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Abstract

The statistical analysis of counts of living organisms brings information about

the collective behavior of species (schooling, habitat preference, etc), possibly

depending on their biological characteristics (growth rate, reproductive power,

survival rate, etc). This task can be implemented in a non-parametric setting,

but parametric distributions, such as the negative binomial (NB) distributions

studied here, are also very useful for modeling populations abundance. Never-

theless, the parametric approach is ill-suited from an exploratory point of view,

because the visual distance between parameters is irrelevant. On the contrary,

considering the Riemannian manifold NB(DR) of NB distributions equipped

with the Rao metrics DR, one can compute intrinsic distances between species

which can be considered as absolute. Unfortunately, computing this distance

requires solving a second-order nonlinear di�erential equation, whose solution

cannot be always found in an acceptable length of time with enough precision.

While Manté and Kidé [1] proposed numerical remedies to these problem, we

propose a geometrical one, based on Poisson approximation. It consists in su-

perseding A and/or B by "equivalent" better-suited distribution(s) before com-

puting the distance, insofar as possible. The proposed method is illustrated by

displaying distributions of counts of marine species: these counts having been

�tted by NB distributions, we compute the distance table ∆ between species

and represent ∆ through multidimensional scaling (MDS).
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Poisson approximation, Multidimensional scaling

Notations

Consider a Riemannian manifold M, and a parametric curve α : [a, b]→M.

Its �rst derivative will be denoted α̇. A geodesic curve γ connecting two points

p and q of M will be denoted py q, and py s⊕ sy q will denote the broken

geodesic [2] connecting p to q with a �stopover� at s. We will also consider for

any θ ∈M the local norm ‖V ‖g (θ) associated with the metrics g on the tangent

space TθM :

∀V ∈ TθM, ‖V ‖g (θ) :=
√
V t.g(θ).V . (1)

The length of a curve α traced on M will be denoted Λ (α). A parametric

probability distribution Li will be identi�ed with its coordinates with respect

to some chosen parametrization; for instance, we will write Li ≡
(
φi, µi

)
for

some negative binomial distribution. In addition, R+∗ := ]0,+∞[, and ‖M‖F
will denote the Frobenius norm of the matrix M ; logical propositions will be

combined by using the classical connectors ∨ (or) and ∧ (and).

1. Introduction

The statistical analysis of counts of living organisms brings information

about the collective behavior of species (schooling, habitat preference, etc), pos-

sibly associated with their socio-biological characteristics (aggregation, growth

rate, reproductive power, survival rate, etc). Such data consist in general of

two-way r× c tables of counts, whose rows are associated with surveys (spatial-

temporal positions, generally) and columns are associated with species. Roughly

speaking, these tables can be analyzed through two di�erent approaches. On

the one hand, multivariate methods are widely used to investigate relationships

between the community structure and the spatio-temporal variations of the sur-

veys, frequently in connection with explanatory environmental variables (see for

instance [3, 4] and the references therein). On the other hand, an alternative

way, much earlier used in Ecological Statistics, consists in modeling the rows or
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the columns count distributions. In the spirit of [3], we propose an intermedi-

ary method, consisting in measuring the dissimilarity between species through

the probability distribution of some characteristic, and analyzing the obtained

dissimilarity table through MDS. In [3], this characteristic was the dispersion

of each species while here it will be its abundance. There is a wide range of

functional methods to deal with distributional data, fundamentally depending

on the chosen metrics on the probabilities set. Recently, multivariate methods

with a geometric dominance appeared in the literature, based on Riemannian

structures equipping spaces of probability densities: non-parametric Fisher-Rao

metrics [5], Wasserstein metrics [6]. But all these methods were designed in a

non-parametric setting, for absolutely continuous distributions, while our data

are discrete. In addition, ecological �eld data are typically characterized by

a large number of zeros (problematic for most of the methods above); that is

why the negative binomial (NB) distribution is widely used to model catches of

animals [7, 8, 9, 10]. It is especially relevant for ecologists, because

1. it arises as a Gamma-Poisson mixture, whose parameters depend on the

more or less aggregative behavior of the species, and on the e�ciency

[11, 12] of the trap for catching it

2. it arises as the limit distribution of the Kendall [13] birth-and-death model;

in this setting, its parameters depend on the demography of the species

(reproductive power, mortality, immigration rate)

3. one of its limit cases, the log-series distribution, is a natural model for

collections (of animals, for instance) [14].

But while the parametric approach is quite sound from the ecological point of

view (see [10] and the references therein), it is ill-suited for Exploratory Data

Analysis (EDA): the visual distance between parameters of several distributions

is misleading, because on the one hand it depends on the chosen parametrization

and, on the other hand, because these parameters are not commensurable in

general (di�erent ecological meaning, di�erent ranges, ...).

In a seminal paper, Rao [15] noticed that, equipped with the Fisher informa-
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tion metrics denoted g (•), a family of probabilities depending on p parameters

can be considered as a p-dimensional Riemannian manifold. The associated

Riemannian (Rao's) distance between the distributions of parameters θ1 and θ2

is

DR
(
θ1, θ2

)
:=

ˆ 1

0

√
γ̇t (t) .g (γ (t)) .γ̇ (t)dt (2)

where γ is a segment (minimal length curve) connecting θ1 = γ (0) to θ2 = γ (1)

and γ̇ (t) := dγ
dt (t); as any Riemannian distance, DR is intrinsic. Naturally, Rao

[15, 16] proposed to use (2) as a distance between populations or for Goodness-

Of-Fit (GOF) testing, followed by a number of authors [17, 18, 19, 20, 21,

1, 22, 23, 24]. The Rao's distance between members of a common family of

distributions has been calculated in a number of classical cases [25] but it cannot

be obtained in a closed form, generally. In such cases, like the NB distributions

(when both parameters are unknown), DR must be obtained by numerically

solving a second-order nonlinear di�erential equation which is frequently hard

to integrate.

The outline of this study is as follows. After reminding in Section 2 essential

notions of Riemannian geometry, we resume in Section 3.1 a method proposed

by Manté and Kidé [1] for approximating DR
(
θ1, θ2

)
. Next, in Section 3.2

we show how Poisson approximation can be used to speed up its computation,

and an application to EDA of ecological data is shown in Section 3.3. Finally,

Section 4 is dedicated to conclusion and discussion.

2. Essential elements of Riemannian geometry

According to the fundamental theorem of Riemannian geometry [2], there

is a unique symmetric connection ∇ compatible with a given metrics g (the

Levi-Civita or Riemann connection), giving in our case the Rao's distance. It

is noteworthy that other statistically sound (but not Riemannian) connections

can be fruitfully considered (see Amari et al. [26]).

De�nition 1. [2, 27] Let γ : I → M be a curve traced on M, and D be a
connection on M. γ is a geodesic with respect to D if its acceleration Dγ̇(t)γ̇ (t)
is null ∀t ∈ I.
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Theorem 2. Let γ : I → M be a geodesic with respect to the metric

connection ∇. Then γ has constant speed in the local norm (1)

‖γ̇‖g := ‖γ̇ (•)‖g (γ (•)) =
√
γ̇t (•) .g (γ (•)) .γ̇ (•)

and, for any [a, b] ⊆ I, we have:

ˆ b

a

√
γ̇t (t) .g (γ (t)) .γ̇ (t)dt = (b− a) ‖γ̇‖g .

Geodesics on a p-dimensional Riemannian manifold with respect to ∇ are

solutions of the Euler-Lagrange equation [27, 2, 25]:

∀ 1 ≤ k ≤ p, γ̈k (t) +

p∑
i,j=1

Γ ki,j γ̇i(t) γ̇j(t) = 0 (3)

where each coe�cient (some Christo�el symbol Γ ki,j) only depends on g and is

de�ned in coordinates by:

Γ ki,j :=

p∑
m=1

gkm

2

(
∂gjm
∂θi

+
∂gim
∂θj

− ∂gij
∂θm

)
(4)

where gim (resp. gmk) is some entry of g−1 (resp. g). To determine the shortest

path between two points of M, one applies the following result.

Theorem 3. [27, 2] Let p, q ∈ (M,∇, g) and suppose α : [a, b]→M is a curve
of minimal length connecting p to q. Then, α is a geodesic.

Nevertheless, building the segment connecting L1 to L2 is not straightfor-

ward, since this theorem only says that a segment is a geodesic. But a geodesic

is not necessarily a segment...

Theorem 4. [2, 28] Let p = α (0) be the initial point of a geodesic. Then there
is some 0 < t0 ≤ +∞ such that α is a segment from p to α (t) for every t ≤ t0
and for t > t0 thereafter never again a segment from p to any α (t) for t > t0.
This number t0 is called the cut value of α and α (t0) is called the cut point of α.
There are only two possible reasons (which can occur simultaneously) for α (t0)
to be to be the cut point of α:

• there is a segment from p to α (t0) di�erent from α

• α (t0) is the �rst conjugate point on α to p (i.e. t0 α̇ (0) is a critical point
of the exponential map (see De�nition 5 and Figures S1, S3 and S4).

In addition, the distance function DR (p, •) is not di�erentiable at α (t0) [29, 2].
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Remark 1. No matter the cause of the phenomenon, the main point for us is that
if t0 is a cut value of the unit-speed geodesic α, ∀ t ≤ t0, DR (p, α (t)) = t while
∀ t > t0, DR (α (0) , α (t)) < t. Nevertheless, ∀τ > 0, DR (α (t0) , α (t0 + τ)) = τ .
This remark is the basis of the method proposed by Manté and Kidé [1] for
detecting cut points.

De�nition 5. [2] Let M be a Riemann manifold and x ∈M. The exponential
map of M at x is expx : Wx → M, de�ned on some neighborhood Wx of the
origin of TxM by:

expx (V ) := αB(V ) (‖V ‖) (5)

where B (V ) is the projection of V onto the unit ball and αB(V ) is the unique
unit-speed geodesic in M such that αB(V ) (0) = x and α̇B(V ) (0) = B (V ).

Remark 2. If α := p y q is a segment and V0 := α̇ (0), because of uniqueness
of geodesics, expp (V0) := αB(V0) (1) = q; reciprocally, if V1 := −α̇ (1), we have
also that expq (V1) := αB(V1) (1) = p.

3. The special case of NB(DR)

There is a large number of parametrizations for the NB distribution, and

the most classical one is probably

P (X = j; (φ, p)) =

 φ+ j − 1

φ− 1

 p
j

(1− p)φ j ≥ 0 (6)

with (φ, p) ∈ R+×]0, 1[. Nevertheless, because of its orthogonality, we chose

instead the parametrization used by Chua and Ong [30]:

P (X = j; (φ, µ)) =

 φ+ j − 1

j

 (
µ

µ+ φ

)j (
1− µ

µ+ φ

)φ
, j ≥ 0 (7)

(φ, µ) ∈ R+ ×R+; here, µ is the mean of the distribution and φ is the so-called

�index parameter". In these coordinates, the information matrix is:

g(φ, µ) =

 Gφφ 0

0 Gµµ


where Gµµ = φ

µ(µ+φ) , while the expression of Gφφ is more complicated:

Gφφ = −
µ+ φ (µ+ φ)

(
(φ/µ+φ)

φ − 1
)
ψ1(φ)

φ (µ+ φ)
(8)
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where ψ1 is the Trigamma function [31].

One will �nd in Burbea and Rao [25] the closed-form expression of the Rao's

distance for a number of probability families. These authors reported that, when

the index parameter of two NB distributions is the same, the Rao's distance

is given by:

DNB(p)

((
φ, p1

)
,
(
φ, p2

))
:= 2

√
φ cosh−1

(
1−

√
p1 p2√

(1− p1) (1− p2)

)
(9)

in the parametrization (6). Of course, if L1 = NB
(
φ, p1

)
(resp. L2 = NB

(
φ, p2

)
),

we have necessarily:

DR
(
L1,L2

)
≤ DNB(p)

(
L1,L2

)
. (10)

Due to the complexity of (8), DR
(
L1,L2

)
cannot be obtained in a closed-form.

It must be computed by �nding the numerical solution of a the Euler-Lagrange

equation (3), completed in the parametrization (7) by the conditions (boundary

value problem) {
γ (0) =

(
φ1, µ1

)
, γ (1) =

(
φ2, µ2

)}
. (11)

Geodesics can be as well be computed by solving (3) under the alternative

constraints (initial value problem)

{
γ (0) =

(
φ1, µ1

)
, γ̇ (0) = V ∈ R2

}
(12)

where V is the initial velocity of the geodesic; this solution is associated with

the exponential map at
(
φ1, µ1

)
.

3.1. Numerical approximation of DR
(
L1,L2

)
[1]

From now, Li ≡
(
φi, µi

)
will denote some NB distribution parametrized in

the (7) system, but our purpose could be extended to any parametric family of

probabilities. Firstly, all the Christo�el symbols (4) were calculated from the

expression (8) of Gφφ, with the help of Mathematica [32] . Then, the di�erential

equation (3) was numerically solved under the the boundary conditions (11),

for a number of distributions of counts of marine species whose parameters had
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been estimated in [10]. In most cases a solution could be found in an acceptable

time (four CPU minutes), with a good numerical precision (20 digits), but was

each one of the geodesics found a segment? And what about failures met in

computation? We indeed had to face various problems detailed in [1], where

some numerical remedies were proposed. The �rst one consisted in inserting

a well-placed �stopover� S between each pair of problematic distributions A

and B, in such a way that DR (A,S) and DR (S,B) could be computed in a

reasonable time, while DR (A,B) could not. Furthermore, S was placed in order

that DR (A,S) +DR (S,B) should by a good approximation of DR (A,B). For

sake of brevity, we moved to the supplementary material useful information

and illustrations about this previous work. Notice that all references to this

supplement will be preceded by an S.

3.2. Contribution of geometry: making computations easier thanks to Poisson
approximation

From the numerical side, it is noteworthy that the index parameter φ often

takes large values, causing di�culties in the evaluation of quantities associated

with Γ (φ), like formulas (7) and (8) or the Christo�el's symbols (4).

From the statistical side, the convergence of some NB distribution L ≡ (φ, µ)

towards a Poisson distribution P when φ → ∞ is well-known. More precisely,

Majsnerowska [33] proved that

dTV (L,P (λ)) ≤ ∆ (φ, µ) :=
(
1− e−µ

) µ
φ

(13)

where λ := φ µ
φ+µ and dTV denotes the total variation distance. Thus, we can

claim that (φ� µ)∨(µ small)⇒ ∆ (φ, µ) small and conclude that in such cases

it may be quite impossible to �nd a di�erence between L and P (λ), even when

the index parameter is small or moderate! This fact suggests to replace the NB

model by the Poisson one when both distributions are very close to each other.

This is also biologically sound, since the former is well-suited for aggregative

species, while the latter is associated to species with a random behavior (see

[10, 3] and the references therein).
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Let's focus now on the applicationω : R+∗ × R+∗ → R+∗

(φ, µ) 7→ λ

associating to each NB distribution L ≡ (φ, µ) the corresponding limit Pois-

son distribution P(λ).

Lemma 6. The tangent application T(φ,µ)ω = 1
(φ+µ)2

(
µ2

φ2

)
is surjective.

Proof. Let us �x some ρ ∈ R+∗; one can easily show that the set of solutions of

the equation T(φ,µ)ω (x, y) = ρ is the line of equation y = −
(
µ
φ

)2

x+ρ
(

1 + µ
φ

)2

As a consequence, ω is a surjective submersion and the �ber Fλ := ω−1 (λ)

associated with any λ ∈ R+∗ is a sub-manifold of NB(DR).

Proposition 7. Fλ is de�ned by either equation:{
µ (λ;φ) = λ

1−λ/φ : φ > λ

φ (λ;µ) = λ
1−λ/µ : µ > λ

. (14)

Proof. Fλ :=
{

(φ, µ) : φ µ
φ+µ = λ

}
; thus, the strictly positive parameters λ, φ and

µ are linked by the relationship φµ = φλ+λµ, which proves that φ = λ+λφµ and

µ = λ+λµφ . Consequently, λ < min (φ, µ) and lim
φ→+∞

µ (λ;φ) = lim
µ→+∞

φ (λ;µ) =

λ

Lemma 8. One can easily verify that:
∀ λ ∈ R+∗, Fλ := {(φ, µ) ∈ R+∗ × R+∗ : ω (φ, µ) = λ} 6= ∅
∀ (φ, µ) ∈ R+∗ × R+∗, (φ, µ) ∈ Fω(φ,µ)

∀ (λ1, λ2) ∈ R+∗ × R+∗, Fλ1 ∩ Fλ2 = ∅.

Proposition 9. Suppose L ≡ (φ, µ) ∈ Fλ and ∆ (φ, µ) ≤ δ, where δ is some
threshold chosen for deciding whether L can be identi�ed with P (λ). Then, if
L′ ≡ (φ′, µ′) ∈ Fλ is another distribution, such that φ′ > φ, ∆ (φ′, µ′) < δ and
L′ cannot be practically distinguished from P (λ) too.

Proof. See Appendix 5.1

Let us now �x L0 ≡
(
φ0, µ0

)
; by de�nition L0 ∈ Fλ0 , with λ0 = ω

(
φ0, µ0

)
.

Suppose ∆
(
φ0, µ0

)
≤ δ; then L0 could be identi�ed with P

(
λ0
)
, as well as

any distribution of the �ber whose index parameter is greater than φ0, due
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to the proposition above. We can now, thanks to (14), �nd the distribution

(φ∗, µ∗)
(
λ0, δ

)
such that

φ∗
(
λ0, δ

)
:= arg

φ:(φ,µ)∈Fλ0
(∆ (φ, µ) = δ) = arg

φ
(∆ (φ, µ (λ;φ)) = δ) (15)

and de�ne :

P̊
(
λ0, δ

)
:=
{

(φ, µ) ∈ Fλ0 : φ ≥ φ∗
(
λ0, δ

)}
.

Obviously, L0 ∈ P̊
(
λ0, δ

)
because φ∗ ≤ φ0, but we have that, more gen-

erally, when (φ, µ) ∈ P̊
(
λ0, δ

)
, dTV

(
L,P

(
λ0
))
≤ δ and

∣∣ω (φ, µ)− λ0
∣∣ ≈ 0,

simultaneously. Thus, in such cases, NB (φ, µ) and P
(
λ0
)
are practically

indiscernible from the statistical point of view!

De�nition 10. We will say that L ≡ (φ, µ) isPoisson-like if (φ, µ) ∈ P̊ (ω (φ, µ) , δ).

We displayed on Figure 1 four examples of such NB distributions (setting

δ = 0.01, say). Let us now denote
δ≡ the following relation (for δ �xed) between

Poisson-like distributions:

L1 δ≡ L2 ⇔ ∃λ : Li ∈ P̊ (λ, δ) , i = 1, 2.

Corollary 11. The relation
δ≡ is an equivalence relation between Poisson-like

distributions.

Proof. Re�exive and symmetric properties are straightforward. Suppose now

L1 δ≡ L2 and L3 δ≡ L2; there exists λ1,2 : Li ∈ P̊ (λ1,2, δ) , i = 1, 2 and λ2,3 :

Li ∈ P̊ (λ2,3, δ) , i = 2, 3. Consequently, L2 ∈ Fλ1,2
∩ Fλ2,3

which is empty if
λ1,2 6= λ2,3 (see Lemma 8), and these three Poisson-like distributions belong to

the same �ber. Thus, L1 δ≡ L3 and
δ≡ is transitive

Suppose L1 δ≡ L2 belong to a common �ber, Fλ1,2 . Being indiscernible,

these distributions should be necessarily close to each other, and it would be

statistically sound to supersede DR
(
L1,L2

)
by δ.

Corollary 12. Consider now two Poisson-like distributions L1 and L2 belong-
ing to di�erent �bers, Fλ1

and Fλ2
. After computing (thanks to formula 15) φ̃ :=

max
(
φ∗
(
λ1, δ

)
, φ∗

(
λ2, δ

))
, µ̃1 := µ

(
λ1; φ̃

)
and µ̃2 := µ

(
λ2; φ̃

)
, we can deter-

mine the Poisson-like distributions L̃1 :=
(
φ̃, µ̃1

)
∈ Fλ1

and L̃2 :=
(
φ̃, µ̃2

)
∈

Fλ2
. Then, thanks to formula 9, we can easily compute DNB(p)

(
L̃1, L̃2

)
, which

is an upper bound for DR

(
L̃1, L̃2

)
.
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Figure 1: Four instances of Poisson-like distributions; ∆ is given by Formula (13) and vertical
bars are associated with NB probabilities while continuous curves are associated with Poisson
ones
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Corollary 13. Under the same conditions, an alternative strategy is possible.
Suppose φ1 ≤ φ2; thanks to formula 14 we can determine µ̌1 := µ (λ1;φ2), such
that Ľ1 := (φ2, µ̌1) ∈ Fλ1

is Poisson-like too (because of Proposition 9) and
belongs to the same class as L1. Then, we can compute DNB(p)

(
Ľ1,L2

)
, which

is another upper bound for DR
(
Ľ1,L2

)
.

Since L̃1
δ≡ L1 δ≡ Ľ1 and L̃2

δ≡ L2 , it is quite sound to supersedeDR
(
L1,L2

)
by DNB(p)

(
Ľ1,L2

)
or DNB(p)

(
L̃1, L̃2

)
. One could also measure the di�er-

ence between L1 and L2 by DP
(
P(λ1),P(λ2)

)
but, since P(DP) is not a

sub-manifold of NB(DR), there is no clear relationship between the associ-

ated Rao's distances (for instance, if L1 6= L2 belong to the same �ber Fλ,

DR
(
L1,L2

)
> DP

(
ω
(
L1
)
, ω
(
L2
))

= 0). Nevertheless, one can easily prove

that DNB(p)

(
L̃1, L̃2

)
= C (µ̃1, µ̃2) DP

(
P(λ1),P(λ2)

)
DNB(p)

(
Ľ1,L2

)
= C (µ̌1, µ2) DP

(
P(λ1),P(λ2)

) (16)

where C (µ̌1, µ2) and C (µ̃1, µ̃2) ≥ 1 are given by the function de�ned hereunder
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(up to a simple change of parametrization).

Lemma 14. C is de�ned in the parametrization (6) by

C
(
p1, p2

)
=

cosh−1

(
1−
√
p1p2√

(p1−1)(p2−1)

)
√
−2
√
p1p2 + p1 + p2

≥ 1

if p1 6= p2, and C (p, p) := 1.

Proof. In the parametrization (6), the mean µ = K p
1−p and thus p = µ

φ+µ , while

φ = K. Consequently, λi = Kpi and DP
(
P(λ1),P(λ2)

)
= 2
√
K
∣∣∣√p1 −

√
p2
∣∣∣.

Then, because of formula (9), we have:

DNB(p)

(
Ľ1, Ľ2

)
DP (P(λ1),P(λ2))

= C
(
p1, p2

)

An exemple

Consider L1 = (172.236, 0.974793) and L2 = (6, 0.05), and lets us �x δ :=

0.01. Both these distributions are Poisson-like, with L1 ∈ F0.0495868 while L2 ∈

F0.969307. We plotted on Figure 2 interesting portions of these �bers. On each

one of the panels, the big gray point (of coordinates (λ, λ)) corresponds to the

lower bound of φ and µ, while L∗ := (φ∗, µ∗) (λ, δ) is the distribution given by

Equation 15. All the distributions situated on the right of L∗ are Poisson-like.

It is the case of L1 and L2, represented on Figure 2 by small gray points.

We found that φ1
∗ = 63.2096 < φ1 and φ2

∗ = 0.412537; thus, φ̃ = φ1
∗ and

L̃1 = L1
∗, while L̃2 6= L2

∗. Next, in accordance with Corollary 12, we com-

pute DNB(p)

(
L̃1, L̃2

)
≈ 1.53375, which is rather close to DP (P(λ1),P(λ2)) ≈

1.52371. Using Formula 16, one obtains 1.53375 again.

Since φ1
∗ = 63.2096 < φ1 , it is also possible to determine the distribu-

tion Ľ2 := (φ1, µ̌2)
δ≡ L2 (black point on the lower panel) and, in accor-

dance with Corollary 13, to compute DNB(p)

(
Ľ2,L1

)
≈ 1.52737 (very close

to DP (P(λ1),P(λ2)) too).
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Figure 2: Portions of �bers associated with two Poisson-like distributions (δ = 0.01):
F0.0495868 (lower panel) and F0.969307 (upper panel).
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3.2.1. Application to EDA

Let L1 and L2 ∈ NB(DR); three cases may be met: both of them are

Poisson-like, only one of them is Poisson-like, or none of them is so.

Suppose �rst L1 and L2 belong to distinct �bers Fλ1 and Fλ2 and each

Li ∈ P̊
(
λi, δ

)
. Then µi ≈ λi and we can use Corollaries 12 or 13 to build a pair

of equivalent distributions, whose interdistance is easier to compute.

Suppose now L1 is Poisson-like while L2 is not; if φ1
∗ ≤ φ2, we can again build

Ľ1 :=
(
φ2, µ̌1

)
, and four distances can be computed: DR

(
L1,L2

)
, DR

(
L1
∗,L

2
)
,

DR
(
Ľ1,L2

)
and DNB(p)

(
Ľ1,L2

)
. On the contrary, if φ1

∗ > φ2, we cannot

consider the two last ones.

Three instances.

To illustrate our purpose, look �rst at Figures S1, S3 and S4. In all these

cases, only one of the pair of distributions is Poisson-like. In the �rst case,

L1 = (0.00487399, 0.262591), and we found that L2 = (592.392, 2.57454)
δ≡

(3.5634, 9.13442) = L2
∗. Since φ2

∗ = 3.5634 � 0.00487399 we could not build

Ľ2 :=
(
φ1, µ̌2

)
and computeDNB(p)

(
Ľ2,L1

)
, but DR

(
L2
∗,L

1
)

= 3.53253 could

be computed straightforwardly (simple con�guration, no cut point), while the

originalDR
(
L1,L2

)
corresponded to an intricate con�guration with a cut point,

and to the upper bound 45.1321 (de�nitions of simple and intricate con�g-

urations are remembered in the supplementary material).

In the next case (Figure S3) L1 = (0.00996246, 0.121282), while the second

distribution is the same as in the previous case. The original distance corre-

sponded to an intricate con�guration with a cut point, and to the upper bound

43.1519. We found instead DR
(
L2
∗,L

1
)

= 3.48809.

In the last case (Figure S4), L1 = (0.938781, 9.86571), and we found that

L2 = (172.236, 0.974793)
δ≡ (63.2096, 0.984403) = Ľ2. Since φ2

∗ = 63.2096 �

0.938781, we could not computeDNB(p)

(
Ľ2,L1

)
, but we found thatDR

(
L2
∗,L

1
)

=

12.5294 (an intricate con�guration with an acceptable rough solution and a

stopover), while the original DR
(
L1,L2

)
, corresponding to an intricate con�g-

uration with linear interpolation, gave rise to the upper distance 21.351.
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3.3. EDA of �eld data: representation of counts distributions of marine species

The Mauritanian coast, situated on the Atlantic side of the northwestern

African continent, embeds a wide long continental shelf of about 750 km and

36000km2, with an Exclusive Economic Zone (the MEEZ) of 230000km2. Manté

et al. [10] considered the abundance of species of �sh and invertebrates collected

in the MEEZ during annual scienti�c trawl surveys since 1997 to now. Because

the spatial distribution of ground�sh species is strongly in�uenced by the phys-

ical environment, we split this set into an optimal number (four) of subsets

(typical habitats) associated with homogeneous physical conditions determined

by available environmental variables (bathymetry, sedimentary type of the sub-

strate, latitude and longitude). The counts associated with each species found in

each one of the four habitats were then gathered, and �tted by a truncated NB

distribution; notice that only a reduced number of species could be satisfactorily

�tted in each habitat (for further information, see [10]).

Table 1: Global results obtained in the four habitats of the MEEZ

Habitat Number of species Simple Intricate Cut points Poisson-like
(well-�tted) con�gurations (Rough, Linear) distributions

C1 30 400 (35,0) 1 3
C2 19 147 (24,0) 0 3
C3 26 309 (16,0) 0 5
C4 26 304 (21,0) 0 1

3.3.1. Bene�ts of Poisson approximation

Processing these data, we found in [1] an overwhelming proportion of simple

con�gurations (more than 70%), while numerical cut points were quite rare. In

the intricate cases, the rough solution was generally accepted (more than 90% of

occurrences). We displayed on Figure 3 statistics about the computational cost

of the 26 × 26 distance matrix corresponding to C4. Among the 325 distances

computed, 287 were simple cases, with a median computation cost of 25”; the

remaining 38 cases were intricate, with a median cost of 826”. Superseding

each Poisson-like distribution L by the corresponding L̃ δ≡ L (see Section 3.2),
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Figure 3: Statistics of the computational burden for processing (without Poisson approxima-
tion) species collected in zone 4 of the MEEZ: number of distances of each type, box-plots of
computation length.
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we found that the proportion of simple con�gurations was greater than 90%,

excepted for the second type of habitat, C2 (85%) (see Table 1). Furthermore,

in the intricate cases, the rough solution was always accepted. In our previ-

ous study, numerical cut points were rare (less than a pair per class), but now

we detect a single numerical cut point (see Table 1)! Poisson-like distributions

were quite rare, but they were often so �pathological� that their replacement

by equivalent NB distributions changed a lot the results. This is illustrated

by the statistics displayed on Figure 4. Among the 325 distances computed,

305 were simple cases, with a median computation cost of 20”; the remaining

20 cases were intricate, with a median cost of 404”. So, the introduction of

Poisson approximation simultaneously increased the number of simple con�g-

uration, approximately divided by two the number of intricate con�gurations,

and approximately divided by two the computational cost of the corresponding

distances.
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Figure 4: Statistics of the computational cost for processing the same species as in Figure 3,
with Poisson approximation.
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Figure 5: Species collected in zone 4 of the MEEZ; the green dotted (resp. orange dashed)
closed curve corresponds to the con�dence region of 0.99 level associated with the spatial
median of the �rst (resp. second) category species .
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3.3.2. Parametric representation of species from the habitat C4

We display on Figure 5 the estimated parameters of the counts distribution

of species sampled in the zone 4 of the MEEZ. This region is of paramount

importance: it is a high plankton productivity area, supporting a large variety of

�sh communities, with many commercial species that sustain �shing activities.

We distinguished two categories of species on Figure 5, according to the index

parameter: φ > 1 or φ ≤ 1. Species belonging to the second category being very

numerous, we only kept for MDS those which are situated on the convex envelope

on the associated cloud. Twenty-six species were selected this way (while 138

species are represented) for computation of the Rao's distances and subsequent

MDS of the table of distances. We also plotted on Figure 5 theoretical con�dence

ellipses centered on the spatial medians [34] of both species categories.

3.3.3. Representation of the Rao's distance table

Only one of the 26 species retained in C4 was Poisson-like: �HISP00� (Hip-

pocampus sp). Consequently, the distance table was de�ned this way: ∆i,j =

DR
(
Li,Lj

)
, excepted when one of these species was �HISP00� (index h, say).

In these cases, we set instead:

∆h,j = min
(
DR

(
Lh,Lj

)
, DR

(
L̃h,Lj

))
. The median distortion of the

Schoenberg exponential transformation of ∆ (see Section 5.2) denoted ∆Exp,

was 0.854805, which is slightly lower than the one corresponding to the tradi-

tional Additive Constant method∆AC , 0.872421. Nevertheless, since
∥∥∆− ηAC ∆AC

∥∥
F

was much smaller than
∥∥∆− ηExp∆Exp

∥∥
F
(where ηExp minimizes the Frobe-

nius norm), ∆AC has been chosen. Notice that the ratio c∗/∆2 was 2.302: the

additive constant method greatly altered the distance matrix. MDS of the 26

species is represented on Figure 6. Clearly, the counts of the species �HISP00�

and �PHHU76� (Physiculus huloti, a type of cod) are distributed in a very spe-

cial manner, which was not so obvious on Figure 5. In the inset region we

represented the other 24 species separately analyzed by MDS of the restricted

table ∆AC (no point from the �rst MDS is hidden). In this case, the median

distortion associated with the Schoenberg transformation of the distances table
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Figure 6: MDS of the Rao's distance between the 26 selected species (big points); the inset
graph corresponds to the same analysis, performed after removing both the species �HISP00�
and �PHHU76�. .
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∆Exp was 0.401832, greater than the one corresponding to ∆AC (0.298623),

while the relative perturbation of distances was high
(
c∗/∆2 = 1.2529

)
.

4. Results and discussion

Following Rao [15], a number of authors used DR (., .) in various statistical

settings: either exploratory methods [16, 17, 18, 21, 1, 20, 35] or hypothesis

testing problems [23, 24]. Motivated by the analysis of a large data set of marine

species counts collected in the MEEZ, we developed a parameter-free method to

compare species counts distributions in the setting of the Riemannian manifold

NB(DR) of negative binomial distributions, equipped with DR.

We focused �rst [1] on numerical problems met in computing DR
(
L1,L2

)
:

lengthy computations could result from the presence of a cut point on the

geodesic L1 y L2, requiring to determine a stopover S somewhere between

these distributions. DR
(
L1,L2

)
is then approximated by the upper bound

DR
(
L1, S

)
+ DR

(
S,L2

)
. In Section 3.2 we show how Poisson approximation

can be used to evaluate more e�ciently DR
(
L1,L2

)
when one (at least) of the

distributions involved is "Poisson-like". Superseding original NB distributions

by equivalent ones (in the sense of De�nition 10), we could obtain lower upper

bounds of the distances than with the former strategy, with a lower computa-
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tional cost. In addition, this re�nement enabled us to get around most numerical

issues (numerical cut points, unsuitable rough solutions).

Afterwards, an application to EDA of ecological data is shown. Unfortu-

nately, we had to restricts ourselves to a small number of species, because of the

computational cost of DR; therefore, future research should focus on speeding

up more the computation of DR
(
L1,L2

)
.

5. Appendices

5.1. Proof of Corollary 9

Notice �rst that on the �ber Fλ, because of (14), the expression of ∆ de�ned

in (13) is
λ

(
e
λφ
λ−φ−1

)
λ−φ , giving:

∂∆
∂φ (φ) =

λ

(
e
λφ
λ−φ (λ2+λ−φ)−λ+φ

)
(λ−φ)3 . Since φ > λ, the denominator of this

expression is always negative while the numerator is clearly positive, excepted

potentially if
(
λ2 + λ− φ

)
< 0. Substituting λ2 + λ + ζ to φ (with ζ > 0) in

the equation, we get a simpler expression for ∂∆
∂φ :

−
λ
(
−ζ e

ζ

ζ+λ2
−λ−1

+ ζ + λ2
)

(ζ + λ2)
3

whose sign depends on the sign of
(

1− e
ζ

ζ+λ2
−λ−1

)
. Since the only solutions of

ζ
ζ+λ2 − λ− 1 = 0 are λ = 0∧ ζ 6= 0 and ζ = −

(
λ+ λ2

)
∧ λ 6= 0, this expression

is negative, and
(

1− e
ζ

ζ+λ2
−λ−1

)
≥ 0. Consequently, ∂∆

∂φ (φ) is negative and

∆ (φ, µ) is a decreasing function of φ on a �ber.

5.2. Pre-processing distance tables for MDS

There are several methods for making a distance matrix like∆ Euclidean (i.e.

�nd a close distance matrix which can be exactly represented in an Euclidean

space) - see for instance [36]. The simpler one is the Additive Constant (AC) one

[37], consisting in adding an optimal positive perturbation c∗ to all the extra-

diagonal terms of ∆2. But other pre-processing methods are worth considering

[36]: one can search for the smallest positive γ0 such that the power ∆γ is

Euclidean for γ ≤ γ0 [38], or the smallest positive γ∗ such that 1 − e−γ∆ is
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Euclidean (Exp method). It is noteworthy that both these transformations

belong to the class of Schoenberg transformations introduced in Data Analysis

by Bavaud [39]. We chose the last one, since it is bounded and recti�able, i.e. a

�nite length curve is transformed into another �nite length curve - fractal curves

are not recti�able [40], for instance. Thus, two element-wise transformations of

∆ were considered: ∆
AC
i,j :=

√
∆2
i,j + c∗ i 6= j

∆Exp
i,j :=

1−exp(−λ∗∆i,j)
λ∗ i 6= j

(17)

Naturally, these perturbation should be as small as possible. In the case of ∆AC

the ratio c∗/∆2, where ∆2 denotes the mean squared distance, is a straightfor-

ward and natural criterion. Remember now that since the set of Euclidean

matrices of a given size is a convex cone, the solutions proposed in (17) can

be easily improved by looking for an optimal η minimizing the Frobenius norm

‖∆− η ∆•‖F . In the applications, the original table ∆• will be sys-

tematically superseded by this optimum. In addition to the speci�c in-

dex c∗/∆2 for AC, it is interesting to consider statistics of local distortions.

Benasseni et al. [36] proposed the criterion max
i6=j

(
∆•i,j
∆i,j

)
/min
i6=j

(
∆•i,j
∆i,j

)
which was ill-

suited for our data, since ∆i,j was frequently very small. We instead computed

for each distance obtained from (17) the index

ωi,j :=

0 if ∆•i,j = ∆i,j

1− ∆i,j
∆•i,j

if ∆•i,j 6= ∆i,j

.

Then, each list Ω of distortions was described by its kernel density estimate, its

average and its median.
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