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ABSTRACT

X-ray observations of the hot gas filling the intra-cluster medium (ICM) provide a wealth of information on the dynamics of clusters
of galaxies. The global equilibrium of the ICM is believed to be ensured by non-thermal and thermal pressure support sources, among
which gas movements and the dissipation of energy through turbulent motions. Accurate mapping of turbulence using X-ray emission
lines is challenging due to the lack of spatially resolved spectroscopy. Only future instruments such as the X-ray Integral Field Unit
(X-IFU) on Athena will have the spatial and spectral resolution to quantitatively investigate the ICM turbulence over a broad range
of spatial scales. Powerful diagnostics for these studies are line shift and the line broadening maps, and the second-order structure
function. When estimating these quantities, instruments will be limited by uncertainties of their measurements, and by the sampling
variance (also known as cosmic variance) of the observation. Here, we extend the formalism started in our companion Paper I to
include the effect of statistical uncertainties of measurements in the estimation of these line diagnostics, in particular for structure
functions. We demonstrate that statistics contribute to the total variance through different terms, which depend on the geometry of
the detector, the spatial binning and the nature of the turbulent field. These terms are particularly important when probing the small
scales of the turbulence. An application of these equations is performed for the X-IFU, using synthetic turbulent velocity maps
of a Coma-like cluster. Results are in excellent agreement with the formulas both for the structure function estimation (≤3%) and
its variance (≤10%). The expressions derived here and in Paper I are generic, and ensure an estimation of the total errors in any
X-ray measurement of turbulent structure functions. They also open the way for optimisations in the upcoming instrumentation and
in observational strategies.

Key words. galaxies: clusters: intracluster medium – turbulence – galaxies: clusters: general – methods: numerical –
techniques: imaging spectroscopy – line: profiles

1. Introduction

The X-ray emission of clusters of galaxies offers a phenome-
nal window to observe the thermodynamic and dynamic prop-
erties of the hot baryons composing the intra-cluster medium
(ICM). The gas trapped in the dark matter potential of these
structures holds an untouched fossil record of their formation,
giving us a glimpse of the early days of the Universe (see
Kravtsov & Borgani 2012; Planelles et al. 2015, for reviews).
The first observations of the ICM showed smooth, spherical pro-
files, well described by β-models (Cavaliere & Fusco-Femiano
1978), suggesting that the gas could be considered in (or close
to) hydrostatic equilibrium. Several subsequent X-ray missions
have since demonstrated that the ICM is far from homogeneous
(Fabian et al. 2006; Vikhlinin et al. 2006; Leccardi & Molendi
2008). Dynamics induced by constant 3D accretion from the
medium surrounding the cluster and by merger events through-
out their lifetime are strengthened by the role of central active
galactic nuclei (AGNs), whose jets, outflows, and bubbles,
drive powerful mechanical and radiative motions, stirring the
ICM at every spatial scale (Fabian 2012; King & Pounds 2015;
Gaspari & Sdowski 2017; Morganti 2017). Other effects present
both at small (e.g. galaxy outflows) and large scales (e.g. slosh-
ing, ram-stripping) also create heterogeneities in the gas emission,
thereby severely questioning the assumption of hydrostaticity.

Hints of systematic deviations from hydrostatic equilibrium
up to a 10–20% are indeed found in both state-of-the-art numer-
ical simulations of the ICM and observational mass measure-
ments (see Pratt et al. 2019, for a review). Other thermal and
non-thermal pressure support mechanisms are therefore called
upon to compensate the cooling infall of the ICM towards the
central parts of the clusters. The identification of the mecha-
nisms responsible for such deviations are crucial to understand
the overall equilibrium of clusters (see Werner et al. 2019, for a
review), and to have unbiased estimations of their mass, which
is key to precision cosmology with clusters.

The dissipation of kinetic energy through either bulk
or turbulent motions within clusters is a likely candidate
(Gaspari et al. 2018; Voit 2018). In the classical view of the ICM,
bulk motions are driven on a full-cluster scale by mechanisms
such as mergers or ram-stripping, while turbulence indicates
smaller scale motions. Turbulent energy is injected at hundreds
of kpc scales and transported through a vortex cascade down
to tens of kpc (Donnert et al. 2018). The gas motions induced
by the turbulent cascade create a non-thermal pressure support
mechanism (Lau et al. 2009), while the subsequent dissipation
of the kinetic energy through collisions, small-scale viscosity,
and eddies releases heat to the environment, counteracting part
of the cooling flows in the cluster core (Zhuravleva et al. 2014).
Scale-independent assumptions of the turbulent eddies naturally
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result in power-law forms of the turbulent power spectrum, char-
acterised by an injection and dissipation scale of the energy,
along with the characteristic slope of the spectrum (Kolmogorov
1941a). The determination of the energy injection scale provides
information on the dominant energy transport mechanism at the
cluster scale, involved for instance in the circulation of metals
from the interstellar medium to the ICM (Rebusco et al. 2006).
Knowledge of the dissipation length provides instead insight on
the viscosity of the ICM and collision mechanisms at small spa-
tial scales (Schekochihin et al. 2009).

Yet, a direct observation of the ICM kinematics remains
challenging. Random movements of gas particles related to tur-
bulence create line shifts, induce further broadening of the line,
and can add skewness in the projection of the natural line profile
along the line-of-sight. The understanding and mapping of these
effects therefore require the measurement of centroid, width,
and shape of the emission lines with accuracies of a few tens
of km s−1 over the full cluster scale for typical Fe Kα lines
(∼6.4 keV).

Most of the current generation of X-ray instruments cannot
provide spatially resolved high-resolution spectroscopy to this
level of accuracy. Insight on the ICM kinematics therefore relies
on other physical quantities, such as the measurement of bulk
motions using cold shock fronts (Markevitch & Vikhlinin 2007),
or the investigation of surface brightness, temperature, and den-
sity fluctuations in nearby clusters (Churazov et al. 2003, 2012;
Zhuravleva et al. 2015). These results are nevertheless insuffi-
cient for a definitive understanding of the kinematic pressure
support. A ground-breaking step forward was achieved with the
soft X-ray spectrometer (SXS) onboard Hitomi (Takahashi et al.
2018). Despite its short lifetime, the SXS mapped for the first
time the turbulent velocity of the Perseus cluster, showing a qui-
escent ICM with velocities ∼200 km s−1 (Hitomi Collaboration
2016, 2018). New results are expected with the X-ray Imag-
ing and Spectroscopy Mission (XRISM, Ishisaki et al. 2018) and
its instrument Resolve. However, a spatial mapping of turbulent
velocity fields with accuracies of ∼10/20 km s−1 down to a few
tens of kpc will require instruments such as the X-ray Integral
Field Unit (X-IFU, Barret et al. 2016, 2018) on board the future
X-ray observatory Athena (Nandra et al. 2013). The X-IFU will
provide an unprecedented 2.5 eV spectral resolution below 7 keV
with a spatial accuracy of 5′′ (over a 5′ equivalent field-of-view),
enabling turbulence measurements through line broadening and
deformations of the natural line profile (Ettori et al. 2013).

With the advent of high-resolution X-ray spectroscopy,
powerful line diagnostics can be used to investigate turbulent
motions. These include the shift and broadening of a spectral
line, and the computation of the structure function of the line-of-
sight velocity field (Inogamov & Sunyaev 2003), related to the
turbulent power spectrum of the ICM (Zhuravleva et al. 2012).
Any measurement of these quantities will be limited by statis-
tical uncertainties, linked to the observational set-up, and by
the sampling variance (or “cosmic” variance) of the observa-
tion, which refers to the intrinsic variations of a given diagnostic
related to the small number of observations of a random process.
A theoretical understanding of these effects could provide a sig-
nificant step forward in our knowledge of the usual line diagnos-
tics used to study the turbulence of the ICM.

An analytical treatment of the cosmic variance is provided in
our companion Paper I (Clerc et al. 2019, hereafter CL19), and
used here. It allows the fast computation of estimates of the cos-
mic variance uncertainties, without using iterative Monte-Carlo
techniques. In this paper, we extend this approach to include the
contribution of statistics to the overall error estimation of the

usual line diagnostics (line shift, line broadening and structure
function) in the case of turbulence in the optically-thin emitting
plasma of clusters of galaxies. Starting from formalism devel-
oped in Zhuravleva et al. (2012) and ZuHone et al. (2016), we
derive in the first part of this paper (Sect. 2) the errors associ-
ated to the previous line diagnostics, notably on the value and
the variance of the estimated structure function. The formulas
are generic, and remain valid for any level of statistical error
obtained from measurements with an X-ray instrument. A spe-
cific application on the future X-IFU instrument is provided, on
the basis of synthetic observations (Sect. 3) and the compari-
son of their post-processed outcomes with the prediction from
our developed formalism (Sect. 4). The implications of these
error formulas are then discussed, along with ways to estimate
these contributions (Sect. 5). Throughout this paper, we assume a
Λ-CDM cosmology, with h = 0.72, Ωm = 0.24 and ΩΛ = 0.76.
Bold, underlined letters x indicate 3D vectors, bold letters x indi-
cate 2D vectors. In a 3D space mapped by a (x, y, z) orthonormal
frame, x is taken as the line-of-sight direction and (y, z) = θ as
the plane-of-sky coordinates, 〈·〉 indicates the average operator,
|| · ||2 the Euclidean norm and X an estimator of the quantity X.
Other notations are consistent with Paper I.

2. Line diagnostics with finite statistics

2.1. Line centroid and broadening

Two tools to investigate the gas motions projected along the line-
of-sight are the line shift, δE, and the line broadening, Σ. Line
shift is defined as the difference between the energy of the line
in the inertial frame of the observer, E0, and the measured value.
It can be related to either gas motions along the line-of-sight, or
to the cosmological redshift z of the source. By noting Ez the
energy of the line in the frame of the source, and Il(E) the line
profile1, δE along a given line-of-sight θ is defined as

δE(θ) = F−1(θ)
∫

(E − Ez)Il(E, θ)dE (1)

where F(θ) =
∫

Il(E, θ)dE is the integrated flux of the line. Cor-
respondingly, δE can be expressed as a centroid velocity shift C
of the projected line-of-sight component of the velocity field as
(with c the speed of light):

C(θ) =
δE(θ)

Ez
c. (2)

The broadening of a line is the dispersion around its centroid
value, and can be expressed similarly using

Σ2(θ) = F−1(θ)
∫

(E − δE − Ez)2Il(E, θ)dE. (3)

Small turbulent motions create shifts in the corresponding line
centroids of the gas particles. Integrated over along the line-
of-sight, these result in a broadening of the observed line. The
velocity broadening is thus defined by

S̃ 2(θ) =
Σ̃2(θ)

E2
z

c2 (4)

where Σ̃ is the broadening after subtraction of the instrument
spectral resolution and other physical broadening effects (e.g.

1 For instance a Gaussian or Voigt profile multiplied with line-of-sight
emissivity.

A144, page 2 of 16



E. Cucchetti et al.: Towards mapping turbulence in the intra-cluster medium

thermal broadening), assumed perfectly known here. The mea-
surement of S̃ provides insight on the velocity distribution along
the line-of-sight, making it a tool widely used to study turbulence
(Hitomi Collaboration 2018).

2.2. The structure function

Another line diagnostic tool for turbulence is the structure func-
tion. Its use in turbulence analysis originates from the early stud-
ies of turbulent motions in fluid dynamics (Kolmogorov 1941b)
before its extension to other branches of science (e.g. Earth sci-
ences under the name of “variogram”), and later to astrophysics
(Miville-Deschenes et al. 1995 in studies of the interstellar
medium, Roelens et al. 2017 in stellar variability, Martínez et al.
2010 for galaxy clustering, or Inogamov & Sunyaev 2003 in the
case of ICM turbulence). The structure function appears when
observing the dispersion σ of the line-of-sight component v of
the velocity field over all the points in space x ∈ R3

σ2 = 〈v2(x) − 〈v(x)〉2x〉x = Kv(0) (5)

which is a particular case of the auto-covariance function of the
velocity field, Kv. Under the assumption of an isotropic velocity
field, the second-order structure function of the 3D field v, SF 2,
can be expressed exclusively as a function of spatial separation
s between two points in space, and is related to Kv by

SF 2(s) = 2(Kv(0) − Kv(r))

= 〈(v(x + r) − v(x))2〉x (6)

where we average over all points x ∈ R3 separated by a dis-
tance ||r||2 = s. The measurement of SF 2 provides a view of the
underlying turbulent velocity power spectrum through a “mod-
ified” second order moment of the velocity field. Although the
properties of a turbulent field are not fully characterised by its
power spectrum, the properties of structure functions and their
simple estimation in fluid dynamics explains the success of this
approach in all turbulence-related subjects. Notably, SF 2 can
be used to estimate the characteristic lengths of the turbulence
(Miniati 2015). More generally, we can define the nth moment
of the structure function (n ∈ N) as

SF n(s) = 〈(v(x + r) − v(x))n〉x (7)

for a separation ||r||2 = s. In the following sections, SF indi-
cates the second-order structure function, and D the first-order
structure function, or incremental function.

2.3. Estimators and value: the influence of finite statistics

The measurement of a velocity shift or a velocity broadening is
related to a choice of the line-of-sight. Similarly, the definition
of the structure function is related to a spatial average, such that
an exact value can only be accessed either by averaging over a
large number of spatial data points, or – if we assume ergodicity
– by averaging over the same area for a large number of realisa-
tion of the turbulent velocity field. When observing astrophysical
sources only a finite number of pointings and a limited exposure
time are possible. Hence, it is essential to distinguish, for any
line diagnostic, between the true value and its estimation.

2.3.1. Definitions and estimators of the structure functions

In the rest of this study, we assume ergodicity and isotropy of
the turbulence processes. For a given point in space x ∈ R3 with

a speed u in the referential of the observer, we only consider the
velocity component along the line-of-sight, that is u(x)·ex = v(x),
with no loss of generality due to isotropy.

In astrophysical observations, velocities can only be mea-
sured in the 2D space of the detector. Per pixel, the result will be
the projection of the line-of-sight component of the velocity field
modulated by emissivity effects. We define the subset Ss ⊂ R

4,
which contains all the doublets in the plane (x, y) separated by
exactly s in the sense of the Euclidean norm. By convention,
S0 = ∅. We also define S̃s as the “halved” subset, not counting
for x ↔ y permutations. The cardinal of S̃s is noted Np(s) and
represents the number of evaluations of the spatial average at a
separation s. Under these assumptions, the previous estimators
can be transposed to their 2D projected equivalents, SF and D,
using the centroid shift C:

SF(s) = 〈(C(x) −C(y))2〉S̃s
(8)

D(s) = 〈C(x) −C(y)〉S̃s
(9)

where 〈·〉S̃s
is the average over the data points in S̃s. In practice,

for any pixel (or centre of a region of pixels) in an observation,
SF and D are computed using the following estimators:

SF(s) =
1

Np(s)

∑
(x,y)∈S̃s

(C(x) −C(y))2 (10)

D(s) =
1

Np(s)

∑
(x,y)∈S̃s

(C(x) −C(y)) (11)

where C is the estimator of the centroid shifts (i.e. actual mea-
surement per pixel). In real data sets, only one, or a few realisa-
tions of these quantities will be computed. To determine whether
these estimators are biased, one has to compute their expected
value (in the statistical sense) and compare it to the real value.

X-ray observations of the centroid shift and line broadening
will be affected by sources of statistical and systematic errors,
such that in every pixel or region x, C(x) = C(x) + δC(x)stat +

δC(x)syst and S̃ (x) = S̃ (x) + δS̃ (x)stat + δS̃ (x)syst. The former
is related to the exposure time of the observation, the latter to
uncertainties in the calibration (energy scale and energy redistri-
bution function) or in the fit. We assume no systematic error is
present in the observations. The statistical error on each point is
represented as a random variable, normally distributed and cen-
tred. We define σstat,C and σstat,S̃ the standard deviation of the
statistical error for C and S̃ respectively (not necessarily equal).
This distribution is considered spatially independent (i.e. valid
on any subset of pixels). We further assume that the bulk motion
is perfectly known, such that its contribution can be systemati-
cally subtracted from the measurements. Any turbulent velocity
field is thus considered as centred, with a dispersion σturb.

2.3.2. Expected value of the velocity shift and broadening

The estimator of the centroid shift along a given line-of-sight is
obtained directly from the measurements. The expected value of
the velocity shift for a pixel (or region) x over multiple realisa-
tions of the same random process is simply (for a centred field):

E[C(x)] = 0. (12)

The corresponding variance is (Appendix A.1):

Var[C(x)] = Var[C(x)] + σ2
stat,C (13)
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where Var[C] is the intrinsic variance of the centroid shift of
the projected line-of-sight component of the velocity field over
different random observations, which is affected by emissivity
(see CL19).

Similarly, the estimator of the line broadening is simply the
measured broadening of the line. After subtraction of the instru-
mental effects and other physical effects, the estimator may be
affected by the statistics of the measurements such that over mul-
tiple realisations of the velocity field (see Appendix A.1):

E[S̃ 2(x)] = E[S̃ 2(x)] + σ2
stat,S̃

Var[S̃ 2(x)] = Var[S̃ 2(x)] + 4σstat,S̃E[S̃ 2(x)] + 2σ4
stat,S̃ (14)

where E[S̃ 2(x)] and Var[S̃ 2(x)] are respectively the expected
value and the intrinsic variance of the line broadening of the pro-
jected line-of-sight component of the velocity field (see CL19).
Statistics induce an additional broadening, which adds to the
intrinsic variance through statistical terms and cross products.

2.3.3. Expected value of the structure function

In the case of the structure function an ampler analytical
approach is needed to quantify the effect of limited statistics in
the measurements. For many observations of the same random
turbulent process, the expected value of SF(s) is:

E[SF(s)] =
∑

(x,y)∈S̃s

E[(C(x) −C(y))2]
Np(s)

· (15)

The development (see Appendix A) yields the biased expected
value of SF(s) shown by ZuHone et al. (2016):

E[SF(s)] = SF(s) + 2σ2
stat,C . (16)

Equation (16) – valid throughout this paper – shows that the
measurement of the SF using a statistically inaccurate measure-
ment of the turbulent velocity is systematically biased, regardless
of the number of points used to derive the structure function.

2.3.4. Variance of the structure function

It is important to determine whether the variance of the struc-
ture function is also affected by systematic biases. The accu-
rate knowledge of the errors is crucial to understand the
measurements and to distinguish between SF-related quantities
(e.g. injection or dissipation scales). The same approach as in
Sect. 2.3.3 is thereby extended to the variance of the estimator:

Var[SF(s)] =
1

Np(s)2 Var
[ ∑

(x,y)∈S̃s

(C(x) −C(y))2
]
. (17)

Under the previous assumptions, the variance of the estima-
tor is given by (see Appendix A for development):

Var[SF(s)] = Var[SF(s)] + 4Var[D(s)]σ2
stat,C︸               ︷︷               ︸

(1)

+
4

Np(s)
SF(s)σ2

stat,C︸                ︷︷                ︸
(2)

+
4(Nnei(s) + 1)

Np(s)
σ4

stat,C︸                    ︷︷                    ︸
(3)

. (18)

where Nnei(s) is the number of neighbours at a distance s of any
given point (see Appendix A.2 for a mathematical definition) and

Var indicates the variance of the quantity over multiple observa-
tions of the same random process.

In the absence of statistical error (i.e. σstat,C = 0), we recover
the intrinsic variance of the structure function, which can be
determined using the approach presented in CL19. With statis-
tics, we distinguish between three different terms. Each can be
interpreted as follows:
(1) Velocity field fluctuation term. The first term is related to the

variance of the incremental function. This term provides a
sense of the velocity fluctuations over the observational filed-
of-view (FoV). If fluctuations are small (i.e. nearby pixels
have similar velocities), the effect of a statistical error will
be small. On the contrary, when pixel-to-pixel fluctuations
are large, statistics will affect the computation of the estima-
tor for a given observation of the turbulent velocity power
spectrum. This term will therefore be small for dissipation
scales larger than the pixel (or binned region) size, or large
otherwise.

(2) Structure function fluctuation term. This second term can be
related to the uncertainty with which the structure function is
computed when using turbulent velocities affected by statis-
tical errors. Its value follows closely the shape of the “true”
structure function (i.e. not positively biased, as in Sect. 2.3.3)
and is therefore negligible at low spatial separations (where
SF is small), but increases with s. This term becomes neg-
ligible when a large number of pairs is used to estimate the
structure function.

(3) Statistical fluctuations term. This term is the sheer contri-
bution of the statistics to the overall variance of the struc-
ture function estimator. It appears from the covariance terms
of the velocity field and is associated to the topology of the
detector through the neighbour term Nnei(s). Its contribution
is most important at low spatial separations, where velocities
are similar, and large statistical errors may introduce biases
in the structure function estimation.

Alternatively, the first two terms can be written under a single
term (1)+(2), related to the intrinsic nature of the line-of-sight
component of the velocity field (both scale with σ2

stat,C). For-
mally, Var[D] is linked to SF (see Appendix A) and both show
similar properties, notably at large spatial scales. Whenever Np
is large, terms (2) and (3), related to the number of regions used
to evaluate SF, go to zero. The first term however, is intrinsically
linked to the number of observations of the turbulent process,
and remains non-zero, even for large Np. It can be interpreted
as a cross product between the cosmic variance of the field and
the statistics, which can only be determined through multiple
observations of the random process. For this reason, in the case
of a Gaussian field, we made the choice to separate it from the
sheer contribution of SF (2). A verification of these formulas on
simple test cases (e.g. constant velocity fields, Gaussian fields)
yields excellent results.

3. Generation of synthetic turbulent velocity
fields

Future micro-calorimeter instruments such as the X-IFU will
provide the required spatially resolved high-resolution spec-
troscopy to measure line shifts or line broadening, thus setting
constraints on the turbulent velocity fields of nearby clusters
(Roncarelli et al. 2018). The typical measurable scales of turbu-
lence span from the size of the FoV – or the mapped area in case
of multiple pointings – to the size of the pixel. A study of the
turbulent cascade over different spatial scales with X-ray instru-
ments is therefore limited to nearby clusters, where kpc to Mpc
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Fig. 1. Example of power spectra used in the simulations. Left: turbulent power spectra used in the simulation for different injections and dissipation
scales. Right: normalised spectrum of X-ray emissivity of the Coma model at the centre used to compute Cn (||θ||2 = 0 kpc, red) and off-axis
(||θ||2 = 250 kpc, blue).

scales are accessible with arcmin-like FoV and arcsec-like pixels
(provided a sufficient angular resolution).

The assessment of turbulence in these objects, however, will
be hindered by cosmic variance and further degraded by the lim-
ited statistics of the observations. We provide in the rest of this
paper an application of the previous equations (Sect. 2) in the
case of synthetic X-IFU observations to validate these formulas
and demonstrate the capabilities of the instrument. The genera-
tion of the turbulent velocity fields is inspired from ZuHone et al.
(2016; hereby Z16). Simulations are based on the official E2E
simulator SIXTE (Wilms et al. 2014), and performed similarly
to Cucchetti et al. (2018; hereby C18).

3.1. Emission profile and turbulent power spectrum

Forecasted targets to investigate the ICM turbulence with the X-
IFU are local and massive clusters, such as the Perseus and Coma
clusters. Hereafter, we consider a Coma-like cluster, as in Z16,
assuming an emission profile described by a β-model:

ne(r) = ne,0

1 +

(
||r||2
rc

)2−
3β
2

(19)

where ne,0 is the electron density at the core and rc the “core”
radius of the cluster. In the rest of this paper we assume ne,0 =
3 × 10−3 cm−3, rc = 400 kpc, β = 2/3, and ne = 1.2 nH. We con-
sider observations of the core of the cluster, where emissivity
varies but slightly (∼2%) over an X-IFU FoV (i.e. 5′ in equiv-
alent diameter). At the redshift of Coma (z0 = 0.023), 1 kpc
corresponds to 2.21′′ on the sky. For simplicity, we assume an
isothermal cluster at kBT = 7 keV, with a constant metallicity
Z = 0.7 Z� (see Ettori et al. 2015, abundances are given with
respect to Anders & Grevesse 1989). The x direction remains the
line-of-sight of the observations and we chose the centre of the
cluster as the origin of a (x, y, z) orthonormal frame. For a point
r, its 3D wave-vector is k = (kx, ky, kz), with (ky, kz) = ξ.

Each gas particle in the ICM is simulated with a veloc-
ity v(r) along the line-of-sight. A full description of turbulence

requires hydrodynamical treatments (Gaspari & Churazov 2013;
Gaspari et al. 2014). We simplify here this approach (also for
computational reasons) by assuming that turbulence follows an
isotropic Kolmogorov 3D power spectrum

P3D(k) = ||ṽ(k)||22 = Cnkαe−(k/kdis)2
e−(kinj/k)2

(20)

where ṽ is the 3D Fourier transform of the velocity field along
line-of-sight, Cn is a normalisation factor of the power spectrum
and k = ||k||2. We note kdis, kinj the dissipation and injection scale
respectively, and α the turbulent power-slope (Fig. 1 – left).

3.2. Normalisation of the power spectrum

Given the cluster emission profile, the velocity measured by the
instrument will be convolved with the power spectrum of the
cluster emission. As shown in Z16, if we note ε ∝ nenHΛ(T,Z)
the X-ray volume emissivity, the emission-measure weighted
projection of the line-of-sight component of the velocity field
along a given line-of-sight θ for a Gaussian or Voigt line is sim-
ply

C(θ) =

∫
v(r)ε(r)dx∫
ε(r)dx

· (21)

As the emission is isothermal and isometallic, ε only depends on
the squared density of the cluster. By calling

ρ(r) =
ε(r)∫
ε(r)dx

(22)

the normalised X-ray emissivity, the velocity dispersion S̃ along
a specific line-of-sight is given by

S̃ 2(θ) =

∫
v(r)2ρ(r)dx −

(∫
v(r)ρ(r)dx

)2

. (23)

The expected value of S̃ 2 along θ is related to the turbulent
power spectrum (Zhuravleva et al. 2012, CL19) by:

E[S̃ 2(θ)] =

∫
P3D(kx, ky, kz)[1 − P θ

ρ (kx)]dkxdkydkz (24)
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where P θ
ρ is the 1D power spectrum of the normalised X-ray

emissivity ρ (Eq. (22)) for a fixed θ (depends on the selected line-
of-sight, see Fig. 1 – left). As in Z16, the normalisation of the
3D power spectrum is chosen to satisfy E[S̃ 2(0)] = (Mcsound)2,
where E[S̃ 2(0)] is the expected velocity broadening of the line-
of-sight component of the velocity field at the centre of the clus-
ter,M the Mach number and csound the sound celerity in the ICM.
For our simulations, we useM = 0.3 and csound = 1460 km s−1

(Z16).
The normalisation Cn can be computed through numerical

integration of Eq. (24) for θ = 0. In our study, the computation is
performed using a uniform 8192 × 8192 × 8192 grid of a length
k` = 0.50 kpc−1, which corresponds to the spatial scale ` of pixel.
To accurately compute the small scales in the centre of the clus-
ter (notably for P θ

ρ ), we take kmin = (50rc)−1 kpc−1 (Fig. 1 –
right). This approach yields excellent results with respect to the
purely analytical approach (possible with a β-model) with accu-
racies better than 0.1%.

3.3. Generation of the turbulent velocity field

One realisation of the turbulent velocity field is generated under
the previous assumptions using the 3D turbulent power spec-
trum. We operate with a uniform area on the sky of 8.5′ × 8.5′
(i.e. 230 kpc × 230 kpc) and 1.84 Mpc along the line-of-sight.
The θ plane size is chosen to include more than 1.5 times the
X-IFU FoV to avoid finite box-size effects of the simulation,
while the grid is extended over the line-of-sight (8 times larger)
to account more accurately for projection effects and ensure a
smoother cut-off of the emissivity at the edges of the grid. For
each run, we take a 2048 × 256 × 256 mesh, with a step size of
`/2 = 2.14′′ (0.97 kpc), which corresponds to the half-width of
the X-IFU pixel to avoid aliasing (Shannon criterion), and offers
a good computational speed compromise.

Each grid point is given a turbulent velocity in Fourier space
ṽ(k) = |Vk |eiψ, with |Vk | the modulus, and ψ the phase, assumed
without spatial correlation. As in Z16, we use a Rayleigh dis-
tribution of parameter ΣVk = P3D(k)/2 for the modulus, and a
spatially independent uniform distribution of the phase ψ. The
corresponding probability distribution function being

P(Vk, ψ)dVkdψ =
Vk

Σ2
Vk

e
−

V2
k

2Σ2
Vk dVk

dψ
2π
. (25)

Without loss of generality, nor influence on the power spec-
trum, phases are computed exclusively on the lower triangular
matrix of the velocity, and transposed to the upper triangular
matrix to obtain a Hermitian velocity grid. Once computed in
Fourier space, the velocity grid is transposed into real space to
obtain the line-of-sight component of the velocity v(r) in each
point in the grid. Given the large arrays the inverse Fourier trans-
form is performed through 2DECOMP&FFT2 (Li & Laizet 2010),
which is memory-optimised for large matrices. An example of
the emission-measure weighted projection of a simulated veloc-
ity grid v(r) is provided Fig. 2 (top left).

3.4. Simulation set-up

The generated velocity grids can be used to validate the previous
formulas in the case of X-IFU observations. They were there-
fore used as inputs to perform E2E simulations of our toy model
Coma cluster.
2 http://www.2decomp.org

3.4.1. Particle emission model

Similarly to C18, each gas particle is associated with a grid
point and an element of volume, and assumed to emit isotrop-
ically. Since particle volumes are four times smaller than the
X-IFU pixel area, and given the Athena telescope required angu-
lar resolution of 5′′ half-equivalent width, we consider them
as point-like individual sources on the sky. The emission spec-
trum for each particle is assumed to follow an unabsorbed ther-
mally broadened plasma emission, modelled through XSPEC
using wabs*apec with a constant temperature of 7 keV and a
metallicity of 0.7 Z�. As in C18, the wabs absorption model
(Morrison & McCammon 1983) is preferred for computational
efficiency. A column density value of 0.03 × 1022 cm−2 is used,
and represents a typical high Galactic latitude value of the col-
umn density seen over the sky (Kalberla et al. 2005).

The turbulent motions of the gas are included by convert-
ing the line-of-sight component of the velocity field for each
grid point into an additional redshift, which shifts the line by
Doppler effect. No excess broadening is considered locally due
for instance to microscopic turbulent motions. The correspond-
ing total redshift zi of the ith cell is computed using the classical
redshift composition:

zi = z0 + zv,i + z0zv,i (26)

where zv,i is induced by the velocity of the cell,

zv,i =

√
c + vi

c − vi
− 1. (27)

Finally, the normalisationNi of each emission spectra is pro-
vided for each cell through the apec normalisation

Ni =
10−14

4π[DA(1 + zx,i)]2 nenHVcell (28)

where DA is the angular distance to the Coma cluster and Vcell
the volume of each cell (constant for our uniform grid).

The photon generation and the simulation follow the
same process as in C18, with the same configuration of the
X-IFU instrument through SIXTE (xifupipeline). Since the
main objective here is the estimation of turbulent velocities
and the velocity power spectrum, no background nor cross-
talk are included in the simulation to avoid introducing addi-
tional instrumental systematics. However, as shown in C18,
an accurate knowledge of the background components should
not bias the following results (especially for redshift measure-
ments). Further, since the observations are focused on the cen-
tre of a bright Coma-like cluster, the astrophysical and instru-
mental background levels are expected to be sub-dominant
with respect to the cluster emission. A typical exposure time
of 100 ks is considered for any of the following synthetic
observations.

3.4.2. Post-processing of the data

Due to limited statistics of the observation, pixels are binned into
regions with a signal-to-noise (S/N) ratio S/N = 200 (∼40 000
counts per region) to reduce the statistical uncertainty on the
measurements. To do so, we selected a spatial binning using an
adapted Voronoï tessellation of the plane3 (Cappellari & Copin
2003), which provides ∼150 regions over the X-IFU FoV (∼20

3 https://www-astro.physics.ox.ac.uk/~mxc/software/
#binning
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Fig. 2. Example of simulated velocity fields. Top left: example of an emission-measure weighted projection of the simulated line-of-sight compo-
nent of the turbulent velocity field. In this case kinj = 1/150 kpc−1 and kdis = 1/20 kpc−1. The shape and the extent of the X-IFU FoV is shown as a
white dashed line. Top right: absolute error distribution between the recovered line-of-sight velocity in one of the simulations and the correspond-
ing input emission-measure-weighted velocity. The statistical error follows a centred Gaussian distribution where the Gaussian best fit (in red) is
found for µstat = 0.2 km s−1 and σstat,C = 34 km s−1. Bottom left: example of a synthetic X-IFU observation of bulk motion for kinj = 1/200 kpc−1

and kdis = 1/10 kpc−1 and (bottom right) corresponding emission-measure weighted input map (binned). The small green crosses indicate the
centres of the Voronoï regions.

pixels per region, Fig. 2 – bottom). This choice is motivated
by the will to remain generic in our approach (this binning
can be applied to any detector) and to provide round-shaped
regions of constant S/N, which ensure a faster convergence of
the cosmic variance computation presented in CL19 than square
regions.

The spectrum from each region is fitted using the input
XSPEC model with an additional broadening component
(bapec) to account for the effect of the turbulent velocities. A
simultaneous fit of all the free parameters (temperature, abun-
dance, redshift, velocity broadening, and norm) is performed.
Results from the fits are excellent. No bias is visible on both
parameters, and the statistical error distribution of the measured
velocity shift, δCstat, is consistent with a centred Gaussian, of
standard deviation σstat,C = 34 km s−1 (Fig. 2 – top right). This
value of the statistical error was confirmed in every run, when
using the same exposure and binning procedure (at constant
β-model input). An example of binned input velocity map and
the recovered output is provided Fig. 2 (bottom).

4. Estimating the cosmic variance on X-IFU
synthetic observations

4.1. General approach
The previous E2E simulations are used as a test case to ver-
ify the formulas derived in Sect. 2. To do so, a computation
of the structure function and its variance over a very large FoV
would be required. This implies however to simulate large spatial
grids with a refined mesh, which is rapidly computationally cum-
bersome (memory- and time-wise). We take advantage of the
ergodicity assumption of the turbulence to simulate many inde-
pendent velocity fields over the previous 2048 × 256 × 256
mesh, and average over these iterations to derive an estimation of
the structure function. In practice, for a given choice of the tur-
bulent velocity power spectrum (i.e. a subset of α, kinj and kdis),
we create 100 different velocity fields, which are then observed
using the previous E2E pipeline assuming a 100 ks exposure
time. We thus obtain – for one choice of P3D – 100 independent
synthetic velocity maps of the same random process.
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Fig. 3. Estimated structure function (km2 s−2) averaged over 100 different observations of a velocity field generated with the same underlying
turbulent velocity power spectrum as a function of the separation s (kpc). Left: raw structure function recovered for kinj = 1/200 kpc−1 and
kdis = 1/20 kpc−1. Different theoretical structure functions are also shown, the one associated to the run is given by red solid line. Right: same as
left panel but the data points are corrected for the statistical bias and the binning projection effects (see CL19 for more information on the latter).
Error bars indicate the ±1σ deviation within the 100 iterations.

In the case of the Coma cluster, we use as minimal dissi-
pation scale of the turbulent velocity power spectrum 10 kpc,
which represents a good compromise between current observa-
tional expectations (Gaspari & Churazov 2013) and future capa-
bilities of the X-IFU (an X-IFU pixel size represents ` ∼ 2 kpc at
the Coma cluster redshift). Given the binned regions of our map
(∼5 pixels of diameter) any scale larger than 10 kpc should be
resolved. We know that large injection scales, a few hundred kpc
up to 1 Mpc, can occur due to merger event or subgroup accre-
tion (e.g. Khatri & Gaspari 2016). As we aim here at verifying
our analytical formulation of the statistical error, we consider
injection scales ≤200 kpc, which provide a likely description of
the injection scale and keep the velocity field size within range
of our available computation power. The slope of the turbulent
power spectrum is fixed at α = −11/3.

4.2. Structure function estimation

For a turbulent velocity power spectrum, SF can be estimated
for each recovered velocity field through the previous formulas,
using as separation s the distances between the centres of binned
regionsW. For a Voronoï tessellation, the centres are found by
taking the weighted barycentre with respect to the number of
counts in each region W. Given the homogeneous emission of
the cluster toy model over the FoV, these points coincide in most
of the cases with the geometrical centre of W (see the green
crosses on Fig. 2 – bottom right for an example).

Though the emission profile of the cluster is the same, the
non-constant region shape provided by the Voronoï tessellation
creates slightly different spatial bins from one observation to the
other. Hence, separations between regions do not follow a dis-
crete mesh in each of the 100 observations of a given turbulent
power spectrum. To compare the structure functions between the
runs, we estimate SF on an a priori grid of spatial separations,
equal for each iteration, and with a step size of ∼5 kpc, which
is approximately the equivalent radius of a Voronoï region. For
instance, the regions with distances between 10 and 15 kpc will

be considered in the same bin to compute the value of SF in each
run. The expected value of SF in the bin is then recovered by
averaging over the 100 observations. The “true” value of spatial
separation in the bin is taken by averaging all the real distances
contained in the bin.

Examples of the estimated structure function for a given P3D
are shown Fig. 3, along with the corresponding 1σ deviation of
each separation bin. The theoretical structure function associ-
ated with each 3D power spectrum is recovered through numer-
ical integration of the analytical formula in a cylindrical frame
(r, ϕ, x) along the line-of-sight x by (Zhuravleva et al. 2012):

SF(s) = 4π
"

[1 − J0(2πkr s)]P3D(k)P θeff
ρ (kx)krdkrdkx (29)

where J0 is the Bessel function of the first kind and θeff a fixed
“effective” radius to compute the 1D power spectrum P θ

ρ . As
the emissivity is not constant (see e.g. Fig. 1 – right), the struc-
ture function also varies depending on the regions considered to
compute it (except in annular regions as the emission satisfies
a spherical symmetry here). However, since ε is slowly-varying
over the detector FoV in this case, only minor changes of the
SF are expected (≤5% over the FoV). A good approximation of
the observed structure function can be obtained by evaluating the
previous formula on the annular radius corresponding to half of
the equivalent radius of the detector. For the X-IFU this corre-
sponds to θeff ∼ 34 kpc (1.24′).

As expected, the uncorrected values of the structure function
are positively biased due to the statistical uncertainties in the
measurements (Fig. 3 – left). This bias can be corrected by sub-
tracting the variance of the statistical error σ2

stat,C (see Eq. (16)).
Even with this correction, discrepancies of ∼5% remain, which
can be related to binning effects (see CL19). After subsequent
correction (Fig. 3 – right), the average value of the structure
function matches with the analytical structure function (≤3% in
average on the relative difference between the simulations and
the computed structure function over all separations). Remain-
ing sources of error may be related to the number of iteration
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Fig. 4. Left: structure function variance (km4 s−4) averaged over 100 observations of a velocity field generated with the same underlying turbulent
power spectrum (kinj = 1/200 kpc−1, kdis = 1/20 kpc−1) and corresponding ±1σ error bars as a function of the separation s (kpc). The comparison
to the theoretical models derived from the simulation and the formulas by CL19 is shown for a circular FoV of Rin (blue solid), Req (red dashed)
or Rci (green dash-dotted). The sheer contribution of the cosmic variance without statistical terms for R = Req is given in light purple. Right: error
contributions in the total variance for the previous case for R = Req when σstat,C = 34 km s−1. The data points for the statistical and structure
function fluctuation term are derived from analytical formulas, while the velocity field fluctuation term is computed using the 100 iterations (see
text).

used here to recover the expected value of SF (100). Numerical
effects related to the integration, the choice of θeff and the bin-
ning may also create deviations.

4.3. Structure function variance estimation

Similarly, the variance of the structure function over the runs
can be compared to Eq. (18). The geometrical terms, Nnei(s) and
Np(s), are derived from the binning map. D can be computed
through D, unbiased for a centred Gaussian statistical noise. Its
variance however, is biased such that (see Appendix A.5):

Var[D(s)] = Var[D(s)] +
2σ2

stat,C Nnei(s)

Np(s)
· (30)

Var[D(s)] is therefore estimated through Var[D(s)] over the 100
simulations, and corrected of its bias. The intrinsic cosmic vari-
ance is obtained using the formulas provided in CL19. To do so,
a specific circular FoV of the instrument and a pixel size (or bin
size) are needed. We consider here that bins are well described
by disks of the same diameter as the Voronoï regions. Similarly
the hexagonal detector is approximated by an equivalent disk.
Three different options were considered for its radius R:

– “Equivalent” radius Req. IfSA is the total area of the detector,
Req =

√
SA/π = 67.6 kpc = 149.4′′.

– Radius of the inscribed circle, Rin = 63.9 kpc = 141.2′′.
– Radius of the circumscribed circle, Rci = 82.1 kpc = 181.4′′.

Figure 4 (left) shows the comparison for different values of R,
and the case without statistical corrections. For large separa-
tions, the statistical terms presented in Eq. (18) have little effects,
but must be accounted for when considering smaller separations.
Also, despite the slight differences between the considered radii,
changes in the analytical values of the variance of a factor 2
are observed when statistics are included. Simulation points are

comprised between the R = Rci and R = Rin curves, and all
three curves show a good agreement within error bars. Devia-
tions between the simulated data and predicted errors is lower
than 20% for all separations (i.e. less than 10% in standard devi-
ation) with Req providing the best results (10% in variance, hence
≤5% in standard deviation).

These curves accurately recover the shape of the expected
variance, but show a consistent deviation at large separations,
which can be related to two distinct effects. On the one hand,
these separations are sampled only a handful of times within a
single X-IFU pointing (i.e. one or two regions per iteration are
separated by a detector diameter), thus creating a simulation-
related sample variance in the data. On the other hand, the cir-
cular FoV approximation reaches a limit for separations of the
same order (or higher) than Req. Smaller deviations could also
be caused by box-size effects of the turbulent velocity grid.

Other factors can explain the remaining deviations between
the theoretical curves and the simulations:

– The computation of the analytical error formulas involve
complex numerical integrals, which can account for errors
in the variance around 1–2%.

– The E2E simulation sample used in the simulations (100) is
sufficiently large to have a good estimate of the average, but
may be insufficient for an accurate value of the variance, up
to a level of 10%. Results with 250 iterations indicate a bet-
ter agreement with the theoretical error formulas (improve-
ment of a few %), suggesting that part of the deviations are
consistent with a small size of the sample. To reduce this
contribution within numerical errors (i.e. below the 2%
threshold) at least 2500 iterations are required. Such an
increase would however render the computational time
unreasonable (∼1 week of computational time for 250 iter-
ations for a given P3D with our current set-up).

– The approximation of the X-IFU FoV with a disk. A bet-
ter description of the detector geometry in the computation
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Fig. 5. Same as Fig. 4 for 20 ks observations using the same binning map. Only the case R = Req is shown.

of the intrinsic variance component could reduce this com-
ponent, especially for separations larger than the detector
equivalent diameter.

– The bin shape used for the numerical computation, which
assumes a uniform tessellation of the detector. Voronoï bin-
ning was chosen to represent a more generic case than sim-
ple square regions. It does not, however, verify a uniform
tessellation. Test runs performed using square groups of pix-
els show similar results in the comparison, suggesting little
impact of this particular effect on our previous results.

This analysis was extended to other turbulent velocity power
spectra, with kinj within 100 and 200 kpc, and kdis from 10 kpc
to 30 kpc, showing similar results.

5. Implications of error formulas

5.1. Validation of error formulas and relative contribution

Figure 4 (right) shows the contribution of the sources of error
for a given P3D. Among the statistical error contributions, com-
puted in each bin, the velocity field fluctuation term dominates
the other two and shows a monotonous trend. The structure func-
tion fluctuation term is lower than the previous contributor, but
becomes comparable at high s, where the number of regions used
to compute SF is small. Finally, as expected, the purely statistical
term is the smallest and can in most cases be neglected. Its con-
tribution is mostly on small separations and minimal on average
separations, where Np is highest. We note however that its value
becomes comparable to the cosmic variance for small s.

For σstat,C = 34 km s−1, used here, the intrinsic cosmic
variance term dominates over most of the separations (s ≥
30/40 kpc). This result holds for all the P3D tested. As suggested
by Fig. 4 (left), the correction included by the statistical terms
in the estimation of the total variance is mainly visible at small
separations, validating the formulas out to ∼50 kpc. Testing the
previous formulas for high s requires to decrease the contribu-
tion of the cosmic variance or to increase the other statistical
contributors to enhance error terms for high s. All things being
equal, these terms scale with σ2

stat,C or σ4
stat,C , and become domi-

nant when σstat,C ≥ 100 km s−1. This can thus be achieved using

larger pointings with a similar binning and exposure (to reduce
the cosmic variance), or by artificially increasing the statistical
error by for instance considering shallower exposures. The latter
was considered, by reducing the previous runs to 20 ks expo-
sures, and provides a good agreement with the theoretical for-
mulas (see Fig. 5).

5.2. Practical estimation of errors

As shown in CL19, an estimation of the cosmic variance can
be obtained numerically with several approximations on the
detector geometry. The statistical terms however are intrinsically
related to the observational set-up. We provide here some solu-
tions to estimate the quantities involved in Eqs. (16) and (18) for
a specific instrumental configuration.

The values of Np(s) and Nnei(s) are the simplest to derive, as
they are related to the binning and geometry of the detector, and
can be determined analytically with high accuracy. σstat,C will be
a direct output of the observation. However, an a priori estima-
tion of the statistical error of an observation, which could be used
to forecast structure function errors before an observation (e.g.
to optimise the exposure strategy) is more challenging. Crude
estimations can be derived using a simple Poissonian approach
using the flux of the source and the exposure time. Provided E2E
simulations of the instrument become sufficiently representative,
a promising solution could be to derive σstat,C numerically (a sin-
gle pointing is required).

The variance of D is by far the most challenging term to esti-
mate, as it requires multiple observations. In our simulations, the
ergodicity assumption simplifies these computations, as accurate
estimations of the previous terms can be obtained by averag-
ing over a large number of iterations. This approach does not
hold in flight, as multiple realisations of the same turbulent field
are unlikely to be met (statistically speaking), even assuming a
self-similar behaviour of the turbulence between clusters. Even
if single pointings of a larger mapping of the same object are
performed, an accurate computation of the variance cannot be
achieved unless the emission profile does not vary across the
FoV, which only concerns a handful of clusters (at a zeroth
order approximation). A solution is once again to use numerical
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simulations. An idea is to find analytical formulas, similarly
to CL19, and use them to obtain a fast numerical estimation
of Var[D(s)] for a given power spectrum assumption. As this
remains to be investigated, dedicated MC simulations remain at
the moment the other possible solution. Although relying once
again on an iterative method, these simulations do not require
a full E2E approach, and can be performed without any prior
on the instrument except its geometry (implying large gains in
computational time).

5.3. Towards optimising observation strategies

Under the current assumption of 100 ks pointings, we expect sta-
tistical errors on X-IFU observations to be low and well con-
strained. Hence, over a single pointing, an accurate knowledge of
the intrinsic cosmic variance will be sufficient to provide an error
estimation of the SF at large separations (Fig. 4), and thereby to
investigate turbulence at large scales (i.e. injection scale). Sta-
tistical terms can in this case be neglected in the error compu-
tation. On the contrary, when measuring the structure function
for small separations (i.e. to probe dissipation scales), a good
estimation of all the statistical terms is paramount to ensure a
proper error description. Depending on the science objectives of
the X-IFU (large- or small-scale turbulence investigations), the
observational strategy can then be optimised.

For a constant exposure time, several options can be
explored. Deep pointings would provide a constant value of the
cosmic variance, but significantly reduce σstat,C , which may be
interesting to explore small separations. On the contrary, since
statistical errors are negligible at high s, multiple shallower
pointings could be used to explore larger separations (notably
larger than the detector) while reducing the cosmic variance.
An optimal point where all errors are comparable across the
separations could also be used. The formulas derived here and
in CL19 demonstrate that accurate error estimations of the SF
can be found by numerical integration. This approach is com-
plementary to studies of turbulence limited through an iterative
approach (e.g. 100 simulations of a large grids and associated
errors), which can now be reduced to a handful of simulations.

6. Conclusion

With improvements in high-resolution spatially resolved X-ray
spectroscopy, measurements of line shifts, line broadening and
structure functions will provide new insight on the turbulence at
play within the ICM. In this paper, we addressed the challenge of
computing these diagnostics and estimating their errors, related
to both cosmic variance and measurement uncertainties. Specif-
ically, this work extends the approach started in our companion
Paper I, which derives a formulation for the cosmic variance,
and adds the contribution of finite statistics in the observations.
All the formulas presented here should thus be coupled to those
from CL19 on the intrinsic cosmic variance.

We found that all the estimators, notably those of the struc-
ture function and its variance over various observations, are
biased by the statistics of the measurements. For the variance of
the structure function, these biases can be divided into multiple
contributors, which add to the intrinsic cosmic variance: a purely
statistical contributor, which scales with the squared variance
of the statistical uncertainty (σ4

stat,C), and a contribution related
to the intrinsic nature of the velocity field, which scales with
σ2

stat,C and depends on the spatial binning, the detector geome-
try, and the scales of the turbulence (injection and dissipation).
We divided the latter into two terms in the case of Gaussian error

field, a structure function fluctuation term related to the turbulent
velocity power spectrum, and a velocity field fluctuation term,
related to the scales of the turbulence within the FoV. The equa-
tions derived in Sect. 2 are generic and valid for any instrument
with measurement uncertainties.

A specific application to the X-IFU instrument was per-
formed to demonstrate the validity of these formulas in the
framework of the future mission Athena. For this test, turbulent
velocity fields of a toy model Coma-like cluster were generated
for different underlying turbulent power spectra (here for dif-
ferent injection and dissipation scales of a Kolmogorov power
spectrum), and used as inputs for synthetic observations with the
X-IFU E2E simulator SIXTE. When such observations are aver-
aged over a large number of different realisations of the veloc-
ity field (assuming ergodicity) and corrected of their biases, our
results show excellent agreement with the analytical values, with
relative errors below 3% over the spatial scales investigated. A
comparison of the variance of the estimated structure function
using the analytical error formulas presented here and in CL19
also provides accurate result (better than 10% in variance, hence
≤5% in standard deviation).

Results presented here demonstrate that we can provide
accurate estimations of the total variance of the structure func-
tion. For typical X-IFU observations of 100 ks, statistical terms
in the structure function errors can be neglected for large spa-
tial separations (s ≥ 70 kpc), but are required to investigate
smaller separations (s ≤ 30 kpc). Depending on the science case,
efforts can therefore be directed into reducing one or several
of the error terms specifically, or into optimising the observa-
tional strategy (exposure and spatial map) and the spatial bin-
ning (region size and shape). A dedicated analysis of these opti-
misations, taking advantage of the fast computations enabled by
the formalism proposed here, will be discussed in a forthcoming
study. Measurements remain all the same a challenging objec-
tive, especially when systematics or the physics of the ICM (e.g.
AGN, shocks) are considered. New results will thus also rely on
alternative diagnostics, such as line non-Gaussianity, achievable
through the spectral resolution of the X-IFU.
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Appendix A: Expected average and variance
of the line diagnostics with finite statistics

We derive here the expected values for the average and vari-
ance of the structure function estimator. For these computations,
we assume ergodicity and isotropy of the turbulence processes.
Under these assumptions, the expectation E over the entire space
is equal to the average on a single point when considering an infi-
nite number of realisation of the turbulent process. The expecta-
tion operator E is linear, such that for a given random variable X,
Var[X] = E[X2]−E[X]2. The Var operator indicates the variance
over different observations or subset of observations, for instance
in the case of multiple pointings or regions. It does not include
any systematic or projection-related effect.

We remind that when the random variable δCstat describing
the statistical error is a centred Gaussian of standard deviation
σstat,C , and independent from the underlying turbulent velocity
field. Its first four moments for any point x in a 2D space over
an infinite number of random realisations are given by

E[δCstat(x)] = 0

E[δCstat(x)2] = σ2
stat,C

E[δCstat(x)3] = 0

E[δCstat(x)4] = 3σ4
stat,C .

A.1. Line shift and line broadening

A.1.1. Line shift

In the case of line shift, if we assume that the turbulent velocity
field is centred, the expected value of C averaged over multiple
different realisation of the velocity field over a point or region x
is simply

E[C(x)] = E[C(x)] + E[δC(x)stat]
= 0.

Similarly, the variance is given by

Var[C(x)] = E[C
2
(x)] − E[C(x)]2

= E[C2(x)] − E[C(x)]2 + 2E[δC(x)stat]E[C(x)]

+ E[δC(x)2
stat]

= Var[C(x)] + σ2
stat,C .

A.1.2. Line broadening

Using a similar approach as the previous case, we find that

E[S̃ 2(x)] = E[(S̃ (x) + δS̃ (x)stat)2]

= E[S̃ 2(x)] + 2E[S̃ (x)]E[δS̃ (x)stat] + E[δS̃ (x)2
stat]

= E[S̃ 2(x)] + σ2
stat,S̃

where E[S̃ 2(x)] = σ2
turb − Var[C(x)] (see CL19). For the

variance:

Var[S̃ 2(x)] = E[(S̃ (x) + δS̃ (x)stat)4] − E[(S̃ (x) + δS̃ (x)stat)2]2

= E[S̃ 4(x)] + 6E[S̃ 2(x)]E[δS̃ (x)2
stat] + E[δS̃ (x)4

stat]

+ 4E[S̃ 3(x)]E[δS̃ (x)stat] + 4E[δS̃ (x)3
stat]E[S̃ (x)]

− E[S̃ 2(x)]2 − 2E[S̃ 2(x)]E[δS̃ (x)2
stat] − E[δS̃ (x)2

stat]
2

= Var[S̃ (x)2] + 4E[S̃ (x)2]σ2
stat,S̃ + 2σ4

stat,S̃ .

A.2. Neighbours and detector tessellation

For future computations, the geometry of the detector will need
to be accounted for. We define here several quantities used
throughout the rest of the study.

Definition 1. Let it be a given tessellation T of the observed
space (here R2) corresponding to the pixel configuration of the
instrument or the binned regions of an observation. For a given
point x, centre of one of these regions, we define Nnei(s) as the
number of tessellated regions in its vicinity whose centre are at
a distance s from x (in the sense of the Euclidian norm).

Definition 2. Let us assume an infinite tessellation T of
the observed space (neglecting border effects) and a given p =
(x, y) ∈ R4 with ||x, y||2 = s. Vx,y ⊂ R

4 is the subset that con-
tains all the pairs q = (w, z) ∈ R4 such that q , p, ||w, z||2 = s,
with w = x, z , y or w , x, z = y strictly.

Lemma 3. For a given p = (x, y) ∈ R2, Vx,y is of cardinal
Np(s)(Nnei(s) − 1).

Proof. The total number of pairs p = (x, y) with ||x, y||2 =
s is 2Np(s). Let us now work on the “halved” space where no
permutations between x and y are considered. For two pairs p, q
of points, the total number of different combinations is given by:

CNp(s)
2 =

Np(s)(Np(s) − 1)
2

·

If a pair p is chosen, we have Np(s) different combinations
to choose from. However once this pair is selected the choice of
q < Vx,y is given by (Np(s)−2(Nnei(s)−1)−1). Since the permu-
tation between the selection counts elements twice, the number
of elements insideVx,y, that is #Vx,y is

#Vx,y =
Np(s)(Np(s) − 1)

2
−

Np(s)(Np(s) − 2(Nnei(s) − 1) − 1)
2

= Np(s)(Nnei(s) − 1).

A.3. Expected average of the structure function

The definition of the estimator accounting for the statistical
uncertainties can be written as

E[SF(s)] =
∑

(x,y)∈S̃s

E[(C(x) + δC(x)stat −C(y) − δC(y)stat)2]
Np(s)

=
1

Np(s)

∑
(x,y)∈S̃s

E[(C(x) −C(y))2 + δC(x)2
stat

+ δC(y)2
stat − 2δC(x)statδC(y)stat

− 2(C(x) −C(y))(δC(x)stat − δC(y)stat)].

Each of these six terms can be evaluated independently.

1© By definition of the structure function we have that:

1
Np(s)

∑
(x,y)∈S̃s

E[(C(x) −C(y))2] = SF(s).

2© / 3© Using the moments of the central Gaussian field:

1
Np(s)

∑
(x,y)∈S̃s

E[δC(y)2
stat] = σ2

stat,C .
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4© + 5©

2
Np(s)

∑
(x,y)∈S̃s

E[(C(x) −C(y))(δC(x)stat − δC(y)stat)]

=
2

Np(s)

∑
(x,y)∈S̃s

(E[C(x)δC(x)stat] − E[C(x)δC(y)stat]

− E[C(y)δC(x)stat] + E[C(y)δC(y)stat])).

Since the fields are independent from the errors, each term of
the previous equation can be decoupled (e.g. E[C(x)δC(y)stat] =
E[C(x)]E[δC(y)stat]). The error distribution being centred, the
overall sum is 0 for each point of S̃s.

6© By definition of S̃s, x , y, similarly to the previous case
2

Np(s)

∑
(x,y)∈S̃s

E[δC(x)statδC(y)stat] = 0.

The final result is obtained by summing the six terms:
E[SF(s)] = SF(s) + 2σ2

stat,C

A.4. Expected variance of the structure function

We take a specific interest here to the variance of the previous
estimators. To compute the expected variance of SF, we proceed
in the same way as in Sect. A.3. The variance of the estimator is
defined as

Var[SF(s)]

= Var

 ∑
(x,y)∈S̃s

[(C(x) −C(y)) + δC(x)stat − δC(y)stat]2

Np(s)


=

1
Np(s)2 Var

 ∑
(x,y)∈S̃s

ζ2
x,y


where we define ζx,y = (C(x) − C(y)) + δC(x)stat − δC(y)stat and
ζ0,x,y = C(x)−C(y). Since the variables are not necessarily inde-
pendent ((x, y) may be two-by-two different in R4 but they may
share the same x or y), the previous expression becomes

Var[SF(s)] =
1

Np(s)2

 ∑
(x,y)∈S̃s

Var[ζ2
x,y]

+
∑

(x,y),(x′,y′)∈S̃s
(x,y),(x′,y′)

Cov[ζ2
x,y, ζ

2
x′,y′ ]

 .
The first term represents the expected variance of the parameters
(non-zero for any given couple of (x, y)) and the second term the
covariance of the parameters. The covariance term is non-zero
exclusively when the two pairs of points share one given point
(i.e. x = x′ or y = y′).

A.4.1. Variance term

1
Np(s)2

∑
(x,y)∈S̃s

Var[ζ2
x,y] =

1
Np(s)2

∑
(x,y)∈S̃s

Var
[
(C(x) −C(y))2

+ δC(x)2
stat + δC(y)2

stat

− 2δC(x)statδC(y)stat

+ 2(C(x) −C(y))(δC(x)stat − δC(y)stat)
]

1©

1
Np(s)2

∑
(x,y)∈S̃s

Var[(C(x) −C(y))2] =
1

Np(s)2

∑
(x,y)∈S̃s

Var[ζ2
0,x,y]

2© / 3©

Var[δC(x)2
stat] = (E[δC(x)4

stat] − E[δC(x)2
stat]

2)

= 3σ4
stat,C − (σ2

stat,C)2

= 2σ4
stat,C

4©

Var[−2δC(x)statδC(y)stat] = 4(E[δC(x)2
statδC(y)2

stat]

− E[δC(x)statδC(y)stat]2)

= 4(E[δC(x)2
stat]

2 − E[δC(x)stat]4)

= 4σ4
stat,C

5© + 6©

Var[2(C(x) −C(y))(δC(x)stat − δC(y)stat)]

= 4 (E[(C(x) −C(y))2(δC(x)stat − δC(y)stat)2]

− E[(C(x) −C(y))(δC(x)stat − δC(y)stat)]2)

= 4E[(C(x) −C(y))2(δC(x)2
stat + δC(y)2

stat

− 2δC(x)statδC(y)stat)]

= 8E[(C(x) −C(y))2]E[δC(x)2
stat]

= 8SF(s)σ2
stat,C .

A.4.2. Covariance term

The covariance term is only non-zero when the pairs share
a common point, as shown in Lemma A, this happens
Np(s)(Nnei(s) − 1) times. In this case we have (assuming x and y
permutation of the indices where points are equal)

1
Np(s)2

∑
(x,y),(x′,y′)∈S̃s

(x,y),(x′,y′)

Cov[ζ2
x,y, ζ

2
x′,y′ ]

=
2

Np(s)2

∑
(x,y),(x,y′)∈S̃s

y,y′

Cov[ζ2
x,y, ζ

2
x,y′ ].

By definition of the covariance, we get

Cov[ζ2
x,y, ζ

2
x,y′ ] = E[ζ2

x,yζ
2
x,y′ ] − E[ζ2

x,y]E[ζ2
x,y′ ].

Cross-expectation:

E[ζ2
x,yζ

2
x,y′ ] = E[((C(x) −C(y))2 + δC(x)2

stat + δC(y)2
stat

− 2δC(x)statδC(y)stat

+ 2(C(x) −C(y))(δC(x)stat − δC(y)stat))

× ((C(x) −C(y′))2 + δC(x)2
stat + δC(y′)2

stat

− 2δC(x)statδC(y′)stat

+ 2(C(x) −C(y′))(δC(x)stat − δC(y′)stat))].

Most of the terms that include a linear combination of E[δCstat]
or E[δC3

stat] give 0 (as the random field is centred), we remain
with

E[ζ2
x,yζ

2
x,y′ ] = E[ζ2

0,x,yζ
2
0,x,y′ ] + 4σ2

stat,CSF(s)

+ 4σ2
stat,CE[ζ0,x,yζ0,x,y′ ] + 6σ4

stat,C .
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Squared-expectation: when developing the squared expecta-
tion, most of the terms are once again 0 given the centred random
variable δvstat.

E[ζ2
x,y]E[ζ2

x,y′ ] = E[ζ2
0,x,y]E[ζ2

0,x,y′ ] + 4σ2
stat,CSF(s) + 4σ4

stat,C .

By reassembling all the terms and noticing that
E[ζ0,x,y]E[ζ0,x,y′ ] = 0 the E[ζ0,x,yζ0,x,y′ ] term can in fact be
expressed as Cov[ζ0,x,y, ζ0,x,y′ ]. When the terms giving 0 are also
included:

2
Np(s)2

∑
(x,y),(x,y′)∈S̃s

y,y′

Cov[ζ2
x,y, ζ

2
x,y′ ]

=
1

Np(s)2

∑
(x,y),(x′,y′)∈S̃s

(x,y),(x′,y′)

Cov[ζ2
0,x,y, ζ

2
0,x′,y′ ]

︸                                          ︷︷                                          ︸
(1)

+
4σ2

stat,C

Np(s)2

∑
(x,y),(x′,y′)∈S̃s

(x,y),(x′,y′)

Cov[ζ0,x,y, ζ0,x′,y′ ]

︸                                           ︷︷                                           ︸
(2)

+
4(Nnei(s) − 1)

Np(s)
σ4

stat,C .

The first term (1) can be assembled with the corresponding
variance term 1© to obtain Var(SF(s)).

1
Np(s)2

∑
(x,y)∈S̃s

Var[ζ2
0,x,y]

+
1

Np(s)2

∑
(x,y),(x′,y′)∈S̃s

(x,y),(x′,y′)

Cov[ζ2
0,x,y, ζ

2
0,x′,y′ ]

=
1

Np(s)2 Var[
∑

(x,y)∈S̃s

ζ2
0,x,y]

= Var[SF(s)].

The second term (2) can in turn be coupled to a correspond-
ing variance term, by noticing that Var[ζ0,x,y] = E[ζ2

0,x,y] −
E[ζ0,x,y]2 = SF(s). In which case:

Var[D(s)] =
1

Np(s)2

∑
(x,y),(x′,y′)∈S̃s

(x,y),(x′,y′)

Cov[ζ0,x,y, ζ0,x′,y′ ]

+
1

Np(s)
SF(s).

Finally, by subtracting the SF(s) to the left-hand side and by
regrouping all the other terms (also from the variance) we obtain
that

Var[SF(s)] = Var[SF(s)] + 4Var[D(s)]σ2
stat,C

+
4

Np(s)
SF(s)σ2

stat,C +
4(Nnei(s) + 1)

Np(s)
σ4

stat,C .

One should bear in mind that Var[D] and SF are not mutually
independent as the former is related to the latter through a SF/Np
term, which adds to the covariance term Cov[ζ0,x,y, ζ0,x′,y′ ]. Both
scale with σ2

stat,C . We decided to split these terms for two (math-
ematical) reasons:

– Uniting the covariance term to a known SF term allows the
simplification of the expression into the variance of a single
quantity, D. Current work is ongoing to determine analytical
expression, similarly to CL19. This would be more compli-
cated than for the covariance term exclusively.

– Unlike the SF/Np term, Var[D] does not go to 0 for a large
number of pairs. It represents the intrinsic contribution of
the cross-product between the statistics and the properties of
the field, which bring a systematic error to the estimation,
regardless of the number of pairs used to estimate it.

Together, they form a higher order term that provides the inter-
action between the statistics and the intrinsic properties of the
turbulent power spectrum. Due to their different asymptotic
behaviour, we chose however to separate them.

A.5. Expected variance of D

The variance of the estimator D is defined as

Var[D(s)] = Var

 ∑
(x,y)∈S̃s

[(C(x) −C(y)) + δC(x)stat − δC(y)stat]
Np(s)


=

1
Np(s)2 Var

 ∑
(x,y)∈S̃s

ζx,y


=

1
Np(s)2


∑

(x,y)∈S̃s

Var[ζx,y] +
∑

(x,y),(x′ ,y′)∈S̃s
(x,y),(x′ ,y′)

Cov[ζx,y, ζx′ ,y′ ]

 .

A.5.1. Variance term

1
Np(s)2

∑
(x,y)∈S̃s

Var[ζx,y] =
1

Np(s)2

∑
(x,y)∈S̃s

Var[(C(x) −C(y))

+ δC(x)stat − δC(y)stat]

1©

1
Np(s)2

∑
(x,y)∈S̃s

Var[(C(x) −C(y))] =
1

Np(s)2

∑
(x,y)∈S̃s

Var[ζ0,x,y]

2© / 3©

Var[δC(x)stat] = (E[δC(x)2
stat] − E[δC(x)stat]2)

= σ2
stat,C .

A.5.2. Covariance term

As in the previous case, we can rewrite the covariance as

1
Np(s)2

∑
(x,y),(x′,y′)∈S̃s

(x,y),(x′,y′)

Cov[ζx,y, ζx′,y′ ]

=
2

Np(s)2

∑
(x,y),(x,y′)∈S̃s

y,y′

Cov[ζx,y, ζx,y′ ].

By definition

Cov[ζx,y, ζx,y′ ] = E[ζx,yζx,y′ ] − E[ζx,y]E[ζx,y′ ].
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Cross-expectation:

E[ζx,yζx,y′ ] = E[(C(x) −C(y)(C(x) −C(y′) + δC(y)statδC(y′)stat

+ (C(x) −C(y))(δC(x)stat − δC(y′)stat)
+ (C(x) −C(y′)(δC(x)stat − δC(y)stat)

+ δC(x)2
stat − δC(x)stat(δC(y)stat + δC(y′)stat)].

By taking only the non-zero terms, we get

E[ζx,yζx,y′ ] = E[ζ0,x,yζ0,x,y′ ] + σ2
stat,C .

Squared-expectation: when developing the squared expecta-
tion, most of the terms are once again 0 and we remain
with

E[ζx,y]E[ζx,y′ ] = E[ζ0,x,y]E[ζ0,x,y′ ] = 0.

By reassembling all the terms we find:

2
Np(s)2

∑
(x,y),(x,y′)∈S̃s

y,y′

Cov[ζx,y, ζx,y′ ]

=
1

Np(s)2

∑
(x,y),(x′,y′)∈S̃s

(x,y),(x′,y′)

Cov[ζ0,x,y, ζ0,x′,y′ ]

+
2(Nnei(s) − 1)

Np(s)
σ4

stat,C .

Finally, by including the variance terms, we obtain

Var[D(s)] = Var[D(s)] +
2(Nnei(s))

Np(s)
σ4

stat,C .
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