
HAL Id: hal-02130096
https://hal.science/hal-02130096

Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biochemical characterization and mutational studies of
the thermostable uracil DNA glycosylase from the

hyperthermophilic euryarchaeon Thermococcus
barophilus Ch5

Haoqiang Shi, Qi Gan, Donghao Jiang, Yuqi Wu, Youcheng Yin, Haiyue Hou,
Hongxun Chen, Li Miao, Zhihui Yang, Phil M. Oger, et al.

To cite this version:
Haoqiang Shi, Qi Gan, Donghao Jiang, Yuqi Wu, Youcheng Yin, et al.. Biochemical characterization
and mutational studies of the thermostable uracil DNA glycosylase from the hyperthermophilic eur-
yarchaeon Thermococcus barophilus Ch5. International Journal of Biological Macromolecules, 2019,
�10.1016/j.ijbiomac.2019.05.073�. �hal-02130096�

https://hal.science/hal-02130096
https://hal.archives-ouvertes.fr


1

Biochemical characterization and mutational studies of the thermostable uracil 

DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus 

barophilus Ch5

Haoqiang Shia, Qi Gana, Haiyue Houa, Hongxun Chena, Yinuo Xua, Li Miaoa, Zhihui 

Yangb#, Philippe Ogerc# and Likui Zhanga#

aMarine Science & Technology Institute

Department of Environmental Science and Engineering, Yangzhou University, China

bCollege of Plant Protection, Agricultural University of Hebei, Baoding City, Hebei 

Province 071001, China

c Université de Lyon, INSA de Lyon, CNRS UMR 5240, Lyon, France

Corresponding author: Dr. Likui Zhang

E-mail address: lkzhang@yzu.edu.cn 

Tel: +86-514-89795882

Fax: +86-514-87357891

Corresponding author: Prof. Zhihui Yang

E-mail address: bdyzh@hebau.edu.cn

Corresponding author: Prof. Philippe Oger

E-mail address: philippe.oger@insa-lyon.fr

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

mailto:lkzhang@yzu.edu.cn


2

Abstract

Uracil DNA glycosylases (UDGs) play an important role in removing uracil from 

DNA to initiate DNA base excision repair. Here, we first characterized biochemically 

a thermostable UDG from the hyperthermophilic euryarchaeon Thermococcus 

barophilus Ch5 (Tba UDG), and probed its mechanism by mutational analysis. 

The recombinant Tba UDG cleaves specifically uracil-containing ssDNA and dsDNA 

at 65oC. The enzyme displays an optimal cleavage activity at 55–75oC. Tba UDG 

cleaves DNA over a wide pH spectrum ranging from 4.0 to 9.0 with an optimal pH of 

5.0–8.0. In addition, the Tba UDG activity is independent on a divalent metal ion; 

however, both Zn2+ and Cu2+ completely inhibits the enzyme activity. Furthermore, 

the Tba UDG activity is also inhibited by high NaCl concentration. Tba UDG 

removes uracil from DNA by the order: U≈U/G>U/T≈U/C>U/A. The mutational 

studies showed that both the E118A and N159A mutants completely abolish the 

cleavage activity and retain the compromised binding activity, suggesting that 

residues E118 and N159 in Tba UDG are important for uracil recognition and removal. 

Our work provides a basis for determining the role of Tba UDG in the base excision 

repair pathway for uracil repair in Thermococcus.

Keywords: Thermococcus barophilus; Uracil DNA glycosylase; Base excision 

repair
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1. Introduction

Uracil bases in DNA are created by deamination of cytosine or by dUMP 

incorporation catalyzed by a DNA polymerase. It is estimated that the deamination of 

cytosine leads to up to 500 uracil residues in a single human cell each day [1-2]. The 

rate of deamination of cytosine is greatly enhanced at elevated temperatures [3], and 

thus hyperthermophilic organisms that live at temperatures above 80oC are facing a 

serious threat caused by cytosine deamination. Since uracil has a strong ability to form 

mismatch with adenine (A), a G-C base pair would be subsequently converted to an 

A-T base pair if DNA replication occurs before the uracil is repaired [4], potentially 

leading to mutations in the genome. However, the estimated spontaneous mutation 

rates in hyperthermophilic bacteria and archaea are similar to those observed in 

Escherichia coli [5-6], suggesting that hyperthermophilic microorganisms are more 

efficient in repairing hydrolytic and oxidative damage to DNA bases [7]. Increased 

GC to AT mutations by replicating uracil that originates from deamination of cytosine 

are detrimental to the cells, which may cause genome instability or even cancer 

occurrence. In response, cells have evolved a base excision repair (BER) pathway to 

counteract potential mutations generated by uracil replication. Uracil DNA 

glycosylase (UDG) is the first BER enzyme to remove uracil from DNA, which leads 

to apurinic/apyrimidinic (AP) site. The generated AP site is subsequently repaired by 

different enzymes: AP endonuclease, DNA deoxyribophosphodiesterase, DNA 

polymerase and DNA ligase [8].

UDGs are ubiquitous in bacteria, archaea, eukarya and viruses, and can remove 

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



4

uracil from DNA through hydrolyzing their glycosyl bonds. Based on sequence 

similarity, UDGs have currently been classified into six families [9]. Family 1 UDGs 

have been well studied in Escherichia coli and human [10-15], and can remove uracil 

base efficiently from ssDNA and from ds DNA. Mismatch-specific DNA glycosylases 

and single-stranded specific monofunctional UDGs form families 2 and 3, 

respectively [16-17]. Family 4 UDGs are exclusively observed in the 

hyperthermophilic microorganisms and possess a 4Fe–4S cluster [18-20]. Family 5 

UDGs have broad substrate specificity, but lack a polar residue at the active-site motif 

[20, 21-22]. Last, family 6 UDGs can cleave hypoxanthine instead of uracil, and  

thus belong to hypoxanthine DNA glycosylase family [23].

The Archaeoglobus fulgidus UDG is the first enzyme to be identified and 

characterized from archaea [24]. Currently, another eight UDG homologues from 

hyperthermophilic archaea have been reported from Pyrobaculum aerophilum [25], 

Pyrococcus furiosus [26-27], Methanococcus jannaschii [28], Aeropyrum pernix [29], 

Sulfolobus solfataricus [30], Sulfolobus tokodaii [31-32], Sulfolobus acidocaldarius 

[33], and Thermoplasma acidophilum [34]. The A. fulgidus UDG is the most 

thermostable, retaining activity even after 1.5 hr of heating at 95oC [24]. It is able to 

remove uracil from dsDNA containing a U/A or U/G base pair, as well as from 

ssDNA. This enzyme is inhibited by apurinic sites. M. jannaschii UDG possesses the 

helix-hairpin-helix and [4Fe-4S]-binding cluster to recognize and bind uracil, and can 

efficiently cleave uracil in ssDNA and dsDNA and 8-oxoG in DNA [28]. The crystal 

structure of S. tokodaii UDG shows that residues Leu169, Tyr170 and Asn171 in the 
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leucine-intercalation loop of the enzyme play important roles in uracil-binding [32]. T. 

acidophilum UDG is involved in mediating the transfer from long patch repair to short 

patch repair [34]. Several studies on archaeal UDGs have shown that they can interact 

with PCNA (proliferating cell nuclear antigen) [26, 30, 35], which is an important 

component in DNA replication and repair in and eukarya and archaea [36]. 

Furthermore, due to their thermostability, they have been shown to have potential 

applications to enhance PCR yield or to help in jump starting the reactions [29]. 

Thermococcus is an important branch of euryarchaea comprising more than 40 

described species, which mostly thrive in the hottest deep-sea hydrothermal vent 

systems. Thus, similar to other hyperthermophilic archaea and bacteria, 

Thermococcus is also facing severe challenges due to increased deamination of 

cytosine dependent on high-temperature [37]. It is expected that the 

hyperthermophilic Thermococcus would have evolved a repair pathway to counteract 

the mutational effects of cytosine deamination in order to maintain their genome 

stability. Thermococcus barophilus is one of the most extreme member of the 

Thermococcus genus, being hyperthermophilic, piezophilic and capable of 

auxotrophic growth on carbon monoxide. Strain Ch5 was isolated from a deep-sea 

hydrothermal field of the Mid-Atlantic Ridge (Logachev field chimney, 3,020 m 

depth) [38]. T. barophilus Ch5 has a pressure optimum of 40 MPa and a temperature 

optimum of 85oC [39]. The completed genome sequence of T. barophilus Ch5 shows 

that this strain possesses two uracil DNA glycosylases (Tba UDGs) [40]. In this study, 

we cloned one of the Tba UDGs gene, purified and characterized its product. In 
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addition, we probed the mechanism of cleaving uracil by Tba UDG through 

mutational analysis. We report here that Tba UDG is a thermostable enzyme cleaving 

specifically uracil-containing DNA, and its residues E118 and N159 are important for 

its catalysis. To the best of our knowledge, this is the first report of the biochemical 

characterization and mutational studies of a thermostable UDG from Thermococcus 

species.

2. Materials and methods

2.1. Cloning, expression and purification of Tba UDG

The Tba UDG in this work is encoded by gene TBCH5v1_0629 (GenBank 

accession number: CP013050.1). The genomic DNA of T. barophilus Ch5 was 

extracted as described by Oger et al. [40] and then used as a template to amplify the 

gene TBCH5v1_0629 using the Phusion DNA polymerase (Thermo Scientific, 

Waltham, MA, USA) and the two primers (Tba UDG F and Tba UDG R, Table 1). 

The amplified DNA product was inserted into the vector pET-30a (+) (Novagen, 

Merck, Darmstadt, Germany). The recombinant plasmid harboring a sequence 

encoded a 6 × His-tag at the C-terminus of Tba UDG was sequenced to verify the 

accuracy of the sequence of the enzyme gene and transformed into E. coli BL21 

(DE3) cells (Transgene, Beijing, China) for protein expression.

The expression strain E. coli harboring the recombinant plasmid was cultured 

into LB medium with 100 μg/mL kanamycin at 37°C until an OD600 of 0.6, at which 

point protein expression was induced with isopropyl thiogalactoside (IPTG) at a final 

concentration of 0.1 mM. The culture was further shaken for 10 hr at room 
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temperature until it reached an OD600 of 1.1. 

The cells were harvested by centrifugation (5,000 × g for 20 min at room 

temperature). The resultant pellet was resuspended with Ni column buffer A (20 mM 

Tris-HCl pH 8.0, 1 mM dithiothreitol (DTT), 500 mM NaCl, 50 mM imidazole and 

10% glycerol). The cells were disrupted by sonication into an ice bath. After 

centrifugation (16,000 × g for 30 min at 4°C), the supernatant was collected into a 50 

mL tube and heated at 70°C for 20 min. The non-thermostable E. coli proteins were 

almost removed by centrifugation (16,000 × g for 30 min at 4°C). The resulting 

supernatant was loaded to a HisTrap FF column (GE Healthcare, Uppsala, Sweden) 

and purified with NCGTM Chromatography System (Bio-Rad, Hercules, CA, USA). A 

linear gradient of 50–500 mM imidazole was used to elute the Tba UDG protein. 

Fractions of Tba UDG protein were harvested and run by a 12% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis. The Tba UDG protein was stained and 

visualized by Coomassie-staining method. Finally, the purified Tba UDG protein was 

dialyzed in a storage buffer containing 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM 

DTT and 50% glycerol, and was stored at −80°C. The protein concentration was 

determined using the Bradford Protein Assay Kit (Bio-Rad).

2.2. Construction, overexpression and purification of the Tba UDG mutants 

Using the wild-type plasmid harboring the Tba UDG gene as a template, the site-

directed mutagenesis was performed by a SDM Kit to construct E118A and  N159A 

mutants, according to its manual instruction. Note that residues E118 and N159 in Tba 

UDG are located in the conserved Motif B and Motif D, respectively (Fig. 1). The 
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sequences of mutagenic primers are listed in Table 1. The mutant plasmids were 

verified by sequencing. Similar to the wild-type protein, the Tba UDG mutant 

proteins were overexpressed, purified and quantitated.

2.3. DNA substrate

Normal and uracil-containing deoxyoligonucleotides were synthesized by 

Sangon Biotech company, China. The sequences of these deoxyoligonucleotides are 

shown in Table 2. The Cy3-labeled deoxyoligonucleotide duplexes shown in Table 3 

were prepared by annealing the Cy3-labeled deoxyoligonucleotides to the 

complementary deoxyoligonucleotides in a buffer containing 20 mM Tris-Cl pH 8.0 

and 100 mM NaCl. The mixture was heated at 100oC for 5 min and cooled slowly at 

least 4 hours to room temperature.

2.4. Glycosylase assays

The standard assays of Tba UDG activity were carried out in the reactions (10 

μL) which contained 20 mM Tris-HCl pH 8.0, 5 mM DTT, 50 mM NaCl, 1 mM 

EDTA, 8% glycerol, 200 nM DNA, wild-type or mutant Tba UDG with varied  

concentrations. The reactions were performed at 75°C for 10 min for ssDNA cleavage 

and at 65oC for 10 min for dsDNA cleavage. 1 μL 500 mM NaOH and 9 μL 

formamide-EDTA (98% formamide and 20 mM EDTA) were added to stop the 

reactions. The reaction products were heated at 95°C for 5 min and chilled rapidly on 

ice for 5 min, and then loaded onto a denaturing 15% polyacrylamide gel with 8M 

urea. After electrophoresis, the gels were scanned and the Cy3-labeled DNA was 

visualized with a Molecular Image analyser (PharosFx System, Bio-Rad). The 
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ImageQuant software was used for the quantitative analysis. All experiments of the 

glycosylase assays were replicated three times.

2.5. Biochemical chacterization assays

The optimal temperature of Tba UDG to cleave DNA in the reactions (10 μL) 

contained 800 nM enzyme and 200 nM Cy3-labeled ssDNA with uracil as a target. 

The reactions were performed at 35, 45, 55, 65, 75, 85 and 95°C for uraicl-containing 

ssDNA for 10 min. 

To examine the thermostability of the enzyme, Tba UDG was heated at 80, 85, 

90, 95 and 100°C for 30 min. The activity of the heated Tba UDG protein were 

investigated under the same conditions but using 1 μM of the heated enzyme protein. 

Samples were treated as described above.

The effect of pH on the Tba UDG activity was evaluated by examining DNA 

cleavage in similar 10 µL reactions at 75°C under pHs ranging from 4.0 to 11.0 using 

1 μM of the enzyme protein. The varied pHs were adjusted with five different buffers 

(all at 20 mM concentrations): acetate-sodium acetate (pH 4.0 and pH 5.0), sodium 

phosphate-NaOH (pH 6.0 and pH 7.0), Tris-HCl (pH 8.0), Gly-NaOH (pH 9.0), and 

NaHCO3-NaOH (pH 10.0 and pH 11.0).

The effect of divalent metal ions on Tba UDG activity was investigated by  

adding of 2 mM of Mg2+, Mn2+, Ca2+, Zn2+ or Cu2+ (analytical purity) to the reaction 

mixture. Assays were performed at 75°C with 250 nM of the enzyme. Samples were 

treated as described above.

To evaluate the effect of salinity on Tba UDG activity, glycosylase assays were 
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performed in the presence of various NaCl concentrations ranging from 50 to 1,000 

mM using 1 μM of the enzyme. Samples were treated as described above.

2.6. Glycosylase single-turnover assays

The reaction mixtures containing 800 nM wild-type or mutant Tba UDG and 200 

nM DNA substrates were incubated at 65oC for various times. Samples were treated 

as described above. Data from the DNA cleavage experiments under single-turnover 

conditions were fit to a single-exponential decay equation:

[Product] = A exp (-kendo t)

where A and kendo represent the reaction amplitude and observed DNA cleavage 

rate, respectively.

2.7. Substrate specificity

To investigate the substrate specificity of the enzyme, we employed normal 

ssDNA and dsDNA, ssDNA with uracil and dsDNA with U (U/T, U/C, U/G or U/A), 

and dsDNA with a mismatch (G/T) as the substrates to perform the glycosylase assays 

at 65°C for 10 min using 800 nM enzyme. Samples were treated as described above.

2.8. DNA-binding Assays

Electrophoresis mobility shift assays (EMSA) were performed by incubating the 

wild-type or mutant Tba UDG with uracil-containing ssDNA and dsDNA in a DNA 

binding buffer (10 μL) containing 20 mM Tris-HCl pH 8.0, 5 mM DTT, 8% glycerol, 

200 nM DNA and the wild-type or mutant Tba UDG with varied concentrations at 

25°C for 10 min. The samples were electrophoresed on a 4% native polyacrylamide 

gel in 0.1 × TBE (Tris-borate-EDTA) buffer. After electrophoresis, the gels were 
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scanned and Cy3-labeled DNA was visualized with a Molecular Image analyser (Bio-

Rad). ImageQuant software was used for the quantitative analysis. 

3. Results

3.1. Tba UDG is a thermostable uracil DNA glycosylase

The alignment result of partial amino acid sequences of UDGs from 

hyperthermophilic archaea and bacteria shows that Tba UDG possesses six conerved 

motifs (A-F) that are characteristics of family 4 UDGs (Fig. 1A), suggesting that this 

enzyme belongs to family 4 UDGs. On the other hand, Motif B and Motif F in Tba 

UDG are conserved in all six family UDGs (Fig. 1B). Tba UDG displays 21%, 19%, 

22%, 22%, 18%, 20%, 19%, and 21% similarities to those of from P. furiosus, P. 

horikoshii, A. fulgidus, P. aerophilum UDGa, A. pernix, S. solfataricus, S. tokodaii 

and Thermotoga maritima, respectively. The low similarity between Tba UDG and 

other UDGs suggests that Tba UDG might be a novel glycosylase.

The Tba UDG gene from the hyperthermophilic archaeon T. barophilus Ch5 was 

cloned into the pET-30a (+) expression vector, and expressed in E. coli BL21(DE3). 

The recombinant Tba UDG protein was successfully expressed as a His-tag fusion 

protein (Fig. 1C). By means of sonication, heat treatment (70°C for 20 min) and 

purification by affinity chromatography with a Ni column, we purified the Tba UDG 

protein (~27 kDa) (Fig. 1C). 

We used the normal, uracil-containing ssDNA and dsDNA as the substrates to 

investigate DNA cleavage by Tba UDG at 65oC. Using normal ssDNA and dsDNA as 

the substrates, no product was formed by the enzyme, however, the cleaved product of 
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the enzyme was observed in the presence of uracil-containing ssDNA and dsDNA 

(Fig. 1D). The results showed that Tba UDG is a thermostable glycosylase, capable of 

removing uracil from ssDNA and dsDNA at 65oC. 

The heating treatment (70°C for 20 min) during the purification of Tba UDG 

protein can denature most of E. coli proteins (Fig. 1); however, there was a slight 

possibility of E. coli UDG contamination, which would interfere with our results. To 

test this possibility, we used cell extracts made from cells expressing the empty pET-

30a (+) vector. We could detect no cleavage product when using this heated 

supernatant produced from the empty vector (data not shown), thus ruling out the 

possibility of an E. coli UDG contamination during purification of Tba UDG. Overall, 

our results suggest that Tba UDG can cleave uracil-containing DNA at high 

temperature.

3.2. Biochemical charatcerization of Tba UDG

Since T. barophilus Ch5 thrives at high temperature (85°C) and we could show 

that Tba UDG can cleave uracil-containing DNA at 75°C, we first investigated the 

optimal temperature for the enzyme to cleave uracil-containing DNA by using the 

uracil-containing ssDNA as the substrate. The cleavage percentage of Tba UDG 

increased from 54% to 98% when increasing reaction temperature from 35 to 75oC 

(Fig. 2A). Interestingly, even at the lowest tested temperatures, e.g. 35°C and 45oC, 

Tba UDG displayed a significant activity, with 54% and 92% cleavage efficiencies 

(Fig. 2A), respectively. At the temperatures higher than 75°C, the efficiency 
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decreased to reach 24% at 95°C (Fig. 2A), suggesting that the optimal activity of the 

enzyme to cleave uracil-containing ssDNA is between 55°C and 75°C.   

To further investigate the thermostability of the enzyme, we heated Tba UDG at 

various temperatures prior to activity assessments. When heated at 80oC for 30 min, 

Tba UDG retained about 90% of cleavage activity (Fig. 2B). The enzyme activity 

rapidly decreased at higher temperatures to reach 23% for 85oC and no remaining 

activity above 90°C (Fig. 2B). Overall, these observations suggest that Tba UDG is 

thermostable.

We examined the impact of pH on the endonuclease activity of Tba UDG over a 

wide pH range from 4.0 to 11.0 in the standard DNA cleavage reactions. No activity 

could be detected at the highest pHs (pH=10 and pH=11, Fig. 2C). By contrast, we 

could detect significant cleavage activity even at the lowest pH (pH=4, activity = 

69%). The maximal activity was observed for pH ranging from 5 to 8, ranging from 

96% to 91%, respectively (Fig. 2C). At pH 9.0, Tba UDG retained 43% cleavage 

efficiency. These results suggest that Tba UDG cannot effectively cleave uracil-

containing DNA at high pHs (pH>10.0) and that the optimal pH for this enzyme to 

cleave uracil-containing DNA was between 5.0 and 7.0. 

To evaluate the effects of various divalent metal ions (Mg2+, Mn2+, Ca2+, Zn2+ 

and Cu2+) on the DNA cleavage activity of Tba UDG, we reduced the concentration 

of the enzyme in the reactions. In the absence of a divalent ion and in the presence of 

EDTA, Tba UDG displayed about 70% cleavage activity (Fig. 2D), suggesting that a 

divalent metal ion is not required for the enzyme to cleave uracil-containing DNA. 
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We observed no inhibition of Ca2+ or Mg2+ on the activity of Tba UDG, with cleavage 

efficiencies ca. 77% in the presence of both ions (Fig. 2D). Two metals, e.g. Zn2+ or 

Cu2+, were found to totally inhibit the enzyme. Last, the activity of the enzyme was 

partially inhibited in the presence of Mn2+. Overall, our results suggest that a divalent 

metal ion is not needed for Tba UDG to effectively cleave uracil-containing DNA.

To uncover the effect of salinity on the Tba UDG activity, we added NaCl with 

various concentrations in the DNA cleavage reactions. Under the standard conditions 

in the absence of NaCl, Tba UDG cleaved almost completely DNA substrate with 

97% of cleavage efficiency (Fig. 2E). No impact of salinity was observed below 200 

mM, at which salinity Tba UDG retained 96% of cleavage efficiency, which is similar 

to the control reactions (Fig. 2E). However, only 13% cleavage efficiency of Tba 

UDG activity was observed in the presence of 400 mM NaCl (Fig. 2E). No cleaved 

DNA product was observed at NaCl concentrations from 600 to 1000 mM (Fig. 2E). 

These results show that the Tba UDG is a salt-tolerant enzyme, inhibited only by high 

NaCl concentrations (>400 mM).

3.3. Substrate specificity of Tba UDG

To evaluate the substrate specificity of the enzyme, we used the mismatched 

DNA (G/T), four mismatched DNA with uracil, and ssDNA with uracil as the 

substrates to examine the enzyme activity. As shown in Fig. 3A, the cleavage 

efficiencies of Tba UDG were 95%, 88%, 30% and 85% when using the mismatched 

DNA with U/G, U/C, U/A and U/T as the substrates, respectively. These results 

suggest Tba UDG exhibit various cleavage efficiencies on uracil-containing dsDNA. 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

Furthermore, no cleavage product was found when using mismatched dsDNA (G/T) 

(Fig. 3B). The cleavage efficiency of the enzyme was 93% when using uracil-

containing ssDNA as the substrate, which is close to that of using uracil-containg 

dsDNA (U/G). Thus, Tba UDG has a preference for substrates with the order from 

high to low: U≈U/G>U/T≈U/C>U/A.  

3.4. Kinetics of DNA cleavage by Tba UDG

 Here, we carried out time course of DNA cleavage activity of Tba UDG under 

the optimal reaction condition as described above. As the reaction time extended, 

DNA cleavage product of Tba UDG was gradually enhanced until the uracil-

containing ssDNA (Fig. 4A) and dsDNA (Fig. 4B) were almost cleaved. When 

reaction time was 10 min, the percent of Tba UDG for cleaving uracil-containing 

ssDNA and dsDNA reached 97% and 93%, respectively. These observations suggest 

that the enzyme has a strong activity for cleaving uracil-containing DNA at high 

temperature.

The molar amount of remaining DNA substrate in the DNA cleavage reactions 

catalzyed by Tba UDG was plotted as a function of reaction time (Fig. 4C), and the 

data were fit to the single-exponential decay equation to yield kexo. The kexo valuses 

are 0.25 ± 0.03 min-1 and 0.31 ± 0.04 min-1 for uracil-containing ssDNA and dsDNA, 

respectively. Therefore, Tba UDG displays similar rates for cleaving uracil-containing 

ssDNA and dsDNA.

3.5. Mutational analysis of Tba UDG

As shown in Fig. 5A, the crystal structure of S. tokodaii UDG shows that 
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residues Glu42, His164, Asn82, Phe55 and Glu48 might be key for uracil recognition 

[32]. Note that there is no a corresponding amino acid residue in Tba UDG for residue 

Glu48 in S. tokodaii, and residues Glu42, His164, Asn82 and Phe55 in S. tokodaii 

UDG correspond to residues Glu118, His216, Asn159 and Tyr127 in Tba UDG. 

Sequence comparison shows that these conserved residues Glu118, His216, Asn159 

and Tyr127 in Tba UDG are located in Motif B, C, D and F (Fig. 1A), respectively. 

To investigate the function of these residues of Tba UDG, we mutated two of these 

residues to alanine. The purification profiles of the Tba UDG E118A and N159A 

mutants are shown in Fig. 5B. 

In the control reaction with the wild-type Tba UDG, the enzyme can effectively 

cleave the uracil-containing ssDNA (Fig. 6A) and dsDNA (Fig. 6D). When using 500 

nM enzyme, the cleavage percent of Tba UDG reached approximate 90%. By 

contrast, the E118A and N159A mutants had no cleaving activity, no matter what the 

uracil-containing ssDNA or dsDNA was used (Figs. 6B, 6C, 6E and 6F). Therefore, 

our data suggest that both mutations enable Tba UDG to abolish its activity, and thus 

residues E118 and N159 in the enzyme play essential roles in cleaving uracil-

containing DNA.

3.6. DNA-binding of the wild-type and mutant Tba UDGs

To assess the effect of these two mutations on the affinity of the enzyme to 

uracil-containing DNA, we investigated whether or not the wild-type and mutant Tba 

UDGs binds to uracil-containing ssDNA or dsDNA by employing EMSA. As shown 

in Figs. 7A and 7D, the free uracil-containing ssDNA and dsDNA were gradually  
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bound as increasing the enzyme concentrations. At ≥1,100 nM Tba UDG, the uracil-

containing ssDNA and dsDNA was almost bound by the enzyme (Figs. 7A and 7D). 

In contrast, the maximal binding percents of the E118A mutant only reached 

35% for uracil-containing ssDNA and 25% for uracil-containing dsDNA even in the 

presence of high enzyme concentration (1,500 nM) (Figs. 7B and 7D), suggesting that 

the E118A mutant reatins the compromised ability to bind to uracil-containing ssDNA 

and dsDNA. 

Compared with the wild-type protein, the N159A mutant displayed the clearly 

reduced efficiencies for binding to uracil-containing ssDNA at lower concentration 

(<1,100 nM) (Fig. 7C). However, the binding percent of the N159A mutant was 92% 

at 1,500 nM enzyme, which is similar to that of the wild-type protein. On the other 

hand, the N159A mutant had the lower efficiency for binding to uracil-containing 

dsDNA than the wild-type protein (Fig. 7F). Furthermore, the binding efficiencies of 

the N159A mutant were higher than those of the E118A mutant. Thus, the residue 

N159 in the Tba UDG is essential for catalysis, and also are involved in binding to 

uracil.   

4. Discussion

In this work, we characterized biochemically for the first time the thermostable 

UDG from the hyperthermophilic archaeon T. barophilus Ch5, and revealed that Tba 

UDG can specifically cleave uracil-containing DNA at temperatures ranging from 35 

to 95°C. Similar to that of the closest homologue, Pyrococcus furiosus UDG, the 

optimal temperature of the enzyme activity is 55–75°C, which is lower than that of 
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the optimal temperature of T. barophilus Ch5 [40]. Compared with A. fulgidus UDG 

(80oC) [42], Tba UDG has an slightly lower optimal activity temperature. However, 

the optimal temperature of Tba UDG activity is clearly higher than that of S. 

solfataricus UDG [30], and similar to that of A. pernix UDG [29], P. aerophilum 

UDG [41] and T. maritima UDG [43]. Thus, the optimal temperatures of archaeal 

UDGs vary with hyperthermophilic organisms, which might be due to distinct living 

environments. Furthermore, Tba UDG still retains the pronounced endonuclease 

activity even when heated at 85°C for 30 min, suggesting that Tba UDG is a 

thermostable endonuclease. Since the rate of deamination of cytosine increases with 

temperature, significant amount of uracil might be generated at 85°C, which is the 

optimal growth temperature of T. barophilus Ch5 [40]. Thus, the activity of Tba UDG 

might be essential for mutation prevention in this organism in response to the known 

mutagenic potential of uracil. 

DNA cleavage efficiencies by UDGs vary with pH. Tba UDG exhibits maximal 

activity over a broad pH range from 5.0 to 7.0, which is close to that of the purified 

recombinant A. fulgidus UDG that has a optimal pH 4.8 [42]. Interestingly, the native 

A. fulgidus UDG displays maximal activity around pH 6.2 [42]. The difference pHs 

for optimal activity of A. fulgidus UDG from native cells and expression cells might 

be related to covalent modifications or accessory factors, or a different folding when 

expressed in the native host. By contrast, the optimal pH for the A. pernix UDG 

activity is estimated to be 8.0 to 10.5, with the highest removal of uraicl from ssDNA 

at pH 9.0 [29]. In addition, the optimal pH for Tba UDG strongly differs from that of 
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its closest homologue, that of P. furiosus, which is ca. pH 9 [27]. The rationale for this 

strong divergences in optimal pHs is quite surprising since most of these Archaea 

have near neutral intracellular pHs.

The reported UDGs are independent on a divalent metal ion [27, 29], which is 

also the case for Tba UDG. Similar to A. pernix UDG [29], Tba UDG is almost 

inactive to cleave DNA in the presence of Zn2+ or Cu2+. However, both Mg2+ and 

Mn2+ have no detectable effect on DNA cleavage of Tba UDG. However, Mn2+ shows 

some inhibition of the activity of A. pernix UDG [29]. 

Tba UDG displays substrate specificity for cleaving DNA in the order: 

U≈U/G>U/T≈U/C>U/A. By contrast, the P. furiosus UDG, as its closest homologue 

of Tba UDG, removes uracil from various DNA substrates with the following order: 

U/T≈U/C>U/G≈U/AP≈U/->U/U≈U/I≈U/A [27]. On the other hand, the A. fulgidus 

UDG exhibits opposite base-dependent excision of uracil by the following order: 

U>U/T>U/C=U/G=U/A [44]. Furthermore, the uracil-releasing activity of M. 

jannaschii UDG is observed by the following order U/T>U/C>U/G>U/A [28]. In 

addition, A. pernix UDG exhibits the uracil removal as follows: 

U/C=U/G>U/T=U/AP=U/->U/U=U/I>U/A [29]. Moreover, P. aerophilum UDG 

shows the substrate specificity by the order: G/U>A/U>ssU [25]. Overall, the 

substrate specificities of archaeal UDGs vary with these organisms.

On the other hand, Tba UDG has no detected activity on G/T mismatched DNA, 

similar to S. solfataricus UDG [30]. By contrast, the P. aerophilum UDG h can cleave 

normal mismatched DNA (G/T) and U/G [41]. Furthermore, the preferred substrates 
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of S. solfataricus UDG and Tba UDG appear to be the G:U-containing double-

stranded oligonucleotide. In addition, both Tba UDG and S. solfataricus UDG can 

cleave single-stranded DNA containing uracil; however, Tba UDG displays higher 

efficiencies for this cleavage than S. solfataricus UDG.

The uracil recognition mechanisms of several UDGs have been reported, 

however, an complete understanding on how archaeal UDGs recognize and cleave 

uracil-containing DNA remains elusive. The crystal structure of S. tokodaii UDG 

suggest that this UDG has a special structure of the leucine-intercalation loop [32], 

which is distinct from other UDGs, Further mutational analysis on the loop indicates 

that Tyr170 in S. tokodaii UDG is critical for substrate DNA recognition and the 

catalysis [32]. Mutational studies on the iron sulfur cluster loop motif in the A. 

fulgidus uracil-DNA glycosylase suggest that the R86A, C85A and C101A mutants 

exhibit reduced activity for uracil removal only within double-stranded DNA, while 

the K100A mutant exhibits enhanced uracil excision activity [45]. In this work, we 

did the mutational studies based on the S. tokodaii UDG structure by mutating 

residues E118 and N159 in Tba UDG to alanine, which are the corresponding residues 

E42 and N82 in S. tokodaii UDG. Our data show that residues E188 and N159 are key 

for uracil recoginition and removal, suggesting that the conserved motif B and Motif 

D are important for uracil recognition and removal. Thus, our observations provide 

new insight into understanding mechanism and function of archaeal UDGs.

5. Conclusion

In summary, we present the biochemical characteristics and mechanism of the 
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thermostable UDG from T. barophilus Ch5 in this work, which is first report on UDG 

from Thermococcus species. The recombinant Tba UDG displays specifically uracil-

containing DNA cleavage activity with the highest efficiency at 55–75°C and with an 

optimal pH of 5.0–7.0. A divalent metal ion is not required for the enzyme to cleave 

uracil-containing DNA. Furthermore, the enzyme activity is inhibited by Zn2+ or Cu2+, 

and high NaCl concentration. The enzyme exhibits the substrate specificity by the 

order: U≈U/G>U/T≈U/C>U/G>U/A. Mutational studies suggest that residues E118 

and N159 in Tba UDG are essential for uracil recognition and removal. Our work 

provides a basis for determining the role of Tba UDG in the base excision repair 

pathway for repairing potentially elevated uracils in Thermococcus.  
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Figure legends

Fig. 1. Tba UDG can cleave uracil-containing ssDNA and dsDNA at high 

temperature. A. Partial amino acid alignment of UDGs from hyperthermophilic 

crenarchaea, euryarchaea and bacteria. Tba: Thermococcus barophilus 

(WP_056934618.1); Pfu: Pyrococcus furiosus (WP_011012532.1); Pho: Pyrococcus 

horikoshii (WP_048053599.1); Afu: Archaeoglobus fulgidus (GenBank: 

AIG99287.1); Pae: Pyrobaculum aerophilum (GenBank: AAL62921.1); Ape: 

Aeropyrum pernix (GenBank: BAA79385.2); Sso: Sulfolobus solfataricus (GenBank: 

AKA78326.1); Sto: Sulfolobus tokodaii (PDB: 4ZBY); Tma: Thermotoga maritima 

(PDB: 1L9G_A). B. The conserved Motif B and Motif F in six families of UDG. 

Family 1, Eco (E. coli) UDG (EMBL:J03725); Family 2, Human TDG (EMBL: 

U51166); Family 3, Human SUMG1 (EMBL: AF125182); Family 4, Tba UDG247 

(NCBI reference sequence: WP_056934618.1); Family 5, P. aerophilum (Pae) UDGb 

(NP_559226); Family 6, Mba (Methanosarcina barkeri) HDG (YP_304295.1). C. 

Overexpression and purification of Tba UDG. M: Protein marker. D. DNA cleavage 

assays of Tba UDG. DNA cleavage reactions were performed by Tba UDG in the 

presence of normal and uracil-containing ssDNA and dsDNA at 65oC. CK: the 

reaction without the enzyme.

Fig. 2. Biochemical characterization of Tba UDG. A. The optimal temperature of the 

enzyme. B. The thermostability of the enzyme. C. The pH adaptation of the enzyme. 

D. Effects of divalent metal ions on the enzyme activity. E. Effect of NaCl on the 

enzyme activity. Reaction products were detected by electrophoresis through running 
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a 15% denaturing PAGE. CK: the reaction without the enzyme; CK1 in the panel B: 

the reaction without the enzyme; CK2 in the panle B: the reaction with the unheated 

enzyme.

Fig. 3. Substrate specificity of Tba UDG. DNA cleavage reactions of Tba UDG were 

performed using the uracil-containing ssDNA and dsDNA, and mismatched DNA 

(G/T) as the substrates. Reaction products were analyzed by electrophoresis through 

running a 15% denaturing PAGE. A. The substrates were ssDNA with U, and 

mismatched dsDNA with U/T, U/C, U/G, or U/A. B. The substrates were mismatched 

DNA (G/T). CK: the reaction without the enzyme.

Fig. 4. Kinetic analysis of DNA cleavage of Tba UDG. DNA cleavage reactions by 

Tba UDG were performed under the optimal reaction condition at various time (10 

sec – 30 min). Reaction products were analyzed by electrophoresis through running a 

12% denaturing PAGE. A. Uracil-containing ss DNA cleavage; B. Uracil-containing 

ds DNA cleavage. CK: the reaction without the enzyme; C. Rate of DNA cleavage 

catalyzed by Tba UDG. By using the single-exponential decay equation, the amount 

of remaining substrate was plotted as a function of time to yeild the best fit (the solid 

lines). Tba UDG cleaved the uracil-containing ssDNA (○) and dsDNA (□) at the rates 

of 0.25 ± 0.03 min-1 and 0.31 ± 0.04 min-1, respectively.

Fig. 5. Possible uracil recognition mechanism of Tba UDG. A. Interactions between 

amino acid residues and uracil of Tba UDG. The residues E42, N82, H164 and F55 in 

S. tokodaii UDG that correspond to the residues E118, N159, H216 and Y127 in Tba 
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UDG are depicted in blue, red, cyan and yellow sticks, respectively. The figure was 

adapted from the S. tokodaii UDG structure (PDB: 4zby) by Pymol [32]. Tba UDG 

residues are indicated in parentheses. The uracil is shown with dots. B. Purification of 

the wild-type, E118A and N159A Tba UDG mutant proteins. M: Protein marker.

Fig. 6. DNA cleavage assays of the wild-type and mutant Tba UDGs. DNA cleavage 

reactions of Tba UDG were performed using uracil-containing ssDNA and dsDNA as 

the substrates at 65oC for 10 min, respectively. Reaction products were analyzed by 

electrophoresis through running a 15% denaturing PAGE. A. Cleaving uracil-

containing ssDNA by the wild-type; B. Cleaving uracil-containing ssDNA by the 

E118A mutant; C. Cleaving uracil-containing ssDNA by the N159A mutant; D. 

Cleaving uracil-containing dsDNA by the wild type; E. Cleaving uracil-containing 

dsDNA by the E118A mutant; F. Cleaving uracil-containing dsDNA by the N159A 

mutant. CK: the reaction without the enzyme.

Fig. 7. The binding assays of the wild-type and mutant Tba UDGs. The uracil-

containing ssDNA and dsDNA (U:G) were employed as the substrates to examine the 

DNA-binding of the wild-type and mutant Tba UDGs. The wild-type and mutant Tba 

UDGs and DNA were incubated at 25°C for 10 min, and were run by electrophoresis 

on a 4% native polyacrylamide gel. A. Binding to uracil-containing ssDNA by the 

wild-type protein; B. Binding to uracil-containing ssDNA by the E118A mutant; C. 

Binding to uracil-containing ssDNA by the N159A mutant; D. Binding to uracil-

containing dsDNA by the wild-type protein; E. Binding to uracil-containing dsDNA 
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by the E118A mutant; F. Binding to uracil-containing dsDNA by the N159A mutant. 

CK: the binding assay without the enzyme.
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Table 1 Sequences of the oligonucleotides used to clone the Tba UDG gene and 

construct its mutants

Name Sequence (5′-3′)

Tba UDG F GGAATTCCATATGCTGCTGGAGTTTGAACGCC

Tba UDG R CCGCTCGAGTTTAGTAATATTTAAGCTTTTCC

E118A F AAAGGTTGTTTTGGTCGGGGCGGCTCCAGGAAGGAAAGGCT

E118A R AGCCTTTCCTTCCTGGAGCCGCCCCGACCAAAACAACCTTT

N159A F TTTTGTGTATATCACAGCTGTTGTAAAATGCAATC 

N159A R AGCTGTGATATACACAAAATCGGGGTTAATTCCGA 

The italic nucleotides represent restriction sites. 

The substitution bases are underlined.  
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 Table 2 Sequences of the oligonucleotides used in this work

Number Sequence (5′-3′)

1 CGAACTGCCTGGAATCCTGACGACUTGTAGCGAACGATCACCTCA

2 CGAACTGCCTGGAATCCTGACGACCTGTAGCGAACGATCACCTCA

3 CGAACTGCCTGGAATCCTGACGACGTGTAGCGAACGATCACCTCA

4 TGAGGTGATCGTTCGCTACAGGTCGTCAGGATTCCAGGCAGTTCG

5 TGAGGTGATCGTTCGCTACACGTCGTCAGGATTCCAGGCAGTTCG

6 TGAGGTGATCGTTCGCTACAAGTCGTCAGGATTCCAGGCAGTTCG

7 TGAGGTGATCGTTCGCTACATGTCGTCAGGATTCCAGGCAGTTCG

The underlined base is used to prepare normal and uracil-containing dsDNA. 
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Table 3 DNA substrates prepared with the oligonucleotides in Table 2

Strand labeling Combination Base pair

ssDNA Cy3 1* U/-

ssDNA Cy3 2* C/-

dsDNA Cy3 1*+4 U/G

dsDNA Cy3 1*+5 U/C

dsDNA Cy3 1*+6 U/A

dsDNA Cy3 1*+7 U/T

dsDNA Cy3 2*+4 C/G

dsDNA Cy3 3*+6 G/T 

The symbol “*” indicates the labeled strand.
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