedures described in ref. 46. E14 mouse embryonic
stem cells [mESCs, ES Parental cell line E14Tg2a.4, obtained from Mutant Mouse
Resource and Research Center (MMRRC), Citation ID:RRID:MMRRC_015890-
UCD] at passage 29-31 were obtained from the IGBMC cell culture facility and
cultured on gelatinised plates in feeder-free conditions in KnockOut DMEM
(Gibco) supplemented with the following: 20 mM L-glutamine, Pen/Strep, 100 µM
non-essential amino acids, 100 µM β-mercaptoethanol, N-2 supplement, B-27
supplement, 1000 U/ml LIF (Millipore), 15% ESQ FBS (Gibco) and 2i (3 µM
CHIR99021, 1 µM PD0325901, Axon MedChem). Cells were passaged approxi-
mately every 3 days. The EGFP-ENY2 HeLa cell line was generated in our
laboratory by D. Umlauf31 and maintained at 37 °C in DMEM (1 g/l glucose), 10%
FCS and 40 µg/ml Gentamycin31. The Dox-inducible hTAF10 expression system in
Taf10−/− mouse F9 embryonal carcinoma cells was generated in our laboratory by
E. Scheer22. Cells were cultured at 37 °C with 7% CO2 in gelatinised plates in a
culture media consisting of DMEM (4.5 g/l glucose), 10% FCS, 40 µg/ml Genta-
mycin in the presence of doxycycline (Sigma). The EGFP-ENY2 HeLa and the
Taf10−/− mouse F9 embryonal carcinoma cell lines are available upon request.

Transfections were performed on ~90% confluent cells in 10 cm plates in
antibiotic-free media using Lipofectamine 2000 (Thermo Fisher Scientific) and 3 µg
plasmid DNA, according to the manufacturer’s instructions. The medium was
replaced with fresh medium containing gentamycin ~5–6 h post transfection and
cells were harvested 24 h later. A descriptive summary of the plasmids used is
presented in Supplementary Table 3.

Protein IP and western blot. Antibodies used for RIP, protein IP and western
blotting are summarised in Supplementary Table 2. For protein IP, the procedure
was performed essentially as for RIP. Bound proteins were eluted in 2× Laemmli
buffer supplemented with 20 mM DTT and boiled for 5 min. Subsequently, sam-
ples were resolved on SDS-PAGE gels and transferred to nitrocellulose membranes
using either wet transfer or BioRad’s Trans-Turbo Blot semi-dry transfer method.
Secondary antibodies (goat anti-mouse or rabbit anti-mouse) coupled to HRP
(Jackson ImmunoResearch Laboratories) were used at 1:10,000 dilution. Signal was
revealed using chemiluminescence (Pierce) and detected on the ChemiDoc imaging
system (BioRad). For immunoprecipitation using whole cell extracts, 10 confluent
10 cm plates were scraped in PBS containing protease inhibitor (Roche) and
resuspended in ~1 packed cell volume lysis buffer (20 mM Tris-HCl, pH 7.5, 400
mM KCl, 2 mM DTT, 20% glycerol) supplemented with protease inhibitor and 0.5
mM final concentration of DTT. Extracts were prepared by four cycles of freezing
on liquid nitrogen followed by thawing on ice. The concentration of the clarified
extract was measured by Bradford assay and the extract was diluted ~1:3 using lysis
buffer without salt to achieve a final concentration of ~150 mM KCl. One-
milligram extract was added to mock- and antibody-bound beads each and IPs
were performed as described above. Proteins were eluted twice for 5 min at room
temperature in 50 µl 0.1 M Glycine, pH 2.8 and neutralised with 3.5 µl 1.8 M Tris-
HCl, pH 8.8. Ten percent of the pooled eluates were resolved on gels.

Plasmids. The eukaryotic expression plasmid pXJ41 used for all the constructs has
been previously described47. pXJ41-TAF10-Nter-2HA has been previously descri-
bed48. To generate N- and C-terminally Flag-tagged TAF8, the human TAF8
cDNA was PCR amplified from pACEMam1-CFP-TAF8 (kind gift from Imre
Berger, University of Bristol, UK) using primers cotaining EcoR I and Bgl II
restriction sites and tags incorporated at the N- or C-terminus, respectively, and
digestion by appropriate restriction enzymes. Similarly, C-terminal HA tagged
TAF10 was subcloned from pXJ41-TAF10-Nter-2HA by PCR amplification and
digestion via restriction enzymes Xho I and Kpn I. The TAF8 mutations, TAF8-
HFD and TAF8-HFD-60 amino acids were generated by site-directed mutagenesis
using PfuUltra High-Fidelity DNA polymerase (Agilent Technologies), according
to the manufacturer’s instructions. The histone fold domain swapped TAF10 and
TAF8 constructs were generated with several rounds of PCR amplification, using
the already-mentioned N-terminal tagged TAF10 and TAF8 constructs as a tem-
plate with specific primers and cloned into the vector via restriction enzymes EcoR
I and Bgl II. pXJ41-hTBP has been previously described49. The HA-TAF1 cDNA50

was inserted in pXJ41. TAF1 N-terminal deletion was carried out by site-directed
mutagenesis using PfuUltra High-Fidelity DNA polymerase (Agilent Technolo-
gies), according to the manufacturer’s instructions. HA tagged TAF9 was sub-
cloned from pSG5-TAF951 by PCR amplification and digestion by restriction
enzymes EcoR I and Bgl II. FLAG-tagged TAF6 was also subcloned in a similar
manner from pXJ41-TAF652 via restriction enzymes Xho I and Kpn I. All plasmids
have been verified by sequencing. Details on the cloning strategies are available
upon request. Plasmids are described in Supplementary Table 3.

Mouse Taf8 and Taf10 KO ESC lines. The Rosa26Cre-ERT2/+; Taf8flox/flox mouse
embryonic stem cells (mESCs) were generated previously by F. El Saafin21. Briefly,
mice carrying the Taf8lox allele were bred to mice carrying the Rosa26Cre-ERT2 allele
to produce Rosa26Cre-ERT2/+;Taf8flox/flox E3.5 blastocysts and to isolate Rosa26Cre-
ERT2/+;Taf8flox/flox mouse embryonic stem cells (mESCs)21. The Rosa26Cre-ERT2/R;
Taf10flox/flox mESCs were generated previously by P. Bardot20. Briefly, the ESCs
were derived from Rosa26Cre-ERT2/R;Taf10lox/lox E3.5 blastocysts20. mESCs were
cultured in DMEM (4.5 g/l glucose) with 2 mM Glutamax-I, 15% ESQ FBS (Gibco),
penicillin, streptomycine, 0.1 mM non-essential amino acids, 0.1% ß-mercap-
toethanol, 1500 U/mL LIF and two inhibitors (2i; 3 µM CHIR99021 and 1 µM
PD0325901, Axon MedChem) on gelatin-coated plates. To induce deletion of Taf8,
mESCs were treated with 0.5 µM 4-OH tamoxifen (Sigma) for 5–6 days, and to
induce deletion of Taf10, Rosa26Cre-ERT2/R;Taf10lox/lox mESCs were treated for
4 days with 0.1 µM 4-OH tamoxifen (Sigma). The above-described mESCs have
already been described20,21 and were derived according to animal welfare regula-
tions and guidelines of the French Ministry of Agriculture and French Ministry of
Higher Education and Research, and the Australian Animal Welfare Committee,
respectively.

smiFISH. smiFISH primary probes were designed with the R script Oligostan as
previously described23. Primary probes and secondary probes (Cy3 or digoxigenin
conjugated FLAPs) were synthesised and purchased from Integrated DNA Tech-
nologies (IDT). Primary probes were ordered at a final concentration of 100 μM,
wet and frozen in Tris-EDTA pH 8.0 (TE) buffer. Probe sequences are available in
Supplementary Table 4. An equimolar mixture of all the primary probes for a
particular RNA was prepared with a final concentration 0.833 μM of individual
probes. The secondary probes are resuspended in TE buffer at a final concentration
of 100 μM. A total of 10 μl of FLAP hybridization reaction was prepared with 2 μl
(for single colour smiFISH) or 4 μl (for dual colour smiFISH) of diluted (0.833 μM)
primary probe set, 1 μl of secondary probe, 1 μl of 10X NEB3 and 6 μl of water. The
reaction mix was then incubated in a cycler under the following conditions: 85 °C,
3 min, 65 °C, 3 min, 25 °C, 5 min. Two microliters of these FLAP hybridised probes
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are necessary for each smiFISH reaction. The volume of the reactions were scaled
up according to the number of smiFISH reactions carried out.

smiFISH was carried out as follows as per published protocol23. HeLa cells were
treated with 100 μg/ml cycloheximide (Merck) for 15 min at 37 °C, fixed with 4%
paraformaldehyde (Electron Microscopy Sciences) for 20 min at room temperature
(RT) followed by overnight incubation with 70% ethanol at 4 °C. Following
overnight incubation, cells were rinsed with 1× PBS twice and incubated with
Solution A (freshly prepared 15% formamide in 1× SSC buffer) for 15 min at RT.
During incubation, 50 μl Mix 1 (5 μl of 20× SSC, 1.7 μl of 20 μg/μl E. coli tRNA, 15
μl of 100% formamide, 2 or 4 μl of FLAP hybridised probes, required amount of
water) and 50 μl Mix 2 (1 μl of 20 mg/ml RNAse-free BSA, 1 μl of 200 mM VRC,
27 μl of 40% dextran sulfate, 21 μl of water) was prepared. Mix 1 was added to Mix
2 after proper vortexing. The total 100 μl of Mix1+Mix2 is sufficient for two
coverslips. Each coverslip was then incubated on a spot of 50 μl of the Mix in a 15
cm Petri dish with a proper hydration chamber (3.5 cm Petri dish containing 2 ml
of 15% formamide/1× SSC solution) overnight at 37 °C. Following overnight
incubation, coverslips were washed twice with Solution A at 37 °C for 30 min each
and with 1× PBS twice for 10 min each. Coverslips with only Cy3 conjugated
secondary probes are mounted with 5 μl of Vectashield containing DAPI at this
step. For DIG-labelled secondary probes, cells were further permeabilised with
0.1% Triton-X100 for 10 min at RT and incubated with 0.25 μg/ml anti-
digoxigenin-fluorescein Fab fragments (diluted in 1× PBS) (Roche) for 2 h at RT.
Following antibody incubation, cells were mounted as before.

IF-smiFISH. To visualise proteins and mRNA together, we first performed
immunofluorescence (IF) followed by smiFISH. Briefly, cells were treated with 100
μg/ml cycloheximide (Merck) for 15 min at 37 °C, fixed with 4% paraformaldehyde
(Electron Microscopy Sciences) for 10 min at room temperature (RT), blocked and
permeabilised with blocking buffer (10% BSA, 10% Triton-X-100, 200 mM VRC,
2X PBS) for 1 h at 40 °C, incubated for 2 h at RT with either anti-TAF8 (mouse
monoclonal antibody (mAb) 1FR-1B653; diluted 1:1000) or anti-TAF10 (mAb
6TA-2B1153; diluted 1:1000) antibody mix followed by incubation (RT, 1 h) with
secondary antibody mix Alexa-488-labelled goat anti-mouse mAb (Life Technol-
ogies, catalogue number A-11001, diluted 1:3000). Following immunofluorescence
described above, cells were fixed with 4% paraformaldehyde (Sigma) for 10 min at
RT. Cells were washed with 1× PBS and incubated with wash buffer [10% For-
mamide (Sigma) in 2× SSC] for 10 min at RT. smiFISH was carried out as
described above and see ref. 23. Cells were mounted using Vectashield mounting
medium with DAPI (Vector laboratories Inc.).

Imaging and image processing. Confocal imaging of smiFISH and IF-smiFISH
samples was performed on an SP8UV microscope (Leica) equipped with a 633-nm
HeNe laser, a 561-nm DPSS laser, a 488-nm argon laser and a 405-nm laser diode.
A ×63 oil immersion objective (NA 1.4) was used and images were taken by using
the hybrid detector photon-counting mode. The laser power for all acquisitions and
laser lines was set to 10%. All images acquired have a bit depth of 8 bit and a pixel
resolution of 70 nm. The z-stacks were taken with a z-spacing of 300 nm for a total
of 4–6 µm. Image processing was performed using the Fiji/Image J software. All
images were processed the same way. In detail, the channels of the different images
were split and grey values were adjusted to better visualise the spots in the cyto-
plasm. The nuclear signal in the green channel (TAF10 or TAF8 IF) was removed
by masking the nucleus and using the “clear” option. Finally, the processed
channels were merged again. For IF-smiFISH, one cell of an image was cropped
and one representing z-slice per cell was chosen. For smiFISH, maximum intensity
Z-projections of individual images were made and one cell per resulting image was
cropped as the representative image. In addition, one single IF or smiFISH spot
from the corresponding cells was cropped as well.

Image analysis of IF-smiFISH data. To measure the degree of spatial overlap of
smiFISH (mRNA) and IF (protein) signal, an enrichment ratio was calculated as
described below. Such quantification was chosen in order to take into account the
variability of IF signal between cells, making single object detection in this channel
difficult. Cells and nuclei were outlined manually in 2D based on the GFP and
DAPI image, respectively. Subsequent analyses were restricted to the cytoplasm.
mRNAs were detected in 3D with FISH-quant23. Identical detection settings were
used when different experimental conditions were compared with the same gene.
Each cell was post-processed separately. First, the median pixel intensity in the IF
image at the identified RNA positions was calculated. Second, a normalization
factor was estimated as the median IF intensity of the outlined cytoplasm within
the z-range of the detected mRNAs. The enrichment ratio of the cell was then
calculated as the ratio of the median IF intensity at the RNA positions divided by
the mean cytoplasmic intensity. Boxplots of enrichment ratios were generated with
the Matlab function notBoxPlot. Each dot corresponds to the estimation of one cell.
Horizontal lines are mean values, 95% confidence interval is shown in red, and
standard deviation in blue. Statistical comparison between different experimental
conditions was performed with two-sample Kolmogorov–Smirnov test (Matlab
function kstest2). The Matlab script is available upon request.

Image analysis of smiFISH co-localization data. Segmentation of nuclei and cells
was performed with the DAPI and smiFISH channel channels, respectively. 2D
images were obtained with a previously described projection approach based on
local and global focus measurements23. Segmentation was implemented with the
open-source software CellProfiler54 using a standard workflow: Otsu and water-
shed separation for nuclei in the DAPI channel. Each nucleus then serves as a seed
for a watershed segmentation to obtain the cells in the smiFISH channel. Individual
RNA molecules were localised with FISH-quant in 3D and can be treated as point
clouds55. Co-localization analysis between detected RNAs in two colours was
solved as a linear assignment problem (LAP) with the Hungarian algorithm
(Matlab function hungarianlinker and munkres from Matlab FileExchange). In
short, this algorithm finds the best possible global assignment between these two
points-clouds such that for each point in the first colour the closest point in the
second channel is found. We implemented a user interface for this analysis tool
(FQ_DualColor), which is distributed together with a dedicated user manual with
FISH-quant: https://bitbucket.org/muellerflorian/fish_quant

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The microarray data corresponding to Figs. 1a and 7a are available in the Gene
Expression Omnibus (GEO) under accession number GSE106299. The source data
corresponding to Figs. 1d–e, 2a–d, 3a–b, 4a–d, 6a–d, 7b–f, 8a–c and Supplementary
Figs. 1, 2a–d, 3a–b, 5a–d, 7a–c are provided as a Source Data file. A reporting summary
for this Article is available as a Supplementary Information file. Raw image files (~800),
their corresponding analyses, and all other data supporting the findings of the study are
available from the corresponding author upon request.

Code availability
The Matlab script (Kamenova_NatComm__rna_protein_coloc.m) concerning the RNA
co-localization and IF-smiFISH analyses is available on the FISH-quant repository
[https://bitbucket.org/muellerflorian/fish_quant]. The custom R scripts for dot plot
overlaid bar charts are available upon request.
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