
HAL Id: hal-02129941
https://hal.science/hal-02129941

Submitted on 23 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermal flows in fractured porous media
Isabelle Gruais, Dan Poliševski

To cite this version:
Isabelle Gruais, Dan Poliševski. Thermal flows in fractured porous media. ESAIM: Mathematical
Modelling and Numerical Analysis, 2021, 55 (3), pp.789-805. �10.1051/m2an/2020087�. �hal-02129941�

https://hal.science/hal-02129941
https://hal.archives-ouvertes.fr


Thermal flows in fractured porous media

Thermal flows in fractured porous media

Isabelle Gruais and Dan Polǐsevski

Abstract. We consider the thermal flow problem occuring in a fractured porous medium. The
incompressible filtration flow in the porous matrix and the viscous flow in the fractures obey the
Boussinesq approximation of the Darcy-Forchheimer law and respectively, the Stokes system. They
are coupled by the Saffman’s variant of the Beavers-Joseph condition. Existence and uniqueness
properties are presented. In the ε-periodic framework, the two-scale homogenized system which
governs the asymptotic behaviour (when ε → 0) is found.
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1. Introduction

Among the issues raised by the heat and mass transfer in fractured porous media, the requirement
for further construction and characterization of macroscopic models is of special interest. It is a
difficult task because the two components have highly constrasting behaviours. The models of flows
through fractured porous media (see [5], [6], [12], [27] and [29]) are usually obtained by asymptotic
methods, from the alteration of a homogeneous porous medium by a distribution of microscopic
fractures/fissures. In this context, the periodic homogenization, based on the assumption of the ε-
periodicity of the structure properties, is an important modelling tool for a fractured porous media
process. Although it looks like an idealistic assumption, it usually authorizes a rigorous approach,
yielding many of the properties which must be taken into account at macroscopic level.

We consider that the heat and mass transfer takes place in a periodically structured domain
consisting of two interwoven regions, separated by an interface. It was not until the non-connectedness
assumption could be dropped out that the homogenization of phenomena in fractured media could be
studied rigorously (see [2], [25] and [26]). As the process at the microscopic scale takes place under
the assumption of ε-periodicity, the study of its asymptotic behaviour (when ε → 0) is amenable to
the procedures of the homogenization theory. We improve the properties of the ε-periodic biphasic
structure introduced in [26], by attaching the so-called ε-domes. They are placed in the last entire
ε-cells contained in the domain, near its boundary, and they complete the ε-periodic interface such
that it can be as smooth as it is needed, all the properties of [26] remaining valid.

The first region, the only one reaching the boundary of the domain, represents a connected porous
matrix, where, disregarding its pore scale, we consider the movement of an incompressible average
filtration fluid governed by the Boussinesq approximation of the Darcy-Forchheimer system. The linear
Darcy’s law relating the flow and the pressure gradient in the porous surrounding matrix relies on the
assumption of laminar flow (see [31]). Unfortunately, this assumption does not hold when high imposed
pressure gradients and resistance from fracture walls lead to reduced flow rates compared to the linear
Darcy relation. The standard extended model involves a Forchheimer correction term (see [13]) which
introduces a non-linear coupling between pressure gradient and flow rates. This Forchheimer term was
proved to be valid at higher Reynolds number by Muskat (see [23]).

The second region, representing the fractures which are not necessarily connected, is saturated
by an incompressible viscous fluid governed by the Boussinesq approximation of the Stokes system.

These two flows are coupled on the interface by the Saffman’s variant [28] of the Beavers-Joseph
condition [7], [19] which was confirmed by [18] as the limit of a homogenization process. Besides the
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continuity of the normal component of the velocity, it imposes the proportionality of the tangential
velocity with the tangential component of the viscous stress on the fluid-side of the interface.

The tensors of thermal diffusion of the two phases are ε-periodic and not necessarily equal. On
the interface, the heat flux is continuous and proportional with the temperature jump. This first-
order jump condition presents an heat transfer coefficient which is also assumed ε-periodic. Finally, a
temperature distribution is imposed on the boundary of the domain.

We prove the existence and uniqueness properties of the velocity, pressure and temperature
distribution, solutions of the corresponding thermal flow boundary problem. An L∞-estimate of the
temperature, uniform with respect to ε, is also presented.

As the Forchheimer effect vanishes with the small period of the distribution shrinking to zero,
we study the asymptotic behaviour of the flow when the Rayleigh number is of unity order, the
permeability of the porous blocks of unity order and the Beavers-Joseph transfer coefficient of ε-order,
balancing the measure of the interface. Using the techniques of the two-scale convergence theory (see
[4], [9] and [24]), we find the two-scale system verified by the limits of the ε-solutions and the local
problems which allow us to define the effective coefficients of the leading homogenized system.

The paper is organized as follows.
In Section 2 we present our fractured porous medium, the ε-periodic structure provided with the

useful ε-domes. The direct form of the thermal flow problem is introduced.
In Section 3 we prove the existence and uniqueness properties. The weak solutions of our nonlinear

problem are found by means of the Browder-Minty and Schauder fixed-point theorems. The primary
estimates are also obtained.

Section 4 is devoted to the homogenization in the case when the Forchheimer effect is vanishing.
We present the a priori estimates which serve as departure point for adapting the compacity results
of the two-scale convergence theory (see [4], [22] and [24]). Using the techniques of the two-scale con-
vergence theory (see [4], [9] and [24]), we obtain the so-called two-scale homogenized problem and the
solutions of the local problems which allow us to define the effective coefficients of the homogenized
system and eliminate some of the oscillating unknowns. In the case of non-oscillating permeability
tensor, we present an interesting macroscopic problem, governing all the leading non-oscillating un-
knowns.

At the end, there is added an Appendix A, where we prove a usefull inequality that was already
used in some particular cases (see [14] and [30]).

2. The fractured structure and the governing system

Let Ω be an open connected bounded set in RN , N ∈ {2, 3}, a manifold of class C2 composed of a
finite number of connected components, locally located on one side of the boundary ∂Ω with ν its
outward normal.

We describe now the geometric structure of our fractured porous medium, similar to that intro-
duced in [17].

Let E be the rhombic polyhedron obtained by affixing square pyramids of 1/2 height on each
face of the cube Y =]− 1/2, 1/2[N , that is

E = int(Conv(Y ∪ {±ei, i = 1, 2, ..., N})), (2.1)

where ei are the unit vectors of the canonical basis in RN .
For D ⊂⊂ E, an open set of class C2, we assume that Yf := Y ∩D has the property

Y f ∩ Σ±i ⊂⊂ Σ±i, ∀i ∈ {1, 2, ..., N}, (2.2)

where Σ±i = {y ∈ ∂Y : yi = ±1/2}.
For every i ∈ {1, 2, ..., N} we define the corresponding two domes of Yf by

D+
i = (Y + ei) ∩D and D−i = (Y − ei) ∩D. (2.3)
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Denoting Ys := Y \ Y f , we assume that the reunion in RN of all the Y s parts, denoted by RNs ,

has a C2 boundary; RNf is similarly defined. The characteristic functions of Ys and Yf are denoted by

χs and χf , respectively; we also assume m := |Yf | ∈]0, 1[.
Without loss of the generality, we set the origin of the coordinate system in such a way that

there exists r > 0 with the property B(0, r) ⊆ RNs .
For any ε ∈]0, 1[ we denote

Zε = {k ∈ ZN : εk + εY ⊆ Ω}, (2.4)

Iε = {k ∈ Zε : εk ± εei + εY ⊆ Ω, ∀i ∈ {1, 2, ..., N}}, (2.5)

Ω�
εf = ∪k∈Iε(εk + εYf ). (2.6)

For any k ∈ Zε \ Iε, denoting by

J±εk = { i ∈ {1, 2, ..., N}, (εk + εD
±
i ) ∩ Ω�

εf 6= ∅ }, (2.7)

we define the ε-domes which have to be attached to Ω�
εf in order to regularize the interface between

the free fluid saturating the fractures and the filtration fluid saturating the porous matrix, by

Dεk = (∪i∈J+εk(εk + εD+
i )) ∪ (∪i∈J−εk(εk + εD−i )). (2.8)

We consider that the free fluid takes place in

Ωεf = int((∪k∈Iε(εk + εY f )) ∪ (∪k∈Zε\IεDεk)). (2.9)

Consequently, the porous matrix and the interface between the two components are defined by:

Ωεs = Ω \ Ωεf , (2.10)

Γε = ∂Ωεf ∩ ∂Ωεs = ∂Ωεf . (2.11)

We assume that Ωεs is connected and that for every ε > 0, there exist kε ∈ N, kε ≥ 1, such that

Ωεf = ∪kεk=1Ωkεf (2.12)

where every Ωkεf is a connected subdomain of Ωεf with dist(Ωiεf ,Ω
j
εf ) > 0 if i 6= j. The characteristic

functions of Ωεs and Ωεf are denoted by χεs and χεf , respectively.
Denoting Γkε = ∂Ωkεf , it follows that

Γε = ∪kεk=1Γkε . (2.13)

Denoting by Γ = ∂Yf ∩ ∂Ys ⊆ ∂D, by n the normal on ∂D (inward to D) and by nε the normal
on Γε (outward to Ωεs), we have

nε(x) = n(x/ε), for any x ∈ (εk + εΓ) with k ∈ Iε, (2.14)

where the Y-periodic prolongation of n|Γ is still denoted by n.
The class of the connections between Ω�

εf and the corresponding ε-domes is similar to that
between Yf and its domes, that is the class of D. This is an important advantage of the structures

with ε-domes: the class of Γε is given by D and by the reunion of all the Y s parts in RN , which can
be assumed as smooth as it is needed. There is also an important feature of our periodic structure,
provided with ε-domes. As the (εk + εY )-cells containing ε-domes are of at most (4N − 2) types and
the distance between Γε and ∂Ω is greater than ε/2, they do not affect the results obtained for the
classical ε-periodic structures. The present structure preserves many specific properties (see [8], [12],
[16], [17], [26]).

Now we can present the thermal flow problem which corresponds to our framework. If (uεs, pεs, θεs)
and (uεf , pεf , θεf ) stand for the velocities, pressures and temperatures associated to the corresponding
phase of our structure, then they verify the following system:

divuεs = 0 in Ωεs, divuεf = 0 in Ωεf , uεs · nε = uεf · nε on Γε, (2.15)

∇pεs + (1 + dε|uεs|r−2
Aε )Aεuεs + αεθ

εsg = 0, |uεs|Aε = (Aεiju
εs
i u

εs
j )1/2 in Ωεs, (2.16)
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−div Σεi + αεθ
εfgi = 0 in Ωεf , ∀i ∈ {1, 2, · · · , N}, (2.17)

Σεij = −pεfδij + eij(u
εf ), eij(u

εf ) =
1

2

(
∂uεfi
∂xj

+
∂uεfj
∂xi

)
in Ωεf , (2.18)

pεsnεi + Σεinε + εβε(u
εf
i − (uεf · nε)nεi ) = 0 on Γε, ∀i ∈ {1, 2, · · · , N}, (2.19)

uεf∇θεf − div(Bεf∇θεf ) = Qf in Ωεf , (2.20)

uεs∇θεs − div(Bεs∇θεs) = Qs in Ωεs, (2.21)

Bεfij
∂θεf

∂xj
nεi = Bεsij

∂θεs

∂xj
nεi , θεs = θεf on Γε (2.22)

uεs · ν = 0 on ∂Ω, ν the outward normal, (2.23)

θε = τ on ∂Ω, (2.24)

where τ ∈ H1(Ω) ∩ L∞(Ω) has the property that ∃τ0 > 0 for which

|τ | ≤ τ0 on ∂Ω in the sense of H1(Ω) (see [20]). (2.25)

The symmetric permeability tensor Aε ∈ L∞(Ω)N×N , the Beavers-Joseph coefficient βε ∈ C1(Ω)
and the symmetric conductivities Bεf , Bεs ∈ L∞(Ω)N×N are given with the property that there exist
b2 and b1 > 0, b1 < b2, independent of ε, such that for any ε > 0 we have

|Aε|L∞(Ω) ≤ b2, |Bεs|L∞(Ω) ≤ b2, |Bεf |L∞(Ω) ≤ b2, a.e. in Ω, (2.26)

βε ≥ b1, Aεijξiξj ≥ b1 ξiξi, Bεsij ξiξj ≥ b1 ξiξi, Bεfij ξiξj ≥ b1 ξiξi, ∀ξ ∈ RN , a.e. in Ω. (2.27)

The rest of the data are the Forchheimer coefficient dε > 0, the Rayleigh number αε > 0, the
exterior forces g ∈ L2(Ω)N , the heat sources Qf , Qs ∈ L2(Ω) and the Forchheimer exponent r ∈ R
with the property:

r ≥ 2 if N = 2 and 3 ≤ r < 6 if N = 3. (2.28)

3. Existence and estimates of the weak solutions

We present in this section the existence and uniqueness properties of the weak solutions of the con-
vection problem (2.15)− (2.24), together with an L∞-estimate of the temperature.

Let us introduce the following spaces:

H = { v ∈ H(div,Ω), v ∈ Lr(Ω), vν = 0 on ∂Ω }, (3.1)

V = { v ∈ H, divv = 0 in Ω }, (3.2)

Hε = { v ∈ H, v|Ωεf
∈ H1(Ωεf )N }, (3.3)

Vε = { v ∈ Hε, divv = 0 in Ω }, (3.4)

L2
0(Ω) = { p ∈ L2(Ω),

∫
Ω

p = 0 }, (3.5)

where vν stands for the normal trace on ∂Ω.
For any v ∈ Hε we denote the normal trace on Γε in H(div,Ω) by vnε and the trace on Γε in

H1(Ωεf ) by γεfv. As Γε is of class C2, let us remark that

vnε = (γεfv)nε ∈ H1/2(Γε). (3.6)

Denoting

vtε = γεfv − (vnε)nε ∈ H1/2(Γε)
N , (3.7)

we have also
(γεfv)2 = (vnε)2 + (vtε)2 a.e. on Γε. (3.8)

We see now that H and Hε, endowed with the norms

|v|H = |v|Lr(Ω) + |divv|L2(Ω), (3.9)
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|v|Hε
= |v|Lr(Ωεs) + |divv|L2(Ωεs) + |e(v)|L2(Ωεf ) + ε1/2|vtε |Γε

, (3.10)

are Banach spaces. Moreover, by rescaling the corresponding inequalities in Y , we obtain

|v|L2(Ωεf ) ≤ C(ε|∇v|L2(Ωεf ) + ε1/2|γεfv|L2(Γε)), (3.11)

ε1/2|vnε |L2(Γε) ≤ C(|v|L2(Ωεs) + ε|divv|L2(Ωεs)), (3.12)

and consequently

|v|L2(Ωεf ) ≤ C(|v|L2(Ωεs) + ε|divv|L2(Ωεs) + ε|e(v)|L2(Ωεf ) + ε1/2|vtε |L2(Γε)). (3.13)

A useful property of the present structure is the existence of a bounded extension operator similar
to that introduced in [1], [3], [8] and [10] in the case of isolated fractures.

Theorem 3.1. There exists an extension operator Pε : H1(Ωεf )→ H1(Ω) such that

Pεu = u in Ωεf (3.14)

|e(Pεu)|L2(Ω) ≤ C|e(u)|L2(Ωεf ), ∀u ∈ H1(Ωεf ) (3.15)

where C is independent of ε.

A straightforward consequence, via the corresponding Korn inequality, is

Lemma 3.2. There exists some constant C > 0, independent of ε, such that

|u|H1(Ωεf ) ≤ C|u|Hε , ∀u ∈ Hε. (3.16)

Denoting T ε = θε − τ in (2.15)–(2.24), we are led to the following variational problem:

To find (uε, T ε) ∈ Vε ×H1
0 (Ω) which verifies∫

Ωεs

(1+dε|uε|r−2
Aε )Aεuεv+

∫
Ωεf

eij(u
ε)eij(v)+εβε

∫
Γε

uεtεv+αε

∫
Ω

(T ε+ τ)gv = 0, ∀v ∈ Vε, (3.17)∫
Ω

Bε∇T ε∇S +

∫
Ω

uεS∇T ε =

∫
Ω

QS −
∫

Ω

uεS∇τ −
∫

Ω

Bε∇τ∇S, ∀S ∈ H1
0 (Ω), (3.18)

where we denoted

Bε =

{
Bεs in Ωεs,
Bεf in Ωεf

and Q =

{
Qs in Ωεs,
Qf in Ωεf .

(3.19)

Theorem 3.3. There exists a solution of the problem (3.17)–(3.18). Any solution (uε, T ε) of (3.17)–
(3.18) has the property that T ε ∈ L∞(Ω) and that for some c > 0, independent of ε, we have

|∇T ε|L2(Ω) + |T ε + τ |L∞(Ω) ≤ c (3.20)

|uε|L2(Ω) + |uε|H1(Ωεf ) + ε1/2|uεtε |L2(Γε) ≤ c αε (3.21)

|uε|Lr(Ωεs) ≤ cα2/r
ε d−1/r

ε (3.22)

Proof. By splitting the system according to the two distinct types of nonlinearities involved, we expect
to complete the proof by the Schauder fixed-point theorem.
For w ∈ Vε, we define Tw ∈ H1

0 (Ω) to be the unique solution of the problem:∫
Ω

Bε∇Tw∇S +

∫
Ω

wS∇Tw =

∫
Ω

QS −
∫

Ω

wS∇τ −
∫

Ω

Bε∇τ∇S, ∀S ∈ H1
0 (Ω) (3.23)

First, let us examine the continuity of the convective term.∣∣∣∣∫
Ω

wS∇Tw
∣∣∣∣ ≤ |w|Lr(Ω)|Tw|L2r/(r−2)(Ω)|S|H1

0 (Ω). (3.24)

As r ≥ N , that is 2r/(r − 2) ≤ 2N/(N − 2), and using the corresponding Sobolev inequality, we get

|Tw|L2r/(r−2)(Ω) ≤ c|Tw|H1
0 (Ω). (3.25)
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Also, as r ∈ R and r < 6 if N = 3, we have

|w|Lr(Ωεf ) ≤ c|w|H1(Ωεf ), (3.26)

and together with (3.25), we finally obtain∣∣∣∣∫
Ω

wS∇Tw
∣∣∣∣ ≤ |w|Hε |Tw|H1

0 (Ω)|S|H1
0 (Ω). (3.27)

Then, the existence and uniqueness results follow straightly from the Lax-Milgram Theorem.
Moreover, acting like in Theorem 3.9 (see [11] and [17]), we prove that Tw ∈ L∞(Ω) and there exists
c > 0 (independent of ε) such that (3.18) is satisfied. Setting S = Tw in (3.23), we obtain

|∇Tw|L2(Ω) ≤ c(|Q|L2(Ω) + |∇τ |L2(Ω) + (|Q|L2(Ω) + τ0)|w|L2(Ω)), (3.28)

where c > 0 is independent of ε.
Also, we define F (w) ∈ Vε as the unique solution of the problem:∫

Ωεs

(1 + dε|F (w)|r−2
Aε )AεF (w)v +

∫
Ωεf

eij(F (w))eij(v) + εβε

∫
Γε

F (w)tεv =

= −αε
∫

Ω

(Tw + τ)gv, ∀v ∈ Vε. (3.29)

The existence and the uniqueness can be proved by the Browder-Minty Theorem (see [32]) applied to
the strictly monotone function (see Corollary A.3 in the Appendices) Gε : Vε → V ′ε defined by

〈Gεu, v〉Vε,V ′ε
=

∫
Ωεs

(1 + dε|u|r−2
Aε )Aεuv +

∫
Ωεf

eij(u)eij(v) + εβε

∫
Γε

utεv, (3.30)

which is also bounded and hemicontinuous. As r ≥ 2 and as for any u ∈ Hε we have

〈Gεu, u〉Vε,V ′ε
≥ cε(|u|rLr(Ωεs) + |e(u)|2L2(Ωεf ) + |utε |2L2(Γε)), (3.31)

for some cε > 0 independent of u, the coerciveness of Gε follows.
Next, we estimate the range of F (w) with respect to w ∈ Vε. Setting v = F (w) in (3.29) and calling
(3.18) we get for some c > 0 independent of ε

dε|F (w)|rLr(Ωεs) + |F (w)|2L2(Ωεs) + |e(F (w))|2L2(Ωεf ) + ε|F (w)tε |2L2(Γε) ≤
≤ cαε(τ0 + |Q|L2(Ω))|F (w)|L2(Ω). (3.32)

Using (3.13) we finally obtain:

|F (w)|L2(Ωεs) + |e(F (w))|L2(Ωεf ) + ε1/2|F (w)tε |L2(Γε) ≤ cαε(τ0 + |Q|L2(Ω)), (3.33)

|F (w)|Lr(Ωεs) ≤ cα2/r
ε (τ0 + |Q|L2(Ω))

2/rd−1/r
ε , (3.34)

that is, there exists cF > 0 independent of ε such that

|F (w)|Hε
≤ cF (αε + α2/r

ε d−1/r
ε ). (3.35)

Thus we have defined a mapping w ∈Mε 7→ F (w) ∈Mε, where

Mε = {v ∈ Vε, |v|Hε
≤ cF (αε + α2/r

ε d−1/r
ε )}. (3.36)

We check now that F is compact. Let (wk)k∈N be bounded in Vε; then, using (3.28) and (3.13), we see
that (∇Twk

)k∈N is bounded in L2(Ω). As H1
0 (Ω) is compactly included in L2(Ω), we find that there

exists a subsequence (Twk′ )k′∈N which is a Cauchy sequence in L2(Ω). Using the strict monotony of
Gε, it follows from (3.29) that (F (wk′))k′∈N is a Cauchy sequence in Vε.
We see that the Schauder fixed-point theorem can be applied. Thus we obtain an element u ∈ Vε such
that u = F (u) and obviously (u, Tu) ∈ Vε ×H1

0 (Ω) is a solution of the problem (3.17)–3.18).
The rest of the proof is straightforward.

Remark 3.4. Problem (3.17)–(3.18) has a unique solution only if we assume the Rayleigh number
αε > 0 to be small enough.

We proceed by recovering the pressure which was hidden by the (3.17)–(3.18) formulation. Let
us introduce the spaces

V(Ωεh) = {v ∈ D(Ωεh)N , divv = 0 in Ωεh}, h = s or f, (3.37)
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Lε = {q ∈ L2
0(Ω), q|Ωεs

∈W 1,r′(Ωεs)},
1

r′
+

1

r
= 1. (3.38)

Remark 3.5. W 1,r′(Ωεs) ⊂ L2(Ωεs).

Theorem 3.6. Let (uε, T ε) ∈ Vε × H1
0 (Ω)) be a solution of (3.17)–(3.18). Then there exists pε ∈ Lε

such that ∫
Ωεs

(1 + dε|uε|r−2
Aε )Aεuεv +

∫
Ωεf

eij(u
ε)eij(v) + εβε

∫
Γε

uεtεv + αε

∫
Ω

(T ε + τ)gv =

=

∫
Ω

pεdivv, ∀v ∈ Hε. (3.39)

Moreover, there exists c > 0 independent of ε such that

|pε|L2(Ω) ≤ c (d1/r
ε α2/r′

ε + αε + αεβε) and |∇pε|Lr′ (Ωεs) ≤ c
(
αε + α2/r′

ε d1/r′

ε

)
(3.40)

Proof. For some w ∈ V(Ωεs), we set in (3.17)

v =

{
0 in Ωεf
w in Ωεs

. (3.41)

Applying the corresponding version of the De Rham theorem we find that ∃pεs ∈W 1,r′(Ωεs), unique
up to an additive constant, such that

−∇pεs = (1 + dε|uεs|r−2
Aε )Aεuεs + αε(T

ε + τ)g in Lr
′
(Ωεs). (3.42)

The corresponding Green formula follows:∫
Ωεs

(1 + dε|uε|r−2
Aε )Aεuεv + αε

∫
Ωεs

(T ε + τ)gv =

∫
Ωεs

pεsdivv +

∫
Γε

pεsvnε , ∀v ∈ Hε. (3.43)

Next, let w ∈ V(Ωεf ) and set in (3.17)

v =

{
0 in Ωεs
w in Ωεf

. (3.44)

Using again De Rham theorem, we find that ∃pεf ∈ L2(Ωεf ), unique up to additive constants corre-
sponding to each connected component of Ωεf , and such that

−∂p
εf

∂xi
= αε(T

ε + τ)gi −
∂eij(u

ε)

∂xj
in H−1(Ωεf ). (3.45)

Defining Σεi ∈ L2(Ωεf )N by

Σεij = −pεfδij + eij(u
ε) (3.46)

we see that div(Σεi) = αε(T
ε + τ)gi ∈ L2(Ωεf ) and the Green formula follows:∫

Ωεf

eij(u
ε)eij(v) + αε

∫
Ωεf

(T ε + τ)gv =

∫
Ωεf

pεfdivv + 〈Σεinε , vi〉H−1/2,H1/2(Γε), ∀v ∈ Hε. (3.47)

From (3.43) and (3.47) we deduce that

〈Σεinε , vi〉H−1/2,H1/2(Γε) +

∫
Γε

pεsvnε + εβε

∫
Γε

uεtεv = 0, ∀v ∈ Vε. (3.48)

We shall prove now that for a certain choice of the free constants, (3.48) holds for any v ∈ Hε.

As Ωεf is of class C2, we can introduce Σεnεnε ∈ H−1/2(Γε) by

〈Σεnεnε , u〉H−1/2,H1/2(Γε) = 〈Σεinε , u nεi 〉H−1/2,H1/2(Γε), ∀u ∈ H1/2(Γε). (3.49)

Also, for k ∈ {1, 2, · · · , kε}, we define Qkε : H1/2(Γkε)→ H1/2(Γε) as the natural extension with zero:

Qkεw(x) =

{
w(x), x ∈ Γkε

0, x ∈ Γiε, i 6= k.
(3.50)

First, let w ∈ H1/2(Γε)
N ; we set in (3.48) v ∈ Vε with the properties

v = 0 in Ωεs and v = w − wnεnε on Γε. (3.51)
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Thus we obtain

〈Σεinε , wi〉H−1/2,H1/2(Γε) − 〈Σεnεnε , wnε〉H−1/2,H1/2(Γε) + εβε

∫
Γε

uεtεw = 0, ∀w ∈ Vε. (3.52)

Next, let w ∈ H1/2(Γkε) with

∫
Γk
ε

w = 0; obviously, there exists v ∈ Vε such that v = wnε on Γkε and

v = 0 in Ω \ Ωkε . By setting such a v in (3.48) we get

〈Σεknεnε , w〉H−1/2,H1/2(Γk
ε ) +

∫
Γk
ε

pεsw = 0. (3.53)

where Σεknεnε ∈ H−1/2(Γkε) is defined by

〈Σεknεnε , v〉H−1/2,H1/2(Γk
ε ) = 〈Σεnεnε , Qkεv〉H−1/2,H1/2(Γε), ∀v ∈ H1/2(Γkε). (3.54)

Classic manipulations of (3.53) yield

Σεknεnε + pεs =
1

|Γkε |

(
〈Σεnεnε , Qkε1〉H−1/2,H1/2(Γε) +

∫
Γk
ε

pεs

)
in H−1/2(Γkε). (3.55)

Choosing the free constants of pεf and pεs such that

〈Σεnεnε , Qkε1〉H−1/2,H1/2(Γε) +

∫
Γk
ε

pεs = 0, ∀k ∈ {1, 2, · · · , kε}, (3.56)∫
Ωεf

pεf +

∫
Ωεs

pεs = 0 (3.57)

we find that

〈Σεnεnε , wnε〉H−1/2,H1/2(Γε) =

kε∑
k=1

〈Σεnεnε , Qkε(wnε |Γk
ε
)〉H−1/2,H1/2(Γε) =

=

kε∑
k=1

〈Σεknεnε , wnε |Γk
ε
〉H−1/2,H1/2(Γk

ε ) = −
kε∑
k=1

〈pεs, wnε |Γk
ε
〉H−1/2,H1/2(Γk

ε ) =

= −
kε∑
k=1

∫
Γk
ε

pεs(wnε |Γk
ε
) = −

∫
Γε

pεswnε , ∀w ∈ Hε (3.58)

and hence (3.48) holds for any v ∈ Hε.

Also, by adding (3.43) and (3.47), it follows that pε ∈ Lε, defined by

pε =

{
pεf in Ωεf ,
pεs in Ωεs,

(3.59)

satisfies (3.39).

Finally, as pε ∈ Lε, there exists vε ∈ Hε such that

divvε = pε in Ω (3.60)

|vε|Hε
≤ C|pε|L2(Ω), (3.61)

with C > 0 independent of ε. The estimate (3.40) is obtained by using (3.18)–(3.22) and (3.61) in a
straightforward manner.

4. Homogenizing the case of negligeable Forchheimer effect

In this section we shall study the asymptotic behaviour (when ε→ 0) of (uε, T ε, T ε) ∈ Vε×Lε×H1
0 (Ω)

verifying (3.18) and (3.39), as the Forchheimer efect is vanishing, that is,

dε → 0. (4.1)
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In the framework of the homogenization procedure, we assume that there exist A∈L∞(Ω, L∞per(Y ))N×N,

β ∈ C1
per(Y ), Bf and Bs ∈ L∞per(Y )N×N such that

βε(x) = β
(x
ε

)
, Aε(x) = A

(
x,
x

ε

)
, Bεs(x) = Bs

(x
ε

)
and Bεf (x) = Bf

(x
ε

)
for a.a. x ∈ Ω, (4.2)

β ≥ b1, Aξiξj ≥ b1 ξiξi, Bfξiξj ≥ b1 ξiξi, and Bsξiξj ≥ b1 ξiξi, ∀ξ ∈ RN , a.e. in Ω×Y. (4.3)

Also, there exists α > 0 such that

αε → α when ε→ 0. (4.4)

Under these conditions, the estimates (3.20)–(3.22), (3.40) and the relation (3.42) yield

|uε|Lr(Ωεs) ≤ Cd−1/r
ε , (4.5)

|uε|L2(Ω) + |∇uε|L2(Ωεf ) + ε|uεtε |L2(Γε) ≤ C, (4.6)

|∇T ε|L2(Ω) + |T ε|L∞(Ω) ≤ C, (4.7)

|pε|L2(Ω) + |∇pε|Lr′ (Ωεs) ≤ C, (4.8)

for some C > 0 independent of ε.
From (4.5) we obtain immediately∫

Ωεs

dε|uε|r−2Aεuεv → 0, ∀v ∈ Hε, (4.9)

that is, the Forchheimer term has no macroscopic influence in this case.
For any h ∈ {s, f} and for any function ϕ defined on Ω × Y , let us introduce the following

notations.

Hper(div, Y ) = {ϕ ∈ Hloc(div,RN ), ϕ is Y -periodic}, (4.10)

Vper(div, Y ) = {ϕ ∈ Hper(div, Y ), divyϕ = 0 in Y }, (4.11)

ϕh = ϕ|Ω×Yh
, ϕ̃h =

1

|Yh|

∫
Yh

ϕ(·, y)dy, h ∈ {s, f}, (4.12)

ϕ̃ =

∫
Y

ϕ(·, y)dy, that is ϕ̃ = (1−m)ϕ̃s +mϕ̃f . (4.13)

H1
per (Yh) = {ϕ ∈ H1

loc

(
RNh
)
, ϕ is Y -periodic}, (4.14)

H̃1
per(Yh) = {ϕ ∈ H1

per(Yh), ϕ̃ = 0}, (4.15)

Also, for any sequence (ϕε)ε, bounded in Lp(Ω× Y ), 1 < p <∞, we denote

ϕε
p
⇀ ϕ

when ϕε is two-scale convergent to ϕ ∈ Lp(Ω× Y ) in the sense of [22] and as usual

H0(div,Ω) = {v ∈ H(div,Ω), vν = 0 on ∂Ω}, (4.16)

V0(div,Ω) = {v ∈ H0(div,Ω), divv = 0 in Ω}. (4.17)

From (4.6), it follows that ∃u ∈ L2(Ω× Y )N such that, on some subsequence

uε
2
⇀ u (4.18)

uε ⇀

∫
Y

u(·, y)dy ∈ V0(div,Ω) weakly in L2(Ω)N (4.19)

Also, we see that (χεsu
ε)ε, (χεfu

ε)ε and

(
χεf

∂uε

∂xi

)
ε

are bounded in (L2(Ω))N , ∀i ∈ {1, 2, · · · , N}.

This situation was already studied in [15] and we recall the results proved there.
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Theorem 4.1. There exist u ∈ L2(Ω, Vper(div, Y )) and w ∈ L2(Ω, (H1
per(Yf )/R)N ) such that the fol-

lowing convergences hold on some subsequence:

uε
2
⇀ u, (4.20)

χεf∇uεi
2
⇀ χf (∇ufi +∇ywi), ∀i ∈ {1, 2, · · · , N}. (4.21)

Moreover, we have

uf = ũf ∈ H1
0 (Ω) (4.22)

ũ ∈ V0(div,Ω) (4.23)

divyw + divuf = 0 in Ω× Yf . (4.24)

Concerning the temperature behaviour, from (4.7), and using the compacity result of [4], we get

Theorem 4.2. There exist T ∈ H1
0 (Ω) and R ∈ L2(Ω, H1

per(Y )/R) such that

T ε
2
⇀ T, (4.25)

∂T ε

∂xi

2
⇀

(
∂T

∂xi
+
∂R

∂yi

)
, ∀i ∈ {1, 2, · · · , N}. (4.26)

Moreover, T ∈ L∞(Ω) and we have

T ε ⇀ T weakly in H1
0 (Ω) and weakly star in L∞(Ω). (4.27)

Theorem 4.3. There exists p ∈ L2
0(Ω × Y ) with ps = p̃s ∈ W 1,r′(Ω), such that on some subsequence

we have

pε
2
⇀ p. (4.28)

Proof. Calling (4.8), the compacity result of [4] implies the existence of some p ∈ L2
0(Ω×Y ) such that

(4.28) holds on some subsequence.
By rescaling the corresponding Rellich-Kondrachov inequality in Ys, we have

|q|Lr(Ωεs) ≤ C ε |q|W 1,r
0 (Ωεs), ∀q ∈W 1,r

0 (Ωεs). (4.29)

Thus, taking (3.42) into account, we obtain∣∣∣〈∇pεs, q〉W−1,r′ ,W 1,r
0 (Ωεs)

∣∣∣ =

∣∣∣∣∫
Ωεs

q∇pεs
∣∣∣∣ ≤ |q|Lr(Ωεs)|∇pεs|Lr′ (Ωεs) ≤ Cε|q|W 1,r

0 (Ωεs), (4.30)

that is,

|∇pεs|W−1,r′ (Ωεs) ≤ Cε. (4.31)

Then, using the extension operator of Lipton-Avellaneda ([21]), Qεs ∈ L(L2(Ωεs), L
2(Ω)) defined by

Qεsπ =

 π(x) in Ωεs,
1

ε|Ys|

∫
εk+εYs

π(y) dy in Ωεf ,
(4.32)

Theorem 3.2 of [26] implies that there exists qs ∈ L2(Ω) such that

Qεsp
εs → qs in L2(Ω) (4.33)

χεsp
εs 2
⇀ χs(y)qs(x) in L2(Ω× Y ). (4.34)

Passing the equality

χεsQεsp
εs = χεsp

ε in L2(Ω), (4.35)

at the two-scale limit, we obtain

χs(y)qs(x) = χs(y)p(x, y) for a.a. (x, y) ∈ Ω× Y, (4.36)

that is, p̃s = ps ∈ L2(Ω).
Moreover, (3.20)–(3.21) of [26] reads:

Qεsp
εs → ps in Lr(Ω)/R, (4.37)

∇(Qεsp
εs)→ ∇ps in W−1,r′(Ω). (4.38)
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Noticing that

|∇(Qεsp
εs)|Lr′ (Ω) + |∇pεs|Lr′ (Ω) ≤ C, (4.39)

we infer that (4.38) implies

∇(Qεsp
εs)→ ∇ps in Lr

′
(Ω), (4.40)

that is, p̃s = ps ∈W 1,r′(Ω).

Now, we can present the so-called two-scale homogenized problem, verified by the limits given
by Theorems 4.1–4.3. We find this problem to be well-posed at least for α sufficiently small. Hence,
the asymptotic behaviour of uε, T ε and pε is completely described by the solutions of this problem,
via (4.20)–(4.21), (4.25)–(4.27) and (4.28).

Denoting

H(Ω× Y )={u ∈ L2(Ω× Y ), divyu = 0 in Ω× Y, uf = ũf ∈ H1
0 (Ω)N , ũ ∈ H0(div,Ω)}, (4.41)

V (Ω× Y ) = {u ∈ H(Ω× Y ), divũ = 0 in Ω}, (4.42)

we see that

X = H(Ω× Y )× L2(Ω, H̃1
per(Yf )N ) (4.43)

is a Hilbert space endowed with the scalar product

((u,w), (ϕ,ψ))X =

∫
Ω×Ys

u · ϕ+

∫
Ω

divũdivϕ̃+

∫
Ω×Yf

(e(u) + ey(w)) (e(ϕ) + ey(ψ)). (4.44)

We also have to introduce the following spaces

M = { q ∈ L2
0(Ω× Y ), qs = q̃s ∈ H1(Ω)},

X0 = {(u,w) ∈ X, divũ = 0 in Ω, divyw + divuf = 0 in Ω× Yf}.

Theorem 4.4. (u,w) ∈ X0, (T,R) ∈ H1
0 (Ω) ×H1

per(Y )/R and p ∈ M , the limits of the convergences
(4.20)–(4.21), (4.25)–(4.27) and (4.28), verify the following system:∫

Ω×Y
B(∇(T+τ)+∇yR)(∇Φ+∇yΨ)+

∫
Ω

ũΦ∇(T+τ) =

∫
Ω

Q̃Φ, ∀(Φ,Ψ) ∈ H1
0 (Ω)×H1

per(Y )/R. (4.45)∫
Ω×Ys

Auϕ+

∫
Ω×Yf

(e(u) + ey(w))(e(ϕ) + ey(ψ)) +

∫
Ω×Γ

β(uf − ufnn)ϕ+ α

∫
Ω

(T + τ)gϕ̃ =

=

∫
Ω

psdivϕ̃+

∫
Ω×Yf

(pf − ps)(divϕ+ divyψ), ∀(ϕ,ψ) ∈ X. (4.46)

Proof. First, for some Φ ∈ D(Ω) and Ψ ∈ D(Ω, C∞per(Y )), we set S = Φ + εΨε in (3.18), where
Ψε(x) = Ψ(x, x/ε) for a.a. x ∈ Ω. Using (4.20)–(4.21) and (4.25)–(4.27) we easily obtain (4.45), even
the convergence of the convective term, as∫

Ω

uεΦ∇T ε = −
∫

Ω

T εuε∇Φ and uε ⇀ ũ weakly in L2(Ω). (4.47)

Next, let ϕ ∈ D(Ω, C∞per(Y ))N and ψ ∈ D(Ω, C∞per(Yf ))N such that (ϕ,ψ) ∈ X. Let ψ̂ a prolongation of

ψ to D(Ω, H̃per(div, Y )), which can be done, for instance, by considering a certain Neumann problem

in Ys. Denoting, as usual, ϕε(x) = ϕ
(
x,
x

ε

)
and ψε(x) = ψ̂

(
x,
x

ε

)
, we can set v(x) = ϕε(x) + εψε(x)

in (3.39). Passing to the limit with ε→ 0 and using the two-scale convergences of Theorems 4.1–4.3,
we obtain: ∫

Ω

pεdiv(ϕε + εψε) =

∫
Ωεf

pε ((divxϕ)ε + (divyψ)ε + ε(divxψ)ε) +

+

∫
Ωεs

pε
(

(divxϕ)ε + (divyψ̂)ε + ε(divxψ)ε
)
→
∫

Ω×Yf

pf (divxϕ+ divyψ) +

∫
Ω×Ys

ps
(

divxϕ+ divyψ̂
)
.
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As p ∈M , we have also ∫
Ω×Ys

psdivyψ̂ = −
∫

Ω×Γ

psψn = −
∫

Ω×Yf

psdivyψ

and the convergence of the right-hand side term of (3.39) is proved. All the other convergences are
straightforward, except that on Ω× Γε, which is similar to that in [17].

The system (4.45)–(4.46) will provide all the local solutions of our problem, allowing us to
successively eliminate some of the rapidly oscillating unknowns from the governing system.

First, denoting
Vf = {ϕ ∈ (H1

per(Yf )/R)N , divyϕ = 0}, (4.48)

Kf = {ϕ ∈ (H1
per(Yf )/R)N , divyϕ = −1}, (4.49)

for any k, h ∈ {1, 2, · · · , N} we define Rk ∈ H1
per(Y )/R, (W kh, qkh) ∈ Vf × L2

0(Yf ) and W ∈ Kf as
the unique solutions of the following three problems:∫

Y

B∇(yk +Rk)∇ψ = 0, ∀ψ ∈ H1
per(Y )/R, , (4.50)

where B =

{
Bs in Ys,
Bf in Yf ,

∫
Yf

(
δikδjh + ey,ij(W

kh)
)
ey,ij(ψ) =

∫
Yf
qkhdivyψ, ∀ψ ∈ (H1

per(Yf )/R)N ,∫
Yf
q divy(Whk) = 0, ∀q ∈ L2

0(Yf ),
(4.51)

∫
Yf

ey(W ) ey(ψ) = 0, ∀ψ ∈ Vf . (4.52)

The existence and uniqueness results for (4.50) and (4.51) are obtained by the Lax-Milgram The-
orem. Regarding (4.52), we notice that W is the projection of 0 on the closed convex Kf 6= ∅ in
(H1

per(Yf )/R)N .

Setting Φ = 0 in (4.45) and ϕ = 0 in (4.46), we find that R, w and pf have closed expressions
with respect to uf , T and ps:

R(x, y) = Ri(y)
∂T

∂xi
(x), (4.53)

w(x, y) = W ij(y)eij(u
f )(x) +W (y)div(uf )(x), (4.54)

pf (x, y) = ps(x) + qij(y)eij(u
f )(x), for a.a. (x, y) ∈ Ω× Y . (4.55)

Using (4.53)–(4.55), we elimitate R, w and pf by an appropriate choice of test functions, respectively

Ψ = Ri
∂Φ

∂xi
in (4.45) and ψ = W ijeij(ϕ) in (4.46).

Thus we find the system which determines the leading limits of our homogenisation process.

Theorem 4.5. If u ∈ V (Ω× Y ), T ∈ H1
0 (Ω) and p ∈M are the limits given by Theorems 4.1, 4.2 and

4.3, then they verify the following system:∫
Ω×Y

BH∇(T + τ)∇Φ +

∫
Ω

ũΦ∇(T + τ) =

∫
Ω

Q̃Φ, ∀Φ ∈ H1
0 (Ω), (4.56)∫

Ω×Ys

Ausϕs +mµHijkh

∫
Ω

eij(u
f )ekh(ϕf ) +mβHij

∫
Ω

ufi ϕ
f
j + α

∫
Ω

(T + τ)gϕ̃ =

=

∫
Ω

psdivϕ̃, ∀ϕ ∈ H(Ω× Y ), (4.57)

where the so-called effective coefficients which appear in (4.56)–(4.57) are given by

BHij =

∫
Y

Bkh

(
δik +

∂Rk

∂yi

)(
δjh +

∂Rh

∂yj

)
, (4.58)
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µHijkh =
1

|Yf |

∫
Yf

((
δ`kδmh + ey,`m(W kh)

) (
δ`iδmj + ey,`m(W ij)

)
+ ey(W ) ey(W )δikδjh

)
, (4.59)

βHij =
1

|Yf |

∫
Γ

β(y)(δij − νi(y)νj(y))dσy. (4.60)

Remark 4.6. The tensors BH and µH are positive-definite and have the usual symmetry properties
BHij = BHji and µHijkh = µHkhij = µHjikh; βH is also symmetric and has the property:

βHij

∫
Ω

ϕiϕj =

∫
Ω×Γ

β(γϕ− (γνϕ)ν)2 ≥ 0, ∀ϕ ∈ H1
0 (Ω)N . (4.61)

Remark 4.7. In the case when A is independent of y, that is A ∈ L∞(Ω)N×N , we can go further. The
system (4.56)–(4.57) yields:

usi = ufi −
(

1

|Ys|

∫
Ys

Uki (y)

)(
Akju

f
j + α(T + τ)gi +

∂ps

∂xk

)
in L2(Ω× Ys), (4.62)

where Uk ∈ H0(div, Ys) is the unique solution of∫
Ys

AUkΘ =

∫
Ys

Θk, ∀Θ ∈ H0(div, Ys). (4.63)

Noticing that
(

1
|Ys|

∫
Ys
Uki (y)

)
are the elements of a symmetric and positive-definite matrix, we define

its inverse by AH . Thus, redenoting θ = T + τ , we find that
(ũs, uf , ps, θ) ∈ H0(div,Ω)×H1

0 (Ω)×W 1,r′(Ω)/R×H1(Ω) is weak solution of the system

(1−m)divũs +mdivuf = 0 in Ω (4.64)

∇ps +AH ũs + αθg = (AH −A)uf in Ω, (4.65)

∇ps − div(µHe(uf )) + αθg = −βHuf in Ω, (4.66)

−div(BH∇θ) + ũ∇θ = (1−m)Qs +mQf in Ω. (4.67)

θ = τ on ∂Ω. (4.68)

This is a model of two coupled thermal flows, neither of them being incompressible. The terms of the
right-hand sides of (4.65) and (4.66) come from the Beavers-Joseph and the incompressible transfer
conditions on the vanished interface.

Appendices

A. A result of strict monotonicity

We present here the inequality claimed in the proof of Theorem 3.3.

Theorem A.1. Let (·, ·)V be an inner product on a vector space V over R and let | · |V be the associated
norm. Then, for every p ≥ 2, it holds:

|u+ v|pV ≤ (|2u|p−2
V u+ |2v|p−2

V v, u+ v)V , ∀u, v ∈ V. (A.1)

Proof. The cases when p = 2 or u = 0 or v = 0 are obvious. Then, let p > 2, u 6= 0, v 6= 0; denoting
|u|V = a > 0, |v|V = b > 0 and |u+ v|V = t and defining f : [0,+∞)→ R by:

f(t) = tp − 2p−3(ap−2 + bp−2)t2 − 2p−3(ap−2 − bp−2)(a2 − b2) (A.2)

we see that (A.1) is equivalent to:

f(t) ≤ 0, ∀t ∈ [ |a− b|, a+ b ]. (A.3)

As f is decreasing on [0, t0] and increasing on [t0,+∞[ where

t0 = 2

(
ap−2 + bp−2

p

) 1
p−2

, (A.4)
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the proof is completed by the following two inequalities:

f(0) = −2p−3(ap−2 − bp−2)(a2 − b2) ≤ 0 (A.5)

f(a+ b) = 2p
(
a+ b

2

)((
(a+ b)

2

)p−1

− ap−1 + bp−1

2

)
≤ 0 (A.6)

which holds for any a, b > 0 as p > 2.

When A = I, the following results have been already proved in R2(see [14]) and in RN (see [30]).

Corollary A.2. Let A be a positive-definite matrix on RN , N ≥ 1, and p ≥ 2. Denoting by (x, y)A =
(yTAx)1/2, ∀x, y ∈ RN , and by | · |A the associated norm, we have

|x− y|pA ≤ 2p−2(x− y)T (|x|p−2
A Ax− |y|p−2

A Ay), ∀x, y ∈ RN . (A.7)

Corollary A.3. Let A ∈ L∞(Ω) be symmetric with the property that ∃α > 0 such that

Aij(x)ξiξj ≥ α|ξ|2, ∀ξ ∈ RN , for a.e. x ∈ Ω. (A.8)

with Ω a bounded domain in RN , N ≥ 1. Then, there exists m > 0 such that for any p ≥ 2 it holds:∫
Ω

(|u|p−2
A Au− |v|p−2

A Av, u− v)dx ≥ m
∫

Ω

|u− v|pdx (A.9)

where (·, ·) denotes the Euclidean inner product on RN .
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