

Abusive Language Detection in Online Conversations by Combining Contentand Graph-Based Features

<u>Noé Cécillon</u>¹ Vincent Labatut¹ Richard Dufour¹ Georges Linarès¹

¹Laboratoire Informatique d'Avignon, Avignon Université – LIA EA 4128 {firstname.lastname}@univ-avignon.fr

Soc2Net: International workshop on Modeling and mining Social-Media-driven Complex Networks Munich, Germany, June 11 2019

Outline

- 2 Brief review of the literature
- 3 Proposed method

(5) Conclusions & Perspectives

Context Online Communities & Moderation

Online communities

- Important medium: widely used, high socio-economical impact
- Users are usually anonymous
- Abusive behavior
 - Violation of community rules
 - Can lead to: community degradation, legal consequences
- \rightarrow Moderation
 - Detecting abusive users and applying sanctions
 - Usually done by hand: costly task (time, money)

Context Online Communities & Moderation

- Online communities
 - Important medium: widely used, high socio-economical impact
 - Users are usually anonymous
- Abusive behavior
 - Violation of community rules
 - Can lead to: community degradation, legal consequences
- \rightarrow Moderation
 - Detecting abusive users and applying sanctions
 - Usually done by hand: costly task (time, money)

Context Online Communities & Moderation

- Online communities
 - Important medium: widely used, high socio-economical impact
 - Users are usually anonymous
- Abusive behavior
 - Violation of community rules
 - Can lead to: community degradation, legal consequences
- \rightarrow Moderation
 - Detecting abusive users and applying sanctions
 - Usually done by hand: costly task (time, money)

Context Automated moderation

• Automation

- Assistance: raise messages to moderator's attention
- Full moderation: detect abuse and apply sanctions
- Not a trivial problem
 - Noise (can be intentional)
 - Natural language
 - Context
- In this work:
 - Detection of abusive messages as a binary classification task
 - Application to data from the SpaceOrigin MMORPG

Context Automated moderation

• Automation

- Assistance: raise messages to moderator's attention
- Full moderation: detect abuse and apply sanctions
- Not a trivial problem
 - Noise (can be intentional)
 - Natural language
 - Context
- In this work:
 - Detection of abusive messages as a binary classification task
 - Application to data from the SpaceOrigin MMORPG

Literature Quick Review of Abuse Detection Works

- Content-Based Approaches [Spe97; Che+12; DRL11; CS15]
 - Badwords dictionaries
 - Static rules
 - Word n-gram approaches
 - Bag-of-Words models (*tf-idf*)
- Context-Based approaches [Yin+09; CDL15; BS15; Gar+16]
 - Content of neighboring messages
 - User models (language, behavior)
 - Interactions outside of discussions (ex. subscriptions)
- CORIA'17 [Pap+17a] & TransCSS'18 [Pap+19]
 - Morphological features: char. count, compression rate
 - Graph-based modeling of the conversations
 - Conversational network

Literature Quick Review of Abuse Detection Works

- Content-Based Approaches [Spe97; Che+12; DRL11; CS15]
 - Badwords dictionaries
 - Static rules
 - Word *n*-gram approaches
 - Bag-of-Words models (*tf-idf*)
- Context-Based approaches [Yin+09; CDL15; BS15; Gar+16]
 - Content of neighboring messages
 - User models (language, behavior)
 - Interactions outside of discussions (ex. subscriptions)
- CORIA'17 [Pap+17a] & TransCSS'18 [Pap+19]
 - Morphological features: char. count, compression rate
 - Graph-based modeling of the conversations
 - Conversational network

Literature Quick Review of Abuse Detection Works

- Content-Based Approaches [Spe97; Che+12; DRL11; CS15]
 - Badwords dictionaries
 - Static rules
 - Word *n*-gram approaches
 - Bag-of-Words models (*tf-idf*)
- Context-Based approaches [Yin+09; CDL15; BS15; Gar+16]
 - Content of neighboring messages
 - User models (language, behavior)
 - Interactions outside of discussions (ex. subscriptions)
- CORIA'17 [Pap+17a] & TransCSS'18 [Pap+19]
 - Morphological features: char. count, compression rate
 - Graph-based modeling of the conversations
 - Conversational network

Proposed Method Overview

- Ombine content- and graph-based methods
- 8 Based on the two previously developed methods
 - 3 fusion strategies
 - Constitution of a global feature set containing all content- and graph-based features
 - Computation of two scores corresponding to the output probability of each message to be abusive given by the content- and graph-based methods
- 3 Train new classifiers using these features/scores

Proposed Method Content-based approach

- Bag of Words representing the messages are used to train a Naive Bayes classifier
- We extract classic features from the raw message (no preprocessing)
- Naive Bayes output is used as input

Proposed Method Content-based approach

- Bag of Words representing the messages are used to train a Naive Bayes classifier
- We extract classic features from the raw message (no preprocessing)
- Naive Bayes output is used as input

Extract conversational networks

- Weighted directed graph
- Build around a targeted message
- Spawns a predefined context perioa
- Nodes: active users within the context period
- Links: message-based interactions between users
- Weights: intensity of the interaction
- Compute topological measures
- Use them as features to train a classifier

- Extract conversational networks
 - Weighted directed graph
 - Build around a targeted message
 - Spawns a predefined context period
 - Nodes: active users within the context period
 - Links: message-based interactions between users
 - Weights: intensity of the interaction
 - Compute topological measures
 - Use them as features to train a classifier

- Extract conversational networks
 - Weighted directed graph
 - Build around a targeted message
 - Spawns a predefined context period
 - Nodes: active users within the context period
 - Links: message-based interactions between users
 - Weights: intensity of the interaction
- 2 Compute topological measures
 - Use them as features to train a classifier

- Extract conversational networks
 - Weighted directed graph
 - Build around a targeted message
 - Spawns a predefined context period
 - Nodes: active users within the context period
 - Links: message-based interactions between users
 - Weights: intensity of the interaction
- 2 Compute topological measures
- Use them as features to train a classifier

Graph-based approach Topological Measures

• Standard measures covering all scopes and scales

	Graph-scale	Node-scale
Macroscopic	Component counts,	Spectral centralities,
	Adhesion, Cohesion,	Subgraph centrality,
	Articulation points,	Betweenness, Closeness,
	Radius, Diameter,	Eccentricity,
	Average distance	Articulation point
Mesoscopic	Clique count,	Coreness Score
	Communities,	Participation, Diversity
	Modularity	Intensities, Heterogeneity
Microscopic	Node & Link counts,	Degree, Strength,
	Density, Reciprocity,	Local Transitivity,
	Global Transitivity,	Burt's Constraint
	Degree Assortativity	

- Most measures have directed and/or weighted variants
- Additional graph-scale measures: average nodal measures

Graph-based approach Topological Measures

• Standard measures covering all scopes and scales

	Graph-scale	Node-scale
Macroscopic	Component counts,	Spectral centralities,
	Adhesion, Cohesion,	Subgraph centrality,
	Articulation points,	Betweenness, Closeness,
	Radius, Diameter,	Eccentricity,
	Average distance	Articulation point
Mesoscopic	Clique count,	Coreness Score
	Communities,	Participation, Diversity
	Modularity	Intensities, Heterogeneity
Microscopic	Node & Link counts,	Degree, Strength,
	Density, Reciprocity,	Local Transitivity,
	Global Transitivity,	Burt's Constraint
	Degree Assortativity	

- Most measures have directed and/or weighted variants
- Additional graph-scale measures: average nodal measures

Proposed Method Fusion approach

- Early Fusion: Global feature set containing all content- and graph-based features
- *Late Fusion:* Two scores corresponding to the output probability of each message to be abusive
- *Hybrid Fusion:* Create a feature set containing the content- and graph-based features and both scores

1

Proposed Method Fusion approach

- Early Fusion: Global feature set containing all content- and graph-based features
- *Late Fusion:* Two scores corresponding to the output probability of each message to be abusive
- *Hybrid Fusion:* Create a feature set containing the content- and graph-based features and both scores

1

Proposed Method Fusion approach

- Early Fusion: Global feature set containing all content- and graph-based features
- *Late Fusion:* Two scores corresponding to the output probability of each message to be abusive
- *Hybrid Fusion:* Create a feature set containing the content- and graph-based features and both scores

1

Results Dataset & Experimental Protocol

Dataset

- Chat logs from the SpaceOrigin MMORPG
- 4,029,343 instant messages
 - 779 messages flagged and later confirmed as abusive
 - Sample of 779 messages assumed non-abusive
 - All messages taken from distinct conversations

Classification

- SVM (Sklearn C-Support Vector Classification)
- Cross validation with 70-30% split
- Feature importance estimated using ExtraTreesClassifier (Sklearn)

Cécillon et c

Results Dataset & Experimental Protocol

Dataset

- Chat logs from the SpaceOrigin MMORPG
- 4,029,343 instant messages
 - 779 messages flagged and later confirmed as abusive
 - Sample of 779 messages assumed non-abusive
 - All messages taken from distinct conversations

- Classification
 - SVM (Sklearn C-Support Vector Classification)
 - Cross validation with 70-30% split
 - Feature importance estimated using ExtraTreesClassifier (Sklearn)

Results Classification Results

Scores relative to the *Abuse* class:

	Approach	Precision	Recall	F-measure
Baseline	Content-based [Pap+17b]	0.79	0.84	0.81
	Graph-based [Pap+19]	0.90	0.88	0.89
Contribution	Early Fusion	0.91	0.89	0.90
	Late Fusion	0.94	0.92	0.93
	Hybrid Fusion	0.92	0.90	0.91

- Better performances using both content and graph
- Classifier can be used to assist moderators

Results Feature Correlation Study

- Some features are highly correlated
 - Directed/weighted variants of the same measure
 - Measures based on similar principles
 - Application-specific reasons
- Cluster analysis
 - Measures in the same cluster are considered equivalent

Results Feature Selection

- Application of a feature ablation method (Sklearn)
- Top-Features (TF): minimal subset of features reaching 97% of the original performance

Method	Number of	Total	Average	F-
	features		Runtime	measure
Content-Based				
Content-Based TF	3	0:21		0.79
Graph-Based				
Graph-Based TF		14:22	0.03 s	0.87
Early Fusion				
Early Fusion TF	4	11:29	0.17 s	0.88
Late Fusion				
Late Fusion TF	13(2)	15:42	0.24 s	
Hybrid Fusion		8:27:01		
Hybrid Fusion TF	4	16:57	0.26 s	

Results Feature Selection

- Application of a feature ablation method (Sklearn)
- Top-Features (TF): minimal subset of features reaching 97% of the original performance

Method	Number of	Total	Average	F -
	features	Runtime	Runtime	measure
Content-Based	29	0:52	$0.02~{ m s}$	0.81
Content-Based TF	3	0:21	$0.01~{ m s}$	0.79
Graph-Based	459	8:19:10	7.56 s	0.89
Graph-Based TF	10	14:22	0.03 s	0.87
Early Fusion	488	8:26:41	7.68 s	0.90
Early Fusion TF	4	11:29	0.17~ m s	0.88
Late Fusion	488(2)	8:23:57	$7.64~{ m s}$	0.93
Late Fusion TF	13(2)	15:42	$0.24~{ m s}$	0.91
Hybrid Fusion	490	8:27:01	7.68 s	0.91
Hybrid Fusion TF	4	16:57	0.26 s	0.90

Conclusions & Perspectives

• Main results

- Better results combining graph- and content-based approaches than using them separately
- Performance good enough for moderation support, not full automation
- Limits: computational cost, no real-time
- Possible to keep 97% of the original performance using a small subset of relevant features
- Perspectives
 - Find other corpora to test our methods at a much higher scale
 - Test our methods on an other language than French
 - Explore representation learning to derive more efficient features

Conclusions & Perspectives

• Main results

- Better results combining graph- and content-based approaches than using them separately
- Performance good enough for moderation support, not full automation
- Limits: computational cost, no real-time
- Possible to keep 97% of the original performance using a small subset of relevant features
- Perspectives
 - Find other corpora to test our methods at a much higher scale
 - Test our methods on an other language than French
 - Explore representation learning to derive more efficient features

Questions?

Additional Material Top-features

Method	Top Features
	Naive Bayes
Content-Based	<i>tf-idf</i> Abuse Score
	Character Capital Ratio
Graph-Based	Coreness Score PageRank Centrality Strength Centrality Vertex Count Closeness Centrality Closeness Centrality Authority Score
	Hub Score Reciprocity Closeness Centrality

Additional Material Top-features

Method	Top Features
	Coreness Score
Early Euciop	Coreness Score
	Eccentricity
	Naive Bayes
Late Fusion	Content-Based TF ∪ Graph-Based TF
	Graph-based output
	Content-based output
	Strength Centrality
	Coreness Score

Define context period, centered on targeted message

- Slide current message-related window over conversation
- Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- ④ Update graph

Optime context period, centered on targeted message

- Ø Slide current message-related window over conversation
- Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- ④ Update graph

Optime context period, centered on targeted message

- Ø Slide current message-related window over conversation
- Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- ④ Update graph

- Optime context period, centered on targeted message
- Ø Slide current message-related window over conversation
- Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- ④ Update graph

- Optime context period, centered on targeted message
- Ø Slide current message-related window over conversation
- Ompute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- ④ Update graph

- Define context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Define context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Optime context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Define context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Optime context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Optime context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Optime context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Optime context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Optime context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Define context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

🕢 Update graph

- Define context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Define context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Define context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Define context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

- Optime context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted

Ø Update graph

	1. 📃 📃 💻	+++
	2.	$^{++}$
	3.	+
	4.	

- Define context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- 🕢 Update graph

- Define context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- 🕢 Update graph

- Optime context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- 🕢 Update graph

- Optime context period, centered on targeted message
- 2 Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- 🕢 Update graph

- Define context period, centered on targeted message
- Ø Slide current message-related window over conversation
- 8 Compute link weights
 - Hyp.#1: current message targeted towards other participants
 - Hyp.#2: message firstly addressed to last active users
 - Hyp.#3: directly referenced users even more targeted
- 🕢 Update graph

References I

- [BS15] K. Balci and A. A. Salah. "Automatic analysis and identification of verbal aggression and abusive behaviors for online social games". In: Computers in Human Behavior 53 (2015), pp. 517–526. DOI: 10.1016/j.chb.2014.10.025.
- [CS15] V. S. Chavan and S. S. Shylaja. "Machine learning approach for detection of cyber-aggressive comments by peers on social media network". In: IEEE International Conference on Advances in Computing, Communications and Informatics. 2015, pp. 2354–2358. DOI: 10.1109/ICACCI.2015.7275970.
- [Che+12] Y. Chen, Y. Zhou, S. Zhu, and H. Xu. "Detecting offensive language in social media to protect adolescent online safety". In: International Conference on Privacy, Security, Risk and Trust and International Conference on Social Computing. 2012, pp. 71–80. DOI: 10.1109/SocialCom-PASSAT.2012.55.
- [CDL15] J. Cheng, C. Danescu-Niculescu-Mizil, and J. Leskovec. "Antisocial Behavior in Online Discussion Communities". In: 9th International AAAI Conference on Web and Social Media. 2015, pp. 61–70. URL: http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10469.
- [DRL11] K. Dinakar, R. Reichart, and H. Lieberman. "Modeling the detection of Textual Cyberbullying". In: 5th International AAAI Conference on Weblogs and Social Media / Workshop on the Social Mobile Web. 2011, pp. 11–17. URL:

https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/3841.

References II

- [Gar+16] K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis. "Quantifying controversy in social media". In: 9th ACM International Conference on Web Search and Data Mining. 2016, pp. 33–42. DOI: 10.1145/2835776.2835792.
- [Pap+19] É. Papégnies, V. Labatut, R. Dufour, and G. Linarès. "Conversational Networks for Automatic Online Moderation". In: IEEE Transactions on Computational Social Systems in press (2019). DOI: 10.1109/TCSS.2018.2887240.
- [Pap+17a] É. Papégnies, V. Labatut, R. Dufour, and G. Linarès. "Detection of abusive messages in an on-line community". In: 14ème Conférence en Recherche d'Information et Applications. 2017, pp. 153–168. DOI: 10.24348/coria.2017.16.
- [Pap+17b] É. Papégnies, V. Labatut, R. Dufour, and G. Linarès. "Impact Of Content Features For Automatic Online Abuse Detection". In: 18th International Conference on Computational Linguistics and Intelligent Text Processing. Vol. 10762. Lecture Notes in Artificial Intelligence. 2017, pp. 404–419. DOI: 10.1007/978-3-319-77116-8_30.
- [Spe97] E. Spertus. "Smokey: Automatic recognition of hostile messages". In: 14th National Conference on Artificial Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence. 1997, pp. 1058–1065. URL: http://dl.acm.org/citation.cfm?id=1867616.

References III

[Yin+09] D. Yin, Z. Xue, L. Hong, B. D. Davison, A. Kontostathis, and L. Edwards. "Detection of harassment on Web 2.0". In: WWW Workshop: Content Analysis in the Web 2.0. 2009, pp. 1–7. URL: http://www.cse.lehigh.edu/~brian/pubs/2009/CAW2/.

