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ABSTRACT
A novel hybrid model for statistically stationary flow

simulations at moderate to high Reynolds numbers is pre-
sented. Based on a consistent formalism developed for
seamless hybrid temporal LES/RANS methodologies (Fadai-
Ghotbi et al., 2010b; Schiestel and Dejoan, 2005), theTempo-
ral Partially-Integrated Transport Model (TPITM) approach
is used to derive a two-equation subfilter model, consistent
with the k−ω SST model in the RANS limit,i.e., when the
temporal filter width goes to infinity. Comparisons are made
with a widespread hybrid RANS/LES model, the DES–SST
formulation (Menter et al., 2003), which tends to the same
RANS model in the RANS zones, but uses the Detached Eddy
Simulation (DES) methodology to control the transition from
RANS to LES. The paper discusses the features and capabili-
ties of both approaches.

INTRODUCTION
Traditional Reynolds-Averaged Navier-Stokes (RANS)

modelling is gradually replaced by hybrid RANS-LES
methodologies for predicting complex turbulent flows in in-
dustrial practice. This trend has been encouraged by the in-
creasing availability of high-performance computing, andthe
need of resolving unsteady phenomena at elevated Reynolds
numbers. Especially, flows that entail separation from curved
surfaces, featuring extremely high level of turbulence energy
and shear stress in the separated shear layer, are still beyond
the Large-Eddy Simulation (LES) capabilities. The standard
compromise strategy is the use of “unsteady” RANS-based
solution in the near-wall region, and resolved-scale motions
in the rest of the domain. Some of these schemes may suffer
from the absence of a theoretical formalism leading to unclear
dividing line between the RANS and LES components (Gatski
et al., 2007).

In the present paper, a consistant seamless hybrid tem-
poral LES/RANS formulation based on a two-equation sub-

filter model is develpped. The SST RANS model is selected
as the basis to derive the subfilter-stress model because of its
capacity to account for the near-wall region, which is an es-
sential point for such a hybrid modelling strategy, and because
it proved reasonably accurate in aerodynamic flows with ad-
verse pressure gradients and separation, and more generally
in industrial applications (Menter et al., 2003). It is thusex-
pected that the hybrid TLES/RANS model can be successfully
incorporated into industrial and commercial codes.

A second approach is considered in this work, the DES–
SST model (Menter et al., 2003). Recently, Manceau et al.
(2010) has argued that, under certain conditions, an equiva-
lence between DES and TPITM can be found. Therefore, a
fair comparison is aimed herein. The two formulations are
implemented into the same finite volume code, and applied to
the turbulent channel flow with periodic arrangement of hill
constriction, at Reynolds number 10595, for which a detailed
reference database is available (Froehlich et al., 2005).

In the following, the TPITM-based modelling approach
is summarised; then the key features of the DES-SST formu-
lation is briefly presented. Finally, the results are discussed in
comparison with the LES reference data.

MODELLING APPROACH
The TPITM model (Fadai-Ghotbi et al., 2010b) is de-

rived from the exact transport equation for the Eulerian tem-
poral energy spectrum, by integrating over frequency intervals
(hence the namepartially integrated transport model). It is
the adaptation to temporal filtering of the PITM model (Schi-
estel and Dejoan, 2005), and is based on the introduction of
two temporal filters, in order to decompose the Eulerian tem-
poral energy spectrum into resolved scales, energetic subfilter
scales and dissipative subfilter scales. This methodology en-
ables a continuous transition from TLES to RANS, controlled
by imposed variations of the temporal filter widths. The con-
sistency of the time filtering process with the Reynolds aver-
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age in the RANS limit and the formal similarity between the
filtered and Reynolds-averaged equations has been adressed
in detail in Fadai-Ghotbi et al. (2010b) and this development
is not repeated herein.

The subfilter model
Let us denote the instantaneous velocity byui, the long-

time averaging operator by. and the temporal filtering oper-
ator by 〈.〉. By applying the temporal filter to the Navier–
Stokes equations and contracting the subfilter–scale tensor
(τi jSFS ) equation, it can be shown that, similarly to the case
of spatial filtering (Germano, 1992), the transport equation of
the subfilter kinetic energykSFS is formally identical to the fa-
miliar RANS equation for the total fluctuating kinetic energy
k. The latter can beexactly decomposed ( (see Fadai-Ghotbi
et al., 2010b)) into the sum of a modelled partkm and resolved
partkr as:

k = km +kr, km = kSFS, kr =
1
2

(

〈ui〉〈ui〉−ui ui

)

(1)

In the present work, transport equations forkm andωm = ωSFS
are derived by transforming thek− ε model. Thus, the two-
equation subfilter model writes:

Dkm

Dt
= Pm − Cµ ωm km +

∂
∂x j

[

(ν +σk νtm)
∂km

∂x j

]

(2)

Dωm

Dt
= γ

Pm

νtm
− β ∗ ω2

m +
∂

∂x j

[

(ν +σω νtm)
∂ωm

∂x j

]

+ 2(1−F1)
σω2

ωm

∂km

∂x j

∂ωm

∂x j
(3)

where

Pm = τi jm
∂ui

∂x j
= νtm

(

∂ui

∂x j
+

∂u j

∂xi

)

∂ui

∂x j
= νtm S2 (4)

νtm =
a1 km

max(a1 ωm,SF2)
(5)

and the subscriptm denoting the modelled part. In order to
ensure the correct RANS limit of the model, the constants ap-
pearing in the “partial” turbulent viscosity,νtm (Eq. 5), and
in the transport equations (Eqs. 2 and 3) are the same as in
the SST RANS model (Menter et al., 2003), except for the
β ∗ coefficient in theωm-equation, which is dependent on the
temporal filter width, and ensures the transition from RANS to
TLES. Note thatF1 andF2 are the blending functions used in
the original SST model, but the variablesk andω are replaced
by their modelled (unresolved) contributions:

F1 = tanh(arg4
1) (6)

F2 = tanh(arg2
2) (7)

arg1 = min

[

max

(

k1/2
m

Cµ ωm y
,

500ν
y2 ωm

)

,
4ρ σω2 km

CDkω y2

]

(8)

arg2 = max

[

2k1/2
m

Cµ ωm y
,

500ν
y2 ωm

]

(9)

with CDkω = max
(

2ρ σω2
1

ωm

∂ km
∂ xi

∂ ωm
∂ xi

,10−20
)

andy being

the distance to the nearest wall.
It is found that the functionβ ∗ can be derived in a simi-

lar way to what was proposed, in the spatial filtering context,
by Schiestel and Dejoan (2005) for the variable coefficient
C∗

ε2
= Cε1 + r(Cε2 −Cε1) in theεm-equation, which leads to

β ∗ = Cµ γ + r (β −Cµ γ) (10)

Alternatively, it can be deduced from a change of variables in
thek–ε equations, through the relations:

γ = Cε1 −1, β = Cµ (Cε2 −1), β ∗ = Cµ (C∗
ε2
−1) (11)

In Eq. 10, the amount of long-time averaged modelled energy
(and therefore, the amount of resolved energy),i.e., the transi-
tion from TLES to RANS, is driven by the value of the energy
ratio

r =
km

k
(12)

To control effectively the energy partitioning and therefore en-
force the desired behavior of the model, the above parameter
has to be linked to the grid size. This issue is briefly adressed
in the following section.

Dependence on the filter width
Using an equilibrium Eulerian temporal spectrum, it was

shown by Fadai-Ghotbi et al. (2010b) that the energy ratior
can be related to the temporal filter width∆T by

r = β−1
0

(

ωc

Cµ ω

)− 2
3

, β0 =
2

3CK
≃ 0.44 (13)

where ωc is the cutoff frequencyωc = π/∆T and CK the
Kolmogorov constant. The sweeping hypothesis of Tennekes
(1975) leads to using the dispersion relationω =

√
kκ to link

the frequency and wavenumber domains, such that the tempo-
ral filter width is related to the grid by∆T = (∆x∆y∆z)1/3/

√
k.

The role of the coefficientβ0 is of importance since it is in-
volved in the energy ratior, and its effect will be investigated.
In the present study, in order to enforce the RANS mode in
the near-wall region (r = 1), as well as to better control the
key parameterr, the functionβ ∗ is modified by introducing
the blending functionF2 (Eqs. 7 and 9). The empirical formu-
lation used in practice writes

β ∗ = Cµ γ +
[

F2 +(1−F2)robserved
]

(β −Cµ γ)

+ min

[

α
(

rtarget

robserved
−1

)

,0

]

(14)

In this relation, the third term is a dynamic modification of
the coefficient (Fadai-Ghotbi et al., 2010a), aiming at sus-
taining the correct level of resolved energy even in regions
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where resolved fluctuations are not promoted by the presence
of a mean shear. Thus,robserved is the energy ratiokm/k,
extracted from an on-the-fly averaging of the filtered fields
through Eq. 1, andrtarget is the desired energy ratio given by
Eq. 13. The constantα, set to 10 in the present calculations, is
influencial in the early stages of the computation only, before
the statistical sampling commence. The final result is there-
fore independent of this parameter.

THE DES-SST FORMULATION
A second hybrid RANS/LES model is considered in this

paper, based on the widely used Detached Eddy Simulation
(DES) methodology. The selected underlyind RANS model is
the same as in the TPITM approach. The motivation is two-
fold. First, as mentioned in the introduction, the SST model
has shown improved capabilities in separated shear layers,
combined with its robustness and industrial applicability. Sec-
ond, the resulting hybrid formulation allows consistent com-
parison with the above TPITM based approach. The latter
reason is supported by the fact that Manceau et al. (2010) has
recently shown that an equivalence between DES and TPITM
can be found provided that they give the same level of sub-
filter energy. However, the strict equivalence is not the aim
of this paper. Rather, a separate investigation is conducted on
the DES-SST model, focusing on its well known calibration
constant, which is specific to the present flow configuration.
Subsequently, a comparison of both the approaches will be
presented.
Several options for the DES-limiter may be derived (Menter
et al., 2003). The modification in the SST model retained here
is based on the blending functionF2 (Eqs. 7 and 9). Hence,
the following factor

FDES = max

[

Lt

Cdes ∆
(1−F2),1

]

, Lt =

√
k

Cµ ω
(15)

is introduced in the dissipation term of thek–equation,∆ be-
ing the maximum local grid spacing. In the present work, the
sensitivity to the calibration constantCdes was carefully ex-
amined. A selection of values ranging from 0.1 to 0.6 was
subjected to decaying isotropic turbulence study as well asto
full computations of the present flow test case.

THE COMPUTATIONAL APPROACH
Filtered momentum and continuity equations for incom-

pressilbe flow were solved using the finite volume based soft-
ware CodeSaturne (Archambeau et al., 2004). The numer-
ics relies on a SIMPLEC algorithm with a Rhie and Chow
(1983) interpolation in the pressure correction step. As inthe
transport equations for the filtered momentum, the convec-
tive fluxes in the subfilter model transport equations (Eqs. 2
and 3) are approximated by second-order centred discretiza-
tions. The time-marching is based on a second-order, Crank-
Nicolson scheme.

Simulations were performed with several grids of dif-
ferent streamwise and spanwise refinement. These are sum-
marised in table 1. The streamwise variation of the cell

dimensions along the bottom wall, normalized by the lo-
cal friction velocity, are shown in Fig. 1. For the grid M1
(160× 100× 30), the distance of the first node off wall is
∆y+/2 < 0.6 (Fig. 1a) for both the approaches. The stream-
wise (∆x+) and spanwise (∆z+) cell dimensions are reported
in Fig. 1b. Within the rangex/h = 0− 5, ∆x+ < 50 and
∆z+ < 75. With the TPITM approach, three spanwise refine-
ments were considered (see Tab. 1). In grid M3, the spanwise
cell dimension is reduced such as∆z+ < 40 (Fig. 1c).

Statisical properties were gathered during 80 flow-
through times, whose convergence was increased by averag-
ing in the spanwise direction. Finally, the results were exam-
ined in comparison with LES reference data (Froehlich et al.,
2005).

RESULTS
The separation and reattachment locations of most rel-

evant computations are reported in Tab. 1. For the DES ap-
proach, the sensitivity study to the parameterCdes shows that
values above 0.4 (e.g. Cdes = 0.5) lead to poor predictions
with excessively long separation, though less than the pure
SST model (Tab. 1). It is even found that the calculations de-
generate into stationary mode forCdes > 0.5, including then
the standard value 0.6. Visual inspection of the structures
present in the resolved field, through the isocontours of the
Q–criterion shown in Fig. 2, reports on the too low resolu-
tion level withCdes = 0.5. In comparison with 0.4, only very
large scale structures are obtained. Smaller values of theCdes
constant, within the range 0.1−0.3, were also considered and
provided (statistically) a very good agreement with the refer-
ence data. However, observation of small globular structures
(via theQ–criterion), confirmed by a decaying isotropic tur-
bulence study revealed a wrong amount of energy dissipation,
which is the indication that the fluctuations generated by de-
creasing theCdes parameter correspond to a white noise rather
to resolved turbulence. It is found, therefore, that the opti-
mal value corresponds toCdes = 0.4, and is retained herein
for comparison purposes (labelled as DES-04 in the figures).

In the TPITM approach, two values of the key parameter
β0 are considered, 0.2 and 0.4. The latter, close to the the-
oretical value (0.44), leads to a lower level of the modelled
part of the turbulence energy, and this is found to be neces-
sary in the present case. In fact,β0 = 0.2 provides similar
results to SST predictions. It is worth mentioning that in the
present paper, the emphasis is on the TPITM approach de-
velopment. The grid refinement effect is then conveyed for
this model. The grid L1 appears too coarse in the streamwise
direction (too late separation and long separation) and is dis-
carded. Forβ0 = 0.4, the statistics (not included for the grids
M2 and M3, except the separation and reattachment positions
– Tab. 1) show that the spanwise refinement is of little conse-
quence. The grid M1 (160×100×30) is then singled out for
discussions and comparisons with the DES results and refer-
ence LES data.

The overall view of the performance of the models is
conveyed in Figs. 3 – 5, which show the skin-friction co-
efficient, the streamwise velocity and shear-stress profiles,
respectively. Using the optimal constants (β0 = 0.4 and
Cdes = 0.4), the capability of both strategies to reproduce the
main flow features is demonstrated, and it is observed that

3



Table 1: Summary of the computations;CC: calibration constant (β0 in TPITM - Eq. 13 andCdes in DES), (.)s:
separation point,(.)r: reattachment point.

Model Grid CC (x/h)s (x/h)r

SST 160×100 (M) - 0.23 7.47

TPITM 80×100×30 (L1) 0.2 0.25 7.70

TPITM 160×100×30 (M1) 0.2 0.21 7.71

TPITM 160×100×30 (M1) 0.4 0.19 5.25

TPITM 160×100×45 (M2) 0.4 0.19 5.25

TPITM 160×100×60 (M3) 0.4 0.17 5.36

DES 160×100×30 (M1) 0.4 0.17 5.14

DES 160×100×30 (M1) 0.5 0.21 6.01

LES (Froehlich et al., 2005) 196×128×186 - 0.22 4.72
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Figure 1: Size of the wall-adjacent cells in wall units along the bottom wall.

the two models provide very similar results, which is an in-
direct confirmation of the theoretical equivalence established
by Manceau et al. (2010). In particular, although reattachment
is slightly too late, its location is much better predicted than
with the TPITM-02 (i.e., with β0 = 0.2) and SST (2D) mod-
els (see table 1). Except near the reattachment region (within
the rangex/h = 4− 6), the shear stress shown in figure 5 is
well predicted by the optimal hybrid models, which prevents
the steep velocity profile observed in both SST and TPITM-02
predictions.

The “observed” energy ratior is shown in Fig. 6. It
can be seen that, at the wall, although the computation are
in RANS mode,r goes to zero, because of the wrong asymp-
totic behaviour of the modelled turbulent energy provided by
the SST model. Consequently, usingr as an indicator of the
energy partitioning between resolved and modelled scales is
meaningful only outside of the near-wall region. Here, a sig-
nificant difference between the TPITM and DES approaches
can be identified: in the centre of the channel, modelled scales
contribute to 30% of the total turbulent energy for the TPITM
(β0 = 0.4), and only to 10% in DES. The effective control
of the amount of modelled energy through the parameterβ0

is also demonstrated. Decreasing this values toβ0 = 0.2 in-
creases the modelled contribution to around 50−60%, which
degrades the model predictions.

Interestingly, the distribution of the time-averaged func-
tion β ∗ (Eq. 14) in the TPITM approach, shown in figure 7,
provides a good picture of the energy partition in the whole
domain. High values correspond to the RANS mode, and low
values to the LES mode. Whenβ0 = 0.2 is used (Fig. 7a), a
substantial portion of the central domain is computed in nearly
RANS mode, whileβ0 = 0.4 (Fig. 7b) allows a larger part of
the separated shear layer and reversed flow to be computed in
LES mode. The influence of the blending functionF2, used
in both the approaches to “protect” the boundary layer from
the limiters (Eqs. 14 and 15) by enforcing the RANS mode
(F2 = 1 – upper limit), deserves to be mentioned. Figure 8
shows the contours of the time-averaged functionsF1 andF2.
These may be regarded as an a-posteriori (qualitative) indi-
cation on how the energy parameter ratiorobserved in Eq. 14
is affected through the computational domain. Note thatF1
need to be viewed with caution as it is not effectively used
to this purpose. In the TPITM computations (8b and 8d),
it can be observed thatF2 is active in a substantial portion
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of the domain, even well outside the near-wall region, espe-
cially for β0 = 0.2. This is not the case in the DES model
(Fig. 8f). These observations are consistent with the predic-
tions discussed above. Figure 8c suggests thatF1 would be
a more adequate function in the TPITM approach, leading to
promising capabilities.

SUMMARY
The Temporal Partially-Integrated Transport Model ap-

proach, which is based on a consistent formalism for seamless
hybrid temporal LES/RANS methodologies was exploited to
derive a two-equation subfilter model. Thek−ω SST model
was selected as the RANS underlying model due to its reason-
ably accurate performances in engineering practice. The re-
sulting hybrid model was subjected to a complex flow config-
uration involving separation from a curved surface. The pre-
dictive capabilities of the model was demonstrated in termsof
mean-flow topology, shear-stress level and flexibility in con-
troling the amount of the modelled energy. It was also found
that the model is comparable with an equivalent DES formula-
tion, when the optimal calibration constants are used. Finally,
from these developments, improved modelling proposals may
be formulated, for instance, through a better control of theen-
ergy partitioning. This route is under inverstigation.
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(a) β0 = 0.2 (b) β0 = 0.4

Figure 7: Contours of the time-averaged functionβ ∗ (see Eq. 14) in the TPITM approach – Grid M1.

(a) FunctionF1 in TPITM – β0 = 0.2. (b) FunctionF2 in TPITM – β0 = 0.2.

(c) FunctionF1 in TPITM – β0 = 0.4. (d) FunctionF2 in TPITM – β0 = 0.4.

(e) FunctionF1 in DES –Cdes = 0.4. (f) FunctionF2 in DES –Cdes = 0.4.

Figure 8: Contours of the time-averaged blending functionsF1 andF2 (Eqs. 6 – 9) – Grid M1.
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