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Abstract

Energy consumption has become a major concern
in the recent years and Green computing has arisen
as one of the challenges in order to reduce CO2

emissions in the computing domain. Many efforts
have been made to make hardware less energy
consuming, reduce cooling energy of data and
computing centers by relocating those facilities to
cool regions and other. A novel approach to make
the computing domain greener is to add renewable
energy sources for the power supply. The challenge of
this work is to consider computing facilities which
are solely run by renewable energy sources such
as solar panels and wind turbines. In this work
we tackle the problem of scheduling independent
tasks within a predicted power envelope that varies
during the time. First we evaluate different instances
of the problem from a theoretical point of view.
Then we propose several heuristics for the case of
multi-core architectures and we assess their per-
formance on synthetic workloads and power envelopes.

Energy efficiency, computing center, scheduling, op-
timization, complexity

1 Introduction

As a solution to minimize global warming, improving
energy efficiency is one of today’s major concerns. In
computer science, lots of research works tackle this
problem as computing or data centers are known to be
one of the big energy consumers. There are however

several ways to reduce the energy footprint, either
reducing the consumption or using energy sources that
less impact the environment. In the case of computing
resources lots of effort is put on reducing the energy
consumption of the resources, from the processor to
the cooling. Nevertheless, as low as their consumption
will be, they will still consume power. An alternative
solution to further reduce their impact is to use green
sources such as solar panels, wind turbines, or fuel cells
as these devices do not produce CO2. The challenge
of this work is to consider computing facilities which
are solely powered by renewable energy sources.

Efficiently powering a computing or data center im-
plies to deliver the requested power level. Renewable
energy sources however provide a variable energy pro-
visioning depending on solar and wind conditions so
that they must be completed by batteries or other en-
ergy storage systems to guarantee a continuous work.
In this problem, the most central part is taken by the
computers. If they do not have enough power to run
tasks then it is useless to supply energy to the rest of
the center. On the other hand at some points of the
power supplier life-cycle the energy storage compo-
nents become full and there is no need to spare energy
that should rather be consumed than lost. For these
reasons, we concentrate in this work on processing
tasks depending on the available power.

This article tackles the problem that we can for-
mally solve in scheduling with green energy optimiza-
tion. Our approach is different from traditional energy
aware scheduling approaches in that it does not target
energy minimization itself but it rather targets to
better use available power. The optimization problem
is thus rather to limit the energy waste, the produced
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energy that cannot be used, than finding ways to de-
crease the consumed energy. We tackle on the one
hand computing center oriented problems where the
optimization objective is the makespan to finish a set
of jobs as soon as possible and, on the other hand,
data center oriented problems where the optimization
objective is the flowtime to reduce the mean waiting
time. To concentrate on the scheduling problem, this
first work considers scheduling a set of tasks on a
shared memory machine as, in that case, we do not
need to take machine power on/off into account for
our optimizations.

The presented contributions are as follows:
• We show that most power constraint scheduling

problems are complex. We provide formal com-
plexity results on three out of four scheduling
problems on one machine and extend them to
more general parallel problems.

• We provide a performance study of several heuris-
tics proposed to solve the problem. These sim-
ulations show that the best algorithm depends
on the weight of the processing time compared
to the power need of the tasks.

The paper is organized as follows: related work
is presented in Section 2, then a system model is
proposed in Section 3. We present formal results on
the complexity of the related optimization problems
in Section 4 and propose several heuristics to solve
the considered problems in Section 5. Experiments
to assess the heuristic performance are presented in
Section 6 and we conclude in Section 7.

2 Related Work

Energy saving is a major concern in the computing do-
main and there exists a large variety of research that
tackles the problem of reducing the energy consump-
tion. Several surveys give an interesting overview of
the research done in the field of green computing. For
instance [19,22,23] give a wide survey on all the tech-
nologies and tools that can be used in data centers to
lower the energy consumption.

One possible technique for energy reduction is the
usage of Dynamic Voltage and Frequency Scaling
(DVFS), which allows to run processors and servers

at a lower speed at the price of increased execution
times for tasks. Wu et al. [24] use a two step ap-
proach to allocate tasks to servers and then determine
the voltage/frequency combination to reduce the en-
ergy consumed by servers in data centers. Garg et
al. [11] include Dynamic Voltage Scaling (DVS) in
their scheduling algorithm for HPC applications on
Cloud-oriented data centers. Their solution allows
to reduce up to 25% the energy usage in comparison
to profit based scheduling policies with even higher
profit. It seems however that the DVFS tuning tends
to be more and more embedded directly inside the
processor with less control actions left to the user as
explained in [16].

Another approach to reduce the energy consump-
tion is the consideration of a shutdown model, where
processors have an additional state to on and off, the
sleep state. In a one machine offline setting with jobs
of unit processing times, release dates, and deadlines,
a dynamic programming approach allows to minimize
the number of idle time periods in polynomial time [4].
In follow up work of Baptiste et al. [5, 6] the result is
extended to heterogeneous preemptive jobs. Albers
and Antoniadis [3] combine speed scaling with the
sleep state model. They prove NP-completeness of
the energy minimization problem for heterogeneous
tasks with release dates and deadlines.

As minimizing the energy consumption without an-
other complementary objective simply leads to stop
all executions, works on energy efficiency often use a
bi-criteria objective. Beloglazov et al. [7] for example
propose energy efficient solutions for Cloud data cen-
ters via virtual machine migration while respecting
quality of service (QoS) requirements defined by ser-
vice level agreements (SLA). Bi-objectives criteria are
however complex to manage as they usually implies
to balance between two opposite.

In [1] the authors also tackle the theoretical com-
plexity of energy-efficient scheduling algorithms. They
schedule independent tasks on parallel identical and
uniform machines and give optimal solutions for di-
visible loads minimizing the makespan. They also
show that the non-divisible case of tasks is NP-hard.
The optimization criteria is the makespan and they
optimize in one step the makespan and the consumed
energy by considering the energy consumed by the
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machines when they are idle. They however have no
constraint on power and can always use the available
machines.

In recent years an other trend has arisen: data and
computing centers integrate renewable energy sources
as power supply. An early work on green energy uti-
lization in data centers by Aksanli et al. [2] shows
the importance of power prediction. They propose
an adaptive data center job scheduler that reduces
the number of aborted jobs while improving the green
energy utilization. In [13, 14] the authors propose
GreenSlot, a batch scheduler for parallel tasks, that
aims to reduce the brown power consumption of a data
center partially powered by solar panels. In GreenSlot
the jobs have deadlines and the scheduler first reserves
resources for the jobs with lower slack (distance from
latest possible start time to current time). Based on
weather forecasting and power prediction, GreenSlot
schedules the tasks on time slots. However the au-
thors do not try to optimize their schedules, they just
reduce the consumption and costs while meeting as
much deadlines as possible. Similarly [20] presents
an holistic approach to optimize the energy cost with
incomes from running batch jobs and outcomes to buy
brown energy. The paper also provides a proposition
for net zero scheduling batch jobs. It is however based
on virtualization and is not bounded by the number
of resources.

None of the aforementioned work deals with com-
puting resources provisioned with 100% renewable
energy that we consider in this work. In this con-
text the available power is constrained by the power
production and the scheduling algorithms have to
cope with a variable power envelope. We thus tackle
the classical mono criteria optimization objectives
makespan and flowtime under power constraints.

3 Model

In this section we define the models of machines, power
and tasks that we use in the addressed optimization
problem.

The considered computing platform is parallel
which means that several execution units are available
to process the tasks. The platform thus consists of a

set M = {M1,M2, . . . ,Mm} of m machines Mj that
represent execution units.

As the power provisioning of the platform solely
comes from green energy sources, its production is
not stable and varies over time. The available power
is represented at each time t by a curve Φavailable(t).
To be able to optimize the usage of the power we
assume that the available power Φavailable(t) is a con-
stant value Φavailable

x over an interval of time ∆x.
For a given time horizon H the available power is
thus modeled by X intervals ∆x of length δx, such
that

∑X
x=1 δx = H. This power is shared by all the

machines of the platform.

Each machine Mj consumes a static power Φstat
j

at any time t when it does not process any tasks.
This static power has a constant value for the entire
considered time horizon H, and since it is useless to
run a machine without processing tasks, we rather
consider useful available power Φx = Φavailable

x −∑M
j=0 Φstat

j for the period of time ∆x in the following.
If the platform consists of only one machine, Φ(t) =
Φx.

For the task model we consider a set T =
{T1, T2, . . . , Tn} of n tasks Ti characterized by their
processing time pi. These tasks are sequential indepen-
dent tasks. Running a task on one machine generates
an extra power consumption [12] which varies over
time depending whether the task intensively computes
or not. It has to be approximated to be used in an
optimization problem. We assume that each task Ti
has a constant power demand, its largest power need
ϕi over its lifetime. By taking the larger power con-
sumption, we guarantee that the resulting schedule
will fit in the power envelope.

To schedule a given task Ti we need to find a time
slot, a group of intervals, where the available power is
always higher than ϕi, the task need. We define the set
Ej(ϕi) = {E1,i, E2,i, . . . , EKi,i} of Ki eligible time slots
where task Ti can run. Let bk,i be the beginning of the
slot Ek,i and fk,i be its finish time. Then, for Ek,i =
[bk,i, fk,i[, the available power must be greater than ϕi,
with bk,i ≤ t < fk,i and Φ(t) ≥ ϕi. Formally, it exists
two integer values x and s such that the kth time
slot Ek,i is defined by Ek,i = ∆x ∪∆x+1 ∪ . . . ∪∆x+s

where at any time t ∈ Ek,i, Φ(t) ≥ ϕi and at any time
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t ∈ ∆x−1 or t ∈ ∆x+s+1 Φ(t) < ϕi (see Figure 1).
Finally, we consider an allocation function A(i, j) = k
that returns in which time interval Ek,i the task Ti is
scheduled on machine Mj .

Table 1 summarizes the notations used in the re-
mainder of the paper.

t

Φ(t)

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

δ2

δ7

ϕi

l1

E1 = ∆2 ∪ ∆3 ∪ ∆4 ∪ ∆5

b1 f1
l2

E2 = ∆7 ∪ ∆8

b2 f2

Figure 1: Illustrative example for intervals
(∆1, . . . ,∆8), available power on time and time slots
(E2, E2) in which one task Ti could be scheduled when
its power need is ϕi onto a one machine platform.

4 Optimization Problems

Using the preceding model we consider static optimiza-
tion problems where the number, the consumption,
the duration of the tasks and the available power are
known in advance. Static problems are sometimes far
from real practical cases but tackling such problems
is however necessary to formally prove the complexity
of the optimization problems related to real cases.

4.1 Notations and objectives

Graham [15] defined the α|β|γ notation that charac-
terizes a scheduling optimization problem. In this
notation the α value gives the characteristics of the
execution platform: 1 for one machine, P , Q or R for
parallel machines respectively identical, uniform or
unrelated. The β value gives the tasks characteristics
and/or constraints: pi = p for tasks of the same size,
prec for precedence between tasks, pmtn if tasks can
be preempted, etc. The γ value gives the criteria to be
optimized as, for instance the makespan Cmax or the
(total) flowtime [8],

∑
Ci, where Ci is the completion

time of task Ti.

To express the constraint of limited available power
we propose to add ϕi ≤ Φx for one machine problems
and

∑
ϕi ≤ Φx for parallel machine problems to

the Graham notation. This enforces that the power
needed by one (ϕi) or several tasks (

∑
ϕi) must be

lower than the power provided (Φx) by the energy
sources. For example the problem 1|ϕi ≤ Φx|Cmax

is a one machine problem where we target makespan
optimization for independent tasks, available power
is not a constant over the time horizon and each task
has a power need different from each other. If the Φx

variable is set to Φ, the available power is constant
over the considered horizon and if the ϕi variable is
set to ϕ, each task needs the same power to run.

Considering computing and data centers, two main
criteria are usually considered for minimization. The
makespan (Cmax) targets the minimization of the run-
ning time for a set of tasks and is thus relevant for
computing centers where applications are composed of
a set of tasks. In the case of several tasks launched by
different users, as in data centers, then the flowtime
(
∑
Ci) is more relevant as minimizing this criterion

leads to minimizing the mean finish time which en-
forces a fair share of the resources between users.

4.2 One Machine Problems

Here, we first tackle one machine problems as show-
ing that these problems are NP-Hard proves that
the more general parallel problems are NP-Hard as
well. We consider these problems for both objectives
makespan and flowtime and for the cases with or
without preemption. These cases are simple without
power constraint. We recall that all no delay schedules
(i.e., schedules without delay between the tasks) are
optimal solutions for the makespan objective and that
the Shortest Processing Time (SPT) algorithm gives
optimal solutions for the flowtime objective. We show
here that, with power constraints, these problems are
polynomial in the case of identical tasks (i.e., tasks
with same pi) and that the problems where tasks have
different processing times are actually NP-Hard if
preemption is not allowed.

In the one machine problems the static power Φstatic
j

consumed by the machine Mj ∈M is constant over
time. Then the machine cannot run at any time t
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Table 1: Summary of the notations.

var. definition var. definition

T set of tasks M set of machines
Ti task i Mj jth machine of M
n number of tasks m number of machines
pi processing time of Ti Φx useful power on Mj

ϕi power needed by Ti at interval ∆x

∆x interval with constant power δx length of ∆x

X number of intervals ∆x

Ej(ϕi) time slots defined with ϕi Ek,i kth term of Ej(ϕi)
bk,i beginning of Ek,i fk,i finish time of Ek,i
K cardinal of Ej(ϕi) lk,i length of Ek,i

where the power provided is lower than this value. For
that reason we assume that the static power needed
by the machine is at least available in each interval
and, in the remainder of the paper, we thus only
consider Φx = Φavailable

x − Φstatic
j , the useful power

to run tasks.
We now consider different cases for the task pro-

cessing time and the objective function.

4.2.1 Problems without preemption

In computing centers the nodes are usually dedicated
to the users and no preemption is applied to the
tasks. We assess here the complexity of the scheduling
problem in this context.

Identical tasks p = pi and ϕi ≤ Φx The most
simple problems are the cases where every task has
the same computing time pi = p and the available
power is constant. To optimize our objective, we just
have to put as many tasks as possible in each time slot,
starting with the tasks with the largest power need.
If the interval length is not a multiple of the task size
then the remaining time of an interval can be used if
the next tasks can be shifted of less than p. Obviously
this solution is optimal for the makespan objective, as
every task is interchangeable with another, changing
the order will not give a better solution and we do not
leave empty places where a task can be put. For the

flowtime, as every task has the same processing time,
none of them has a larger weight in the final sum and
there is no need to put the tasks in a specific order.

Non-identical tasks The non-identical task prob-
lems, denoted respectively 1|ϕi ≤ Φx|Cmax and
1|ϕi ≤ Φx|

∑
Ci, are NP-Hard. In the following,

these complexity results are proven in a row.

Theorem 1. Minimizing the makespan of the sched-
ule of a set of tasks (1|ϕi ≤ Φx|Cmax) to run in a set
of intervals is NP-Hard in the strong sense if the tasks
have different processing times pi.

Proof. First note that, in the case where all tasks
need the same power to run ϕi = ϕ, a time interval
∆x either provides enough power to run a task or
not. The real amount of power provided during this
interval is not important as it is just a binary question
of enough power or not. The NP-Hardness of the
makespan minimization problem will be demonstrated
by proving first the problem where each task needs
a power ϕ (1|ϕi = ϕx ≤ Φ|Cmax) to be executed and
where the set E(ϕ) defines time slots in which it is
possible to schedule tasks.

Let us consider the following decision problem:
given a time Z, is there a schedule where the last
task is completed before Z ? We assume that the
allocation respects the constraints of the problem, i.e.,
every task allocated to one time slot has enough time
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to be completed before the end of the slot and the
power available into this time slot is greater or equal
to the sum of power needed by the tasks scheduled in
the time slot.

The problem is in NP: given a schedule it is easy
to check in polynomial time whether it is valid or not
before the time Z. The NP-Completeness is obtained
by reduction from 3-PARTITION [10] which is NP-
Complete in the strong sense.

Let us consider an instance I1 of 3-PARTITION:
given an integer B and 3H positive integers
a1, a2, . . . , a3H such that for all i ∈ {1, . . . , 3H},
B/4 < ai < B/2 and with

∑3H
i=1 ai = HB, does it

exist a partition I1, . . . , IH of {1, . . . , 3H} such that
for all h ∈ {1, . . . ,H}, |Ih| = 3 and

∑
i∈Ih ai = B ?

We build the following instance I2 of our problem
with E(ϕ) = {E1, E2, . . . , EH} the set of qualified time
slots Eh to run tasks (i.e., available power greater than
ϕ) and whose length are all equals to fh − bh = lh =
l = B. There are 3H tasks Ti ∈ T such that each Ti
needs a power of ϕ to be executed and its processing
time is pi = ai for all 1 ≤ i ≤ 3H = n. Clearly, the
size of I2 is polynomial in the size of I1. We now
show that I1 has a solution if and only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ h ≤ H,
task Ti is assigned to time slot Eh = [bh, fh[ with
i ∈ Ih within the period and pi = ai. Then, we have∑

i|A(i)=h pi = l =
∑

i∈Ih ai = B and therefore the
constraint on the processing time is respected for the
H slots. We have a solution to I2.

Suppose that I2 has a solution. Let Th be the set
of tasks allocated to the slot Eh (We recall that if
Ti ∈ Th, A(i) = h) such that for all tasks Ti ∈ Th
with i ∈ Ih,

∑
i∈Ih pi = l = B. Because of pi = ai,

|Th| = |Ih| = 3. The length of the time slot l in which
the available power is ϕ has to be fully filled for all H
periods to be sure to complete the last task within the
slot EH = [bH , fH [ at time t = fH = Z. Otherwise,
an other slot has to be used to complete unprocessed
tasks. Thus the solution is a 3-PARTITION and
we have proven that the addressed decision problem
is NP-Complete and thus minimizing the makespan
Cmax of a set of tasks with different processing times
and the same power need to run on one machine is
NP-Hard in the strong sense.

Since this problem 1|ϕi = ϕ ≤ Φx|Cmax is a special
case of 1|ϕi ≤ Φx|Cmax it proves that this problem is
also NP-Hard. This concludes the proof.

Theorem 2. Optimizing the flowtime of the schedule
of a set of tasks (1|ϕi ≤ Φx|

∑
Ci) to run in a set of

intervals is NP-Hard in the strong sense if the tasks
have different processing times pi.

Proof. This proof relies on the 3-PARTITION prob-
lem. The idea is to take the same intervals and tasks
that match the preceding 3-PARTITION problem,
plus to add one K + 1th interval that is sufficiently
far from the other (N × fK for instance) to generate
flowtime that will be higher than any solution that do
not use this interval. Due to lack of space, we do not
develop that proof here. The proof of this theorem can
be found in the companion research report [18].

4.2.2 Problems with preemption

In the case of data centers that process requests pre-
emption is allowed. We thus consider the impact of
preemption on the scheduling problems complexity.

The 1|ϕ ≤ Φx, pmtn|Cmax problem, all tasks need
the same power to run, accepts a polynomial solution.
Remember that without power constraints non delay
schedules are optimal. With power constraints it
is however not possible to always have non delay
schedules as some of the intervals ∆x may not provide
enough power Φx to schedule a task. The general idea
is to avoid leaving intervals empty when there are still
unscheduled tasks. For this purpose we schedule tasks
with the following policy: At the beginning of a new
interval or when a task is finished, we schedule the
task (or the remaining part of a task) which wastes
the less power (min(Φx − ϕi)). If another task than
the current running task is selected, the running task
is preempted and rescheduled later. We call this
algorithm Less Wasting Remaining Task (LWRT).

Theorem 3. Algorithm LWRT gives an optimal so-
lution for the 1|ϕi ≤ Φx, pmtn|Cmax problem.

Proof. The optimally of the LWRT algorithm is
demonstrated by contradiction.

We consider that an optimal schedule S∗ does not
always run LWRT at each interval, starting from t = 0.
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We assume that interval ∆x is the first interval such
that it includes task Ti (S∗(Ti) = t) which is not the
LWRT task and such that T ′i , the LWRT task, runs
later (S∗(T ′i ) = t′, t′ > t). As Ti is not the LWRT task
then we have Φx − ϕi > Φx − ϕ′i and ϕi < ϕ′i ≤ Φx.
Since the power consumed by T ′i is higher than the
power consumed by Ti and since T ′i fits in interval ∆x

because it is the LWRT tasks for this interval then
we can swap Ti and T ′i (or at least part of them).
Moreover, since Ti needs less power than T ′i it could
be scheduled before t′ in an interval that was not
exploited by T ′i with more power. After this step the
resulting schedule is at least the same but it could also
have been improved by moving Ti. This result is a
contradiction with the assumption that S∗ is optimal
and given any schedule we can do better if we respect
the LWRT order. Thus the LWRT algorithm gives an
optimal schedule which concludes the proof.

Figures 2 and 3 illustrate the case where the LWRT
task is or is not scheduled at each interval change or
when a task is completed. On Figure 2 task T2 is not
preempted at the end of interval ∆2. As a result task
T4 is scheduled later because of its large power need
and interval ∆5 is not used. On Figure 3 task T2 is
preempted at the end of interval ∆2 and Task T4 is
executed instead. As Task T2 needs less power to run
it can be executed in interval ∆5 which improves the
makespan.

T1 T2 T3 T4 T4T5 T6 t

Φ(t)

Figure 2: Illustrating example for the LWRT algo-
rithm, T2 is not the LWRT task for interval ∆3, T4
must be run here.

The complexity of the problem 1|ϕi ≤
Φx, pmtn|

∑
Ci is still open. We have counter

examples that SPT (Shortest Processing Time) does
not always give the optimal result as due to power
constraints it can be necessary to schedule longer
tasks before short ones. Even if the complexity of

T1 T2 T2T3T4 T4 T4T5 T6 t

Φ(t)

Figure 3: Illustrating example for the LWRT algo-
rithm, part of T4 has been swapped with T2 which can
be executed sooner than T5, the makespan is optimal.

this case remains an open problem, we suspect it to
be NP-Hard.

4.3 Parallel Problems

We consider here the problem of scheduling a set of
tasks on a set of machines. Several sub-problems
can be identified from the general parallel problem
aside from the classical P, Q, R cases. Shared memory
problems are indeed different from distributed memory
problems. In the shared memory problems only one
machine is used and the tasks are processed by the
different cores of the machine. As just one machine
must be powered on, we do not need to take static
power into consideration and, as for the one machine
problems, we take the task power consumption into
account. In this case the machines are cores and we
can limit the study to identical machines (P in the
Graham notation).

From the previous complexity results we can deduce
that P |

∑
ϕi ≤ Φx|Cmax and P |

∑
ϕi ≤ Φx|

∑
Ci

problems are NP-Hard as parallel problems are gener-
alizations of one machine problems. Problems with
preemption must however be investigated. For the
P |

∑
ϕi ≤ Φx, pmtn|Cmax problem we have to sched-

ule several tasks at the same time such that the sum
of their power needs

∑
ϕi is lower than the available

power Φx in each interval.

If the power needed by the tasks is the same
(P |

∑
ϕi ≤ Φx, ϕi = ϕ, pmtn|Cmax), then the prob-

lem is simple: in a given interval we execute as many
tasks as possible in parallel provided that the power
Φx and the constraint on the number of cores P are
respected. Then, at the end of a task, we schedule
another one and, at the end of the interval, we either
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stop tasks if there is less available power than before
or start additional tasks if idle cores remain.

If the power needed by each task is different
(P |

∑
ϕi ≤ Φx, pmtn|Cmax), the problem is NP-Hard.

Theorem 4. Minimizing the makespan of the sched-
ule of a set of power heterogeneous preemptive tasks to
run in a set of intervals (P |

∑
ϕi ≤ Φx, pmtn|Cmax)

is NP-Hard in the strong sense.

Proof. The NP-Hardness of this problem will be
demonstrated by proving that the simpler problem
where the processing time of each task is one unit of
time (ut) is NP-hard in the strong sense. The remain-
der of the proof is build on a similar pattern than
used within the proof of the theorem 1.

Let us consider the following decision problem:
given a horizon of K intervals of time ∆k (1 ≤ k ≤ K)
where their length δk is equal to one unit of time
and where the available power is Φ(t) = Φk = Φ
(1 ≤ k ≤ K) and given a processor with 3 cores that
share the available power, is there a schedule that
allocates tasks over time such that the power needed
by the cores never exceeds Φ for every time interval
∆k (1 ≤ k ≤ K)? In other words, if Tk ⊂ T is the set
of tasks that are scheduled within the time interval
∆k, ∀k ≤ K, is

∑
i|Ti∈Tk ϕi ≤ Φk = Φ? The prob-

lem is in NP: given a schedule of K time intervals,
it is easy to check in polynomial time whether this
schedule is valid or not. The NP-Completeness is
obtained by reduction from 3-PARTITION [10] which
is NP-Complete in the strong sense.

Let us consider an instance I1 of 3-PARTITION:
given an integer B and 3K positive integers
a1, a2, . . . , a3K such that for all i ∈ {1, . . . , 3K},
B/4 < ai < B/2 and with

∑K
i=1 ai = KB, does there

exist a partition I1, . . . , IK of {1, . . . , 3K} such that
for all k ∈ {1, . . . ,K}, |Ik| = 3 and

∑
i∈Ik ai = B?

We build the following instance I2 of our problem
with K time intervals, each interval ∆k having a
length of time δk = 1 and with an available power
Φk = Φ = B for 1 ≤ k ≤ K. There are 3K tasks Ti in
T with pi = 1ut and ϕi = ai for all 1 ≤ i ≤ 3K = m.
Clearly, the size of I2 is polynomial in the size of I1.
We now show that I1 has a solution if and only if I2
does.

Suppose first that I1 has a solution. For 1 ≤ k ≤ K,
task Ti is assigned to Tk within the period k with
i ∈ Ik and ϕi = ai. Then, we have

∑
i|Ti∈Tk ϕi =

φk =
∑

i∈Ik ai = B and therefore the constraint on
the demand is respected for the K time intervals. We
have a solution to I2.

Suppose that I2 has a solution. Let Tk be the set
of machines allocated to the period k such that for all
tasks Ti ∈ Tk with i ∈ Ik,

∑
i∈Ik ϕi = Φk = Φ = B.

Because of ϕi, |T‖| = |Ik| = 3. Since the available
power Φ has to be consumed for the K time intervals
to process the scheduled tasks, the solution is a 3-
PARTITION.

We have proven that the problem where Φk = Φ
for every time interval ∆k (1 ≤ k ≤ K) and pi = 1 for
every task Ti ∈ T (1 ≤ i ≤ n) is NP-Complete in the
strong sense. Since this problem is a special case of
the more general problem where the available power
Φk during each of the time intervals ∆k is different
from each other and where the processing time pi of
each task Ti is also different from each other, it is
sufficient to prove the NP-Hardness of this associated
general optimization problem. This concludes the
proof.

Note that the proof highlights that the problem
P |

∑
ϕi ≤ Φ, pi = p, pmtn|Cmax is NP-Hard when

the tasks have the same size (pi = p).

For the flowtime objective, the P |
∑
ϕi ≤

Φx, pmtn|
∑
Ci problem, we can differentiate the par-

ticular case where tasks have the same power need
ϕi = ϕ which is simple from the more general case
where tasks have different power needs. In the ϕi = ϕ
case the SPT algorithm, completed to take both the
available power Φx and the number of cores P con-
straints into account, gives an optimal solution even
if the tasks have different sizes. Then the problem
where the tasks have different power needs is NP-Hard
as the problem P |

∑
ϕi ≤ Φx, pi = p, pmtn|

∑
Ci

is equivalent to P |
∑
ϕi ≤ Φx, pmtn|Cmax since the

tasks do not need to be ordered as they are of the
same size. This implies that the more general case
P |

∑
ϕi ≤ Φx, pmtn|

∑
Ci is NP-Hard too.
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Algorithm 1: Place Task(pi, ϕi, x)

Data:
Φx: useful power in interval ∆x whose length is δx
bx, fx: resp. beginning and finish times of ∆x

ncx: number of available cores in ∆x

found: boolean, init to false
Result:

boolean true if the task can be scheduled in the interval
1 if (ϕi 6 Φx) ∧ (ncx > 0) then
2 found← true
3 if pi 6 δx then
4 Remove ∆x from the interval list
5 Add new intervals in the interval list:
6 ∆x′ = {[bx, bx + pi[,Φx − ϕi, ncx-1}
7 ∆x′′ = {[bx + pi, fx[,Φx, ncx}
8 else
9 repeat

10 Take next ∆x

11 if (Φx < ϕi) ∧ (ncx > 0) then
12 found← false

13 until
∑
δx ≥ pi

14 if found then
15 for Intervals ∆x in the time slot except the

last one do
16 ∆x = {[bx, endx[,Φx − ϕi, ncx-1}
17 Remove the last interval ∆y from interval list
18 Add new intervals in the interval list:

19 ∆y′ = {[sy , sy+pi−
∑y−1

z=x δz [,Φx−ϕi ncx-1}
20 ∆y′′ = {[sy + pi −

∑y−1
z=x δz , ey [,Φx, ncx}

21 return found

5 Heuristics

In this section we propose heuristic algorithms to
solve the general problems P |ϕi ≤ Φx|Cmax and
P |ϕi ≤ Φx|

∑
Ci when we have one machine with

several cores. Most of the heuristics are adapted
from classical scheduling algorithms to introduce the
power constraints and time slots. Remember that
time slots are sets of consecutive intervals. A time
slot is considered available for scheduling a task if,
in all the intervals that compose this time slot, the
available power is higher than the task’s power need
and there is at least one available core. In all the
algorithms the task to time slot assignment is done by
the Place Task() function, illustrated in Algorithm 1.

The Place Task() function takes a task, its com-
puting time pi and its power need ϕi, and a starting

interval x. It first checks that the proposed interval
still has enough available power and cores (line 1).
Then, if the task fits in the interval, the interval is
split in two new intervals (lines 2-7), one for the part
where the task is scheduled and one for the remain-
ing part, to keep the count of the available power
and cores. If the task length exceeds the interval the
algorithm checks the available resources (cores and
power) in the following intervals until the end of the
task (lines 9-15). If such a time slot is found then
the corresponding power and one free core are sub-
tracted (lines 16-19). The last interval is split in two
as previously (lines 20 to 24). Note that splitting the
intervals allows that a task can always be scheduled
at the beginning of an interval. The function returns
true if the task is placed, false otherwise.

5.1 List Algorithms

We designed a first family of heuristics for both objec-
tives, makespan and flowtime, based on list algorithms.
Given a list of tasks, the list algorithm greedily sched-
ules tasks in the earliest available intervals, seeking to
minimize their completion time. Then by sorting the
task list the algorithm may foster one or another task
type. Random does not sort tasks. This naive ap-
proach is used to compare the other algorithms with a
non smart solution. LPT (Largest Processing Time)
sorts tasks by decreasing processing times. This so-
lution fosters long tasks which are more difficult to
place and usually gives good results for the makespan
minimization on parallel identical machines when the
number of tasks exceeds 50, as shown in [9]. SPT
(Shortest Processing Time) sorts tasks by increasing
processing times pi, as for flowtime minimization an
increasing pi order must be preferred. LPN (Largest
Power Need) sorts tasks by decreasing power need ϕi.
Tasks with large power need are difficult to place in
the time slots and scheduling them first may avoid
using later slots. LPTPN (Largest Processing Time
Power Need) sorts tasks by decreasing values of pi×ϕi.
As both the processing time pi and the power need ϕi

are important values for scheduling the tasks taking
them independently only fosters one and ignores the
second, we combine both values.

Note that the two last algorithms (LPT and
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LPTPN) are rather makespan oriented and they do
not produce appropriate solutions for the flowtime
minimization.

5.2 Binary Search Algorithms

The list based solutions fail to take into account how
much extra power there is in a time slot compared
to the task need. In fact it can only determine if the
time slot is long (for the time) or large (for the power)
enough for executing a given task or not. The use of
time slots with high power levels to execute tasks that
do not need a lot of power, might cause power waste.
The next logical step was hence to reduce the power
waste by placing each task in the time slot that has
the closest available power level to its power demand,
rather than placing it in the earliest one possible.

A key problem here is how to avoid scheduling a
task towards the end of the runtime, because a time
slot over there produces less power waste than many
earlier ones. In other words, how to find the best fit
for each task, without decreasing the quality of our
solution (increasing Cmax).

The Binary Search family of heuristics is based on
the Dual Approximation technique of Hochbaum and
Shmoy [17]. This approach uses a time horizon to
limit the search area. It is possible to schedule the
tasks everywhere before the time horizon which allows
to place tasks in the time slot where the power waste
is the lowest. This solution has the advantage to
take into consideration both power and performance
constraints at the same time.

BSPW - Binary Search Power Waste At the be-
ginning of the algorithm two time limits are set: the
lower one, which must be lower or equal to the shortest
possible schedule, and the higher one which is usually
chosen such that we are sure that every algorithm will
fit in the given time horizon. Here the lower value
is set to (

∑N
i=0 pi)/NB , where NB is the number of

cores, as it is a lower bound. The higher value is set
to H, the time horizon. Then the algorithm attempts
to reduce the time horizon on a binary search manner
trying to fit all tasks in the new shorter time horizon.
If they all fit, it re-reduces the searching area, if not,
it increases it.

BSPW also works with a task list whose order im-
pacts the algorithm performance. We use the same
flavors of task ordering as with the list algorithms,
which leads to the following variants of BSPW: BSPW-
R (random), BSPW-LPT, BSPW-SPT, BSPW-LPN
and, BSPW-LPTPN. Note that this method is as-
sessed for both objectives to be minimized. In its
design it however better supports the makespan ob-
jective as it targets the reduction of the time horizon
and does not directly take the time ordering into
account.

6 Experiments

In this part, we present the experiments conducted
in order to assess the performance of the algorithms
mentioned above. The presented experiments were
realized using simulation rather than a real platform as
running lots of real life experiments is costly and hence
does not allow to explore a wide range of parameters.
Furthermore we solely focus on synthetic workloads
because real world traces like the parallel archive of
Feitelson1 do not include the power need for the tasks.

6.1 Simulation environment

We have implemented the different heuristics in
Python2. Our code reads simple CSV files as input,
these files contain the configuration values desired for
tasks and intervals. Then, using Python, it randomly
generates the necessary task lists and time slot lists be-
fore running the algorithms to compute the schedules.
Finally, results are presented in different diagrams us-
ing R, in order to provide a clear comparison between
algorithms.

6.2 Settings

The input of the heuristics is a list of tasks. In our sim-
ulations we did not use real data as input but we tried
to use data sets that are as close as possible to real
data collected in other experiments. For instance, pi

1http://www.cs.huji.ac.il/labs/parallel/workload
2This source code is available on GitHub at http://github.

com/laurentphilippe/greenpower
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values of the generated task lists are randomly chosen
using the hyper-gamma law suggested by Lublin and
Feitelson in [21]. We also use random values following
an exponential law for pi in parts of the experiments
to simplify them. When we use the exponential law
for task generation, we define an upper bound pmax
and we set the mean value of this law to half of the
pmax. In the experiments pmax ranges from 10 to
100, by steps of 10.

The power consumption of the tasks is given in
power units. As we were lacking values for the power
consumption of the tasks we choose to use a random
generation of ϕi with a uniform law between 0.1 and
ϕmax. ϕmax ranges between 4 and 40 power units,
by steps of 4.

For the experiments we choose intervals of equal
length, 10 time units. To explore solar panel like
power generation, we generate sets of intervals with
a bell shape. For the interval generation we define 5
levels and we randomly generate the available power
for each interval inside the level. To generate the bell
shape we give a higher probability to increase (resp.
decrease) the level when we are in an increasing (resp.
decreasing) phase. The used random law in the levels
is uniform, the maximum power that can be provided
by the sources is 80 and each level has a height of 16.

For the experiments where the exponential law
based task generation is used, we generate 250 in-
tervals per set and we generate 600 intervals per set
for the experiments that use the hyper-gamma law
based task generation. Note that there is no guaran-
tee, when we use a set of intervals, that a schedule
can be found. For that reason we use large numbers
of intervals.

For the experiments we generate 100 different sets
of intervals but with the same parameters and for
each couple of pmax and ϕmax values, we generate
100 different sets of tasks. 10 000 experiments where
thus performed, 100 for each (pmax, ϕmax) couple,
each with a different task set. The same interval set
is used for each (pmax, ϕmax) couple.

The number of cores is set to 8 for all the experi-
ments, which means that up to 8 tasks can be sched-
uled in the same interval. To assess the impact of
the available power on the algorithm performance we
use two values for the available power, 40 and 80. As

the ϕmax value ranges from 4 to 40, this means that
the tasks may require up to 320 power units to run
without constraint in the case where ϕmax = 40.

To compare the results we need normalized metrics.
Raw makespan or flowtime values cannot be com-
pared as they depend on the considered set of tasks
and intervals. A set of larger tasks always gives a
longer makespan than a set of shorter ones. Therefore
we define the following metrics to compare the sched-
ules: we define the makespan performance PERMAK
as (makespan − useless)/

∑
pi, where makespan is

obtained by the schedule and useless is the sum of
the length of the intervals, between 0 and the end
of the schedule, where no task can be scheduled be-
cause of too low available power. In a same way we
define PERFLOW as the flowtime performance as
(
∑

(Ci−uselessi))/
∑
pi, where Ci is the completion

time of task Ti and uselessi is the sum of the lengths
of the intervals, between 0 and Ci, where no task can
be scheduled because of too low available power.

6.3 Results

In this section we present the results of our experi-
ments. The figures are generated using R statistical
environment.
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Figure 4: Heat map of the best average makespan
performance PERMAK for values of pmax ranging
from 10 to 100 and values of ϕmax ranging from 4 to
40.

We assess all the algorithms regarding both the
makespan performance PERMAK and the flowtime
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performance PERFLOW. Figure 4 presents the best
algorithm for each value of pi and ϕi. The best algo-
rithm is defined as the algorithm that has the best
mean PERMAK on the 100 simulation runs for a
couple of values (pmax, ϕmax). As we can see on Fig-
ure 4, the best algorithm depends on both the values
pi and ϕi. Unsurprisingly when the power need is low,
the power is not a constraint and the LPT algorithm
that fosters long jobs, gives the best results. We are,
in this case, close to the classical P ||Cmax problem
which is efficiently solved using LPT. However when
ϕi is higher, algorithms that take power need into
consideration achieve better results. Moreover, many
algorithms get the best results depending on the power
need. When the processing time is small, the LPN
algorithm is the best but when it increases, LPTPN,
which takes both processing time and power need into
account, is better. For the case of a medium power
need and small processing times, the BSPW family
of algorithms finds good schedules.

We also compare the makespan performances of
our heuristics to each other, more precisely we com-
pute the makespan distance of each algorithm to the
best solution. BSPW-LPN, BSPW-LPT, LPT and
LPTP give more often the best performance and we
present their distances in Figure 5. From Figures 5b
and 5d we can see that the LPTPN and the BSPW-
LPT algorithms generate schedules with makespan
never farther than 6 % from the best one. This makes
them good candidates for a global solution. Between
them the LPTPN algorithm gives more often the best
makespan. Unsurprisingly, the LPT algorithm which
gives the best makespan when the power need is low,
generates its worst schedules when the power need
is high and the processing time of tasks are small.
It is however never worse than 11 %. On the other
hand Figure 5a shows that the LPN algorithm gives
its best solutions when the power is limited and tasks
are small.

Figure 6 gives the standard deviation of the
makespan performance PERMAK for (pmax, ϕmax).
As can be seen, the variation is low, ranging between
0.3 and 0.38. Other realized measures show that the
variation may increase up to 0.8 but is always low.

We experimentally assessed the performance of our
algorithms regarding flowtime PERFLOW. We tested
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Figure 5: Distance of the mean makespan performance
PERMAK of the LPN, BSPW-LPT, LPT, LPTPN
algorithms to the best makespan performance.

all the algorithms for pmax ranging from 10 to 100
and ϕmax ranging from 4 to 40. SPT has always
produced the lower flowtime.

Similarly to the makespan performance assessment,
we analyze the distance between the flowtime perfor-
mance PERFLOW of each algorithm from the best
performance. The distances for BSPW-SPT, BSPW-
R and Random, LPN are presented on Figure 7. From
this figure we can note that a list algorithm with ran-
dom task order has better probability to produce a
good flowtime than BSPW algorithms or list algo-
rithms with power need based task list order. These
poor performance shows that the task ordering cri-
terion largely impacts the flowtime. We can also
note that the BSPW based algorithms have poorer
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Figure 6: Standard deviation of the makespan perfor-
mance PERMAK for pmax = 100 and ϕmax = 20.

performance. This is because the BSPW algorithms
first searchs for the shortest time horizon in which
all the tasks can be scheduled, thus favouring the
makespan, before taking the task order into account.
These results highlights that the task order should be
considered first to lower the flowtime.

Finally, we assess the algorithm performance regard-
ing their computation time. Figure 9 shows a clear
gap between the computation time of list and BSPW
algorithms, and the gap expands for bigger tasks.
This indicates that increasing pi has a more negative
effect on BSPW algorithms than on list algorithms
regarding the computation time. The complexity of
BSPW is an explanation. Our observations show that
the complexity of both BSPW and list algorithms
increases with the number of intervals.

Figure 8 gives the standard deviation for the flow-
time for all the algorithms used in the experiments.
The SPT algorithm gives the lowest deviation, lower
than 10 %. As for the PERFLOW performance mea-
sure, the Random algorithm is ranked second with
less than 12%. Globally the list based algorithms give
lower variations than Binary Search algorithms. It
means that the proposed algorithms are inefficient in
this case.

Figure 9 gives the mean computation time for the
100 runs done with one given value of the power
need ϕmax (20). Note that the LPTPN algorithm is
barely visible on the plot as it gets the same running
times as SPT and the curves overlap. If we except the
BSPW-R algorithm, the power need value only slightly
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Figure 7: Distance of the mean flowtime performance
PERFLOW of the Random LPN, BSPW-LPN and
BSPW-SPT algorithms to the best makespan perfor-
mance.

impacts the computation time that slightly decreases
when the ϕi value increases. On the contrary when
pi increases, the computation time increases too. It
is also clear that the BSPW family of algorithms has
a larger computation time than the list based family.
Indeed as they iterate on the horizon value and, at
each iteration, they apply the same type of algorithm
as the list based algorithms. From Figure 9, we can
see that BSPW-R generates the longest execution
times, 10 times more than the fastest algorithm, i.e.,
LPT.

It is worthwhile noting that discretizing the time in
intervals increases the complexity of the algorithms.
The worst case complexity of the Place Task() func-
tion depends on X, the number of intervals. As the
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algorithms iterate on the intervals to schedule a task
then their complexity depends on X2. Considering
that the complexity of a list based algorithm depends
on the list ordering (O(n log(n)), n the number of
tasks), the complexity of the list based algorithms
with power constraints becomes O(X2n log(n)). It
turns out that the complexity of placing tasks in inter-
vals heavily weighs on the computation times: running
the whole set of experiments to compute the heatmaps
based on 250 intervals takes 2 days and more than
one week when based on 500 intervals.

As a synthesis of this performance assessment,
LPTPN generates the best performance for the
makespan objective on many values and it generates
schedules never worse than 5 % of the best ones while
keeping reasonable computation times. This approach

is a good candidate in the general case. On the other
hand, a multi-policy algorithm that differently orders
tasks within the list depending on the pi and ϕi could
also be implemented to improve the performance.

7 Conclusion

In this paper we have tackled the problem of schedul-
ing independent tasks under power constraints. For
the cases where parallel tasks are independent, we
have proven that the static problems of minimizing
the makespan and the flowtime without preemption
are NP-Hard. On the other hand, considering preemp-
tion, we have proven that the one machine problem
with makespan minimization is polynomial while par-
allel problems are NP-Hard. To complete the study
we assess heuristics in the case of a parallel shared
memory machine model. Comprehensive simulations
show that algorithms that take both task process-
ing time and power constraints into account globally
provide the best results.

The first simulation results show that simple al-
gorithms provide rather good solutions compared to
more sophisticated ones such as binary search based
algorithms for this complex problem. For future work
we plan to integrate meta-heuristics such as genetic al-
gorithms and design smarter algorithms. We also plan
to create semi-synthetic workloads by using workload
traces from parallel archives and adding synthetic
power needs.

The current results are limited to shared machine
problems. For distributed machines static power con-
sumption and on/off powering of machines must be
taken into consideration. This will also be explored
in the follow up of our work.
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