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Abstract 
This paper starts with the presentation of the shift cell technique, which allows the description of the 

propagation of all existing waves starting from the unit cell through a quadratic eigenvalue problem. Its 

major advantage is that it allows the implementation of any frequency dependence and damping in the 

problem: this is a fundamental advantage when computing the dispersion curves of a porous material 

modeled as an equivalent fluid. The second part of this work concerns the investigation of the link between 

the dispersion curves and the acoustic properties of the material. Deriving the equivalent acoustic properties 

of the unit cell from its dispersion characteristics, indeed, could be a very efficient approach for designing 

the sound packages with a simple a preliminary eigenvalue analysis. 

List of symbols 
• 𝜔 = angular frequency; 

• 𝑥, 𝑦, 𝑧 = space variables; 

• 𝑗 = imaginary unit; 

• 𝑝0 = amplitude of the excitation mode (incident pressure); 

• 𝜌0 = density of the interstitial fluid (air); 

• 𝑐0 = sound speed in the interstitial fluid (air); 

• 𝑍0 = characteristic impedance of the interstitial fluid (air); 

• 𝑘0 = wave number in the interstitial fluid (air); 

• 𝜌 = density of the material; 

• 𝑍𝑐 = characteristic impedance of the material; 

• 𝑘 = wave number in the material; 

• 𝑝 = pressure; 

• 𝐾 = bulk modulus; 

• 𝜃, 𝜙 = angles of incidence; 

• 𝑝∗ = 𝑐𝑜𝑛𝑗(𝑝); 

• 𝛺 = poro-elastic volume; 

• 𝛤 = domain boundary; 

• 𝐼 = flow of energy; 

• 𝐸 = total energy; 

• 𝐸𝑘 = kinetic energy; 
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• 𝐸𝑝 = potential energy; 

• 𝑣 = istantaneous local velocity; 

• 𝑣𝐸 = energy transport speed; 

• 𝐶𝑔 = group velocity; 

• 𝑠 = side length; 

• 𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = incident power; 

• 𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 = transmitted power; 

• 𝑆 = surface interested by incident pressure; 

• 𝑑 = thickness; 

• 𝜏∞ = transmission coefficient; 

• 𝑇𝐿 = transmission loss. 

1 Introduction 

The design based on the inclusion of vibroacoustic design rules at early stage of products development, 

through the use of porous media with periodic inclusions which exhibit proper dynamic filtering effects, is 

a powerful strategy for the achievement of lightweight sound packages and represents a convenient solution 

for manufacturing aspects. 

The main advantage of designing sound packages with periodic arrangements is that they can provide a 

combination of absorption effects, resonance effects and wave interferences effects. This offers different 

applications in transportation (aeronautics, space, automotive, railway), energy and civil engineering 

sectors, where both weight and space, as well as vibroacoustic integrity and comfort, still remain as critical 

issues. 

Indeed, although porous materials are commonly used for vibroacoustic applications, they suffer from a lack 

of absorption at low frequencies compared to their efficiency at higher ones. This difficulty is usually 

overcome by multi-layering. However, while reducing the impedance mismatch at the air-material interface, 

the efficiency of such devices relies on the allowable thickness. Instead, a more efficient way to enhance the 

low frequency performances of sound packages consists in embedding periodic inclusions in a porous layer. 

If the radius of these periodic inclusions is comparable with the acoustic wavelength, then an increase of the 

acoustical performances can be observed. 

In order to develop efficient numerical techniques to handle the problem, the shift cell operator technique 

here is presented, providing details on its implementation [1]. Essentially, the shift cell technique consists 

of a reformulation of the Floquet-Bloch partial differential problem, in which the phase shift of the boundary 

conditions related to wave propagation is integrated into the derivation operator. Consequently, the 

periodicity is included in the overall behavior of the structure while the continuity conditions are imposed 

at the edges of the unit cell. Its major advantage is that it allows to implement any frequency dependence 

and damping in the problem; this is essential, if one needs to compute the dispersion curves of a porous 

material modelled as an equivalent fluid. In detail, it allows the description of the propagation of all existing 

waves from the description of the unit cell through the resolution of a quadratic eigenvalue problem. This is 

done through the 𝑘(𝜔) method, that allows to compute dispersion curves for frequency-dependent problems, 

instead of using the 𝜔(𝑘) one that leads to non-linear eigenvalue problems. 

A validation of the implementation of this model in order to handle porous materials with periodic 

inclusions, together with a detailed explication of the meaning and the behavior of band gaps, can be found 

in literature [2]. 

Dispersion curves and acoustical characteristics for different numerical test cases are shown. In particular, 

they are obtained for a 3D melamine unit cell, with and without inclusion. The behavior of this porous 

material is described by JCA model in the following pages, but one can identically use any other equivalent 

fluid model. 
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The second part of this work concerns the investigation of the link between the dispersion curves and the 

acoustic properties of the material. In particular it’s demonstrated that, starting from the wave numbers 

obtained as an output from the quadratic eigenvalue problem, it’s possible to compute an equivalent 

transmission loss curve that, if compared to those obtained using classical methods, shows a very good 

agreement. Deriving the equivalent acoustic properties of the unit cell from its dispersion characteristics, 

indeed, could be a very efficient approach for designing sound packages with a simple a preliminary 

eigenvalue analysis. 

All the results shown are related to a 3D melamine unit cell constituted by a cube with side equal to 2 [cm] 

(homogeneous case) and with a 0.5 [cm] radius cylindrical rigid inclusion (case with inclusion). The 

analyses are carried out in the frequency range 0 – 17000 [Hz]; this range of frequencies is interesting for 

acoustic applications and assures that the wavelength is much larger than the pore size, which is a necessary 

condition in order to use equivalent fluid models. Dispersion diagrams are computed along the direction that 

corresponds to 𝜙 =  0° and 𝜃 =  0° in the first Brillouin zone. 

2 Shift cell operator technique 

Considering a porous layer as an equivalent fluid [3], the starting equation for developing the associated 

shift cell formulation is 

 (∇ + 𝑗𝒌)𝑇 (
1

𝜌
(∇ + 𝑗𝒌)𝒑) = −

𝜔2

𝐾
𝒑, (1) 

with 𝜌 = 𝜌(𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝜔) and 𝐾 = 𝐾(𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝜔).  

 

Figure 1: Reciprocal lattice vector in a 3D unitary cell [4]. 

Prel
im

ina
ry

pro
ce

ed
ing

s

IS
M

A-U
SD

20
18

VIBRO-ACOUSTIC OF PERIODIC MEDIA 4615



By further developing the latter equation and considering 𝒑 = 𝑝𝑒𝑗𝒌𝒙 where 𝒌, for a 3D application (Figure 

1), is 

 𝒌 = 𝑘𝝓, 𝝓 = (
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃

), (2) 

one can obtain 

 ∇𝑇 ∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑗𝒌𝑇 (2

∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑝𝑒𝑗𝒌𝒙∇

1

𝜌
) − 𝒌𝑇𝒌

𝑝𝑒𝑗𝒌𝒙

𝜌
+

𝜔2

𝐾
𝑝𝑒𝑗𝒌𝒙 = 0. (3) 

2.1 Weak formulation 

The weak formulation is calculated from the following equation, where �̃� is a weighting test function: 

 ∫ �̃�𝑒−𝑗𝒌𝑇𝒙 (∇𝑇 ∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑗𝒌𝑇 (2

∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑝𝑒𝑗𝒌𝒙∇

1

𝜌
) − 𝒌𝑇𝒌

𝑝𝑒𝑗𝒌𝒙

𝜌
+

𝜔2

𝐾
𝑝𝑒𝑗𝒌𝒙 )

𝛺
𝑑𝛺 = 0 (4) 

 ∫ (
1

𝜌
∇𝑇�̃�∇𝑝 − 𝑗𝒌𝑇 2

𝜌
(�̃�∇𝑝 − ∇�̃�𝑝) + 𝒌𝑇𝒌

4

𝜌
�̃�𝑝 − 𝜔2 1

𝐾
�̃�𝑝) 𝑑𝛺

𝛺
= 0 (5) 

Considering that 𝝋 is the eigenvector, the equation can be written in its matrix form 

 (𝑲 + 𝑗𝑘𝑳 + 𝑘2𝑯 − 𝜔2𝑴)𝝋 = 0 (6) 

with the following matrices: 

• 𝑲 → ∫
1

𝜌
∇�̃�∇𝑝

𝛺
𝑑𝛺; 

• 𝑳 → ∫
2

𝜌
(∇�̃�𝑝 − �̃�∇𝑝)

𝛺
𝑑𝛺; 

• 𝑯 → ∫
4

𝜌
�̃�𝑝

𝛺
𝑑𝛺; 

• 𝑴 → ∫
1

𝐾
�̃�𝑝

𝛺
𝑑𝛺. 

2.2 Right and left eigenvalue problems 

The latter formulation leads to the following right eigenvalue problem: 

 [(𝑲 − 𝜔2𝑴) + 𝜆𝑖𝑳 − 𝜆𝑖
2𝑯]𝝋𝑖

𝑟 = 0 (7) 

where 𝜆𝑖 = 𝑗𝑘𝑖 is the i-th eigenvalue, 𝜑𝑖
𝑟 denotes the right eigenvector associated to 𝜆𝑖, 𝑴 and 𝑲 are 

respectively the standard symmetric definite mass and symmetric semi-definite stiffness matrices, 𝑳 is a 

skew-symmetric matrix and 𝑯 is a symmetric semi-definite positive matrix. In this formulation, all matrices 

are frequency dependent. 

For frequency-dependent systems, the estimation of the group velocity is not trivial. The equation (7) can 

be rewritten as 

 𝑨1(𝜔)𝝍𝑖
𝑟 = 𝜆𝑖𝑨2(𝜔)𝝍𝑖

𝑟  (8) 

with 

• 𝑨1(𝜔) = (
0 𝑰𝒅

𝑲 − 𝜔2𝑴 𝑳
); 

• 𝑨2(𝜔) = (
𝑰𝒅 0
0 𝑯

); 

• 𝝍𝑖
𝑟 = (

𝝋𝑖
𝑟

𝜆𝑖𝝋𝑖
𝑟). 
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where 𝑰𝒅 is the identity matrix. 

Conversely, a left-eigenvector for the same eigenvalue satisfies 

 𝝍𝑖
𝑙𝑇

𝑨1(𝜔) = 𝜆𝑖𝝍𝑖
𝑙𝑇

𝑨2(𝜔), with 𝝍𝑖
𝑙 = (

𝑨
𝑩

). (9) 

 {
𝑩 = 𝝋−𝑖

𝑟 = 𝝋𝑖
𝑙

𝑨𝑇 = 𝜆𝑖𝝋−𝑖
𝑟 𝑇

𝑯 − 𝝋−𝑖
𝑟 𝑇

𝑳 = 𝜆𝑖𝝋𝑖
𝑙𝑇

𝑯 − 𝝋𝑖
𝑙𝑇

𝑳
 (10) 

In the resolution of the right eigenvalue problem, the 𝑖-th mode (𝑖 𝜖 𝑁+) is defined by its 𝜆𝑖 ≥ 0 and its 

eigenvector 𝝋𝑖
𝑟. For each mode 𝑖, a mode −𝑖 is associated with 𝜆−𝑖 ≤ 0 such that 𝜆−𝑖 = −𝜆𝑖 and 𝝋−𝑖

𝑟 = 𝝋𝑖
𝑙. 

by solving the right eigenvalue problem, the left solution is found too [4]. 

After some steps, one obtains the expression of the group slowness using 𝜆𝑖 = 𝑗𝑘𝑖 : 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

𝝋𝑖
𝑙𝑇

[−2𝜔𝑴+
𝜕𝑲

𝜕𝜔
+𝜆𝑖

𝜕𝑳

𝜕𝜔
−𝜆𝑖

2𝜕𝑯

𝜕𝜔
]𝝋𝑖

𝑟

𝝋𝑖
𝑙𝑇

[−𝑳+2𝜆𝑖𝑯]𝝋𝑖
𝑟

 (11) 

The group velocity is the inverse of the group slowness [5]: 

 𝐶𝑔 =
𝜕𝜔

𝜕𝑘𝑖
=

𝑗𝝋𝑖
𝑙𝑇

[−𝑳+2𝜆𝑖𝑯]𝝋𝑖
𝑟

𝝋𝑖
𝑙𝑇

[−2𝜔𝑴+
𝜕𝑲

𝜕𝜔
+𝜆𝑖

𝜕𝑳

𝜕𝜔
−𝜆𝑖

2𝜕𝑯

𝜕𝜔
]𝝋𝑖

𝑟
 (12) 

2.3 Classifying criteria to distinguish propagative and evanescent waves 

Applying the shift cell operator technique to a sample modelled by an equivalent fluid, all the wave numbers 

are complex; consequently, there are not purely propagative solutions anymore. All waves are evanescent, 

with an evanescence rate that may be used to classify the branches in two categories: those that will be 

rapidly damped and those that will be slowly damped in space, with the latter that could be classified as 

propagative ones. 

The distinction between the two is difficult and thus some classifying criteria are required: 

1. the ratio between the real and the imaginary parts of every wavenumber → 𝐶1 =

𝑟𝑒𝑎𝑙(𝑘)/𝑖𝑚𝑎𝑔(𝑘); 

2. the ratio between the real parts of the energy transport speed 𝑣𝐸  =  𝐼/𝐸 and the goup velocity 𝐶𝑔, 

where 𝐼 is the flow of energy and 𝐸 = 𝐸𝑘 + 𝐸𝑝 = ∫
1

2
(𝜌𝑣2 +

𝑝2

𝜌𝑐2) 𝑑𝛺
𝛺

 is the total energy → 

𝐶2 = 𝑟𝑒𝑎𝑙(𝑣𝐸)/𝑟𝑒𝑎𝑙(𝐶𝑔). 

Only the waves corresponding to 𝐶1  >  𝜏1 and 𝐶2  >  𝜏2 are considered as propagative ones. In practice, 

for the purpose of the following analysis, the thresholds 𝜏 are chosen such as 𝜏1 = 1 and 𝜏2 = 0.7. This is 

an arbitrary choice and these values are not meant to be considered as universal: for each different case, one 

may need to tune them [4]. In order to better appreciate the behavior of each branch in the frequency range 

of study in the following plots, dispersion and 𝐶𝑔 curves are also colorized with a scale of colors that 

indicates the level of “propagativeness”: the value 0 means that the wave at that specific frequency is totally 

spatially attenuated, while the value 1 represents a properly propagative behavior. 

3 Calculation of group velocity and branch-tracking algorithm 

In a dispersion diagram there is a set of points, forming branches, that one may wish to connect and follow 

according to the nature of each branch. Some solutions are proposed in literature, such as a MAC sorting 

criterion [6], but these methods require to store many data at every iteration. Instead, the group velocity 

constitutes a relevant indicator in order to follow the branches from a point of calculation to the next one 

[4]. The proposed technique consists in comparing 𝐶𝑔𝑖
(𝑓) and 𝑪𝒈(𝑓 + ∆𝑓): from the group velocity 
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associated to a starting point, the routine compares the initial 𝐶𝑔𝑖
 with all the group velocities at the next 

frequency step and a minimization is made in order to identify the point at 𝑓 + ∆𝑓 to which is associated 

the closest value of 𝐶𝑔. This point is defined as the new starting one and so on, step by step, the branch is 

identified. 

 

 

Figure 2: Evanescent and propagative (on the top) and branch-tracked (on the bottom) group velocity 

diagrams, for the case of a homogeneous unit cell. 
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Figure 3: Evanescent and propagative (on the top) and branch-tracked (on the bottom) group velocity 

diagrams, for the case of an unit cell with an inclusion. 

4 Dispersion curves 

For each dispersion curve plot, three eigenvectors are reported in terms of acoustic pressure field (Figures 

5 and 7). Only the real parts are shown, the imaginary parts being null. They are all extracted at the frequency 

of 8500 [Hz] (half of the range) and along the direction that corresponds to 𝜃 = 𝜙 =  0° in the first Brillouin 

zone. Their branches are ordered as: at increasing frequencies, 1st is represented by the first real part that 

reaches the unitary value, 2nd is the second and so on. The fundamental acoustic parameters of the tested 

porous material have been experimentally determined in GAUS laboratory at University of Sherbrooke 

(Canada) and are: porosity = 0.99, tortuosity = 1.02, resistivity = 8430 [
𝑃𝑎∗𝑠

𝑚2 ], viscous characteristic 

length = 0.138 [𝑚𝑚], thermal characteristic length = 0.154 [𝑚𝑚], density = 5.73 [
𝑘𝑔

𝑚3]. 
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Figure 4: Evanescent and propagative (on the left) and branch-tracked (on the right) dispersion curves for 

a homogeneous melamine unit cell. 

 

 
Figure 5: From left to right, real parts of the 1st, 2nd and 3rd branch eigenvectors for the homogeneous 

case. 
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Figure 6: Evanescent and propagative (on the left) and branch-tracked (on the right) dispersion curves for 

a melamine unit cell with an inclusion. 

 

Figure 7: From left to right, real parts of the 1st, 2nd and 3rd branch eigenvectors for the case with an 

inclusion. 

One may notice that there are some discontinuous curves: this is probably due to the fact that, as said, all 

waves are evanescent with different rates: a non-perfect tuning of the sorting criteria could lead to lines that 

disappears and reappears on the plots. 
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5 Transmission loss 

While dispersion curves are computed for an infinite repetition of unit cells, transmission loss is calculated 

for a finite repetition of 5 unit cells, using the same domain and boundary conditions of the infinite periodic 

system. This, in a first approximation, allows to compare the dispersion relations and the acoustical 

characteristics of the equivalent finite medium. Indeed, a further increasing in the number of repeated cells 

would lead to a change in the mean value of absorption coefficient and transmission loss respectively below 

2% and 20% respect to the usage of a repetition of 5 unit cells. 

The transmission loss is numerically computed as 

 𝑇𝐿 = 10 log10
𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
 (13) 

where 𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 and 𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 represent the incident and transmitted power, respectively.  For our plane 

wave configuration, the latter is compared, for homogeneous flat configurations,  with the Transfer matrix 

method [7]: 

 𝑇𝐿 = 10 log (
1

4
|𝑇11 +

𝑇12

𝜌0𝑐0
+ 𝜌0𝑐0𝑇21 + 𝑇22|

2
), (14) 

 with [
𝑇11 𝑇12

𝑇21 𝑇22
] = [

cos(𝑘𝑑) 𝑗 sin(𝑘𝑑) 𝑍c
𝑗 sin(𝑘𝑑)

𝑍c
cos(𝑘𝑑)

] (15) 

For the inhomogeneous configuration, the validation is obtained using an implementation of the plane wave 

forced response of the periodic cell accounting for fluid loading [8]. 

 

Figure 8: Transmission loss computed for a 3D repetition of 5 melamine unit cells. 

Concerning the case with the inclusion, one can notice that an improvement of transmission loss properties, 

respect to the homogeneous case, is shown at all frequencies, in particular in correspondence of a peak at a 

frequency around 7 [kHz], in which it is equal to about 15 [dB], and at high frequencies. Note that, for the 

sake of comparison with the related dispersion curves, only their 1st branch is meaningful due to the fact 

that the correspondent mode is the only one that is actually excited during these transmission loss 

simulations. Indeed, the improvement peak exactly corresponds to the frequency range of the 1st branch of 

dispersion curves in which the wave is strongly spatially attenuated. 

This is definitely encouraging, for the purpose of deriving more equivalent acoustic properties of the unit 

cell from its dispersion characteristics. 
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6 Conclusions 

The shift cell technique has been presented, providing details on its numerical formulation. It has been 

necessary to introduce some classifying criteria and, consequently, the derivation of the group velocity 

expression. A branch-tracking criterion has been described, in order to clearly identify each branch in the 

dispersion diagram. Dispersion curves and transmission loss plots have then been computed for a JCA-

modelled melamine unit cell. An equivalent transmission loss curve, obtained starting from the eigenvalues, 

has been compared to those obtained with classical methods, showing a very good agreement. Further 

developments of the work will include an estimation of the computational efficiency between the shift cell 

and the classical Floquet-Bloch approaches, as well as the implementation of the shift cell technique using 

Biot model. 
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