
HAL Id: hal-02130158
https://hal.science/hal-02130158

Submitted on 15 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Implementation of a DASH Client for Browsing
Networked Virtual Environment

Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent
Charvillat, Praveen Kumar Yadav

To cite this version:
Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent Charvillat, et al.. An Im-
plementation of a DASH Client for Browsing Networked Virtual Environment. 26th ACM Multimedia
Conference (MM 2018), Oct 2018, Seoul, South Korea. pp.1263-1264. �hal-02130158�

https://hal.science/hal-02130158
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/226143

Official URL

DOI : https://doi.org/10.1145/3240508.3241398

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Forgione, Thomas and Carlier, Axel and
Morin, Géraldine and Ooi, Wei Tsang and Charvillat, Vincent and
Yadav, Praveen Kumar An Implementation of a DASH Client for
Browsing Networked Virtual Environment. (2018) In: 26th ACM
Multimedia Conference (MM 2018), 22 October 2018 - 26 October
2018 (Seoul, Korea, Republic Of).

An Implementation of a DASH Client
for Browsing Networked Virtual Environment

Thomas Forgione
Université de Toulouse - IRIT

thomas.forgione@irit.fr

Axel Carlier
Université de Toulouse - IRIT

axel.carlier@enseeiht.fr

Géraldine Morin
Université de Toulouse - IRIT

morin@enseeiht.fr

Wei Tsang Ooi
National Univ. of Singapore

weitsang@nus.edu.sg

Vincent Charvillat
Université de Toulouse - IRIT

charvi@enseeiht.fr

Praveen Kumar Yadav
National Univ. of Singapore

praveen@comp.nus.edu.sg

ABSTRACT

We demonstrate the use of DASH, a widely-deployed standard
for streaming video content, for streaming 3D content in an NVE
(Networked Virtual Environment) consisting of 3D geometry and
associated textures. We have developed a DASH client for NVE to
show how NVE benefits from the advantages of DASH: it offers a
scalable, easy-to-deploy 3D streaming framework. In our system,
the 3D content is first statically partitioned into compliant DASH
data, and metadata is provided in order for the client to manage
which data to download. Based on a proposed utility metric for
geometry and texture at the different resolution, the client can
choose the content to request depending on its viewpoint. We
effectively provide a Web-based client to navigate through our
sample 3D scene, while deriving the streaming requests from its
computation of the necessary online parameters, in a receiver-
driven manner.

ACM Reference Format:

Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent
Charvillat, and Praveen Kumar Yadav. 2018. An Implementation of a DASH
Client, for Browsing Networked Virtual Environment. In 2018 ACM Mul-

timedia Conference (MM ’18), October 22–26, 2018, Seoul, Republic of Korea.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3240508.3241398

1 INTRODUCTION

Dynamic Adaptive Streaming over HTTP (DASH), or MPEG-DASH,

is now a widely deployed international standard for streaming adap-
tive video content on the Web. The merit of DASH is its simplicity

and its scalability. DASH uses the existing World Wide Web infras-
tructure and protocols, and so provides a scalable, easy to deploy
video streaming framework in an HTTP supported network. In
this technical demonstration, we demonstrate how DASH can be
used for another application and media type — a freely navigable,

https://doi.org/10.1145/3240508.3241398

networked virtual environment (NVE) consisting of 3D meshes

with textures.

Zampoglou et al. have been the �rst to propose using DASH

to stream 3D content [3]. The authors organize the content, fol-

lowing DASH terminology, into a scene graph containing multiple

resolutions for each model of the scene. Their approach targets

several objects but does not handle the case of large NVEs, for

which view-dependent streaming is desirable.

In [2], view-dependent 3D streaming has been investigated and

uses frustum and back-face culling by the server to decide the set of

polygons to be streamed to a client. The drawback of this method

is its lack of scalability.

Using the DASH methodology, we are able to reorganize the 3D

data into DASH compliant segments and provide metadata, so that

the client computes the necessary parameters to determine which

parts of the content it should download. The server is only used to

store data segments and related information.

2 CONTENT PREPARATION

This section details the DASH compliant organization of the 3D data

modeling the NVE, that is, a polygon soup and texture �les, and the

associated metadata. This corresponds to the o�ine computation

of the 3D content stored in the server.

The MPD �le. The Media Presentation Description (MPD) �le

is an XML �le de�ned in DASH to provide global information

about the content storage and access. In our 3D NVE use case, this

information is based on spatial location, content resolution, or size.

In the next paragraphs, we describe the organization of the 3D data

to be streamed, and the corresponding MPD.

Geometrymanagement.We spatially partition the faces of the

scene using a k-d tree and further divide each cell into segments

of a �xed number of faces, grouping faces of comparable area.

Each segment is stored in a .obj �le. We encode in the MPD the

coordinates of each cell’s bounding box, as well as the total 3D

area of their constituting polygons and the size (in bytes) of their

associated OBJ �les.

The uncommonly large faces are stored in a separate segment

(e.g., the water in �gure 1), since they are essential to the model

and do not �t into cells.

Texture management. Each texture of the model is stored in

multiple PNG �les at di�erent resolutions. The MPD contains the

size in bytes of each image �le, the number of faces that use this

texture, as well as the average color of each texture so that a client

can render the corresponding faces with a uniform color when the

Figure 1: The sample 3D scene and an arbitrary viewport, with partitioning bounding boxes delimited with red edges. In white,

the regions that fall outside the �eld of view of the camera; in blue, the regions inside the �eld of view of the camera.

texture has not been loaded yet. We also encode the MSE between

the texture and its highest available resolution, so that a client is

able to tell how important it is.

3 DASH 3D CLIENT

Once the 3D content is organized as described in the last section,

we simply put all this data on a regular static HTTP server. In this

section, we describe the implemented greedy DASHNVE client that

exploits the preparation of the 3D content in an NVE for streaming.

3.1 Implementation of the client

We propose a Web-based client that uses XML HTTP requests

to download content. The client takes into account some known

parameters (e.g., position, the �eld of view, etc.) to decide which

segment to request next. When a segment is received, it is added to

a scene that is rendered using Three.js, and another one is queried.

Since we run the server locally, in order to have realistic results,

we con�gure the local network to limit the bandwidth to 5 Mbps.

3.2 Streaming policy

The �rst data fetched by our client is the MPD �le. Once this �le is

retrieved, the client is able to identify the segment containing the

large faces (mentioned in Section 2) and to understand the k-d tree

structure of the scene. It downloads the outlying faces as well as the

corresponding textures. Based on its current viewpoint, the client

computes a utility for each segment, in order to decide whether

it should download geometry or texture, and which resolution

to download. The segment s∗ to be downloaded is the one that

optimizes the criterion:

s
∗
= argmax

s ∈S

utility(s)

size(s)
.

The client computes the intersection between the k-d tree BB

(bounding boxes), its frustum, and sets the utility of a BB outside

the frustum to 0. Otherwise, utility is proportional to the total 3D

area of the faces that it contains (MPD information) and inversely

proportional to the squared distance between the camera and the

center of the corresponding bounding box (computed online by

the client). The client weight the utility of a texture based on the

utilities of the received geometry segments that refer to it. More

information is available in [1].

3.3 User interface

For browsing through the scene, we implemented classical interac-

tions in 3D navigation. First, the pointer lock API allows the user

to turn the camera just like in a �rst-person view video game. The

user moves the camera with the keys W, A, S and D. Unlike in video

games, this interface o�ers no physical simulation so the user can

�y around the scene. The height also increases or decreases using

the mouse wheel. Pressing the space key increases the speed of

the camera, which is useful to move quickly to another part of the

scene; releasing this key allows more precise motion.

3.4 Rendering optimization

For rendering, we limit the number of WebGL calls: we keep faces

that share the same texture in the same vertex bu�er. The MPD

indicates how many faces are needed for each texture; thus the

client can allocate the exact size for the vertex bu�ers. When more

faces are received, the preallocated vertex bu�er corresponding to

the right texture is just �lled. Thus the client bene�ts from the MPD

information to avoid successive memory allocation and copy and

to keep only one face bu�er per texture. The textures are initialized

by an image containing a single pixel of the average color, and

whenever a higher resolution image arrives, the client updates the

texture.

4 DEMONSTRATION

The demonstration will display our DASH client, described in Sec-

tion 3, and allow users to navigate in a 3D model of the Marina

Bay area in Singapore (552K faces stored on 67MB, 161.6MB of

textures). In particular, it will demonstrate streaming dependency

to the viewpoint, e.g., the e�ect of camera motion, such as heavy

rotation. A video presenting this demonstration can be seen at the

following address: https://youtu.be/tGruvbs_H0g

REFERENCES
[1] Thomas Forgione, , Axel Carlier, Géraldine Morin, Wei Tsang Ooi, Vincent Charvil-

lat, and Praveen Kumar Yadav. 2018. DASH for 3DNetworked Virtual Environment.
In 2018 ACM Multimedia Conference (MM ’18), October 22–26, 2018, Seoul, Republic
of Korea. Séoul, South Korea. https://doi.org/10.1145/3240508.3240701

[2] Thomas Forgione, Axel Carlier, Géraldine Morin, Wei Tsang Ooi, and Vincent
Charvillat. 2016. Impact of 3D Bookmarks on Navigation and Streaming in a
Networked Virtual Environment. In Proceedings of the 7th International Conference
on Multimedia Systems (MMSys ’16). ACM, Klagenfurt, Austria, Article 9, 10 pages.
https://doi.org/10.1145/2910017.2910607

[3] Markos Zampoglou, Kostas Kapetanakis, Andreas Stamoulias, Athanasios G.
Malamos, and Spyros Panagiotakis. 2016. Adaptive streaming of complex Web 3D
scenes based on the MPEG-DASH standard. Multimedia Tools and Applications
(Dec 2016), 1–24. https://doi.org/10.1007/s11042-016-4255-8

