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Abstract

Most of the vibration sources, which could be used for energy harvesting, are vertical and
very low frequency (e.g. human movement, vehicle transportation, etc. . . ). Under those
conditions and while considering the size constraints, usual vibration energy harvesters
(VEHs) underperform due to the combined effect of gravity, mechanical damping and the
necessity to be tuned to very low frequencies. In order to overcome these limitations, the
concept of High Static Low Dynamic (HSLD) stiffness is proposed and validated for VEHs.
To do so, a theoretical study is performed to optimize the electromagnetic structure and
design a folded-beam suspension of the moving mass allowing a low mechanical damping.
This leads to the design of an original VEH, which is experimentally characterized under
harmonic and white noise excitations. Compared to the literature, it demonstrated high
performances with up to 41.3 mWcm−3g−2 of normalized harvested power at an operating
low frequency of 5.3 Hz.

Keywords:
Vibration Energy Harvesting, High Static Low Dynamic Stiffness, Random Vibrations,
Electromagnetic

1. Introduction

The Internet of Things (IoT) is a term used to describe a cluster of technologies en-
abling machine to machine (M2M) communication and machine to human interactions
through the Internet [1]. One of these technologies is the autonomous wireless sensors
which can be scattered in unfriendly environments leading to communication, electronic
or mechanical issues. Power supply is one of the main concerns; due to their limited
lifespan and/or their inability to withstand extreme temperatures, usual batteries are
sometimes unable to satisfy the sensor specifications. A promising solution is to take
advantage of the ambient energy surrounding the sensor: energy harvesting. Among the
various exploitable sources [2], this study focuses on the mechanical energy of vibrations.

Vibration energy harvesting aims to turn mechanical vibration into usable electrical
power. Most of the vibration energy harvesters can be classified according to their trans-
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duction technique: piezoelectric [3], electrostatic [5] or electromagnetic [4] harvesters. The
latter enables a high harvested power density for macroscale VEHs with a long life-cycle.

Electromagnetic vibration energy harvesters are often based on a mechanical oscillator
responding to an excitation by magnifying the relative motion between a coil of conduc-
tive material and an arrangement of magnets. The coil is then immersed in a time varying
magnetic field creating an electromotive force (emf) according to Lenz law; electrical en-
ergy can then be extracted from the coil. One of the first prototype has been presented
by Beeby et al. [6] in 2007, it is based on an electromagnetic structure (magnets and
back iron) suspended by a cantilever beam and moving relatively to a Copper coil; with
a volume of 0.15 cm3, it is able to generate 46 µW from a 55 mgpeak vibration source at
53.2 Hz. Later, Zhu et al. [7] used the same concept with a Hallbach array to enhance
the electromechanical coupling; their device is larger (1.28 cm3) and scavenges 157 µW
from an excitation at 55 mgpeak, 68 Hz. Marin et al. [8] also based their vibration energy
harvester on suspended multiple coils and claim a 55 % increase of the harvested power
per unit of volume; their prototype (120 cm3) generates 19.3 mW when submitted to a
400 mgpeak harmonic vibration at 179 Hz. Cepnik et al. [9] proposed a direct computation
of the electromechanical coupling to efficiently design a tubular electromagnetic energy
harvester, it generates 20.6 mW (1 gpeak, 50 Hz). In 2009, Mann and Sims [10] introduced
the concept of magnetic levitation to functionalize a contact-less stiffness in an electrome-
chanical oscillator. This design has limited performances mainly due to dry friction. In
order to overcome this issue, a flexible guidance has been proposed by Mahmoudi et al.
[11] which enables a significant reduction of the mechanical damping. When considering
magnetic suspensions, Hadas et al. presented a series of devices [12, 13, 14] based on the
same design consisting in a rotating arm on which the electromagnetic structure is linked,
the stiffness is brought by repelling magnets. The performances of these harvesters have
been recently evaluated by Hadas et al. [15]; they respectively produce 6.7 mW (45 cm3,
420 mgpeak, 34 Hz) [12], 23 mW (84 cm3, 420 mgpeak, 17 Hz) [13] and 0.9 mW (111 cm3,
70 mgpeak, 28 Hz) [14]. Finally, we can mention the work done by Zeng and Khaligh [16]
who presented an efficient harvester that uses several industrial techniques (ball bearing,
permanent magnet motor like electromagnetic structure); the device (200 cm3) is able to
produce 498 mW from a vibration source of 370 mgpeak at 13 Hz.

The characteristics of vibration energy vary from one source to the other by their di-
rection, frequency range and nature (deterministic or stochastic). This study deals with
vertical very low frequency (1-4 Hz) stochastic excitations that can profusely be found in
the environment, especially during human movement [17, 18] or train/truck transporta-
tion [19, 20, 21]. Note that most of the real word vibration sources have a stochastic
nature. In addition, several recent works take the randomness of excitation into account
[22, 23, 24].

Numerous solutions have been proposed to efficiently scavenge very low frequency
vibration. Frequency-up conversion is a solution aiming to convert very low frequency vi-
bration to more convenient high frequency oscillations [25, 26]. The pendulum motion is
also proposed for energy harvesters to reach low frequencies. For instance, Jung et al. [27]
presented an energy harvester working at 1 Hz. Magnetic suspension of the VEH moving
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mass enabling low local stiffness is an efficient solution acclaimed by the literature. It
has been used by Saha et al. [28] to harvest the energy low frequency human movement.
Their 12.7 cm3 device generates 14.55 µW from a 420 mgpeak vibration source at 8 Hz,
although they identified human walking vibration source to be the most energetic at 2.75
Hz. Aiming to harvest the vibrations from a freight train (3-5 Hz), De Pasquale et al. [29]
also used magnetic suspension. The bulky device having a volume of approximately 1800
cm3 operating at 4.44 Hz produces 100 mW when mounted on a train with a velocity of
80 km/h. Other interesting works on the subject are presented by Munaz et al. [30] and
Apo and Priya [31] with prototypes both working at 6 Hz.

Among the above presented solutions, those using magnetic suspension to harvest low
frequency excitation are more efficient. However, as illustrated by the numerous presented
studies, the resonant frequency can hardly be decreased under 5 − 6 Hz. In fact, when
considering the action of gravity on the harvester (vertical excitation) and a limited vol-
ume, those solutions are inadequate. Indeed, the gravitational force implies a high static
displacement of the moving part of the harvester which requires a cumbersome device;
this explains the bulkiness of De Pasquale et al. [29] 4.4 Hz device. For example, the
static displacement would be 15.5 cm for a prototype with a linear stiffness tuned to 4 Hz
and 62.1 cm at 2 Hz. This problem has been mentioned by Maier et al. [32] when trying
to harvest energy from a container on a train; they choose to deal with the less energetic
horizontal vibration.

In this paper, we propose a nonlinear VEH based on the HSLD stiffness concept
which is commonly used in vibration isolation [33, 34]. It consists in adding a negative
stiffness component in parallel with the positive stiffness of a linear oscillator to lower
its resonant frequency while maintaining a small static displacement. First, a generic
electromagnetic VEH model is introduced and the linear case is analyzed to provide design
rules for optimal energy harvesting under random excitation. Then, based on the proposed
model, a comparison is carried out between several solutions to harvest vertical very low
frequency stochastic excitations under volume constraints. This comparison shows that
HSLD stiffness is the most performing solution. This concept has been implemented on
VEH prototypes using bistable buckled beams and magnetic repulsion, respectively. The
two prototypes have high performances with an operating frequency around 5.3 Hz and
normalized harvested powers of 16.5 and 41.3mWcm−3g−2, respectively.

2. Theoretical background

2.1. Generic model

In this paper, we propose a generic model of an electromagnetic vibration energy
harvester as illustrated in Figure 1. This model is established on a vertical damped single
degree of freedom oscillator under base excitation (mass m, elastic potential energy Uel,
damping coefficient cm). The displacement of the moving mass and the base respctively
to the reference frame are respectively called x and y and their difference is z = x − y.
g is the gravity constant. The electromechanical coupling is done by a coil (fixed to the
base) made out of conductive material and placed in the vicinity of the moving mass
assimilated to a magnet, the interaction between coil and magnet is then characterized
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Figure 1: Electromagnetic vibration energy harvester generic model

by the magnetic flux φm which depends on the relative displacement z and the current
flowing in the coil i.

The equation characterizing the displacement z of the mass is given as follows:

mz̈ + cmż +
dUel(z)

dz
− ∂φm

∂z
· i = −mg −mÿ (1)

where the dots describes the derivation with respect to time. The behavior of the vibration
energy harvester is governed by the following coupled equations:{

mz̈ + cmż + dUel(z)
dz

+ γni = −mg −mÿ
(n2R0 +Rl) · i = γnż

(2)

The parameters of Equation (2) are given in Appendix A.1. From this system, one
can obtain the main figure of interest which is the instantaneous harvested power P :

P = Rli
2 (3)

The advantage of the model presented above is its ability to describe the behavior of
a whole range of single degree of freedom electromagnetic vibration energy harvesters.
Actually, as shown in Figures 2a and 2b, the elastic potential energy Uel may describe
linear or nonlinear (hardening, multistable, asymmetric, HSLD, etc.) behavior and it can
even include stopper forces to represent the spatial limitations.

2.2. Linear harvester under random excitation

To use it as a reference and introduce some basic principles, it is interesting to deal
with the case of a linear harvester. The elastic potential energy Uel is then equal to 0.5kz2

where k is the linear stiffness coefficient.

Dealing with the linear harvester without displacement constraints, the action of grav-
ity only adds an offset z0 to the displacement. Introducing the resonant frequency ω0 of
the harvester which is equal to

√
k/m, allows to express z0:
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Figure 2: Elastic potential energy for several harvester types

z0 = − g

ω2
0

(4)

This expression shows that for high eigenfrequencies, the static displacement z0 is low
and the term −mg can be neglected in equation (2).

ÿ is defined as a stationary Gaussian noise characterized by its single-sided Power
Spectral Density (PSD) denoted by Sÿÿ which depends on the frequency ω. As we aim to
harvest the vibration energy during a relatively long period, the probabilistic steady-state
analysis is used. The main details and notations are given in Appendix A.2.

When impedance matching is satisfied, the mean harvested power P̃max can be ex-
pressed as follows:

P̃max =
πS0m

2
· ηwn (5)

Where ηwn is an efficiency coefficient which tends to 1 when γ2/R0cm increases; its
expression is given by:

ηwn =

γ2/R0cm

√
1 + γ2/R0cm(

1 +
√

1 + γ2/R0cm

)
·
(

1 + γ2/R0cm
+
√

1 + γ2/R0cm

) (6)

Equation (5) implies that the maximum power which can be harvested from a linear
harvester under white noise vibration equals πS0m/2. This result is in accordance with
the work done by Langley [23] who also demonstrated that this bound holds for any vi-
bration energy harvester.

In order to increase the harvested power, the moving mass m and ηwn must be maxi-
mized according to equation (5). Equation (6) shows that to maximize ηwn, the intrinsic
coupling γ must be as high as possible while maintaining small coil intrinsic resistance
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R0 and small mechanical damping cm. Those general design rules are used in the design
of the proposed prototype.

While γ2/R0cm is positive, we have Rlopt wn < Rlopt harm. This result is important since
it reflects the fact that optimizing a linear harvester to exploit random vibration leads
to the best compromise between maximum power and bandwidth size. When dealing
with large-band random excitation, and more particularly with white noise, the best
harvester will be the one having the biggest area under its frequency response in terms of
power which implies a compromise between maximum power and bandwidth. Rlopt wn <
Rlopt harm means that the global damping is higher in the case of white noise excitation
which implies that the bandwidth is larger. Therefore, it would be interesting to use
the mean power harvested (P̃max) under white noise normalized (i.e. ηwn) to compare
vibration energy harvesters because it takes the bandwidth into account and does not
depend on the operating frequency ω0; which is not the case of usual figure of merit [38].

3. Benefits of HSLD concept

3.1. HSLD stiffness

As expressed by equation (4), the vertical linear energy harvester implies a static dis-
placement due to gravity that increases its volume when tuned to very low frequencies
jeopardizing its performances when the displacement is limited (z0 equals 62.1 cm at 2
Hz). To overcome this issue, we propose to use the technique called HSLD stiffness. It
consists in adding a negative stiffness component in parallel with the positive stiffness of
a linear oscillator to lower its resonant frequency while maintaining a small static dis-
placement.

Using the generic model, this technique results in the mechanical stiffness defined by:

dUelhsld(z)

dz
= kz − kneg(z − z0) + k3(z − z0)3 (7)

In this equation, k and z0 are characteristics of the linear harvester, kneg is the nega-
tive stiffness component and k3 is the stiffening nonlinear term which makes the negative
stiffness realistic. Note that to ensure a monostable behavior, we have kneg < k.

Then, the static and dynamic stiffness are dissociated. In fact, static displacement
is unchanged (given by equation (4)) and the static stiffness is k. While the dynamic
stiffness, which is defined by the slope of the stiffness curve around z0, is equal to k−kneg.
This means that by choosing an initial linear harvester with high stiffness k, we obtain
a small static displacement z0; then the negative stiffness kneg is set in a way to tune
the harvester to the excitation frequency. The resonant frequency of the harvester with
HSLD stiffness is given by:

ω0hsld =

√
k − kneg

m
(8)
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3.2. Comparative study

To illustrate the benefit brought by HSLD stiffness in vibration energy harvesting, we
consider a design case for which the vibration source is assumed to be a vertical stationary
gaussian noise. The performances of four types of vibration energy harvesters under the
condition presented in Appendix B are compared.

For each type of harvester, the parameters of the elastic potential energy are bounded
to ensure that the equilibrium position lies in the displacement range. For each configura-
tion, the load resistance Rl maximizing the harvested power is computed using numerical
simulations for the design parameters listed in Table 1. Doing so, the optimal set of elastic
potential energy parameters for each type of harvester are obtained.

Table 1: Values of design parameters used for numerical simulations

Parameter Unit Value

m kg 40 · 10−3

k N/m 14 · 103

cm N.s/m 57 · 10−2

γ N/A 28 · 10−3

n turn 628
R0 µΩ 11

The case of the linear harvester without the constrained displacement (no stoppers) is
used as a reference, it is optimized when tuned to ωmax. The normalized power extracted
from these optimal configurations is given in Figure 3. From these results, the vibration
energy harvester with the HSLD stiffness has the best performances.

To comment those results, it is interesting to first discuss the effect of the stoppers
on the harvester’s response. Impacts of the moving mass on the stoppers, modeled by
stiff elastic contacts (equation (B.2)), imply a strong hardening of the response of the
harvester. Thus, the moving mass tends to capture high frequency energy (ω >> ωmax)
which is small in our example. Therefore, recurrent impacts with the stoppers decrease
the energy harvesting performances.

By minimizing the effect of gravity, the harvester with HSLD stiffness can be tuned to
ωmax (= ω0hsld) and oscillate with almost no contact with the stoppers (nonlinear stiffness
k3 must be null for optimal harvesting). Hence, it is able to harvest 80 % of the power
produced by the linear harvester without displacement constraints.

Showing good but poorest performances, the linear harvester has to be tuned to 1.2
ωmax to limit the hardening effect of stoppers despite the zmax offset added to the equi-
librium position to reflect design consideration.

The harvester with Duffing nonlinearity has low harvested power. In fact, its best
performance is when the nonlinearity is null and the oscillator is tuned to 1.6 ωmax. The
tuning frequency being too high, the vibration source is not correctly exploited.
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Figure 3: Normalized performances of the different types of harvester

Finally, the harvester with asymmetric stiffness implies a high local stiffness to have
an equilibrium position within the ±zmax range. At its best, it is tuned to 2 ωmax which
explains its very poor performances. For the four configurations, the optimal values of
tuning parameters are listed in Table 2.

Table 2: Optimal values of tuning parameters

No Stoppers ω0 = ωmax / Rl = 610Ω
Linear ω0 = 1.2ωmax / Rl = 170Ω
Duffing ω0 = 1.57ωmax / k3 = 0N.m−3 / Rl = 610Ω

Asymmetric zmag = −zmax−1mm / Fmag = 62mN.m2 / h = 4.5mm / Rl = 610Ω
HSLD ω0HSLD = ωmax / k3 = 0N.m−3 / Rl = 460Ω

This study shows that VEH based on HSLD concept offers high performances com-
pared to other solutions in the following conditions: the vibration source is vertical; the
VEH operates at very low frequency and the displacement of the moving mass is con-
strained.

4. Proposed design and experimental protocol

The last part of this paper aims to propose a novel VEH based on HSLD concept
and highlight its experimental performances. First, the introduced design rules are used
to obtain a high performances linear vibration energy harvester. Then the feasibility of
introducing HSLD stiffness to the linear VEH through bistable buckling beams and also
magnetic repulsion forces is demonstrated. The obtained results are in good agreement
with the theoretical model.

4.1. Linear harvester

If we refer to the design rules established in the theoretical part, apart from the maxi-
mization of the moving mass m and the tuning of the resonant frequency ω0, it is essential
to maximize the term γ2/R0cm. This term is split in two parts when adopting a two steps
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Figure 4: Fabricated linear prototype

design: the electromagnetic structure sets γ2/R0 and the adequate guidance/suspension
of the moving mass allows a low mechanical damping cm.

The first step concerns the multiobjective optimization of the electromagnetic struc-
ture, which is detailed in Appendix C. The two objective functions being conflictual (i.e.
when f1 is max, f2 is min and vis-versa), the final results of this optimization problem con-
tain 30 Pareto-optimal solutions given by the Pareto front in Figure C.3. One compromise
solution is γ2/R0=16 N2.W−1 and ∆zγ=9.1 mm, which is given in Table 3.

Table 3: Optimal design parameters (mm)

Haimant Hair hZ hY e
2.5 4.6 30 26 10

The second step of the design concerns the guidance/suspension of the moving mass
which generates both a pure vertical translation and a smallest mechanical damping cm.
The use of a folded-beam suspension, very popular in MEMS design [41, 42], is chosen
because it offers a pure translation and a linear stiffness, while maintaining a high life
cycle.

The linear vibration energy harvester prototype is given in Figure 4, it has an overall
volume of 250 cm3. The fabricated suspension is made out of one piece of Beryllium
Copper.

Using several characterization experiments including harmonic and white noise exci-
tation tests, the performances of this prototype have been identified. It displays a linear
behavior over a large dynamic range with a resonant frequency of 16.6 Hz. The prototype
demonstrates high performances with a low mechanical damping of 0.06 % enabling the
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Figure 5: Bistable buckled beam model

extraction of 1.49 mW mean power with a load resistance Rl = 1.1kΩ under a 7 mgpeak
harmonic excitation. When it is subjected to 4×10−5 g2.Hz−1 white noise excitation, it
shows an efficiency coefficient ηwn of 75 %, which corresponds to a harvested power of 323
µW with a load resistance Rl = 0.2kΩ.

Notably and as predicted by the model, the optimal value of Rl is lower when dealing
with white noise compared to a harmonic excitation which implies a larger harvesting
bandwidth.

4.2. Harvester with mechanical HSLD stiffness

As mentioned in the theoretical part, introducing HSLD stiffness in a vibration energy
harvester is an interesting alternative when dealing with very low frequency vertical vibra-
tion sources. The most popular method to do so is to use the negative stiffness brought
by bistable buckled beams [33]. As shown in Figure 5, a moving mass attached to the cen-
ter of a doubly-clamped buckled beam applies a force characterized by a negative stiffness.

To enhance the low frequency performances of the proposed linear prototype, we de-
signed and used two parallel buckled beams having a low mechanical stress for a given
negative stiffness. The design of those beams aims to obtain a negative stiffness kneg
as close as possible to the linear stiffness of the prototype; i.e. the resonance frequency
decreases drastically as described by equation (8).

The stiffness curve of the buckled beam is obtained using an approach similar to the
one proposed by Cazottes et al. [43]. As displayed in Figure 5, the beam with an initial
length l0 is compressed to a final length l under a load −Fneg applied at its center which
leads to a bending shape zp. The stiffness kneg is identified as the slope of the curve Fneg
vs zp(l/2).

Considering only the buckling modes 1 and 3, zp(x) is defined as follows:

zp(x) = a1

(
1− cos

(
2π
x

l

))
+ a3

(
1− cos

(
4π
x

l

))
(9)

For a given value of the load Fneg, the unknown coefficients a1 and a3 are identified
by the static equilibrium conditions of the beam given by:
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Figure 6: Linear prototype with mechanical HSLD stiffness

{
∂Utot
∂a1

(a1, a3) = 0,
∂Utot
∂a3

(a1, a3) = 0

}
(10)

Where Utot is the total energy of the beam involving compression, bending and external
force energies.

In order to validate the mechanical HSLD concept, four pairs of buckled beams made
out of 0.19 mm thick Beryllium Copper sheets have been fabricated. Three pairs have a
width of 13.2 mm with 2, 3 and 4 % compression ratio (l0− l)/l0, and one pair is 15.2 mm
wide and has a 3 % compression ratio. The proposed prototype containing the bistable
buckled beams is given in Figure 6, the coil and magnets are behind the folded beam
suspension.

Under a white noise excitation of 4×10−5 g2.Hz−1 and with a 50 Ω load resistance, the
experimental results of the four harvesters in terms of resonance frequency and PSD of
the generated voltage are illustrated in Table 4 and Figure 7, respectively. Remarkably,
the last harvester allows the decrease of the resonant frequency from 16.6Hz down to
5.3Hz with a negligible effect on the equilibrium position. Note that according to theory
[43], the negative stiffness does not change with compression rate (hence f0 neither); in
the presented results, the chaotic change of f0 is linked to the difficulty to experimentally
master the beams buckling.

Under a harmonic excitation of 3 mgpeak, the last harvester enables the extraction of
a mean power of 50.2 µW on a 340 Ω load resistance. Compared to the linear harvester,
the goal of the HSLD stifness is reached by decreasing the resonance frequency, but the
buckled beams increases the mechanical damping factor up to 1.40 %, which leads to a loss
of 26 % in the harvested power P̃max. This value of damping factor is obtained through
20 measurements of the logarithmic decrement when the moving mass is oscillating freely.
In order to overcome this issue, a harvester with magnetic HSLD stifness will be proposed
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Figure 7: Voltage PSD of the prototype with mechanical HSLD stiffness under white noise

Table 4: Resonant frequency of the different prototypes with mechanical HSLD stiffness

Beams Compression Measured
width rate f0

mm % Hz

Linear x 16.6
13.2 2 7.3
13.2 3 7.6
13.2 4 5.5
15.2 3 5.3

in the next section.

4.3. Harvester with magnetic HSLD stiffness

To overcome the disadvantages introduced by the previous design, we proposed the
use of the magnetic repulsion phenomenon to introduce the negative term in the HSLD
stiffness in the linear VEH shown in Figure 4. The proposed design is given in Figure 8; it
consists of 8 pairs of Neodymium repelling each other. It allows high repulsion force on a
sufficiently large amplitude range; the tuning variable of the design is the gap g between
the chosen magnets.

The proposed prototype, given in Figure 9, is submitted to white noise excitation
(4×10−5 g2.Hz−1). The PSD of the voltage measured on a 50 Ω load resistance is given in
Figure 10 for several values of the gap g. It is shown that a significant decrease of the res-
onance frequency is reached, thanks to the magnetic HSLD stiffness. In fact, the smaller
the gap g is, the stronger is the negative stiffness and the lower is the resonance frequency
f0. This is depicted in Figure 11 by the relationship between f0 and g. The smallest
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Figure 8: Magnetic negative stiffness design

measured resonance frequency is 5.3 Hz, for g = 13.6mm. By extrapoling the measured
points, we expect to reach much lower frequencies (e.g. f0 = 2Hz at g = 11mm). The res-
onance frequency can therefore be tuned by varying the gap between the magnets which
is a significant advantage of the magnetic HSLD stiffness.

Under a harmonic excitation of 3 mgpeak, the harvester with a resonance frequency
f0 = 5.3Hz, a mechanical damping factor of 0.78 % and an efficiency coefficient ηwn = 59%
enables the extraction of a mean power of 130 µW on a 340 Ω load resistance.

5. Conclusion

An original high performances vibration energy harvester has been designed, fabricated
and experimentally characterized under harmonic and white noise excitations. This VEH
is dedicated to vertical vibrations at very low frequencies.

A generic model for a class of electromagnetic vibration energy harvesters has been
introduced and used to derive design rules to enhance the performances of the VEH. This
design includes a multiobjective optimization of the electromagnetic structure and the
use of a folded-beam suspension of the moving mass allowing a low mechanical damping.
For very low frequency vibration sources and to minimize the effect of gravity, we im-
plemented an adequate suspension by exploiting the High Static Low Dynamic (HSLD)
stiffness concept. The model permitted to highlight the interest of this concept and an
experimental protocol has been proposed to validate the design rules on two prototypes
using mechanical and magnetic HSLD stiffness respectively. These prototypes have been
tested and their performances are summarized in Table 5 and compared to the literature in
Figure 12. They display high performances and stands between the best vibration energy
harvesters. Nevertheless, the prototype using magnetic HSLD stiffness is more promising
than the one using buckled beams HSLD stiffness since it has a better tunability and it
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Figure 9: Linear prototype with magnetic HSLD stiffness
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Table 5: Performances of the proposed harvesters under harmonic excitation

Prototype f0 Acceleration Normalized power

Hz mgpeak mWcm−3g−2

Mechanical HSLD 5.3 3 16.5
Magnetic HSLD 5.3 3 41.3

offers high performances with up to 41.3mWcm−3g−2 of normalized harvested power at
an operating low frequency of 5.3Hz.
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the most performant are [29] at 4.2 Hz, [30] at 6 Hz, [31] at 12 Hz and [6] at 53.2 Hz
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Appendix A.

Appendix A.1.

According to Faraday’s law of induction, a voltage called electromotive force ε appears
at the coil when the magnetic flux changes (ε = −dφm(z, i)/dt), it is expressed by the
equation:
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ε = −

(
∂φm
∂z

dz

dt
+
∂φm
∂i

di

dt

)
(A.1)

In equation (A.1), the term ∂φm/∂i is often considered as a constant L and called
inductance. The coil has its own internal resistance Rint and it is loaded with a resistance
Rl. Then, through Kirchhoff’s voltage law, the equation describing the electrical behavior
of the device is:

−

(
∂φm
∂z

dz

dt
+ L

di

dt

)
−Rint · i−Rl · i = 0 (A.2)

The theoretical analysis of the model involves two main usual approximations. First,
as its influence when working in the low frequency domain is small, the inductance L is
neglected. Then, the coupling function −∂φm/∂z is considered constant and proportional
to the number of turns n in the coil; it is therefore equal to γn where γ is called intrinsic
coupling (refered as “Bl” in simple cases). Secondly, for a coil with a fixed volume, the
internal resistance Rint is proportional to n2 [35]; hence, we have Rint = n2R0 with R0

the intrinsic resistance of the coil.

Appendix A.2.

The PSD of the displacement Szz can then be expressed as a function of Sÿÿ through
the mechanical transfer function of the VEH denoted by HV EH :

Szz(ω) = |HV EH(jω)|2Sÿÿ(ω) (A.3)

where

HV EH(jω) =
−1

ω2 − ω2
0 + 2jξω0

(A.4)

The global damping rate ξ is the sum of mechanical and electrical damping rates which
is given by:

ξ =
cm

2
√
km

+

(γn)2

n2R0+Rl

2
√
km

(A.5)

The mean harvested power P̃ can be expressed as:

P̃ = Rl ·
(

γn

(n2R0 +Rl)
żRMS

)2

(A.6)

The mean harvested power P̃ can then be computed for any stationary Gaussian noise
excitation. To obtain reference analytical expression, we use the white noise approxima-
tion which holds when the harvester has low damping and is tuned to the most energetic
frequency of the noise. The excitation PSD is then constant such as Sÿÿ(ω) = Sÿÿmax = S0

and żRMS is expressed by [36]:
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Figure B.1: Normalized Power Spectral Density of the vibration source

żRMS =
πS0

4ξω0

(A.7)

Combining equations (A.6) and (A.7) allows us to obtain the expression of the mean
harvested power. This expression is maximized for a specific value of the resistive load
Rl: this is called impedance matching; the expression of this optimal value in our case is
derived:

Rlopt wn = n2R0

√
1 +

γ2

R0cm
(A.8)

According to Stephen [37], impedance matching under harmonic excitation is given
by:

Rlopt harm = n2R0

(
1 +

γ2

R0cm

)
(A.9)

Appendix B.

The excitation PSD given in Figure B.1 has a maximum Smax at the frequency ωmax.
The displacement of the moving mass is constrained between ±zmax which is defined
by equation (B.1). This is modeled by adding the elastic potential energy of stoppers
(equation (B.2)) to the actual elastic potential energy of the harvester. The stiffness
coefficient of the stoppers kstopper is chosen to be high enough to constraint the oscillations
of the mass.

zmax =
1

2
× g

ω2
max

(B.1)
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dUelstopper(z)

dz
=


kstopper(z + zmax) ifz ≤ −zmax
0 if − zmax < z < zmax

kstopper(z − zmax) ifz ≥ zmax

(B.2)

Apart from the load resistance Rl and the elastic potential energy Uel, the value of
the parameters of the model (equation (2)) are set according to a prototype presented by
Drezet and Rios Quesada [39].

The four types of VEHs are differentiated by their elastic potential energy: linear,
Duffing with hardening nonlinearity, with asymmetric stiffness and with HSLD stiffness.
An example of embodiment for each type is given in Figure B.2.

The elastic potential energy of the linear harvester is given by:

dUellin(z)

dz
= k(z − zmax) (B.3)

Note that to avoid the equilibrium position to be out of range, we consider that the mass
is suspended by the bottom, which implies that the spring is at rest at z = zmax.

For the harvester with hardening Duffing nonlinearity, the elastic potential energy is
defined by:

dUelduff (z)

dz
= kz + k3z

3 (B.4)

Asymmetric stiffness is based on suspending the mass only by a magnetic repulsion at
the bottom. The elastic potential energy can then be defined by:

dUelasym(z)

dz
= −F

(
1

(z − zmag)2
+

1

(z − zmag + 2h)2
− 2

(z − zmag + h)2

)
(B.5)

where F is a design parameter; h and zmag are defined in Figure B.2c.
The elastic potential energy of the harvester with HSLD stiffness is given by:

dUelhsld(z)

dz
= kz − kneg(z − z0) + k3(z − z0)3 (B.6)

Appendix C.

The chosen electromagnetic structure is called ”Magnet across coil with back iron”
(Figure C.1) and identified by Spreeman [4] as one of the most fitted for vibration energy
harvesting. It consists in moving a coil of conducting material between two pair of mag-
nets disposed in a way to attract each other; adding back iron on the magnets strengthen
the coupling and prevents electromagnetic flux leakage.

To design the electromagnetic structure, we adopt the notations presented in Fig-
ure C.2, the chosen coil is square shaped.

22



(a) Linear

(b) Duffing with hardening nonlinearity

(c) asymmetric

(d) With HSLD stiffness

Figure B.2: Example of embodiement for the four types of harvester
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Figure C.1: ”Magnet across coil with back iron” structure [4]

(a) Coil

(b) Electromagnetic structure

Figure C.2: Model of the electromagnetic structure
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Using these notations, one can extract the expression of the intrinsic resistance of the
coil as follows:

R0 =
ρ

σ

2(hY + hZ − 2e)

ehX
(C.1)

Where ρ is the resistivity of the coil’s material and σ is the filling factor of the coil.

Also, by integrating along the Z axis the component BX of the magnetic field vector
−→
B ,

one can obtain the expression of the intrinsic coupling as a function of the displacement
z as follows:

γ(z) = HY
d

dz

(∫ HZ
2

+z

−HZ
2

+z

BX(h,H,Hmagnet, Hair, Hiron)dh

)
(C.2)

Where BX function is obtained through magnetostatic finite element simulations
(FEMM software) and γ is assumed to be constant over the largest z range.

In order to design the electromagnetic structure, a multiobjective optimization is re-
quired: the first objective function to be maximized is f1 = γ2(z=0)/R0; the second objective
function to be maximized is f2 = ∆zγ; The latter is defined as half the range of z on which
the intrinsic coupling is over 80 % of its maximal value.

The commonly used materials are Copper for coils and Neodymium for magnets.
Consequently, the only variables of the problems are the geometrical dimensions of the
structure x = [H Haimant Hair Hfer hX hY hZ e]T under given fabrication constraints.
Assuming H = 50mm, hX = 2(Hair − 1mm) and Hfer = 11mm − Hair − Haimant, the
multiobjective optimization problem is then expressed as follows:



Max
x

f = (f1, f2)


1

4.5

10

10

2

mm ≤


Haimant

Hair

hZ

hY

e

 ≤


3

5.5

40

28

10

mm

(C.3)

Where f1(x) = γ2/R0, f2(x) = ∆zγ and x = [Haimant Hair hZ hY e]t.
To solve this problem, we used the Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) [40]; the initial population is uniformly distributed over the variable range and counts
90 samples, the optimization process has 176 generations.
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Figure C.3: Pareto-optimal solutions of the multiobjective optimization problem written in equation
(C.3)
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