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RESUME

-Dans cet article, un circuit équivalent magnétique (MEC) générique tridimensionnel (3-D), utilisant une formulation basée sur la loi de Kirchhoff des mailles, a été développé pour les systèmes électromagnétiques. La particularité de ce modèle consiste en une discrétisation avec des éléments de maillage hexaédriques, qui peuvent être choisis par le concepteur. À titre d'exemple, le MEC générique 3-D a été appliqué à un dispositif électromagnétique statique à noyau en U. Afin de confirmer l'efficacité de la technique proposée, les résultats semi-analytiques ont été comparés à ceux obtenus en utilisant l'analyse par éléments finis (EF) 3-D. Le temps de calcul est réduit de 3 fois avec une erreur inférieure à 1%.

CONTEXTE ET OBJECTIF

De nombreuses techniques de modélisation des systèmes électromagnétiques ont été développées et publiées dans de nombreux journaux scientifiques. Ces méthodes de prédiction du champ électromagnétique peuvent être classées selon différentes catégories [START_REF] Dubas | New scientific contribution on the 2-D subdomain technique in Cartesian coordinates: Taking into account of iron parts[END_REF] : i) cartographie de Lehmann, ii) numériques (i.e., EF, différences finies,…), iii) circuits équivalents (i.e., électriques, thermiques, magnétiques,…), iv) Schwarz-Christoffel, v) Maxwell-Fourier (i.e., à multicouches, aux valeurs propres, en sous-domaines), vi) hybride (i.e., solution analytique combinée avec des méthodes numériques et/ou des circuits équivalents). Dans cet article, l'accent scientifique est dédié à la modélisation électromagnétique par MEC. Qui est une méthode analogue à celle des circuits équivalents électriques. La méthode présente un fort avantage dans la simplification de l'analyse des systèmes magnétiques, en utilisant la loi de Kirchhoff des noeuds ou des mailles (viz., des courants ou des tensions), qui peut être traduite par les lois de Gauss et d'Ampère dans les MEC.

L'approche MEC a été introduite pour la première fois dans les années 1940 par Roters [START_REF] Roters | Electromagnetic Devices[END_REF], qui a défini les principes de base et les éléments de MEC dans les dispositifs électromagnétiques. Laithwaite [START_REF] Laithwaite | Magnetic equivalent circuits for electrical machines[END_REF] (1967) et Carpenter [START_REF] Carpenter | Magnetic equivalent circuits[END_REF] (1968) ont démontré que cette technique pouvait s'étendre aux systèmes électromagnétiques à courant alternatif (e.g., les machines électriques) en introduisant la dualité entre l'électrique et le magnétique. Ostovic [START_REF] Ostovic | A simplified approach to magnetic equivalent circuit modeling of induction machines[END_REF] (1988) a incorporé le mouvement du rotor et la saturation magnétique en utilisant le concept des fonctions de perméances. Depuis, de nombreux chercheurs ont amélioré cette méthode [START_REF] Rasmussen | A magnetic equivalent circuit approach for predicting pm motor performance[END_REF]- [START_REF] Sh | An investigation into the coupling of magnetic and thermal analysis for wound-rotor synchronous machine[END_REF], viz., l'effet de saturation, la forme géométrique des réluctances, la direction de magnétisation des aimants, la discrétisation du MEC,..., le mouvement du rotor, les couplages multi-physiques, les modèles hybrides, la génération automatique de réluctances, etc. Depuis 2004, les MEC ont connues une amélioration particulière en utilisant la méthode des graphes pour la génération automatique du maillage par réluctance. Cette technique de modélisation présente un compromis entre les méthodes analytiques et numériques en termes de précision et de temps de calcul favorisant son utilisation dans les processus d'optimisation.

Fréquemment, les éléments de maillage discrétisés d'un MEC sont basés sur des blocs unidirectionnels (UD) pour la modélisation des parties ferromagnétiques (e.g., dans les dents et culasse du stator et/ou du rotor,...). Ces blocs peuvent également être utilisés dans l'entrefer en leur affectant une fonction de perméances, mais cela reste moins précis. De plus, le choix de la méthode de calcul du couple électromagnétique est fortement lié au choix de la discrétisation. À titre d'exemple, le tenseur de Maxwell peut être appliqué uniquement lorsque les deux composantes de l'induction magnétique dans l'entrefer peuvent être calculées. Ainsi, les blocs bidirectionnels (BD) ou tridimensionnels (TD) sont nécessaires pour calculer avec précision les performances électromagnétiques des machines électriques (e.g., le couple électromagnétique, les forces magnétiques, les pertes,...). Récemment, de nombreuses études se sont focalisées sur les pertes dans les matériaux magnétiques et sur les topologies de machines électriques nonconventionnelles (e.g., les machines à flux axial où la composante radiale ne peut être négligée par rapport aux autres composantes), ce qui implique un MEC 3-D avec des blocs TD. Toutefois, les MEC 3-D présentent un inconvénient majeur en terme de temps de calcul. Cependant, l'évolution des logiciels de programmation donne plus d'intérêt à ce type de modélisation semi-analytique, par exemple de nombreuses fonctions Matlab (i.e., produit Kronecker, circshift, matrice d'identité,...) peut aider à simplifier la programmation et à la rendre plus visible, compréhensible et surtout plus rapide. En raison du nombre élevé de contributions dans ce domaine, ce document se focalisera uniquement sur les MEC génériques 3-D.

Dans [START_REF] Hecquet | Modeling of a claw-pole alternator using permeance network coupled with electric circuits[END_REF]- [START_REF] Hecquet | Validation of coupled electric permeance network model on a claw-pole alternator[END_REF], un MEC quasi 3-D a été développé pour étudier un alternateur à griffes en utilisant la perméance UD dans les trois directions. Les perméances dans l'entrefer sont modélisées par une fonction interpolation identifiée par des simulations numériques 3-D en magnétostatique. Un modèle 3-D a été développé dans [START_REF] Lee | Characteristic analysis of claw-pole machine using improved equivalent magnetic circuit[END_REF] pour cette même topologie. Cette technique est également appliquée dans [START_REF] Hoang | 3D modeling of double excitation synchronous motor with reluctance network[END_REF] pour étudier une machine synchrone à double excitation. Dans [START_REF] Mignot | Modeling of an axial flux PM motor using a 3D magnetic equivalent circuit[END_REF], un MEC quasi 3-D a été développé sur l'axe direct et quadratique pour une machine synchrone à flux axial avec des dents statorique séparées en forme de U. Un MEC 3-D a été développé dans les machines linéaires à aimants montés en surface en utilisant des éléments hexaédriques [START_REF] Hur | Analysis of PMLSM using three dimensional equivalent magnetic circuit network method[END_REF]- [START_REF] Jung | 3-D analysis of permanent magnet linear synchronous motor with magnet arrangement using equivalent magnetic circuit network method[END_REF] et dans les machines rotatives en utilisant des éléments en forme d'éventail [START_REF] Hur | Dynamic analysis of radial force density in brushless dc motor using 3-D equivalent magnetic circuit network method[END_REF]. Dans [START_REF] Hur | Dynamic analysis of radial force density in brushless dc motor using 3-D equivalent magnetic circuit network method[END_REF], la variation de la distribution de l'aimantation en fonction du mouvement du rotor est représentée par une fonction 3-D en série de Fourier. Les forces magnétiques radiales à la surface des dents statoriques ont été étudiées. Dans [START_REF] Hur | 3-D time-stepping analysis of induction motor by new equivalent magnetic circuit network model[END_REF], un MEC temporel 3-D a été également développé pour calculer la force électromagnétique dans les moteurs linéaires à induction. Dans [START_REF] Kim | Analysis of hybrid stepping motor using 3D equivalent magnetic circuit network method based on trapezoidal element[END_REF], un MEC 3-D basé sur [START_REF] Hur | Analysis of PMLSM using three dimensional equivalent magnetic circuit network method[END_REF]- [START_REF] Hur | Dynamic analysis of radial force density in brushless dc motor using 3-D equivalent magnetic circuit network method[END_REF] a été utilisé pour l'analyse précise et efficace dans les moteurs hybrides pas à pas en s'appuyant sur des éléments trapézoïdaux. Dans [START_REF] Chun | Magnetic force characteristics according to the variation of asymmetric overhang ratio in brushless direct current motor[END_REF], un MEC 3-D a été développé pour analyser le champ magnétique dans les moteurs à courant continu sans balais en introduisant le débordement symétrique et asymétrique des aimants au rotor. Certains MEC 3-D sont utilisés pour étudier les courants inter-barres et les flux axiaux résultants dans des machines à induction avec et sans défaut [START_REF] Meshgin-Kelk | Interbar currents and axial fluxes in healthy and faulty induction motors[END_REF], mais aussi pour analyser le champ magnétique dans des machines sphériques à aimants permanents [START_REF] Li | Magnetic field analysis of 3-DOF permanent magnetic spherical motor using magnetic equivalent circuit method[END_REF]. Un MEC 3-D peut être combiné avec un modèle analytique comme dans [START_REF] Mirzayee | Combined 3D numerical and analytical computation approach for analysis and design of high speed solid iron rotor induction machines[END_REF], où la résolution formelle des équations de Maxwell est appliquée à l'entrefer tandis que le stator est modélisé par MEC. Ceci permet de prendre en compte l'effet de saturation magnétique dans le stator et de diminuer le temps de calcul dû au mouvement du rotor. Dans [START_REF] Kano | Optimization of axial-flux PM machines for improved torque density by simple non-linear magnetic analysis[END_REF], une conception optimale basée sur le MEC 3-D des machines à aimants permanents à flux axial a été présentée. Le but est de trouver une densité de couple optimale lorsque le couple du moteur est maintenu à la valeur souhaitée. Dans [START_REF] Kano | A simple nonlinear magnetic analysis for axial-flux permanent-magnet machines[END_REF], les mêmes auteurs ont étendu leur travail antérieur en incorporant une segmentation axiale, pour faire des études dans différentes conditions de fonctionnement. Afin de calculer les pertes de fer dans une machine à reluctance variable à noyau stratifié triphasé, un modèle couplé entre un MEC 3-D et un circuit à courants de Foucault utilisant des éléments en forme d'éventail est réalisé [START_REF] Nakamura | Iron loss calculation in a three-phase-laminated-core variable inductor based on reluctance network analysis[END_REF]. Un MEC 3-D peut être obtenu en étendant un MEC bidimensionnel (2-D) ou quasi-3-D [START_REF] Nedjar | Hybrid excitation synchronous machine modeling using magnetic equivalent circuits[END_REF]. Dans [START_REF] Amrhein | 3-D magnetic equivalent circuit framework for modeling electromechanical devices[END_REF], les auteurs ont discuté de la modélisation 3-D en mettant en oeuvre la distribution du réseau de réluctance de taille variable. Ce type de modélisation est utilisé pour le calcul de force basé sur le tenseur de Maxwell [START_REF] Amrhein | Force calculation in 3-D magnetic equivalent circuit networks with a Maxwell stress tensor[END_REF] et a été appliqué pour étudier le moteur à induction [START_REF] Amrhein | Induction machine modeling approach based on 3-D magnetic equivalent circuit framework[END_REF].

Toutes ces références ont suggéré des modèles plus ou moins génériques basés sur la loi de Kirchhoff des noeuds. Dans [START_REF] Derbas | A comparison of nodal-and mesh-based magnetic equivalent circuit models[END_REF], il a été démontré que l'approche basée sur la loi de Kirchhoff des mailles est meilleure en termes de précision, de convergence et de temps de calcul. À la connaissance des auteurs, il n'existe pas de MEC 3-D basé sur la génération automatique du maillage par reluctances en utilisant une formulation basée sur la loi des mailles pour construire le système d'équation à résoudre. Ainsi, dans cet article, un MEC générique en 3-D sera présentée dont la particularité consiste en une discrétisation avec des éléments de mailles hexaédriques [voir Fig. 1(c)] et en utilisant une formulation basée sur la loi de Kirchhoff des mailles pour résoudre le système d'équations. Dans la section 2, la discrétisation et la génération automatique de maillage par reluctance seront décrites. Ensuite, dans la section 3, la formulation MEC générique 3-D est présentée. Afin de valider le modèle développé, un dispositif électromagnétique statique à noyau en U est étudié dans la section 4. Les résultats sont comparés aux EF 3-D [START_REF]Flux2D/3D. General Operating Instructions[END_REF]. Il convient de mentionner que cette approche peut être appliquée à des dispositifs dynamiques en incorporant le mouvement du rotor comme dans [START_REF] Dubas | 2-D or quasi 3-D nonlinear adaptative magnetic equivalent circuit, Part I: Generalized modeling with air-gap sliding-line technic[END_REF]. De plus, cette méthode pourrait être facilement étendue pour étudier des machines linéaires. Pour les machines tournantes, seule la forme géométrique des éléments de maille change, mais le raisonnement reste le même.

DISCRÉTISATION ET PRINCIPE DE GÉNÉRATION AUTOMATIQUE

Dans ce qui suit, on définit une branche magnétique comme une réluctance magnétique en série avec une force magnétomotrice (MMF). La discrétisation est basée sur des plans de coupe en parallèle aux trois plans d'espaces du système cartésien. Dans de nombreuses publications, un élément de maille 3-D a été définit comme un élément constituant 6 branches magnétiques reliées par un noeud, qui représentent le potentiel magnétique scalaire inconnu [voir Fig. 1(a)]. 

Concept des élements de maille

Pour rendre le modèle plus flexible, chaque dispositif électromagnétique peut être divisé en un ensemble d'éléments de mailles surfaciques. Chaque élément de maille est constitué au moins d'un bloc BD, et aussi peut être divisé en un nombre important de bloc BD [voir la Fig. 1(d)]. L'élément de maille appartenant au plan YX est discrétisé en 2 blocs BD dans les deux axes y et x. Il est à noter que le temps de calcul est lié au nombre de blocs BD utilisés, l'augmentation du nombre de blocs augmente le temps de simulation. La Fig. 2(a) illustre une boite sous forme d'un parallélépipédique en 3-D, qui peut-être décomposée en un ensemble de grilles verticale, horizontale et longitudinale. On distingue {𝑛, 𝑛′, 𝑛′′ } les nombres d'élément de mailles respectivement dans la direction x, y et z pour aboutir à un MEC 3-D avec une génération automatique. Cette boite peut être utilisée comme référence de la généricité d'un réseau, afin de modéliser n'importe quel dispositif électromagnétique qui répond à la forme et à la géométrie de la boite (i.e., des dispositifs parallélépipédique dans un système cartésien). Ceci peut être généralisé à un cylindre pour étudier des formes circulaires notamment les machines électriques rotatives. ) appartenant au plan XY. Pour avoir plus de précision, le nombre de BD blocs peut être augmenté selon tous les axes [voir l'élément en gris sur la Fig. 3, dans cet exemple (𝑁𝑑 3 𝑥 = 3, 𝑁𝑑 1 𝑦 = 2, 𝑁𝑑 1 𝑧 = 1)]. Ceci permet de modéliser toute la région de n'importe quel dispositif électromagnétique en tenant compte de la non-linéarité du matériau, ou pour des études particulières comme l'influence des contraintes mécaniques sur la perméabilité des matériaux magnétiques, etc.

Soit

Numérotation des branches

Comme il a été expliqué dans la section précédente, avant que la discrétisation ne soit appliquée sur les trois axes du système cartésien, on doit lui donner une attention particulière de fait qu'elles sont liées au nombre de blocs BD constituant un élément de maille (i.e., nombres de reluctances, de flux de mailles, et de potentiels aux noeuds dépendent de la discrétisation). Le Tableau 1 reprend le nombre de réluctances et de potentiels aux noeuds dans une ligne parallèle à un axe donné sur une couche appartenant à un plan bien déterminé.

Le nombre de flux de mailles N ψ ∎ pour une couche parallèle au plan ∎ sont données par :

N ψ ∎ = 1 4 × { 𝑃 × 𝑀 * 𝑛 in XY plan 𝑃 × 𝑁 * 𝑚 in XZ plan 𝑀 × 𝑁 * 𝑝 in XZ plan (1) 
où {𝑃, 𝑀, 𝑁, 𝑝, 𝑚, 𝑛} sont des nombres donnés dans le Tableau 1.

Pour [ℜ 𝑥 ] et [ℜ 𝑦 ], la priorité est donnée à l'axe x de gauche à droite pour chaque couche qui est parallèle au plan XY, après pour l'axe y en respectant la direction du sommet vers le bas de chaque couche, et enfin pour l'axe z. Pour [ℜ 𝑧 ], la priorité est données à l'axe x de gauche vers la droite de chaque couche parallèle au plan XZ, puis pour l'axe z du sommet vers le bas de chaque couche, et enfin pour l'axe y.

Sur la Fig. 2, les boucles sont numérotées de la gauche vers la droite puis du haut vers le bas des slices. Les priorités sont données à la première dimension, qui est l'axe x dans les trois plans, et la deuxième dimension est donnée à la hauteur qui signifie la direction de l'axe y dans les plans (XY-YZ), et la direction de l'axe z dans le plan XZ. Enfin, les couches sont extrudées dans la troisième direction manquante. Il convient de noter que tous les couches parallèles appartenant à un plan donné ont le même nombre de boucles et de branches.

FORMULATION DU MEC GÉNÉRIQUE EN 3-D

En utilisant les équations de Maxwell ainsi que les équations de matériaux magnétiques, le MEC générique en 3-D peut être gouverné par : 

[𝐹] -[𝜒] • [ℜ] • [𝜒] 𝑇 • [𝜓] = 0 (2) [𝐹] = [𝜒] • [MMF] (3) 
[𝜙] = [𝜒] 𝑇 • [𝜓] (4) 
[𝐵] = [𝜙] [𝑆] ⁄ (5) 

Reluctance magnétique

Il est bien connu que la réluctance magnétique dépend des géométries du tube de flux et des paramètres physiques des matériaux sous la formule suivante :

[ℜ] = [𝑙] [μ r ][S] (6) 
où [𝑙] et [μ r ] sont respectivement les matrices des longueurs des tubes de flux et des perméabilités relatives magnétiques des matériaux.

(2) contient toutes les branches des reluctances et sont arrangées comme suit :

[ℜ] = [ [ℜ 𝑥 ] 0 0 0 [ℜ 𝑦 ] 0 0 0 [ℜ 𝑧 ] ] (7) 
Les matrices des réluctances dans le plan XY sont définies par :

[ℜ ∎ ] = [ [ℜ ∎_1 𝑥𝑦 ] 0 0 0 ⋱ 0 0 0 [ℜ ∎_𝑛 𝑥𝑦 ] ] (8) 
où ∎ peut être remplacé par x ou y, [ℜ ∎_𝑘 𝑥,𝑦 ] représente la matrice des reluctances de la 𝑘 𝑡ℎ couche selon l'axe x et y au plan XY :

[ℜ 𝑥_𝑘 𝑥𝑦 ] = [ ℜ 11 … ℜ 1𝑃 ⋮ ⋱ ⋮ ℜ 𝑚1 … ℜ 𝑚𝑃 ] (9a) [ℜ 𝑦_𝑘 𝑥𝑦 ] = [ ℜ 11 … ℜ 1𝑝 ⋮ ⋱ ⋮ ℜ 𝑀1 … ℜ 𝑀𝑝 ] (9b) 
Les matrices des réluctances dans le plan XZ sont définies par :

[ℜ 𝑧 ] = [ [ℜ 𝑧_1 𝑥𝑧 ] 0 0 0 ⋱ 0 0 0 [ℜ 𝑧_𝑚 𝑥𝑧 ] ] (10) 
où [ℜ 𝑧_𝑗 𝑥𝑧 ] représente la matrice des réluctances de la 𝑗 𝑡ℎ couche selon l'axe z au plan XZ.

[ℜ 𝑧_𝑗 𝑥𝑧 ] = [ ℜ 11 … ℜ 1𝑝 ⋮ ⋱ ⋮ ℜ 𝑁1 … ℜ 𝑁𝑝 ] (11) 
Les matrices sera réarrangée ligne par ligne et couche par couche en diagonale.

Paramètres géométriques des reluctances magnétiques

Les paramètres géométriques de chaque éléments sont donnés dans le Tableau 2 où (𝐿 𝑖 𝑥 , 𝐿 𝑗 𝑦 , 𝐿 𝑘 𝑧 ) et (𝑙 𝑖 𝑥 , 𝑙 𝑗 𝑦 , 𝑙 𝑘 𝑧 ) sont respectivement la longueur de chaque reluctance et de chaque éléments de mailles sur les différents axes (voir sur la Fig. 4). Les longueurs et les sections sont traitées 𝑁𝑑 ∎ * ou * peut être remplacé par x, y ou z tandis que (∎) peut être remplacé par i, j ou k.

Matrice des perméabilités relatives magnétiques

La matrice des perméabilités a le même nombre d'éléments que la matrice des longueurs et des sections et sont arrangées de manière identique. Ceci permet d'affecter les matériaux à chaque partie de dispositif électromagnétique. Nous avons distingué une matrice de perméabilité dans chaque axe de façon indépendante, viz.,

[𝜇 𝑟 ] = [ [𝜇 𝑟𝑥 𝑥,𝑦 ] 0 0 0 [𝜇 𝑟𝑦 𝑥,𝑦 ] 0 0 0 [𝜇 𝑟𝑧 𝑥,𝑧 ] ] (12) 
où [𝜇 𝑟 * ∎ ] représente la matrice des perméabilités sur l'axe (*) au plan (∎) avec

[𝜇 𝑟𝑥 𝑥𝑦 ] de dimension [𝑚 × 𝑃 × 𝑛], [𝜇 𝑟𝑦 𝑥𝑦 ] de dimension [𝑀 × 𝑝 × 𝑛] et [𝜇 𝑟𝑧 𝑥𝑧 ] de dimension [𝑁 × 𝑝 × 𝑚].

Forces magnétomotrices

La matrice des MMFs sont gérées exactement comme celles des reluctances, la seule différence réside dans la dimension matricielle dans laquelle les MMFs présentent un vecteur égal au nombre total de branches, viz.,

MMF=[

𝑀𝑀𝐹 𝑥 𝑀𝑀𝐹 𝑦 𝑀𝑀𝐹 𝑧 ] (13) 
La courbe de la MMF pour une bobine a été choisie pour être trapézoïdale comme illustré sur la Fig. 5. Les deux zones {2,4} présentent les ampères tours (𝑁 𝑡 • 𝑖 𝑚𝑎𝑥 ) dans une bobine (e.g.,

3  y i Nd 5  x i Nd y i L x i L y i l x i l 3  z i Nd z i l x i L Zone de cuivre { 2 , 4 } max I 4 max 3 I  4 max I 2 max I 2 5  y Nd 2 2  x Nd 2 5  y Nd 1 4  x Nd 2 3  x Nd max max i t N I  
MMFs deux encoches dans une machine électrique) tandis que la région entourée par la bobine est le circuit magnétique (e.g., une dent dans une machine électrique).

Tous les blocs BD dans l'axe y ont les même valeurs de MMFs. La valeur des MMFs diffère selon la discrétisation sur l'axe x en fonction de la pente des MMFs.

Matrice topologique

La matrice topologique (ou d'incidence) est donnée par :

[𝜒] = [ [𝜒] 𝑥 𝑥𝑦 [𝜒] 𝑦 𝑥𝑦 [0] 𝑧 𝑥𝑦 [𝜒] 𝑥 𝑥𝑧 [0] 𝑦 𝑥𝑧 [𝜒] 𝑧 𝑥𝑧 [0] 𝑥 𝑦𝑧 [𝜒] 𝑦 𝑦𝑧 [𝜒] 𝑧 𝑦𝑧 ] (14) 
Selon [START_REF] Nedjar | Hybrid excitation synchronous machine modeling using magnetic equivalent circuits[END_REF], les éléments [𝜒] 𝑖𝑗 de cette matrice sont égal à :

[𝜒] 𝑖𝑗 = { +1 if branche j ∈ 𝜓 i + -1 if branche j ∈ 𝜓 i - 0 if branche j ∉ (𝜓 i + ∪ 𝜓 i -) (15) 
où 𝜓 𝑖 + représente les flux de mailles et de branches qui ont la même direction, et 𝜓 𝑖 -les flux de mailles et de branches qui ont une direction opposée.

Pour mieux comprendre, un exemple est donné sur la Fig. 6. Le Tableau 3 donne l'arrangement des matrices avec :

 ⨂ : le produit de Kronecker ;  [I d ] * : la matrice d'identité de (*) dimension, (*) peut être remplacé par {𝑀 2 ⁄ , 𝑃 2 ⁄ , 𝑁 2 ⁄ , 𝑚, 𝑛, 𝑃} ;  [𝑌 *
∎ ] ⋆ : la sous-matrice topologique de l'axe (*) dans le plan (∎) et de dimension (⋆) ;  [χ] s * ∎ : la matrice topologique pour la première couche dans l'axe (*) au plan (∎) ;  [1 1] dû aux des deux reluctances en série (e.g ., Bx1 et Bx2 sur la Fig. 6).

L'équation générale sur le plan YZ n'est pas donné parce cela ne respecte pas le produit de Kronecker, on doit juste respecter la numérotation des flux de mailles et de branches. La matrice topologique peut être obtenue en raisonnant par couche [voir Fig. 2(d)] et conduit à utiliser certaines commandes comme circshift sous Matlab®.

APPLICATION SUR UN DISPOSITIF STATIQUE À NOYAU EN U

Description

Dans cette section, le modèle développé est appliqué sur un dispositif électromagnétique statique comme montré sur la Fig. 7(a). Il ressemble à un transformateur constitué d'un circuit magnétique fixe de forme en U et d'un circuit magnétique de forme en I pouvant se déplacer à la verticale. On trouve deux bobines en parallèle traversées par un courant opposé de même amplitude dans les deux côtés du noyau en U. La longueur de chaque élément est également donnée sur la même figure .   La Fig. 7(b), (c) et (d) donnent les trois vues du dispositif dans les différents plans (XY, XZ, YZ). Nous pouvons voir que le dispositif est discrétisés en 9 éléments de mailles dans l'axe x, 8 éléments de mailles dans l'axe y, et 5 éléments de mailles dans l'axe z (voir Tableau 4). L'application numérique est faite en utilisant les données sur le Tableau 5. Pour cette discrétisation, on obtient les nombres donnés dans le Tableau 6 qui conduisent aux dimensions des matrices données dans le Tableau 7. Fig. 6. Principe de la matrice topologique. Tableau 3. Différentes matrices de la matrice topologique. x Nd 2

[χ] x x,y = [I d ] n ⨂[χ] sx xy [χ] sx x,y = [Y x xy ] M,M+1 ⨂[W x ] xy [W x ] xy = [I d ] P/2 ⨂[1 1] [Y x xy ] M,M+1 = [ -1 1 0 -1 0 … 1 ⋱ … 0 ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ 0 … ⋱ ⋱ … … ⋱ 0 -1 1 ] [χ] y xy = [I d ] n ⨂[χ] sy xy [χ] sy x,y = [W y ] xy ⨂[Y y xy ] 𝐏,𝐏+𝟏 [W y ] xy = [I d ] M/2 ⨂[1 1] [Y y xy ] 𝐏,𝐏+𝟏 = [ -𝟏 𝟏 𝟎 -𝟏 𝟎 … 𝟏 ⋱ … 𝟎 ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ 𝟎 … ⋱ ⋱ … … ⋱ 𝟎 -𝟏 𝟏 ] [χ] z xz = [I d ] m ⨂[χ] sz xz [χ] sz xz = [W z ] xz ⨂[Y z xz ] 𝐌,𝐌+𝟏 [W z ] xz = [I d ] N/2 ⨂[1 1] [Y z xz ] 𝐌,𝐌+𝟏 = [ -𝟏 𝟏 𝟎 -𝟏 𝟎 … 𝟏 ⋱ … 𝟎 ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ 𝟎 … ⋱ ⋱ … … ⋱ 𝟎 -𝟏 𝟏 ] [χ] z x,z = [I d ] m ⨂[χ] sz xz [χ] sz xz = [Y z xz ] 𝐍,𝐍+𝟏 ⨂[χ] sz1 xz [χ] sz1 x,z = [1 0. .0] m ⨂[W x ] xz [W x ] xz = [I d ] P ⨂[1 1] [Y z xz ] 𝐍,𝐍+𝟏 = [ -𝟏 𝟏 𝟎 -𝟏 𝟎 … 𝟏 ⋱ … 𝟎 ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ 𝟎 … ⋱ ⋱ … … ⋱ 𝟎 -𝟏 𝟏 ]
x Nd 3

x Nd 4

x Nd 5

x Nd 6

x Nd 7

x Nd 8

x 

] 13832 × 1 [0] z x,y 6734 × 13680 [MMF z ] 13680 × 1 [χ] x x,z 6660× 14430 [ψ] 19778× 1 [0] y x,z 6660× 13832 [ϕ] 41942× 1 

Résultats de comparison avec les EF 3-D

Le MEC générique 3-D a été comparé au EF 3-D. Les trois composantes de 𝐵 ⃗ dans la grille 2-D [voir la Fig. 7(b) et (d)] du plan XZ sont représentées sur la Fig. 8. La comparaison entre les deux méthodes est satisfaisante, la petite différence est liée à la discrétisation du MEC générique 3-D. Le temps de calcul est divisé par 3 avec une erreur inférieure à 1%. On peut remarquer à travers les figures que les fuites de flux sont prises en compte et sont plus importantes à l'extérieur qu'à l'intérieur du dispositif [voir la Fig. 8(a)]. La Fig. 9 et Fig. 10 représentent respectivement les trois composantes de 𝐵 ⃗ relevées au milieu de la culasse pour un entrefer de 8 et 4 mm. Ceci permettra de voir si le modèle garde une marge d'erreur acceptable en variant l'épaisseur de l'entrefer. Pour maintenir une précision acceptable, nous avons recours à une discrétisation plus dense que la précédente au niveau de la culasse et aussi au niveau de l'emplacement des MMFs. Lors de la confrontation avec les résultats numériques 3-D, on remarque une légère erreur au niveau de circuit magnétique qui reste acceptable.

Ceci est due à la discrétisation qui reste relativement faible, mais l'augmentation de cette dernière peut impacter le temps de calcul et peut conduit à un désavantage par rapport aux EF 3-D. C'est pourquoi, il est judicieux de trouver un optimal qui pourrait maintenir un bon compromis entre le temps de calcul et la précision.

CONCLUSION

Dans ce papier, un MEC générique en 3-D ayant un maillage automatique a été présenté. Le modèle développé est composé d'éléments de mailles hexaédriques obtenus en superposant des blocs BD dans les trois directions en utilisant une matrice topologique conduisant à des blocs 3-D. Les différentes matrices utilisées dans le MEC générique en 3-D ont été présentées. L'approche proposée permet de discrétisé le système étudié selon les trois directions. Le temps de calcul dépend entièrement du nombre d'éléments de mailles mais reste considérablement inférieur au logiciel d'EF 3-D. Afin de valider le modèle and vérifier sa précision, un dispositif électromagnétique statique à noyau en U à armature mobile a été étudié. Le résultat du modèle montre que les fuites de flux sont prises en compte avec une grande précision. Les particularités sont la réduction du temps de calcul en raison de la réduction de l'équation du système. La discrétisation selon l'axe y et z impacte d'une manière considérable sur le temps de calcul, et aussi sur la précision du modèle, du fait que les parties les plus sensibles sont l'emplacement des MMFs. Il est intéressant de noter que l'approche proposée peut être appliquée à des dispositifs électromagnétiques dynamiques tels que les machines électriques. 
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 123 Fig. 1. Bloc de maille : (a) TD, (b) BD, (c) Hexaédrique, (d) Élement de maille, et (e) Légende.

Fig. 4 Fig. 5 .

 45 Fig. 4 Paramètres géométriques pour les réluctances magnétiques.

Fig. 7 .

 7 Dispositif électromagnétique statique à noyau en U dans les différents plans.

Fig. 8 .

 8 Comparaison avec les EF 3-D : (a) 𝐵 ⃗ 𝑥 , (b) 𝐵 ⃗ 𝑦 , et (c) 𝐵 ⃗ 𝑧 . Fig. 9. :Comparaison avec les EF 3-D pour un entrefer de 8 mm : (a) 𝐵 ⃗ 𝑥 , (b) 𝐵 ⃗ 𝑦 , et (c) 𝐵 ⃗ 𝑧 . Fig. 10. :Comparaison avec les EF 3-D pour un entrefer de 4 mm : (a) 𝐵 ⃗ 𝑥 , (b) 𝐵 ⃗ 𝑦 , et (c) 𝐵 ⃗ 𝑧 . 6. REMERCIEMENTS Ce travail est mené dans le cadre du projet COCTEL (Conception Optimale des Chaînes de Traction Électrique) piloté par RENAULT-SAS et financé par l'ADEME (Agence de l'Environnement et de la Maîtrise de l'Énergie).

  Deux principaux avantages peuvent découler de cette technique, le premier consistera en la facilité d'affecter des matériaux pour chaque élément de maille et le second à la discrétisation locale. À titre d'exemple, on peut affecter un matériau de perméabilité 𝜇 311

	(𝑁𝑑 3 𝑥 , 𝑁𝑑 1 𝑦 , 𝑁𝑑 1 𝑧	𝑥𝑦	à l'élément identifié par
	2-D 𝑧 ), 𝑦 , 𝑁𝑑 𝑘 𝑥 , 𝑁𝑑 𝑗 peut être identifié par le triplé (𝑁𝑑 𝑖 (𝑁𝑑 𝑖 𝑥 , 𝑁𝑑 𝑘 𝑧 , 𝑁𝑑 𝑗 𝑦 ) et (𝑁𝑑 𝑗 𝑦 , 𝑁𝑑 𝑘 𝑧 , 𝑁𝑑 𝑖		

𝑁𝑑 * ∎ le nombre de discrétisations selon l'axe ∎ pour l'élément surfacique *. Donc, chaque élément de surface en 𝑥 ) qui sont parallèle respectivement au plan XY, XZ et YZ. La troisième dimension est consacrée pour identifier le numéro des couches [voir les Fig. 2. (b), (c) et (d)]. On peut remarquer que tous les éléments de maille sont indépendants.

  [𝜙] le vecteur des flux de branches selon chaque axe, [𝑀𝑀𝐹] le vecteur des MMFs de branches dans les différents axes, [𝐹] le vecteur des boucles de FMMs, [𝜒] la matrice topologique (ou d'incidence) dans tous les plans, [𝐵] le vecteur des inductions magnétiques dans les différents axes, et [𝑆] le vecteur des surfaces de passage des flux de branches.

	plans,	Nd 1 y	x 1 Nd	x Nd 2	x Nd 3	de maille Element
						BD
		Nd 2 y				bloc
		y Nd 3				

où [ℜ] est la matrice diagonale des réluctances magnétiques suivant chaque axe, [𝜓] le vecteur des flux de mailles sur tous les

  Tableau 4. Discrétisation et longueur des éléments de mailles. Tableau 6. Nombre de flux de branches, de mailles et de noeuds.

	x 1 Nd z l 2 z l 1 z l 3 z l 4 z l Direction Vecteur de longueur des éléments de mailles Axe x 𝑙 𝑥 = [𝑙 1 𝑥 𝑙 2 𝑥 𝑙 3 𝑥 𝑙 4 𝑥 𝑙 5 𝑥 𝑙 6 𝑥 𝑙 7 𝑥 𝑙 8 𝑥 𝑙 9 𝑥 ] Axe y 𝑙 𝑦 = [𝑙 1 𝑦 𝑙 2 𝑦 𝑙 3 𝑦 𝑙 4 𝑦 𝑙 5 𝑦 𝑙 6 𝑦 𝑙 7 𝑦 𝑙 8 𝑦 ] Axe z 𝑙 𝑧 = [𝑙 1 𝑧 𝑙 2 𝑧 𝑙 3 𝑧 𝑙 4 𝑧 𝑙 5 𝑧 ] Direction Vecteur de discrétisation Axe x 𝑁𝑑 𝑥 = [𝑁𝑑 1 𝑥 𝑁𝑑 2 𝑥 𝑁𝑑 3 𝑥 𝑁𝑑 4 𝑥 𝑁𝑑 5 𝑥 𝑁𝑑 6 𝑥 𝑁𝑑 7 𝑥 𝑁𝑑 8 𝑥 𝑁𝑑 9 𝑥 ] Axe y 𝑁𝑑 𝑦 = [𝑁𝑑 1 𝑦 𝑁𝑑 2 𝑦 𝑁𝑑 3 𝑦 𝑁𝑑 4 𝑦 𝑁𝑑 5 𝑦 𝑁𝑑 6 𝑦 𝑁𝑑 7 𝑦 𝑁𝑑 8 𝑦 ] Axe z 𝑁𝑑 𝑧 = [𝑁𝑑 1 𝑧 𝑁𝑑 2 𝑧 𝑁𝑑 3 𝑧 𝑁𝑑 4 𝑧 𝑁𝑑 5 𝑧 ] Tableau 5. Application numérique. Direction Vecteur de longueur des éléments de mailles Axe x 𝑙 𝑥 = [1000 10 43 10 64 10 43 10 1000 ] Axe y 𝑙 𝑦 = [1000 43 2 19 77 4 43 1000] Axe z 𝑙 𝑧 = [1000 10 43 10 1000] Direction Vecteur de discrétisation Axe x 𝑁𝑑 𝑥 = [1 1 11 1 10 1 11 1 1] Axe y 𝑁𝑑 𝑦 = [1 2 3 2 2 2 2 1] Axe z 𝑁𝑑 𝑧 = [1 1 9 1 1] Axe x y z Nombre de branche d'une ligne 𝑃 = 74 𝑀 = 28 𝑁 = 24 Nombre de noeud sur une ligne pour chaque couche 𝑝 = 38 𝑚 = 15 𝑛 = 13 Nombre de branches dans toutes les couches 𝑚 × 𝑃 × 𝑛 = 14430 𝑀 × 𝑝 × 𝑛 = 13832 𝑁 × 𝑝 × 𝑚 = 13680 𝑵 𝝍 𝒙𝒚 6734 6734 0 𝑵 𝝍 𝒙𝒛 6660 0 6660 𝑵 𝝍 𝒚𝒛 0 6384 6384 Tableau 7. Dimensions des différentes matrices. Matrices Dimension Matrices Dimension [ℜ 𝑥 ], [𝜇 𝑟𝑥 𝑥,𝑦 ], [𝑆 𝑥 ], [𝑙 𝑥 ] 74 × 15 × 13 x,z 6660× 13680 [χ] z [ℜ 𝑦 ], [𝜇 𝑟𝑦 𝑥,𝑦 ], [𝑆 𝑦 ], [𝑙 𝑦 ] 28 × 38 × 13 yz 6384× 14430 [0] x [ℜ 𝑧 ], [𝜇 𝑟𝑧 𝑥,𝑧 ], [𝑆 𝑧 ], [𝑙 𝑧 ] 24 × 38 × 15 yz 6384× 13832 [χ] y [ℜ] 41942×41942 yz 6384× 13680 [χ] z [χ] x x,y 6734 × 14430 14430 × 1 [MMF x ] [χ] y x,y 6734 × 13832 [MMF y	Nd 9 Nd 2 z z Nd 1 z Nd 3 z Nd 4 z Nd 5

& & & Flux de mailles FMMs des branches x-y & z Reluctances x-y & z Flux de branches x-y & z