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ABSTRACT

Context. X-ray observations of galaxy clusters provide insights into the nature of gaseous turbulent motions, their physical scales,
and the fundamental processes to which they are related. Spatially-resolved, high-resolution spectral measurements of X-ray emission
lines provide diagnostics on the nature of turbulent motions in emitting atmospheres. Since they are acting on scales comparable to
the size of the objects, the uncertainty on these physical parameters is limited by the number of observational measurements, through
sample variance.
Aims. We propose a different and complementary approach to repeating numerical simulations for the computation of sample variance
(i.e. Monte-Carlo sampling) by introducing new analytical developments for lines diagnosis.
Methods. We considered the model of a “turbulent gas cloud”, consisting in isotropic and uniform turbulence described by a universal
Kolmogorov power-spectrum with random amplitudes and phases in an optically thin medium. Following a simple prescription for the
four-term correlation of Fourier coefficients, we derived generic expressions for the sample mean and variance of line centroid shift,
line broadening, and projected velocity structure function. We performed a numerical validation based on Monte-Carlo simulations
for two popular models of gas emissivity based on the β-model.
Results. Generic expressions for the sample variance of line centroid shifts and broadening in arbitrary apertures are derived and match
the simulations within their range of applicability. Generic expressions for the mean and variance of the structure function are provided
and verified against simulations. An application to the Athena/X-IFU (Advanced Telescope for High-ENergy Astrophysics/X-ray
Integral Field Unit) and XRISM/Resolve (X-ray Imaging and Spectroscopy Mission) instruments forecasts the potential of sensitive,
spatially-resolved spectroscopy to probe the inertial range of turbulent velocity cascades in a Coma-like galaxy cluster.
Conclusions. The formulas provided are of generic relevance and can be implemented in forecasts for upcoming or current X-ray
instrumentation and observing programmes.

Key words. galaxies: clusters: intracluster medium – line: profiles – methods: analytical – turbulence – X-rays: galaxies: clusters –
techniques: imaging spectroscopy

1. Introduction

Galaxy clusters form by accretion of matter along filaments
of the cosmic web, either continuously or episodically through
major and minor merger events. The baryonic gas flowing
along filamentary structures and falling into their deep gravi-
tational wells acquires kinetic energy that is transformed into
thermal energy, magnetic field amplification, and cosmic ray
acceleration in the intra-cluster medium, by a succession of
shocks, large-scale motions, and dissipation by turbulent pro-
cesses (Ryu et al. 2008; Zhuravleva et al. 2014; Gaspari et al.
2014, 2018; Miniati & Beresnyak 2015; Vazza et al. 2018). Ob-
servational signatures of these phenomena are rare and difficult
to obtain. The most promising and efficient diagnostics are is-
sued from spectroscopic observations of the hot intra-cluster gas,
which permeates the entire volume of massive halos and emits
copious amounts of X-ray light.

Focusing mainly on X-ray emission lines extracted along
a single line of sight, Inogamov & Sunyaev (2003) demon-
strated that departures from Gaussian line shapes carry impor-
tant indications on the nature of large-scale turbulence in the
intra-cluster medium. The authors extended their formula to

two-dimensional diagnostics by introducing the correlation func-
tion of the projected velocity field and calculating its scaling rela-
tive to fundamental parameters such as the turbulent injection and
dissipation scales. Applying these findings to simple but realis-
tic configurations of the intra-cluster medium, Zhuravleva et al.
(2012) calculated exact expressions for emission line diagnostics
such as centroid shift, broadening, and two-dimensional correla-
tion function. They evaluated the associated sampling uncertainty
(also called “sample variance” or “sampling variance”) by mul-
tiple Monte-Carlo realisations of the velocity field and showed
that it can dominate the overall error budget in the presence of
large-scale turbulence. ZuHone et al. (2016) were able to evalu-
ate the contribution of sample variance and statistical errors for
the well-defined observational case of the Coma cluster, thereby
demonstrating the impact of the observational strategy on this
source of uncertainty. Using numerically simulated clusters in-
stead, Roncarelli et al. (2018) performed end-to-end simulations
to derive expected values of the indicators of turbulence issued
from emission line measurements, postponing the calculation of
sample variance to a later stage by means of multiple realisations.

In this work we propose a formal approach to the problem of
sample variance by considering the ideal case of an arbitrary,

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A143, page 1 of 26

https://doi.org/10.1051/0004-6361/201935676
https://www.aanda.org
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0


A&A 629, A143 (2019)

optically-thin gas distribution in which uniform and isotropic
turbulent motions take place. This study is motivated by the in-
tent to obtain reliable and fast estimates of this specific class
of uncertainties and to identify key parameters that have an
impact upon them. We will consider three popular diagnostics
extracted from a continuum-free, isolated spectral line in the
X-ray wavebands: line centroid shift (hereafter C), line broad-
ening (S ), and projected velocity structure function (SF). The
latter is defined as the squared difference of projected veloci-
ties averaged amongst all points separated by a distance s on
sky. Instrumental characteristics and signal-to-noise considera-
tions, related for example to the exposure time or the energy res-
olution, are deliberately excluded and addressed in a separate
work (Cucchetti et al. 2019, hereafter Paper II) The results of
the present work are therefore instrument-independent to some
extent.

Amongst these indicators, the structure function appears as a
very promising diagnostic of turbulence since it takes advantage
of spatially-resolved spectroscopic observations, as enabled by
integral field units. It is also the least intuitive of all three diag-
nostics. Effects such as heterogenous sampling, non-stationarity,
and anisotropies reflect diversely in the modelling of SF. Inter-
estingly, the structure function as a mathematical tool has re-
ceived extensive interest in multiple fields of research involving
spatial statistics, notably geostatistics and Earth science, un-
der the name “variogram” (e.g. Matheron 1965, 1973; Cressie
1985; Haslett 1997; Armstrong 1998; Corstanje et al. 2008). In
the field of astronomy and astrophysics where its use is com-
paratively less widespread, it is involved in various works under
both of the terms “structure function” and “variogram”, to anal-
yse data either in one dimension (e.g. Roelens et al. 2017, for
stellar variability), two (e.g. Cayón 2010, for cosmic microwave
background), or three and more dimensions (e.g. Martínez et al.
2010, for galaxy clustering).

We first introduce the derivation of the average and variance
of the centroid shift and line broadening for measurements of
an X-ray spectral line along a single line of sight, together with
a numerical validation (Sect. 2). Section 3 generalises these re-
sults to the case of three-dimensional turbulent fields and the
extension of the line diagnostics to two dimensions, thereby
treating the case of the structure function. We perform a nu-
merical validation of these results in Sect. 4. We finally discuss
our results in Sect. 5 and highlight two specific cases matching
the future X-ray instruments XRISM/Resolve (X-ray Imaging
and Spectroscopy Mission, Ishisaki et al. 2018) and Athena/X-
IFU (Advanced Telescope for High-ENergy Astrophysics/X-
ray Integral Field Unit, Barret et al. 2016, 2018). We re-
port most of the details on calculations and their discussions
in the appendices, to which the reader can refer for more
details.

The convention in our notations is as follows: the line-of-
sight direction is denoted by x and the plane-of-sky coordinate
is θ = (y, z). Units of these coordinates are physical (kilopar-
sec) since in practice the angular distance at the redshift of the
object is known. Three-dimensional vectors are underlined to
differentiate them from two-dimensional vectors. The velocity
v (units of km s−1) is the component of the gas velocity projected
along the line of sight. All following definitions and derivations
(e.g. turbulent velocity dispersion, power-spectrum, etc.) are rel-
ative to this line-of-sight component. We denote with brackets
〈.〉 the sample average of the estimators and random variables.
We will decompose the velocity field in Fourier coefficients
with discrete indices (involving the discrete summation sign

∑
k).

The emissivity and geometrical shapes will be treated with their

continuous Fourier transforms (involving the continuous sum-
mation sign

∫
dk). This distinction will often be purely for-

mal: we made this choice to clarify the calculations. One- and
three-dimensional Fourier transforms are indicated with a tilde
(e.g. ρ̃ ), two-dimensional transforms with a hat (e.g. Ŵ).

2. Measured velocity dispersion along single line
of sight

In this section we assume the velocity structure diagnostics
are issued from the measurement of an emission line profile
(e.g. iron XXV at ∼6.5 keV) along a given line of sight. Mea-
suring a line profile is a complex task involving tools and meth-
ods developed under a certain set of observational conditions
(binning of the spectra, level of noise, background subtrac-
tion, continuum subtraction etc.) In order to illustrate our find-
ings, we adopt a simplified approach where the analysis applies
to a continuum- and background-subtracted spectrum with no
source of noise or uncertainty and no systematic (correspond-
ing to a virtually infinite exposure time with a perfectly cali-
brated instrument). Only one emission line is investigated, thus
we neglect blending with neighbouring lines. Importantly, we
do not provide a prescription for the measurement process itself
(Gaussian or more complex fit, non-parametric fit, full spectrum
fitting, etc.) Instead we model such a measurement as a calcu-
lation of the zero-th, first, and second moments of the line en-
ergy distribution Il(E) integrated along a line of sight θ0, such
that

F(θ0) =

∫
Il(θ0; E)dE

δE(θ0) =

(
F−1

∫
EIl(θ0, E)dE

)
− E0

Σ2(θ0) = F−1
∫

(E − δE − E0)2 Il(θ0; E)dE,

where δE and Σ are the observed centroid shift (relative to ref-
erence energy E0) and width (or broadening) of the line, and F
is a normalisation factor, namely the flux in the line. We intro-
duce the gas velocity field along the line of sight fixed by θ0 with
v(x) ≡ v(x, θ0). We define C = cδE/E0 and S 2 = c2Σ2/E2

0 as the
observed centroid shift and width in velocity space.

2.1. Emission along the line of sight

At a microscopic level (i.e. below the turbulent dissipation scale
in the medium), emission is assumed to follow a thermally
broadened line profile. We neglect any additional broadening
such as natural (Lorentzian) and assign each ion a rest-frame
Gaussian emission profile. Assuming a purely collisional origin
of the emission line, the amplitude of the line is assumed to scale
with emissivity ε(r) ∝ nFene = n2

e . The coefficient of proportion-
ality may depend on the local property of the medium (metallic-
ity, temperature, etc.)

In the following we assume that the turbulent dissipation
scale Ldiss is large enough for each volume of size (Ldiss)3 to
contain a significantly large number of line emitters: it is practi-
cally always fulfilled, even for the tenuous intra-cluster medium
with a typical density of 10−3 cm−3 and kiloparsec-scale injec-
tion scales. Accounting for the Doppler shift in energy v(x)/c
and emissivity ε(x), we therefore model the total emission at
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each point by

dIl(E)
dx

=
ε(x)c

E0σth(x)
√

2π
exp

−1
2

[
E − E0(1 + v(x)/c)

E0σth(x)/c

]2 · (1)

Assuming an optically thin medium and reordering the sum-
mation over velocities, we can write

F(θ0) =

∫
ε(x)dx

C(θ0) = F−1
∫

ε(x)v(x)dx

S 2(θ0) = F−1
∫

ε(x)σ2
th(x)dx +

F−2

2

"
G(x, x′)dxdx′ (2)

G(x, x′) = ε(x)ε(x′)
[
v(x) − v(x′)

]2 .

These integrals extend along the line of sight indexed by x,
which we assume to range in a large interval [−L, L]. In principle
v(x) encapsulates the effect of hydrodynamical motions (turbu-
lence) and bulk motions of the gas. Without loss of generality,
we assume bulk motions over a small area are known and sub-
tracted from the measurements; we therefore set its contribution
to zero.

2.2. Turbulent velocity field

We describe the turbulent velocity field v by its Fourier series
expansion, with positive and negative values of k:

v(x) =
∑

k

Vk exp
(

i2πkx
L

)
·

The coefficients Vk are complex random variables, defined
as Vk = V∗

−k = |Vk |eiψk . Here ψk is a random phase and |Vk | a
random modulus, supposedly independent from each other. In
the following, we define for convenience ω = 2π/L. We note
that 〈v〉 = 0, leading to V0 = 0. Averaging over multiple random
realisations provides

〈V jVk〉 = δ j,−kP(k), (3)

where P(k) = P(−k) = 〈|Vk |
2〉 is the power spectrum of the tur-

bulent velocity field and δi j = 1 if i = j, 0 if i , j.
Our hypothesis of uniform turbulence implies that the nor-

malisation of the power spectrum matches the square of the tur-
bulent velocity dispersion σturb at any given point x. It is defined
through the calculation of the second moment σturb =

√
〈v2〉,

where averaging occurs over random phases and moduli. There-
fore (taking e.g. x = 0), σ2

turb =
∑

k P(k). This definition does not
involve the profile of the emissivity, in contrast for example to
ZuHone et al. (2016).

One simple assumption for the distribution of moduli (e.g.
Inogamov & Sunyaev 2003) consists in non-random coeffi-
cients, leaving only phases as random. Another popular and
physically-motivated assumption (although not systematically
required in the rest of this paper) is the Rayleigh distribution
(e.g. ZuHone et al. 2016),

|Vk | ∼ P(ν)dν =
2ν

P(k)
e−ν

2/P(k)dν,

which reflects the fact that the turbulent velocity is a Gaussian
random field. Introducing Rk = P(k)2 − Var(|Vk |

2), we obtain,
under the assumption of Rayleigh-distributed moduli, Rk = 0 for
all k.

2.3. Statistics of the centroid shift and line broadening

Calculations in Appendix A provide the following formulas for
the centroid shift:

〈C〉 = 0 (4)

and its variance

Var(C) = 〈C2〉 = F−2
∑

k

Pε(k)P(k). (5)

This expression is identical to Eq. (A9) in Zhuravleva et al.
(2012), since Pε(k) = |̃ε(k)|2 is the Fourier power spectrum of
the (unnormalised, one-dimensional) emissivity ε.

As for the line broadening, in Appendix A we obtain

〈S 2〉 = σ2
th + σ2

turb − 〈C
2〉. (6)

The horizontal bar denotes averaging of the thermal compo-
nent along the line of sight. Again this expression is similar to
Eq. (B4) in Zhuravleva et al. (2012). Also interesting is the con-
tribution of the last term, indicating that averaging many (inde-
pendent) measurements of broadening measurements generally
provides a biased estimate of the (thermal plus turbulent) broad-
ening. The bias is zero only in cases where the turbulent power
spectrum and the emissivity power spectrum act on distinct spa-
tial scales. Finally, the variance can be written as

Var(S 2) = 2
∑

j,k

P(k)P( j)
∣∣∣∣∣ ε̃( j + k)

F
−
ε̃( j)̃ε(k)

F2

∣∣∣∣∣2
−

∑
k

Rk ×


∣∣∣∣∣∣ ε̃(2k)

F
−
ε̃(k)2

F2

∣∣∣∣∣∣2 + 2
[
1 −

Pε(k)
F2

]2
 · (7)

Conveniently, if the moduli |Vk | are Rayleigh distributed, the
term under the second k-sum vanishes.

2.4. Numerical validation

A verification of the equations previously derived is a rela-
tively quick task with modern computing resources. We con-
sidered a power spectrum in the form P(k) ∝ 1/k2α+1 in the
inertial range [kmin, kmax] and zero outside of it. The slope is
α = 1/3. We simulated the line profile resulting from the projec-
tion through a (isothermal, isometallic) β-model density profile
(Cavaliere & Fusco-Femiano 1978) with β = 2/3, core-radius
rc, and distance θ to the cluster centre:

ε(x) ∝
(
1 +

x2 + θ2

r2
c

)−3β

where L = 2, rc = 0.2, and θ = 0.2. The moduli Vk may be
constant (non-random) or follow a Rayleigh distribution. The
Fourier coefficients of the emissivity are given by ZuHone et al.
(2016) (see also Appendix B): ε̃(k)/F = exp(−ω|k|c)(1 + ω|k|c)
with c2 = r2

c + θ2. An example of such a realisation is shown in
Fig. 1. Only phases are random in this illustration. This configu-
ration and random realisation are specifically chosen to highlight
the possible discrepancy between the value of the broadening S 2

and the simple estimate σ2
turb + σ2

th. Indeed, purely by chance,
most of the points where velocity is high are located in low-
emissivity regions, therefore their contribution to line broaden-
ing is weak.

Figure 2 shows the excellent agreement between the theoreti-
cal and simulated quantities after 5000 random realisations of the
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Fig. 1. One realisation of a uni-dimensional turbulent velocity field
(middle panel) along the spatial axis x (in arbitrary units) with pa-
rameters α = 1/3, kmin = 1 (Linj = 2), kmax = 20 (Ldiss = 0.1),
σturb = 160 km s−1, and σth = 100 km s−1 (shown by yellow shading).
The emissivity profile (top panel) of the gas corresponds to a β den-
sity model with core radius rc = 0.2 and at a distance θ = 0.2 from
the centre. The lower panel shows the resulting line profile as a thick
black line. The best-fit Gaussian centred on C (vertical line) of width S
is shown as a dashed red line. The green thin curve shows the Gaussian
centred on the line centroid. Its width equals the geometrical mean of
the thermal and turbulent broadening.

velocity field. It is important to notice the strong non-gaussianity
of S 2 and C in general. The configuration chosen for this simu-
lation clearly illustrates that 〈S 2〉 < σ2

th + σ2
turb. This is a conse-

quence of the injection scale (Linj ∼ L) being much larger than
the typical cluster characteristic scale (here rc = L/10), leading
to non-Gaussian line shapes (Inogamov & Sunyaev 2003).

3. Two-dimensional characterisation of the velocity
field

Observations and diagnostics of the intra-cluster medium rarely
rely on single-line-of-sight measurements. Instead, due to in-
strumental resolution limits and signal-to-noise considerations,
line centroid shifts and broadening are measured from spec-
tra collected over well-defined two-dimensional regions, some-
times denoted as “bins” or “pixels”. A popular diagnostic
tool in the field of astrophysical turbulence (e.g. Lis et al.
1998; Esquivel et al. 2007; Anorve-Zeferino 2019) is the two-
dimensional structure function, loosely speaking a 2D correla-
tion function analysis of the line centroid shift map. Obtaining
analytical expressions of the sample variance of these estima-
tors requires the formalism above to be extended and to ac-
count for the three-dimensional structure of the velocity field
and the emissivity field. A further difficulty one has to face is

the non-stationarity of the projected velocity field: even though
the 3D velocity field is homogeneous (stationary) in the medium,
spatial variations of the emissivity in general break this property.

3.1. Tridimensional velocity field

Similarly to the previous section, we define the centroid shift and
line width measured over a spectral line as a sum over all indi-
vidual lines of sight selected within a region. We introduce the
window function W(θ) = W(y, z) as equal to 1 (one) for se-
lected lines of sight, and as zero elsewhere. The measured spec-
tral parameters of the line are written

F(W) =

∫
IWl (E)dE

δE(W) =

(
F−1

∫
E × IWl (E)dθdE

)
− E0

Σ2(W) = F−1
∫

(E − δE − E0)2 IWl (E)dE

by defining

IWl (E) =

∫
Il(θ, E)W(θ)dθ.

All results from previous sections are recovered with W(θ) =
δ(θ − θ0).

Introducing v(x) ≡ v(x, y, z) as the line-of-sight component
of the velocity, and operating the substitutions in Eq. (1) ε(x)→
ε(x), v(x) → v(x), we can rewrite the observed aperture flux,
centroid, and velocity dispersion as

FW =

∫
dθW(θ)

∫
dx ε(x, θ) =

∫
WFdθ

CW = F−1
W

∫
dθW(θ)

∫
ε(x, θ)v(x, θ)dx

= F−1
W

∫
WFCdθ

S 2
W

= F−1
W

∫
dxσ2

th(x)W(θ)ε(x) +
F−2
W

2

∫
dxdx′G(x, x′)

= F−1
W

∫
WF

(
S 2 + C2

)
dθ −C2

W

G(x, x′) =W(θ)ε(x)W(θ′)ε(x′)
[
v(x) − v(x′)

]2
.

Integrations over x range over an arbitrarily large interval
[−L, L] and over all possible values of the plane-of-sky position
θ. The velocity can be written in terms of its Fourier decomposi-
tion with k = (kx, ky, kz) = (kx, ξ),

v(x) =
∑

k

Vk exp
(
iωk · x

)
,

and we note P3D(k) = 〈|Vk|
2〉 = P3D(k). We have the relations

V−k = V∗k〈
VkVk′

〉
= δk;−k′P3D(k).

As in the one-dimensional case (Sect. 2), we introduce Rk =

P3D(k)2 − Var
(
|Vk|

2
)
, such that Rk = 0 for Rayleigh-

distributed moduli. A minimal assumption on the four-term
bracket 〈V jVkVlVm〉 is necessary and our ansatz is explicitly pro-
vided in Appendix F.
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Fig. 2. Line centroid C versus line width (squared) S 2 of an emission line along a single line of sight and 5000 realisations of a one-dimensional
turbulent velocity field (σturb = 160 km s−1, kmin = 1, kmax = 20, σth = 100 km s−1). Left panel: assumes only random phases while the right
panel also includes randomly distributed moduli (Rayleigh distribution). Points show measurements, and the red cross is the measured mean and
standard deviations along both axes. The blue lines represent the results obtained from analytical calculations (Eqs. (4)–(7)). The plain green line
shows the location of the geometric mean of the turbulent and thermal dispersions: the presence of turbulent motions on scales comparable to that
of the cluster makes such an estimate a biased one.

3.2. Statistics of the aperture line centroid

We find that the average of the velocity shift measurements over
several realisations is 0:

〈CW〉 = 0. (8)

The calculations are actually very similar to the one-
dimensional case and we refer to Appendix A for details. By
using the Fourier decomposition of the velocity field, the vari-
ance in centroid shifts measurements reads

〈C2
W
〉 =

1
F2
W

∑
k

P3D(k)|cε.W(k)|2. (9)

Here cε.W(k) is the Fourier coefficient of the prod-
uct ε(x)W(y, z). This expression differs from Eq. (E7) in
Zhuravleva et al. (2012) because we do not assume ε to be in-
dependent of the line of sight. If instead ε(x, y, z) = ε(x) in the
domain ofW , 0, then cε.W(k) = ε̃(kx)Ŵ(ξ); therefore we can
rewrite our finding under the factorised form

〈C2
W
〉 =

1
F2
W

∑
k

P3D(k)PW(ξ)Pε(kx),

with PW being the power spectrum of the window function
W. This expression is applicable considering for instance small,
pencil-beam, window functions or, equally interesting, narrow
annular window functions, if the emissivity shows a circular
symmetry. In Appendix B we provide a detailed calculation of
the function cε.W for the case of the isothermal, isometallicity
β-model gas density.

3.3. Statistics of the aperture line broadening
The calculation of the average of S2

W
over multiple realisations

of the turbulent field follows similar steps to the one-dimensional
case presented before and we find

〈S2
W
〉 = σ2

th + σ2
turb − F−2

W

∑
k

P3D(k)|cε.W(k)|2.

The bar indicates the average of the thermal broadening over
the cluster volume defined byW. With these notations the rela-
tion found in the 1D case still holds:

〈S2
W
〉 + 〈C2

W
〉 = σ2

th + σ2
turb. (10)

Finally the variance of the line broadening is written as

Var(S2
W

) = 2
∑
k,k′

P3D(k)P3D(k′)

∣∣∣∣∣∣∣ cε.W(k + k′)

FW
−

cε.W(k)cε.W(k′)

F2
W

∣∣∣∣∣∣∣
2

−
∑

k

Rk ×


∣∣∣∣∣∣∣ cε.W(2k)

FW
−

cε.W(k)2

F2
W

∣∣∣∣∣∣∣
2

+2

1 − |cε.W(k)|2

F2
W

2 , (11)

which reduces to the first term only in the case of Rayleigh-
distributed moduli.

3.4. Statistics of the structure function

We define the structure function as the integral

SF(s) =
1

Np(s)

∫
d(W,W′)=s

|CW′ −CW |2 dNp.
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This expression simply describes an average over all pairs
of regions (called bins or pixels) (W,W′) separated by a dis-
tance1 d(W,W′) = s. Here Np(s) is the number of such pairs of
regions. For instance, considering single line-of-sight measure-
ments and the Euclidian distance between two points on sky,
W(θ) ≡ δ(θ − θ0), we recover the standard formulation (e.g.
ZuHone et al. 2016)

SF(s) =
1

Np(s)

∫
θ0,|r|=s

|C(θ0 + r) −C(θ0)|2 dNp.

The integration runs over an arbitrarily large, but bounded region
of skyA of total area SA. In the following we considerA(θ) as
a function taking value 1 in the analysis region and 0 outside.
There, Np(s) needs to be interpreted as the integral

∫
dNp for all

(θ0, |r| = s).
Thus defined, SF(s) is a random variable that depends on the

particular realisation of the velocity field and we can therefore
compute its mean and variance across several realisations, here-
after called sf(s) and σ2

sf(s).

3.4.1. Expected value of SF(s): sf(s)

Under the assumption that finite-sized (i.e. border) effects are
negligible, for the most general expression of the emissivity field
(see Appendix D) we find

sf(s) = 2K
∑

k

P3D(k)
∫

dξ′Pρ(kx, ξ
′)

[
1 − J0

(∣∣∣ξ + ξ′
∣∣∣ωs

)]
= 2

(
ω

2π

)2 ∫ [
1 − J0 (ω |ξ| s)

]
P2D(ξ)dξ, (12)

with ρ(x, y, z) = ε(x, θ)/F(θ), K = ω2/(4π2SA), J0 being the
Bessel function of the first kind and order 0. The function P2D
is the 2D power spectrum of the centroid shift map, which ex-
pressions are properly defined and derived in Appendix C. One
must be careful that the power spectrum Pρ involved in these ex-
pressions is that of the normalised emissivity field ρ, which is
the 3D emissivity ε divided by the flux map F(θ). It is strongly
dependent on the choice of analysis domainA.

In the special case where the two-dimensional spectrum is
isotropic, this expression takes the form

sf(s) ' 4π
(
ω

2π

)2 ∫ +∞

0
P2D(ξ) (1 − J0(ωξs)) ξdξ.

The latter equation resembles Eq. (29) in ZuHone et al.
(2016). However this result implicitly includes the shape of the
domain of analysis through P2D, which effectively acts as a high-
pass spatial filter. We recall here the assumptions leading to this
result: (i) centroid shift measurements are performed along indi-
vidual lines of sight, (ii) isotropy of the two-dimensional power
spectrum P2D, (iii) the averaging domain allows all possible ori-
entations of the pair vector r, and (iv) the sum over modes ξ can
be written as an integral.

We provide in Appendix D a generic formula to correct the
above expressions for border effects. This involves the calcula-
tion of the number of pairs enclosed within the analysis domain
and those crossing its frontier, both dependent on the separation
length s and the exact shape of the domain. These are easily

1 There is some flexibility in choosing the definition of distance, either
considering geometrical centres of each region, flux-weighted barycen-
tres or other factors.

calculated for a circular domain of analysis of radius R and we
provide the equations in the appendix.

We also provide in Appendix E a prescription to account for
pixelisation of the centroid map with pixels of arbitrary size and
shapes. Provided such pixels are small with respect to the typ-
ical scales of the surface brightness fluctuations, a correction
is obtained by multiplying P2D by the two-dimensional power
spectrum of the pixel shape P`. As shown in the appendix, this
prescription should not be used in combination with the cor-
rection formula for border effects, especially if pixels are of a
sizeable length compared to the analysis domain. We do not
provide here a complete analytical formulation accounting si-
multaneously for border effects and pixelisation; it may be more
advantageous in such a case to numerically estimate the average
structure function from its primary definition involving the CWs.

Nevertheless, an exact solution for sf(s) is obtained in case
of a stationary two-dimensional velocity field – for example if
ε(x, y, z) = ε(x) – by replacing P2D by P∞2D in Eq. (12), which
is the power spectrum computed in the limit of an infinitely ex-
tended analysis domain (see Appendix C for details.) Such a for-
mulation then matches exactly that proposed by ZuHone et al.
(2016). The above prescription for pixel binning then also be-
comes exact and raises no issue due to a finite region of analysis.
These properties are used in Appendices D and E to validate our
correction formulas and to stress their limitations.

3.4.2. Variance σ2
sf(s)

A full calculation of the covariance

Σi j = Cov
(
SF(si),SF(s j)

)
between structure functions measured at different scales is pro-
vided in Appendix F under the assumption of negligible finite-
sized effects. The complete formula is given in Eq. (F.3) and
involves integrals of the Fourier transform ρ̃ of the normalised
emissivity field. Because of the relative position of the analysis
region and the emissivity distribution, it is in general not possible
to factor their respective contributions into the expression of the
variance. However, we can study a simpler, practical case where
the emissivity is independent of the line-of-sight direction within
the given analysis field of view. For instance, this is the case for
an observation pointing at the outskirts of a nearby galaxy clus-
ter or towards the core of a flat galaxy cluster (e.g. Coma). This
particular case is written ρ(x, θ) = ε(x)/F. This leads to a decou-
pling of the calculation of “geometrical” terms (i.e. the shape
and location of the instrumental field of view) and “fluctuation”
terms (the coupling between the cluster emissivity and the turbu-
lent velocity spectrum). In Appendix F.3 we obtain the following
simple formula, under the supplementary hypothesis of a very
large analysis region, that is for S1/2

A
� (s, Linj, . . .):

Σi j ' 16π
(
ω

2π

)2 ∫ [
1
SA

P∞2D(ξ)2 −

(
ω

2π

)2
Q∞2D(ξ)2

]
× (1 − J0(ωξsi))

(
1 − J0(ωξs j)

)
ξdξ, (13)

where Q∞2D = 0 for Rayleigh-distributed moduli. The diagonal
term of this quantity is then Σii = σ2

sf(s). As for the calcula-
tion of the average sf(s) in the case of pixelised data, one has
to multiply P∞2D by the power spectrum of the elementary pixel
shape. Equation (13) in the Rayleigh regime is the expression
we will validate in the next section, keeping in mind the series
of assumptions made to obtain this simple formulation.
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Table 1. Numerical realisations of a three-dimensional velocity cube used for validating the analytic calculations of line centroid shift, line
broadening, and structure function sample variances.

3D box size Injection scale Dissipation scale Slope (α) Cn σturb N. realisations
(pixel)3 Mpc× (kpc)2 (kpc) (kpc) (∗) (km s−1)

1936 × 2422 4.2 × 5202 100 10 −11/3 807.9 448.3 100
1936 × 2422 4.2 × 5202 200 10 −11/3 428.8 443.7 100
1936 × 2422 4.2 × 5202 300 10 −11/3 307.1 442.3 100

Notes. The size of the box in the line-of sight direction is eight times larger than the transverse (plane-of-sky) box size. (∗)Units km2 s−2 kpcα+3.
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Fig. 3. Effect of the finite box size on the precision of our numerical simulations. Three-dimensional velocity dispersion ∆V3D in each of the
100 numerical realisations for the three configurations in Table 1 is shown as blue histograms. Vertical dashed line indicates the exact value of
σturb from integration of the input turbulent power-spectrum (Eq. (14)). The increased numerical dispersions in those values as Linj increases as a
consequence of the finite simulation box size.

4. Numerical validation

We performed a set of numerical experiments to validate the
equations derived previously. This requires the generation of
multiple velocity boxes in three dimensions. Given the high
computational demand, only a selected set of cases are treated.

4.1. Dataset of velocity cubes

We created a series of velocity boxes with characteristics indi-
cated in Table 1. The smooth and continuous velocity power
spectrum takes a form similar to that of ZuHone et al. (2016),
namely

P3D(k) = Cne−(k/kdiss)2
kαe−(kinj/k)2

, (14)

with Cn a normalisation constant with units such that∫
P3D(k)dk = σ2

turb and α = −11/3 typical of a Kolmogorov
turbulence spectrum (Kolmogorov 1941). Scales kdiss = 1/Ldiss
and kinj = 1/Linj represent the dissipation and injection frequen-
cies, respectively. Moduli of the Fourier coefficients are drawn
from a Rayleigh distribution.

The computationally demanding fast Fourier transforms
(FFT) were distributed across ten processors using 2DE-
COMP&FFT2 (Li & Laizet 2010). The histograms of the (3D)
velocity standard deviation in each of the three configurations
are shown in Fig. 3; this is an indicator of the goodness of the
simulated field. Clearly, as the injection scale increases the box
becomes too small for the periodic boundary condition to apply
during the FFT. The third panel indicates an additional “noise”

2 http://www.2decomp.org

on the order of 5−10 km s−1 in the Linj = 300 kpc run, which we
attribute to aliasing effects. This extra numerical scatter needs to
be remembered while comparing analytic results to simulations.

The emissivity of the galaxy cluster gas is taken as the square
of a (isothermal, isometallic) gas density considered either as
a spherical β-model (hereafter beta) or as a β-model along the
line of sight and constant over the plane of the sky (hereafter
Xbeta). The β parameter is held at a value of 2/3 while the
core radius takes a value of {4, 21, 54, 107, 215, 429} kpc. The
normalisation of the emissivity plays no objective role in this
study, since no signal-to-noise consideration is made. Figure 4
shows one example of the line centroid and line width maps for
a 200 kpc injection scale and the various beta emissivity models,
free of any uncertainty other than numerical noise. In all numer-
ical simulations there is no thermal broadening (σth = 0 km s−1

hereafter). In the following we present the comparisons with the
Linj = 100 kpc simulation only. Validation of the other two runs
is extensively presented in Appendix H for completeness.

4.2. Centroid and line broadening

We first carry out the validation of Eqs. (8)–(11), which provide
analytical representations of the sample average and variance of
the line centroid shift and line broadening (more specifically, the
square of the line width) measured in arbitrary apertures. We
limit this validation exercise to circular apertures centred on a
galaxy cluster and allow their sizes to vary.

These analytical expressions involve the calculation of the
3D function cε.W: in Appendix B we provide the analytical for-
mulas for both considered emissivity models and for circular
apertures. Calculation of this function for spherical β-models de-
mands slightly more computing time than for the Xbeta model.
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Fig. 4. Projection of a single realisation of a 3D velocity field (injection scale at 200 kpc) with several emissivity models (top row). All but the last
column correspond to spherical β-models with core-radii of 4, 21, 54, 107, 215, and 429 kpc (from left to right). The rightmost column corresponds
to a constant emissivity in the entire simulation box. The size of each panel is 520 kpc on a side. The middle row shows the centroid shift (C) and
the bottom row shows the line width (

√
S 2). The decrease in contrast (or power) can be noticeably seen as the core radius increases. The small line

broadening seen through a small cluster core appears clearly in the bottom-left figure.

Equation (11) requires integration over six scalar variables.
Taking advantage of the isotropy of the velocity power spectrum
and the 2D rotational invariance of this specific configuration,
this can be reduced to five integration variables only (kx, k′x, ξ,
ξ′ , and one angle φ). This integral is evaluated by Monte-Carlo
sampling distributed over 40 computing cores by means of the
MCQUAD library3. The number of samplings is 2.106 and 2.105

for the Xbeta and beta emissivity models respectively, and we
monitor and store the statistical uncertainties produced by the
numerical sampler.

Figures 5 and 6 show the comparison between analytical
calculations (plain lines) and numerical simulations (dots with
error bars). They correspond to the Xbeta and beta emissivity
models respectively, using the same 100 velocity boxes with
Linj = 100 kpc. Each dot corresponds to a calculation using the
100 velocity realisations and a given core-radius size and a given
aperture size. Error bars are derived from bootstrap resampling.
Because we always used the same 100 simulations, the devia-
tions from the expected trend appear correlated: this is striking
for instance in the left-most panel showing 〈C〉. This behaviour
is likely to disappear with a higher number of realisations.

In any case these figures demonstrate a very good agreement
between analytical calculations and simulations. The only ex-
ception is the case of very large core radii (rc = 429 kpc), for
both emissivity models. This is a consequence of the simulation
box being too small in the x-direction (4240 kpc along the line
of sight). This causes a non-negligible sharp cutoff in the sim-
ulated β-emissivity profile, not accounted for by the analytical
equations.

The sample variance of the centroid shift and the line width
exhibit large variations with respect to the aperture radius. Emis-
sion line diagnostics in growing apertures for a selection of
“look-alike” galaxy clusters has interesting potential to reveal
the properties of the underlying turbulent power spectrum. This
is illustrated in Fig. 7 where we vary the injection scale from

3 Available in package SciKit-Monaco, https://pypi.org/
project/scikit-monaco

100 to 300 kpc for a given β-model (rc = 107 kpc). It is out of
the scope of this paper to provide forecasts on the constraining
power of this method, which must also include measurement un-
certainties and limitations related to the availability of samples.

4.3. Structure function

We restrict the numerical validation to that of Eqs. (12) and (13)
for computational reasons. First, we consider an emissivity
model of type Xbeta and a large enough analysis region com-
pared to the typical separation and pixelisation of the line cen-
troid map. The same 3 × 100 simulated boxes are projected
and pixelised in square regions of size ` × `, where ` =
4, 9, 17, 34, 69 kpc. Since the two-dimensional velocity field is
stationary, it is fine to use P`P∞2D. This replacement is justified
because in this configuration the surface brightness is constant
over the analysis domain. In what follows the analysis domain
is a circular aperture of diameter 520 kpc. Figure E.1 illustrates
how pixelisation acts on a simulated centroid shift map: it is very
close to a convolution or “smoothing”. Similar maps are created
for all pixel sizes and core radii for all simulated boxes. The ge-
ometrical centres of the pixels are used to compute the structure
function as the arithmetic mean of the squared centroid gradi-
ents at pre-defined separations s (within a range δs). The aver-
age of the structure functions and the standard deviations at each
s provide the numerical indicators to be compared to Eqs. (12)
and (13).

Analytical calculation of P2D is performed according to
Eq. (C.3), by 2D convolution4 of the 3D velocity power spectrum
P3D and the function Pρ at each frequency kx and eventual sum-
ming over those frequencies. The whole procedure is distributed
over 40 processors working in parallel. Analytical expressions
for Pρ are given in Appendix G (particularly Eq. (G.1)) for the
emissivity models relevant to our validation procedure. The cal-
culation of P∞2D is much more straightforward (see Eq. (C.4)).

4 Making use of the FFT convolution implemented in the
signal.convolve function of Numpy/Scipy.
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Fig. 5. Numerical validation of Eqs. (8)–(11). These are the expected value and sample variance of the line centroid shift CW (first and second

panel) and the expected value and sample variance of the line width
√

S 2
W

(third and fourth panel). Plain lines show the analytical calculations,
and data points are measured on 11 numerical realisations of a turbulent field (errors estimated via bootstrap) with Linj = 100 kpc. The calculations
are performed assuming measurements in circular aperturesW of various radii (x-axis). The emissivity model is Xbeta with core radii indicated
in the legend. The uncertainty on the analytical results for σ(S 2) (shown by the line widths in the last panel) is due to limitations of the numerical
integrator used to evaluate Eq. (11).
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Fig. 6. Similar to Fig. 5 for a spherical β-model emissivity (beta). The numerical uncertainties are slightly larger (in the fourth panel, compared to
Fig. 5) due to a lower accuracy in the numerical integration of Eq. (11).

0 100 200
Aperture radius (kpc)

10−2

10−1

σ(
C 

)/σ
tu
rb

(rc = 107 kpc)

0 100 200
Aperture radius (kpc)

10−1

σ(
S2 

)/σ
2 tu
rb

Linj = 100 kpc
Linj = 200 kpc
Linj = 300 kpc

Fig. 7. Sample variance associated to line measurements. The centroid
shift (left) and broadening (right) in apertures of growing sizes for clus-
ters presenting identical emissivity models are shown for a spherical
β-model with core radius of 107 kpc. These curves are predicted ana-
lytically by Eqs. (9) and (11). They have been normalised to the value
of the 3D turbulent velocity dispersion σturb. The different shapes of
the curves as the aperture radius grows can be used as a diagnostic to
discriminate between various injection scales.

A comparison between the analytical and numerical results is
illustrated in Fig. 8 for a given turbulent power spectrum (injec-
tion scale at 100 kpc) and various values for the core radius and
pixel size. The results from the 100 realisations are displayed as

thin grey lines and their distribution at each s is likely not Gaus-
sian. The analytical and numerical values for the sample variance
are in very good agreement for all nine configurations, which is a
very encouraging result given the various assumptions involved
in both cases.

A thorough assessment of the agreement between the ana-
lytical calculations and the numerical validation is summarised
in Figs. 9 and 10. They show the relative difference (expressed
in percent) between the analytical and the numerical computa-
tions for the expected value of the structure function and its vari-
ance, respectively. The injection scale is Linj = 100 kpc, as in
Fig. 8. Three separations are illustrated: s = 20 kpc (close to
the dissipation scale), s = 60 kpc (within the inertial range), and
s = 300 kpc (past the inertial range).

Regarding the sample mean, the analytical model (Eq. (12))
performs well within 20% of the numerical experiment. Keep-
ing in mind the limited number of realisations (100 samples),
this result appears satisfactory. A degradation of the prediction
accuracy arises as the binning size increases. This is attributed
to numerical approximation in computing P` and higher levels
of sampling noise in the simulation (larger pixels imply fewer
s-pairs). The slight decrease in accuracy at larger core radii was
already pointed out in Sect. 4.2, as a result of the simulation box
size.

As for the sample variance (Fig. 10), the relative differences
between analytical and numerical results show somewhat higher
values, as is expected for second order statistics. In general
our formula tends to overpredict by a few tens of percent the
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Fig. 8. Comparison of numerical and analytical structure functions and their sample variance for various cluster sizes (i.e. various core radii
(rc) of the β-model) and various pixel sizes (`). The data points and thick error bars show the sample mean and standard deviation of the 100
realisations (individually represented as thin grey lines) for each of the considered configurations. The coloured curves and shaded areas represent
the analytical calculations following Eqs. (12) and (13). The emissivity model is Xbeta and the region of analysis is a circle of diameter 520 kpc
(as displayed in Fig. E.1). The turbulent power spectrum is that of Table 1 with an injection scale of 100 kpc.

Fig. 9. Representation of the absolute relative difference between the numerical and analytical estimates of the sample mean of the structure
function, 〈SF〉, at three distinct separations s. Each coloured square corresponds to one experiment based on the same 100 realisations of the
velocity field with Linj = 100 kpc and various binning sizes (y-axis) and β-models core radii (x-axis). Small red crosses indicate locations where
the binning size is larger than s.

observed variance of the structure function at small separations
(s = 20 kpc) as a result of numerical uncertainties both in the
simulations and the evaluation of integrals. At large separations
(s = 300 kpc) and for the largest pixel size, the analytic formula
underpredicts the variance by up to 80%. The analysis regionA
indeed cannot be considered as infinitely large any longer, mak-
ing simplification of Eq. (F.3) into Eq. (13) less accurate.

We finally relax the assumption of a constant emissivity
and we show in Fig. 11 a comparison of the structure func-
tions obtained for a spherical β-model density (beta emissiv-
ity model). The analytical formula Eq. (12) recovers the mean
structure function, despite the spatial non-stationarity of the
projected velocity field. We corrected for border effects using
Eq. (D.3), the region analysis being a circle of diameter 520 kpc.
As highlighted in Appendix E, we are not able to use the sim-
ple prescription for significantly large pixel binnings. Moreover
we did not carry out the full evaluation of the sample vari-
ance using Eq. (F.3) for this figure. Instead, we computed the
variance according to Eq. (13) assuming an effective core ra-

dius c =

√
r2

c + θ2
eff

. Such approximation of the complex emis-
sivity field by an effective emissivity extracted at a radius of
θeff = 80 kpc from the cluster centre makes the calculation more

tractable. It shows a good agreement with results obtained from
the Monte-Carlo simulations.

5. Discussion

This work provides an extension of earlier studies, amongst
others those of Inogamov & Sunyaev (2003), Churazov et al.
(2012), Zhuravleva et al. (2012), and ZuHone et al. (2016). We
extended the formalism presented in these papers by: (i) ad-
dressing the case of an arbitrary emissivity field; (ii) computing
second order statistics beyond expected values (i.e. the sample
variance), and (iii) identifying limiting cases in which these stud-
ies coincide.

5.1. Validity of hypotheses and range of applicability

Our study remains formal and relies on strong hypotheses
such as uniform, ergodic, and isotropic turbulent velocity fields
throughout the intra-cluster medium, whose physics are encap-
sulated in a universal Kolmogorov power spectrum, meaning
that turbulence follows an identical physical description from
cluster to cluster. The latter assumption is often implicitly made
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Fig. 10. Similar to Fig. 9, but for the sample variance of the structure function, Var(SF). Positive values indicate higher predicted variance
compared to that measured in the numerical validation procedure. Although some of these numbers are high at face value, it is important to recall
the assumptions leading to the chosen analytical formula and the noise inherent in our set of numerical simulations (see text).

Fig. 11. Comparison of the simulated and calculated structure function in a similar way as Fig. 8, except the emissivity model is of type beta
(spherical β-model gas density). This induces non-stationarity of the projected velocity field, noticeable by the drop at large s. The coloured curves
represent the analytical calculation of the mean structure function following Eqs. (12) and (D.3). For simplicity, the variance remains calculated

according to Eq. (13), that is assuming Xbeta emissivity with an effective core radius, c =

√
r2

c + θ2
eff

with θeff = 80 kpc.

and mirrors an intent to concentrate all the unknown physics of
turbulence in a single mathematical description. It is clear that
this hypothesis may fail if widely distinct mechanisms produce
turbulent motions: for instance large-scale matter accretion and
central AGN feedback.

More specifically, our assumption of isotropic turbulent mo-
tions may break down in the stratified intra-cluster medium
where buoyancy-restoring forces tend to suppress motions along
the radial direction. Numerical simulations indicate a change in
the morphology of turbulent fields in regions showing strong
density gradients (e.g. Shi & Zhang 2019), even in cluster cores
(Valdarnini 2019). According to these findings, one can there-
fore expect our model to become less representative as larger
and larger cluster radii enter the emission line analysis, or in
the presence of strong cool-core clusters. A study of anisotropic
turbulence is out of the scope of this paper, but one could for
instance undertake similar derivation steps as shown in the ap-
pendices, dropping the assumption P3D(k) = P3D(k).

The existence of several drivers of turbulence acting at differ-
ent scales may change the shape of the velocity power spectrum
and more generally the statistical relations between Fourier co-
efficients of the velocity field. ZuHone et al. (2016) proposed to
rewrite the resulting P3D as a sum of two Kolmogorov-like power

spectra with different injection scales, based on the simulations
and results of Yoo & Cho (2014). Such a prescription enters the
framework presented in this paper, because our results are in-
dependent of the exact shape of P3D. However, it remains to be
checked whether the decomposition of 〈V jVkVlVm〉 proposed in
Appendix F holds under such conditions, which most likely can
be addressed through numerical simulations.

Our hypothesis also assumes full decoupling of the gas emis-
sivity and the local behaviour of turbulent motions. This simpli-
fying assumption may largely fail if gas motions are induced
by the merging of an external galaxy group that shows high
emissivity in its vicinity. An interesting perspective provided by
the present calculations would be the coupling between P(k),
the turbulent power spectrum, and ε, the emissivity; however,
it is likely that calculations would become more complex and
the gain over Monte-Carlo simulations would become less obvi-
ous. Moreover, density fluctuations, and hence emissivity fluc-
tuations, are thought to be directly linked to the turbulent power
spectrum based on theoretical grounds (Churazov et al. 2012).
At first order though, the broad-scale emissivity of the galaxy
cluster gas is the dominant component modulating the Doppler
shift in the integrated line profiles and our approach remains a
reasonable one in this regard.
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Fig. 12. Model predictions for radial profiles of line properties, which are those measurements in spectra collected in circularly concentric annuli
of equal width (21 kpc). The figure shows the sample variance of the centroid shift (left panel), the sample average of the line broadening (middle
panel), and the sample variance of the line broadening. The injection scale is Linj = 100 kpc, and the emissivity model is a spherical β = 2/3 model
with core radii indicated in legend. Shaded rectangles indicate bin widths (horizontally) and numerical uncertainties (vertically).

Fig. 13. Model predictions for structure functions and their associated sample variances under two instrumental setups: XRISM/Resolve (assuming
1.5′ resolution elements) and Athena/X-IFU (assuming 5′′ and 15′′ resolution elements for high and low signal-to-noise ratios respectively).
Left panel: predictions for a ∼15′ ×15′ contiguous mapping of the Coma cluster while the right panel shows the result for a single X-IFU pointing.
A single Resolve pointing (3′ on a side) would be too small for a useful derivation of the structure function. The text gives further details on the
input turbulent power spectrum and gas density model.

Finally, our work deliberately neglects measurement uncer-
tainties and instrumental noises. We address this assumption in
a subsequent study (Paper II) by propagating the impact of mea-
surement uncertainties on the line diagnostics, in particular the
structure function. An interesting conclusion of this study is that
sample variance effects dominate on large scales the error bud-
get for observations based on next-generation X-ray instruments
such as Athena/X-IFU, while statistics dominate at small scales.

5.2. Application: Forecasting line shift and width profiles

The formulas derived in Sect. 3 provide the sample mean and
variance of both the line centroid shift and width in arbitrary
apertures. As such, they can be used to predict measurements
in concentric annuli centred on a galaxy cluster, that is, a radial

profile. Formally, an annular aperture mask is defined as the dif-
ference between two concentric circular apertures. Thanks to
the linear behaviour of the Fourier transform, the coefficient
cε.W is also the difference between the two corresponding co-
efficients, both easily computed following Appendix B. Inter-
estingly, the emissivity in each annulus can be considered as
constant, ε(x, θ) = ε(x), if the gas density shows spherical
symmetry and the annuli are thin enough. As already noted,
this property drastically reduces the computing time needed to
integrate the equations. An example of the profiles of centroid
shift variance, line width average, and line width variance are
displayed on Fig. 12 for a turbulent power spectrum with an
injection scale of 100 kpc and σturb = 448 km s−1. No thermal
broadening is included in this exercise. As expected, the cen-
troid shift (whose average value is zero) shows larger variance
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in the central bins than the outskirts and the larger the core ra-
dius, the smaller the effect. The average broadening shows the
reverse behaviour with smaller widths in the central parts and
reaching a plateau (corresponding to σturb) in the outskirts. The
line width variance shows diverse forms of behaviour but here
again the general trend is a decrease towards the outskirts.

5.3. Forecasting the structure function from upcoming
instrumentation

One particularly interesting perspective consists in inverting the
formulas presented here to evaluate the power of future astro-
nomical X-ray micro-calorimeters in constraining the nature of
turbulent motions in galaxy clusters. By properly selecting the
samples (typically, the number of objects and their core radii and
distances) and the observing strategy (mapping, exposure times,
etc.) one is able to focus the constraints for example on the slope
of the power spectrum or the injection scale. This assumes that
turbulence has identical characteristics throughout the sample
considered, which hopefully is a reasonable guess. We postpone
the complete exercise to later investigation. Rather we com-
pute the expected structure functions for a simplified Coma-like
galaxy cluster, following a setup similar to ZuHone et al. (2016)
and using the associated uncertainties due to sample variance
only (statistical errors are disregarded). We consider two instru-
ments: (i) XRISM/Resolve with a resolution element of 1.5′ and
a field of view of 3.4′ equivalent diameter, and (ii) Athena/X-
IFU with a resolution element of 5′′ and a field of view of 5′
equivalent diameter (Barret et al. 2018). We consider two ob-
serving strategies: either one single pointing towards the clus-
ter centre, or the mapping of a ∼15′ × 15′ area with multiple
pointings. We also consider the case of a 15′′ pixelisation re-
binned image for Athena/X-IFU, such that the signal-to-noise ra-
tio of each spectrum is increased (e.g. Roncarelli et al. 2018, also
Paper II). At the redshift of Coma, 1′ on sky corresponds roughly
to a 27 kpc physical separation. We consider a turbulent power
spectrum with σturb = 438 km s−1, α = −11/3, injection scale at
200 kpc, and dissipation scale at 20 kpc. Given the proximity of
Coma and its apparent size, using the Xbeta emissivity model
is amply justified, as already noted by Churazov et al. (2012)
and ZuHone et al. (2016). Figure 13 shows the outcome of our
model. For identical sky coverages, X-IFU provides smaller rel-
ative variance in comparison to Resolve, thanks to its better an-
gular resolution. Even in one single pointing, X-IFU can provide
a measurement of the structure function up to ∼100 kpc separa-
tion scales. The associated variance is larger though, due to a
smaller number of pairs entering the structure function.

This example provides the basis for further research, in view
of optimising an observational strategy for a given instrumen-
tal setup. Our formalism involves Fourier transforms of win-
dow functions (denoted A and W) and therefore accounts for
arbitrary instrumental shapes and pointing strategies, by taking
advantage of standard properties of the Fourier transform. For
instance, a window function made of multiple non-overlapping
pointings can be considered as a sum of identical, translated
window functions; linearity then makes the computation of its
Fourier transform straightforward.

6. Conclusions
In this paper we have derived analytical expressions for the sam-
ple mean and variance of three indicators of turbulence in X-ray
emitting, optically-thin plasmas under the hypothesis of homo-
geneous and isotropic Kolmogorov turbulence. These are the

line centroid shift C, the line broadening S , and the structure
function SF.
1. We obtained exact expressions for the mean and variance

of C and S obtained from single line-of-sight measure-
ments through arbitrary gas emissivity. These expressions
are Eqs. (4)–(7). We numerically validated the results
with Monte-Carlo simulations of turbulent velocities with
Gaussian or constant amplitudes.

2. We generalised these expressions for measurements in aper-
tures of arbitrary shapes and sizes and for arbitrary three-
dimensional emissivity fields, demonstrated in Eqs. (8)–(11).
In Appendix B we provide useful formulas for the common
β-model and for circular apertures. We numerically validated
the formulas using Monte-Carlo simulations of 3D velocity
fields in a range of emissivity and power-spectrum configu-
rations.

3. We derived an expression for the mean structure function un-
der the assumption of negligible border effects (Eq. (12)).
Notably, this formula does not assume constant (“flat”)
emissivity in the plane-of-sky direction. It involves a spe-
cific definition for the two-dimensional power spectrum of
the projected velocity field, introduced in Appendix C. In
Appendix G we provide useful formulas for the common
β-model and for circular domains of analysis.

4. In Appendix D we provide a correction formula for border
effects (Eq. (D.3)) valid for non-binned maps of the projected
velocity and for domains of arbitrary shapes. We explicitly
computed the case of a circular field of view.

5. In Appendix E we provide a simple prescription to account
for binning (or pixelisation) on the mean structure function.
It is valid as long as pixels are smaller than the typical scale
of flux variations and much smaller than the domain of anal-
ysis.

6. We derived a fairly generic expression for the sample vari-
ance of SF under the assumption of negligible border effects
and for arbitrary emissivity fields (Eq. (F.3)). This equation
takes a tractable form in case of flat emissivity and very large
domain of analysis (Eq. (13)).

7. We numerically validated our results for the sample mean
and variance of SF in the case of “flat” emissivity fields
(β-models with a range of core radii) and various binnings.

8. We numerically validated our results for the sample mean
of SF in the case of non-flat emissivity fields (spherical
β-models with a range of core radii) and negligible binning.

We discussed our results and presented forecasts for observa-
tions of the core of the Coma cluster with the integral field units
X-ray calorimeters5 planned to embark onboard XRISM (Re-
solve) and Athena (X-IFU).
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Appendix A: Calculations in the one-dimensional
case

This appendix details the calculation leading to the results pre-
sented in Sect. 2, namely the expected values for the centroid
shift C and line broadening S 2 and their variances, in the case
of measurements along a single line of sight (Eq. (4)–(7)). These
calculations are generalised in Sect. 3 for two-dimensional diag-
nostics of the velocity field.

A.1. Statistics of the centroid

The finding 〈C〉 = 0 is a direct consequence of random uncorre-
lated phases. We calculate Var(C) = 〈C2〉 by noting that

〈C2〉 = F−2
"

ε(x)ε(x′)〈v(x)v(x′)〉dxdx′. (A.1)

From Eq. (3), the term within brackets reads

〈v(x)v(x′)〉 =
∑

k

P(k) exp
(
ikω(x′ − x)

)
.

It is then easily shown that

〈C2〉 = F−2
∑

k

P(k)
∣∣∣∣∣∫ ε(x) exp (ikωx) dx

∣∣∣∣∣2 .
The term within modulus is ε̃(k), namely the kth Fourier co-

efficient of ε. This identification leads to the expression shown
in Eq. (5).

A.2. Statistics of the dispersion

The variations of S 2 are due to the second term of Eq. (2), there-
fore we will focus now on studying the statistics of the double
integral

!
G.

A.2.1. Average of
!

G

First we write

A ≡
〈"

G
〉

=

"
〈G〉 =

"
ε(x)ε(x′)

〈[
v(x) − v(x′)

]2
〉

and

v(x) − v(x′) =
∑

k

Vk

(
eikωx − eikωx′

)
.

Therefore, using Eq. (3)〈[
v(x) − v(x′)

]2
〉

=
∑

k

P(k)
∣∣∣eikωx − eikωx′

∣∣∣2
= 2

∑
k

P(k)
[
1 − cos(kω(x′ − x))

]
.

This leads to

A = 2
∑

k

P(k)
"

dxdx′ε(x)ε(x′)

×
[
1 − cos(kωx′) cos(kωx) − sin(kωx′) sin(kωx)

]
.

This expression again can be rewritten using the power spec-
trum of the emissivity

A = 2
∑

k

P(k)
[
F2 − Pε(k)

]
. (A.2)

The average of the measured line width then reads〈
S 2

〉
=

1
F

∫
ε(x)σ2

th(x)dx +
∑

k

P(k)
[
1 −

Pε(k)
F2

]
,

which we write under the simple form〈
S 2

〉
= σ2

th + σ2
turb − F−2

∑
k

P(k)Pε(k),

where a horizontal bar denotes averaging of the thermal compo-
nent along the line of sight.

A.2.2. Variance of
!

G

We define B such that Var(S 2) = F−4(B2 − A2)/4. We note that〈("
G
)2〉

= B2

=

∫
ε(x)ε(y)ε(z)ε(t)〈[
v(x) − v(y)

]2 [v(z) − v(t)]2
〉

dxdydzdt. (A.3)

The term within brackets reads〈
[.]2 × [.]2

〉
=

∑
j,k,l,m

〈V jVkVlVm〉 ×
(
eikωx − eikωy

) (
ei jωx − ei jωy

)
×

(
eilωz − eilωt

) (
eimωz − eimωt

)
. (A.4)

Since phases are two-by-two independent, we assume the
simplest possible expression for the four-term product of Fourier
coefficients Vk, namely:

〈V jVkVlVm〉 =



P(k)P(l) if (k = − j); (l = −m); (k , ±l) {A}
P(k)P( j) if (k = −l); ( j = −m); (k , ± j) {B}
P(k)P( j) if (k = −m); ( j = −l); (k , ± j) {C}
〈|Vk |

4〉 if (k = − j = l = −m) {D}
〈|Vk |

4〉 if (k = − j = −l = m) {E}
〈|Vk |

4〉 if (k = j = −l = −m) {F}
0 else

All cases are mutually exclusive. Noting that conditions B
and C lead to identical expressions under transformation l↔ m,
and similarly for D and E, we can rewrite the sum, and hence the
triple integral, with a sum of four terms:

B2 = bA + 2bB + 2bD + bF .

First term: If (k = − j) and (l = −m) the bracket is written

〈.〉A =
∑
k,±l

P(k)P(l)
∣∣∣eikωx − eikωy

∣∣∣2 ∣∣∣eilωz − eilωt
∣∣∣2 .

After some algebra, the integration over x, y, z, and t provides

bA = 4
∑
j,±k

P(k)P( j)
[
F4 − F2Pε(k) − F2Pε( j) + Pε(k)Pε( j)

]
= 4

∑
j,±k

P(k)P( j)
[
F2 − Pε(k)

] [
F2 − Pε( j)

]
, (A.5)

where we have used the same trigonometric decomposition as in
the derivation of Eq. (A.2).
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Second term: The symmetries in the expression lead to

bB =
∑
k,± j

P(k)P( j)
∣∣∣∣∣" ε(x)ε(y) fk(x, y) f j(x, y)dxdy

∣∣∣∣∣2 ,
introducing the complex function

fk(x, y) = f ∗−k(x, y) = eikωx − eikωy.

Developing the product fk f j we can rewrite the term under
the modulus as∣∣∣∣∣" . . .

∣∣∣∣∣2 = 4 |F ε̃( j + k) − ε̃( j)̃ε(k)|2 .

Third term: The term within brackets is rewritten as

〈.〉D =
∑

k

〈
|Vk |

4
〉 ∣∣∣eikωx − eikωy

∣∣∣2 ∣∣∣eikωz − eikωt
∣∣∣2 ,

which, using similar calculations as for bA, leads to

bD = 4
∑

k

〈
|Vk |

4
〉 [

F2 − Pε(k)
]2
.

Fourth term: In a similar way to the computation of bF above,
we find

bF = 4
∑

k

〈
|Vk |

4
〉 ∣∣∣F ε̃(2k) − ε̃(k)2

∣∣∣2 .
Therefore, combining previous expressions we obtain

Var(S 2) = 2
∑
j,±k

P(k)P( j)
∣∣∣∣∣ ε̃( j + k)

F
−
ε̃( j)̃ε(k)

F2

∣∣∣∣∣2
+

∑
k

〈
|Vk |

4
〉 ∣∣∣∣∣∣ ε̃(2k)

F
−
ε̃(k)2

F2

∣∣∣∣∣∣2
+ 2

∑
k

(
〈|Vk |

4〉 − P(k)2
) [

1 −
Pε(k)

F2

]2

,

which is rearranged to provide Eq. (7).

Appendix B: Fourier transform of the emissivity
field ε (β-model)

We provide here calculations of cε.W, the 3D power spectrum of
the emissivity ε(x, y, z) in the case of a β-model, seen through a
sky apertureW(y, z). This is particularly useful for deriving the
line centroid and broadening statistics. We assume that ε ∝ n2

e
where ne is the gas density and effectively follows a β-model
profile, as in an isothermal, isometallic intra-cluster medium.

B.1. Spherical model

For a spherical β-model density with core radius rc centred on
θ = 0, the emissivity is expressed as

ε(x, θ) = ε(0)
(
1 +

x2 + θ2

r2
c

)−3β

.

The flux integrated along the line of sight is written

F(θ) = ε(0)rcuβ

(
1 +

θ2

r2
c

)1/2−3β

(B.1)

with : uβ = 2
∫ π/2

0
cos6β−2(t)dt =

√
π

Γ(3β − 1/2)
Γ(3β)

·

The value of cε.W is defined as

cε.W(kx, ξ) =

"
W(θ)ε(x, θ)e−iω(kx x+ξ·θ)dxdθ

= ε(0)
∫

dθW(θ)e−iωξ·θ
∫

dxe−iωkx x
(
1 +

x2 + θ2

r2
c

)−3β

·

This Fourier transform is calculated first along the x-axis,∫ +∞

−∞

(
1 +

x2 + θ2

r2
c

)−3β

e−iωkx xdx

= 2r6β
c (ω|kx|)6β−1

∫ +∞

0

cos(t)dt[
(ωkx)2(θ2 + r2

c ) + t2]3β

=
23/2−3β √π

Γ(3β)
r6β

c

 √
θ2 + r2

c

ω|kx|

1/2−3β

K3β−1/2

(
ω|kx|

√
θ2 + r2

c

)
,

(B.2)

where Kn is the modified Bessel function of the second kind6.
In the special case of β = 2/3, this formula is equivalent7
to Eq. (23) in ZuHone et al. (2016), namely ε̃/F = (1 +
ω|kx|c) exp(−ω|kx|c), with c2 = θ2 + r2

c .
Introducing Fn(x) = xnKn(x), the integration over the plane-

of-sky coordinates θ provides

cε.W(kx, ξ) = ε(0)rc
23/2−3β √π

Γ(3β)∫ (
1 +

θ2

r2
c

)1/2−3β

F3β−1/2

(
ω|kx|

√
θ2 + r2

c

)
W(θ)e−iωξ·θdθ.

(B.3)

The unknown normalisation factor ε(0) is unimportant in this
paper, since the Fourier transform always appears divided by the
aperture flux FW defined by

FW =

∫
F(θ)W(θ)dθ = ε(0)rcuβ

∫ (
1 +

θ2

r2
c

)1/2−3β

W(θ)dθ.

An usual practical case is for a circular apertureW of radius
Rap centred on θ = 0. For this particular case,

cε.W
FW

(kx, ξ) =
25/2−3β(3β − 3/2)

Γ(3β − 1/2)

1 −
1 +

R2
ap

r2
c

3/2−3β
−1

× I(Rap/rc);(3β−1/2) (ω|kx|rc, ωξrc) ,

which uses the special integral defined below and represented in
Fig. B.1 for n = 3/2 (β = 2/3):

Ip;n(u, v) =

∫ p

0

tJ0(vt)
(1 + t2)nFn

(
u
√

1 + t2
)

dt.

6 The case in which kx = 0 is recovered using limx→0 xnKn(x) =
π2n−1/ [sin(nπ)Γ(1 − n)] (Spiegel 2003).
7 This is because F3/2(x) = x3/2K3/2(x) =

√
π/2(1 + x) exp(−x).
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Fig. B.1. Numerical calculations of Ip;n(u, v) for various values of p and n = 3/2. Logarithmically-spaced contours (identical in all panels) indicate
the value of the function. This function is involved in the calculation of the Fourier transform of a spherical β-model (n = 3β − 1/2) observed
through a concentric circular aperture of radius p times the core radius.

B.2. Plane-constant model

The integral B.3 can be simplified if the core radius rc is much
larger than the typical size of the window function W. In such
a case, it is equivalent to consider an emissivity that is indepen-
dent of the line-of-sight direction θ, that is, ε(x, y, z) = ε(x). An
effective impact parameter θeff is introduced so that

ε(x) = ε(0)
1 +

x2 + θ2
eff

r2
c

−3β

·

The calculations above then become

cε.W(kx, ξ) = F (θeff)
23/2−3β

Γ(3β − 1/2)
F3β−1/2 (ω|kx|c)Ŵ(ξ) (B.4)

FW = SWF (θeff) ,

where we introduced c2 = θ2
eff

+ r2
c and SW =

∫
W is the area

of the aperture on sky and Ŵ its (2D) Fourier transform.
An usual practical case is for a circular aperture W of ra-

dius Rap and an emissivity ε(x) in the form of a β = 2/3-model
independent of the line of sight. For this particular case,

cε.W(kx, ξ)
FW

= 2e−ωc|kx | (1 + ωc|kx|)
J1(ωξRap)
ωξRap

,

with J1 the Bessel function of the first kind and order 1.

Appendix C: Two-dimensional power spectrum for
generic emissivity field

For a pencil-beam apertureW(θ′) = δ(θ−θ′), the expression for
the centroid shift is written

C(θ) =

∫
ρ(x, θ)v(x, θ)dx.

Since χθ(x) = ρ(x, θ), we obtain

C(θ) =
∑

k

Vkeiωξ·θχ̃θ(kx), (C.1)

where the tilde indicates a one-dimensional Fourier transform
along direction x. Indeed,

χ̃θ(kx) =

∫
dxeiωkx xρ(x, θ) =

(
ω

2π

)2 ∫
dξ′e−iωξ′·θρ̃(kx, ξ

′),

(C.2)

with ρ̃ the (3D) Fourier transform of ρ. The last equality derives
from the definition of the inverse 3D Fourier transform.

We note that ρ(x, y, z) = ε/F is defined in a domain of space
A (area SA) where the flux F(y, z) of the source is non-zero
(which in practice is a bounded region). If the source is infinitely
extended (as in the formal case of a β-model), the boundary is
imposed by the domain of analysis A, for example the instru-
ment field of view. We therefore consider that ρ is defined over
the entire 3D space by filling regions outside of the bounded
domain with zeros, which ensures the existence of ρ̃. The 2D
Fourier transform Ĉ(ξ) of C(θ) is used to define

P2D(ξ) =
1
SA

〈∣∣∣∣Ĉ(ξ)
∣∣∣∣2〉 ·

The weighting by the total area ensures that the total “energy”
does not diverge as A becomes large. We provide later the ex-
pression for the limiting case of an infinitely extended analysis
domain.

Equation (C.2) shows that at any given kx, χ̃...(kx) is the 2D
inverse Fourier transform of ρ̃(kx, . . .) and then∫
θ
χ̃θ(kx)eiωξ·θdθ = ρ̃(kx, ξ).

Therefore,

Ĉ(ξ) =
∑

k=(kx,α)

Vk

∫
θ

eiω(α+ξ)·θχ̃θ(kx)dθ,

which leads to∣∣∣∣Ĉ(ξ)
∣∣∣∣2 =

∑
k

1
,k

2

Vk
1
V∗k

2

∫
θ1,θ2

eiωξ·(θ1−θ2)eiω(α1·θ1−α2·θ2)

χ̃θ1 (kx1 )χ̃θ2
∗

(kx2 )dθ1dθ2.

Averaging over all possible realisations provides

P2D(ξ) =
1
SA

∑
k

P3D(k)
∫
θ1 ,θ2

eiω(ξ+α)·(θ1−θ2)χ̃θ1 (kx)χ̃θ2
∗

(kx)dθ1dθ2

=
1
SA

∑
k

P3D(k)
∣∣∣∣∣∫
θ
χ̃θ(kx)eiω(ξ+α)·θdθ

∣∣∣∣∣2
=

1
SA

∑
k=(kx ,α)

P3D(k)Pρ (kx,α + ξ) ,
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which is equivalent to

P2D(ξ) =
1
SA

∑
kx,ξ

′

P3D

(√
k2

x + |ξ′|2
)

Pρ
(
kx, ξ − ξ

′) . (C.3)

We note that P2D is in general non-isotropic, as the emissiv-
ity and the shape of the analysis domain are arbitrary. However,
in the particular case where the normalised line-of-sight emis-
sivity is independent of the line of sight, and thus following our
previous notations χθ(x) ≡ ε(x)/F, we find that

Pρ(kx, ξ) =
1

F2 Pε(kx)PA(ξ),

with∫
PA(ξ)dξ =

(
2π
ω

)2

SA.

This leads to the expression

P2D(ξ) =
1
SA

∑
ξ′

PA(ξ − ξ′)
∑

kx

Pε(kx)
F2 P3D

(√
k2

x + |ξ′|2
)

=
1
SA

(
ω

2π

)2 (
PA ⊗ P∞2D

)
(ξ),

with ⊗ representing the discrete convolution product. The power
spectrum P∞2D is defined such as it matches P2D for an ex-
tremely large domain of analysis. Indeed, PA then becomes a
very peaked function around ξ = 0 and we obtain (see also
Zhuravleva et al. 2012)

P∞2D(ξ) ≡ lim
A→∞

P2D(ξ) '
(

2π
ω

)2 ∑
kx

P3D

(√
k2

x + ξ2
) Pε(kx)

F2 ·

(C.4)

Appendix D: Structure function for generic
emissivity field

D.1. Formal derivation neglecting border effects

For convenience, we introduce the W-normalised emissivity:
χW(x) = F−1

W
ε(x). By extension, we define χθ(x) = ε(x, θ)/

F(θ) = ρ(x, θ). We recall that ρ = 0 outside of the domain of
analysis by construction, this is equivalent to imposing that the
centroid shift vanishes outside of this region. Using the decom-
position of the velocity field in Fourier series and the definition
of the velocity power spectrum, one obtains〈
|CW −CW′ |2

〉
=

∑
k

P3D(|k|)

∣∣∣∣∣∫ dx eiωk·x
(
W(θ)χW(x) −W′(θ)χW

′

(x)
)∣∣∣∣∣2 ,

which for the most common “pencil-beam” window function,
Wθ = δ(θ0 − θ), reduces to〈
|C(θ0 + r) −C(θ0)|2

〉
=

∑
k

P3D(|k|)
∣∣∣∣Cθ0,r(k)

∣∣∣∣2 , (D.1)

with

Cθ0,r(k) =

∫
dxeikxωx

[
χθ0+r(x)eiωξ·r − χθ0 (x)

]
.

θ
1

θ
2

Φ
s
(θ

1
) = 2π

Φ
s
(θ

2
) < 2π

R

“Ext” pair

“Inner” pairs

Fig. D.1. Sketch illustrating the counting of pairs within a circular do-
main of analysis of radius R represented by the large black circle. Within
this domain, the centroid shift C(θ) takes values determined by the
stochastic turbulent field, while we set C = 0 outside. Counting in-
ner pairs (shown with green and red sticks) separated by a distance s
is performed by computing the range of accessible angles φs(θ) for a
given position in the domain, then dividing by two. External pairs have
only one end within the domain of analysis and the range of accessible
angles is 2π − φs at a given position.

The expected value for the structure function therefore is
written

sf(s) =
1

Np(s)

∑
k

P3D(k)Is(k),

with

Is(k) =

∫
θ,|r|=s

|Cθ,r(k)|2.

Following notations in the previous appendix, we can rewrite
Cθ,r(k) into

Cθ,r(k) = eiωξ·rχ̃θ+r(kx) − χ̃θ(kx).

We then obtain

|Cθ,r(k)|2 = |χ̃θ(kx)|2 + |χ̃θ+r(kx)|2−2×Re
[
eiωξ·rχ̃θ

∗

(kx)χ̃θ+r(kx)
]
.

In a first approximation, let us perform a summation over
all pairs, including those fully comprised within the domain of
analysis A (“inner” pairs on Fig. D.1) and those with only one
end in A (“Ext” pairs). By construction χ̃θ = 0 for θ outside of
A. This approximation is equivalent to neglecting border effects
and correction terms are discussed in the following subsection.

Using the relation between χ̃ and ρ̃ identified previously, we
obtain∫

p
|χ̃θ(kx)|2 + |χ̃θ+r(kx)|2 = 2π

∫
θ
|χ̃θ(kx)|2 = 2π

(
ω

2π

)2 ∫
Pρ(kx, ξ)dξ.

Using Eq. (C.2) and some algebra leads to

χ̃θ
∗

(kx)χ̃θ+r(kx) =

(
ω

2π

)2 ∫
dξ′dξ′′ρ̃∗(kx, ξ

′)ρ̃(kx, ξ
′′)eiω(ξ′−ξ′′)·θe−iωξ′′ ·r.

Summing the term under the Re function over all pairs (with-
out double counting), we write∫

p

[
eiωξ·rχ̃θ

∗

(kx)χ̃θ+r(kx)
]

=
1
2

∫
θ

∫
|r|=s

[
eiωξ·rχ̃θ

∗

(kx)χ̃θ+r(kx)
]

=
1
2

(
ω

2π

)2 ∫
dξ′Pρ(kx, ξ

′)
∫ 2π

0
eiω|ξ+ξ′ |s cos φdφ

= π
(
ω

2π

)2 ∫
dξ′Pρ(kx, ξ

′)J0(ω|ξ + ξ′|s).
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Fig. D.2. Counting pairs in the circular analysis region. Left: two-dimensional representation of the function φs(θ) for various values of the
separation s and the position θ in a circular field of view of radius R. Right: scaling of Np(s), the number of pairs of points separated by a distance s
within a circular field of view of radius R. “Inner” concerns those pairs integrally contained within the circular domain, while “Ext” concerns those
pairs with only one end within the domain. “All” is the sum of the two numbers. The curves actually show δ(sNp(s))/δs, which is the differential
number of pairs per interval of s expressed in units of the radius R. Here ` � R is the side length of an elementary pixel, so that the total number
of pixels in the circle is πR2/`2.

We finally obtain

Is(k) = 2π
(
ω

2π

)2 ∫
dξ′Pρ(kx, ξ

′)
[
1 − J0

(∣∣∣ξ + ξ′
∣∣∣ωs

)]
. (D.2)

Dividing by the total number of pairs N tot
p (s) ' 1

2 Np(θ) ×
Np(r = s) = πSA provides the general expression for the
expected value of the structure function (see Eq. (12)). These
calculations assume that integration over all pairs (θ, r) is con-
tinuous. Appendix E describes the effect of pixelised and filtered
data.

D.2. Finite-sized effects (circular domain of analysis)

Previous calculations neglect border effects in the integration
over pairs of points. We have set ρ = 0 outside of the domain
of analysis, which implies C = 0. Consequently a number of ex-
tra pairs are erroneously included in this derivation, translating
into extra terms 〈|C(θ + r) −C(θ)|2〉 = 〈|C(θ)|2〉 in the numerator
Is and the number of pairs entering the denominator Np(s) needs
to be corrected (see Fig. D.1).

The integrals shown previously run over all pairs separated
by s with at least one extremity within the field of view. There
are N tot

p (s) such pairs and Next
p (s) pairs with only one end within

the field of view. Naturally we denote N in
p = N tot

p − Next
p the pairs

fully comprised within the domain analysis. A given point θ in
the analysis domain belongs to φs(θ) ∈ [0, 2π] pairs in the field
of view. Let us first compute the exact number of pairs, assuming
an infinitely fine tessellation,

N tot
p (s) = πSA +

1
2

Next
p (s).

We write(
N tot

p (s) −
1
2

Next
p (s)

)
sf(s) =

∫
p
〈.〉 =

∫
in
〈.〉in +

∫
ext
〈.〉ext

= N in
p sfcorr(s) +

∫
ext
〈.〉ext,

denoting by sfcorr(s) = 1/N in
p

∫
in〈.〉 the value of the structure

function corrected from finite-sized effects. We obtain∫
ext
〈.〉ext =

∫
θ∈A

(2π − φs(θ))〈|C(θ)|2〉dθ.

As demonstrated in Sect. 2,

〈|C(θ)|2〉 =
∑

k

P3D(k)
∣∣∣∣χ̃θ(kx)

∣∣∣∣2 .
Reassembling terms, we obtain the corrected mean structure

function (sfcorr):

sfcorr(s) =

 Next
p (s)

2N in
p (s)

+ 1
 sf(s)

−
1

N in
p (s)

∑
k

P3D(k)
∫
θ∈A

(2π − φs(θ))
∣∣∣∣χ̃θ(kx)

∣∣∣∣2 dθ.

(D.3)

The correction term depends both on the number of extra
pairs and on their separation s relative to the size of velocity
fluctuations.

We have

N in
p (s) =

1
2

∫
θ∈A

φs(θ)dθ,

Next
p (s) =

∫
θ∈A

(2π − φs(θ))dθ.

Estimating φ is easy under the assumption of a circular anal-
ysis region of radius R. We find the following expressions, graph-
ically represented in Fig. D.2, left:

φs(θ) =


2π if θ < R − s and s < R
0 if θ < s − R and s > R

2Arccos
(
θ2+s2−R2

2θs

)
if (R − s < θ < R and s < R)

or (s − R < θ < R and s > R).
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Fig. D.3. Impact of finite-sized corrections on the mean structure functions computed according to our model. The domain of analysis is a circle
of radius R. Both panels show the same data, in logarithmic or linear scales. The emissivity model is of type Xbeta with a core radius rc = 400 kpc.
The turbulent power spectrum has injection and dissipation scales Linj and Ldiss respectively. The thick dashed line is barely visible and shows the
exact result obtained assuming an infinitely extended analysis domain. Points at large separations s are subject to slight numerical instabilities.

We therefore rewrite N in
p (s) = s2F(R/s) and Nout

p (s) =

s2G(R/s) with

F(x) =

{
π2(x − 1)2 + 2π

∫ x
x−1 γ(u; x)udu if x > 1

2π
∫ x

1−x γ(u; x)udu if 0.5 < x < 1

and

G(x) =

{
4π

∫ x
x−1

[
π − γ(u; x)

]
udu if x > 1

2π2(1 − x)2 + 4π
∫ x

1−x

[
π − γ(u; x)

]
udu if 0.5 < x < 1

having introduced γ(u; x) = Arccos
(

u2−x2+1
2u

)
.

The expressions for the number of pairs as a function of the
separation distance are represented in Fig. D.2. As expected, the
number of extra pairs is negligible for small pair separations. It
equals the number of regular (“inner”) pairs for s ' 0.5R and
becomes dominant past this value.

Finally, we note that for the flat emissivity field (ρ(x, θ) =

ε(x)/F) we have |χ̃θ|2 = Pε/F2 and then

sfcorr(s) =

 Next
p (s)

2N in
p (s)

+ 1
 sf(s) −

Next
p (s)

N in
p (s)

×

(
ω

2π

)2 ∑
ξ

P∞2D(ξ).

(D.4)

Since in this case the projected velocity field is stationary and
isotropic, it may be easier and more exact to compute the mean
structure function using P∞2D in Eq. (12), instead of involving
P2D and applying this correction formula. This property is used
to check the validity of the correction formula in Eq. (D.4).
Figure D.3 shows the result of our calculation for a flat emis-
sivity field with core radius rc = 400 kpc and a turbulent power
spectrum with injection scale Linj = 10Ldiss = 200 kpc. The do-
main of analysis is circular with a radius of R = 70, 120, or
500 kpc. The result for an unbounded domain is also shown.
For small analysis domains (R = 70 kpc) the uncorrected for-
mula induces discrepancies at small separations, due to the high-
pass behaviour of the mask A. As the field of view increases

(R = 500 kpc), border effects become negligible and all struc-
ture functions match the exact one. Finally, as N in

p approaches
zero for a separation length of size s = 2R, the correction for-
mula becomes numerically unstable at large separation lengths.

Appendix E: Structure function from pixelised
and/or filtered data

Previous derivations assume that the centroid shift can be mea-
sured along every line of sight. In general, real datasets are
convolved by an instrumental point spread function and a pixel
design effectively groups lines of sight within a single spectral
line measurement. Both processes are formally close to each
other, since pixelisation along a regular grid can be reformulated
as a top-hat filtering followed by the selection of points at the
centre of each pixel (Fig. E.1).

We define a new map D(θ) as

D =
F` ∗ (FC)
F` ∗ F

, (E.1)

where ∗ represents the usual convolution product, and F(θ) and
C(θ) are respectively the flux and centroid maps as defined in
Sect. 3.1. The filter F` may represent the instrumental point
spread function, or the pixel window function (previously de-
notedW) or a combination of the two; we assume its character-
istic scale is ` (e.g. instrument full width at half maximum, pixel
size, etc.) and it is normalised to 1 by integrating over all values
of θ. It is clear that D(θ) is the value of the centroid shift mea-
sured after the filtering process, resulting from a flux-weighted
average of individual centroid shifts.

This formula reduces to D(θ) ' C(θ) for components of C
varying on scales much larger than ` (equivalently, for very sharp
filters). For components of C oscillating on tiny scales (much
smaller than the filter size), we find D ' 0: as expected the
pixelisation or filtering process suppresses information on small
scales.
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Fig. E.1. Effect of a larger pixelisation when computing the structure function. Pixel size ranges from ` = 4, 17, 34, 69 kpc (from left to right). All
four panels represent the same projected velocity field (injection scale at 100 kpc) in a galaxy cluster represented by a Xbeta model of core radius
21 kpc. In general, larger pixels reduce the power in the two-dimensional velocity fluctuations and roughly act like a smoothing convolution filter
on the high-resolution centroid map.

A useful derivation can be carried out in the case of a smooth
flux map, varying on scales much larger than the filter size `.
Then F can be considered constant in the convolution products
and one obtains D ' F` ∗C. All previous calculations now must
incorporate this convolution product. For instance, the following
replacement takes place:

Cθ0,r →

∫
dµF`(µ)eiωµ·ξCθ0−µ,r.

The calculation steps are similar to the previous case, thanks to
permutations of the integrals over µ and other integrals. This cal-
culation leads to the expected value of the structure function at
each s:

sf(s) = 2
∑

k

P3D(k)
∫

dξ′Pρ(kx, ξ
′)P`(ξ + ξ′)

[
1 − J0

(∣∣∣ξ + ξ′
∣∣∣ωs

)]
= 2

∫ [
1 − J0 (ω |ξ| s)

]
PD(ξ)dξ,

where PD = P`P2D is the power spectrum of the map D(θ) and
P` is the power spectrum of the filter. Therefore, in the case of
small filter sizes (relative to the flux variation scale) it is legiti-
mate to replace in Eq. (12) the power spectrum of the centroid
map, P2D, with the power spectrum of the filtered centroid map,
PD. In the case of larger pixels, this is generally no longer valid.
This is critical in the presence of a finite domain of analysis of a
size comparable to the pixel size, since then border effects must
be treated more carefully. Figure E.2 shows the result of apply-
ing the simple prescription P2D → P`P2D to Eq. (D.4), with a
similar parametric setup as in Fig. D.3. Since in this case the
velocity field is stationary, we also have an exact computation
of the structure function obtained by neglecting the finite-sized
domain, that is, by using P`P∞2D in Eq. (12). It is then obvious
that, strictly speaking, the correction formula in Eq. (D.4) is valid
only for unbinned data.

Finally, in addition to this “smoothing” effect, pixelisation
induces a discretization effect, or “aliasing”. We do not develop
a calculation for this effect. For a given two-dimensional fre-
quency ωξ, aliasing arises for very specific combinations of
separations s and pixel sizes, matching integer multiples of the
associated spatial scales. It therefore strongly depends on the
exact definition of the pixel grid. Since the power spectrum is
continuous in the inertial range, aliasing effects are smoothly dis-
tributed across the range of separations s between the injection
and dissipation scales. This aliasing effect is expected to mostly

101 102
s (kpc)

104
sf
(s
) (
km

2 /s
2 )

Ldiss Linj

No binning
ℓ=10 kpc
ℓ=20 kpc
ℓ=50 kpc
ℓ=80 kpc
ℓ=150 kpc

Fig. E.2. Analytical implementation of binning with pixels of size `
in the computation of the average structure function. The turbulent ve-
locity field and the cluster emissivity of type Xbeta are both identical
to Fig. D.3. Plain lines show exact results using the stationary, un-
bounded (R = ∞) velocity field, effectively replacing P2D by P`P∞2D
in Eq. (12). Dots are obtained by combining the correction formula
Eq. (D.4) for a circular domain of radius R = 250 kpc, with the pre-
scription P2D → P`P2D. Since the latter is only valid for slowly-varying
flux maps, it fails to reproduce the true structure function if pixels are
of a sizeable length with respect to R.

affect the structure function SF(s) at separations close to the dis-
sipation and the injection scales, where significant discontinu-
ities show up in the power spectrum.

Appendix F: Derivation of the variance of the
structure function

F.1. General expression

Following similar notations, for a given pair indexed by i, we
write ni = Np(si) and we introduce

Ui = |C (θi + ri) −C (θi)|2 =
∑
k,k′

VkVk′eiω(ξ+ξ′)·θiCθi,ri (k)Cθi,ri (k′).

We note in particular that

〈Ui〉 =
∑

k

P3D(k)
∣∣∣∣Cθi,ri (k)

∣∣∣∣2 . (F.1)
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Even in the case of an infinitely dense grid of pixels, there is
a source of uncertainty arising from the stochastic nature of the
velocity field itself. To see this more clearly, we compute〈
SF(si)SF(s j)

〉
=

〈
1

nin j

∫
θi,ri,θ j,r j

UiU j

〉
=

1
nin j

∫
θi,ri,θ j,r j

〈UiU j〉.

Neglecting border effects, ni = n j ∝ 2πSA. Therefore one
writes

〈UiU j〉 =
∑

k,k′ ,l,l′

〈
VkVk′VlVl′

〉
eiω(ξ+ξ′)·θi eiω(χ+χ′)·θ j

Cθi ,ri (kx, ξ)Cθi ,ri (k
′
x, ξ
′)Cθ j ,r j (lx,χ)Cθ j ,r j (l

′
x,χ

′).

We stress that |ri| = si and that si and s j are not necessarily
equal. Integration runs over all pairs indexed by i and j within the
field. In a similar way to the one-dimensional case, we assume
that

〈
V jVkVlVm

〉
=



P3D(k)P3D(l) if
(
k = − j

)
;
(
l = −m

)
;
(
k , ±l

)
{A}

P3D(k)P3D( j) if
(
k = −l

)
;
(

j = −m
)

;
(
k , ± j

)
{B}

P3D(k)P3D( j) if
(
k = −m

)
;
(

j = −l
)

;
(
k , ± j

)
{C}〈

|Vk|
4
〉

if
(
k = − j = l = −m

)
{D}〈

|Vk|
4
〉

if
(
k = − j = −l = m

)
{E}〈

|Vk|
4
〉

if
(
k = j = −l = −m

)
{F}

0 else

The decomposition of the product in brackets therefore in-
volves six terms: bA, bB, bC , bD, bE , bF with bB = bC and bD =
bE .

Computation of bA: It corresponds to the case in which k =

−k′, l = −l′ and k , ±l. It is written

bA = (nin j)−1
∑
k,±l

P3D(k)P3D(l)
∫ ∣∣∣∣Cθi,ri (k)

∣∣∣∣2 ∣∣∣∣Cθ j,r j (l)
∣∣∣∣2

= (nin j)−1

∑
k

P3D(k)Isi (k)


∑

l

P3D(l)Is j (l)


− 2(nin j)−1

∑
k

P3D(k)2Isi (k)Is j (k).

with Is already defined in Appendix D. Therefore, the first term
is simply sf(si)sf(s j).

Computation of bB: It corresponds to the case in which k = −l,
k′ = −l′ and k , ±k′. It is written

bB = (nin j)−1
∑

k,±k′
P3D(k)P3D(k′)

∫
eiω(ξ+ξ′)·(θi−θ j)Cθi ,ri (kx, ξ)

Cθi ,ri (k
′
x, ξ
′)C∗θ j ,r j

(kx, ξ)C∗θ j ,r j
(k′x, ξ

′)

= (nin j)−1

∑
k,l

P3D(k)P3D(l)Jsi (k, l)J∗s j
(k, l)

−
∑

k

P3D(k)2 Jsi (k, k)J∗s j
(k, k) −

∑
k

P3D(k)2Isi (k)Is j (k)

 .

This involves the function

Js(k, l) =

∫
θ,|r|=s

eiω(ξ+χ)·θCθ,r(k)Cθ,r(l)dθdr.

By developing the expression of Cθ,r and using Parseval’s theo-
rem, we find

Js(k, l) = 4π
(
ω

2π

)2 ∫
ρ̃(kx, ξ + κ)ρ̃(lx,χ − κ) (1 − J0(ωκs)) dκ.

(F.2)

Computation of bD: It corresponds to k = −k′ = l = −l′. It is
written

bD = (nin j)−1
∑

k

〈∣∣∣∣Vk

∣∣∣∣4〉 Isi (k)Is j (k).

Computation of bF : It corresponds to k = k′ = −l = −l′. It is
written

bF = (nin j)−1
∑

k

〈∣∣∣∣Vk

∣∣∣∣4〉 Jsi (k, k)J∗s j
(k, k).

Reassembling all terms together, we obtain the covariance
term defined by

Σi j =
〈
SF(si)SF(s j)

〉
−

〈
SF(si)

〉 〈
SF(s j)

〉
,

and which is written

Σi j =
1

(2πSA)2

2 ∑
k,l

P3D(k)P3D(l)Jsi (k, l)J∗s j
(k, l)

−
∑

k

Rk ×
{
2Isi (k)Is j (k) + Jsi (k, k)J∗s j

(k, k)
} .
(F.3)

The expressions for I and J are given by Eqs. (D.2) and (F.2),
respectively. Notably, the second term within brackets vanishes
for Rayleigh-distributed coefficients. In principle, finite-sized
corrections must also apply, like for the expected value of the
structure function. We do not provide such corrections here and
keep in mind that our variance estimate neglects border effects.

F.2. Case of an emissivity independent of the line of sight

The expression above can be further simplified if the emissiv-
ity is independent of the line-of-sight direction. Introducing Â,
the Fourier transform of the analysis region and PA = |Â|2, its
power spectrum, we obtain ρ̃(kx, ξ) = ε̃(kx)Â(ξ)/F. We define
the following functions, whose principal interest resides in the
fact that they only depend on the definition of the analysis region
and can be precomputed numerically for any given instrumental
field of view:

UA(ξ,χ; s) = K
∫
Â(ξ + κ)Â(χ − κ) (1 − J0(ωκs)) dκ

TA(ξ; s) = UA(ξ,−ξ; s) = K
∫

PA(κ) (1 − J0(ω|ξ + κ|s)) dκ.
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Fig. G.1. Numerical calculations of Hp;n(u, v) for various values of p and n = 3/2. Logarithmically-spaced contours (identical in all panels,
dashed lines for negative values) indicate the value of the function. This function is involved in the calculation of the Fourier transform of the
normalised emissivity of a spherical β-model (n = 3β − 1/2) analysed over a concentric circular aperture of radius p times the core radius. The
strong oscillatory behaviour is particularly noticeable in the last panel.

The normalisation constant is K = (ω/2π)2/SA throughout this
paper.

Using these functions, the variance is then written

Σi j = 8
(
ω

2π

)4 ∑
ξ,χ

P∞2D(ξ)P∞2D(χ)UA(ξ,χ; si)U∗A(ξ,χ; s j)

− 4
(
ω

2π

)4 ∑
ξ

Q∞2D(ξ)2
{
2TA(ξ; si)TA(ξ; s j)

+UA(ξ, ξ; si)U∗A(ξ, ξ; s j)
}
. (F.4)

where we introduce P∞2D the 2D power spectrum of the centroid
map over an infinitely extended domain (Appendix C) and

Q∞2D(ξ)2 =

(
2π
ω

)4 ∑
kx

Pε(kx)2

F4 Rkx,ξ.

If the moduli are Rayleigh-distributed, it is evident that Q2D = 0
and the expression for the variance (Eq. (F.4)) depends only on
the 2D power spectrum of the velocity. As already noted, the
terms encapsulating the field-of-view geometry (UA,TA) are
factored out from the emissivity and turbulence part (P2D,Q2D).

Further simplification can be made when the analysis re-
gion is extremely wide compared to the separations s and to
the largest fluctuation scale of the velocity map (still assuming
a constant emissivity on sky). The limit A → ∞ then applies
and Â becomes a strongly peaked function around 0. The above
functions are rewritten as

UA(ξ,χ; s) ' K (1 − J0(ωξs))
∫
Â(ξ + κ)Â(χ − κ)dκ

= K (1 − J0(ωξs))
{
(Â ∗ Â)(ξ + χ)

}
.

The sign ∗ indicates the convolution product. SinceA2 = A,
we obtain

UA(ξ,χ; s) ' K (1 − J0(ωξs))
(

2π
ω

)2

Â(ξ + χ).

This automatically shows that TA(ξ; s) = 1 − J0(ωξs) and
UA(ξ, ξ; s) = 0. Moreover,

∑
χ

P∞2D(χ)UA(ξ,χ; si)U∗A(ξ,χ; s j)

'

(
2π
ω

)4

K2 (1 − J0(ωξsi))
(
1 − J0(ωξs j)

)∑
χ

PA(χ + ξ)P∞2D(χ)

=

(
2π
ω

)2

S−1
A P∞2D(ξ) (1 − J0(ωξsi))

(
1 − J0(ωξs j)

)
.

Grouping terms together in Eq. (F.4) leads to Eq. (13).

Appendix G: Fourier transform of the normalised
emissivity field ρ (spherical β-model)

We provide useful calculations for the 3D power spectrum of the
normalised emissivity ρ in a case of a β-model. We also discuss
the limiting case of very extended sources (equivalently, very
small fields of view).

G.1. General case

Calculation of the two-dimensional power spectrum involves the
calculation of Pρ = | ρ̃ |2 with ρ(x, θ) = ε(x, θ)/F(θ). As noted
above (Appendix C), it is compulsory to fill ρ with zeros outside
of its domain of definition or outside of the analysis domain.
We consider here an arbitrarily large circular analysis domain
A (of radius R, centred on the source) to perform the following
calculations.

Using the expression for F(θ) derived in a previous section
(Eq. (B.1)), we obtain

ρ(x, θ) =
1

rcuβ

(
1 +

θ2

r2
c

)3β−1/2 (
1 +

x2 + θ2

r2
c

)−3β

·

The Fourier transform ρ̃(kx, ξ) is calculated in two steps. The
integration over the x axis is performed first and its result is al-
ready displayed in Eq. (B.2). Integration over the second axis
runs for all θ ∈ A and we find

ρ̃(kx, ξ) =
25/2−3βπr2

c

Γ(3β − 1/2)
×H(R/rc);(3β−1/2) (ω|kx|rc, ωξrc) ,

which uses the special integral defined below and represented in
Fig. G.1 for n = 3/2 (β = 2/3):

Hp;n(u, v) =

∫ p

0
tJ0(vt)Fn

(
u
√

1 + t2
)

dt,

recalling that Fn(x) = xnKn(x).
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G.2. Limit for small analysis domains (R � rc)

If R/rc is small, those terms in
√

1 + t2 ' 1 are approximatively
constant under the integral and

Pρ(kx, ξ) '
23−6β

Γ(3β − 1/2)2

[
F3β−1/2 (ω|kx|rc)

]2
×

[
2πR2 J1(ωξR)

ωξR

]2

·

The right-most factor involving the order 1 Bessel func-
tion J1 is the power spectrum of a circular pupil of radius R.
Its integral over ξ equals πR2(2π/ω)2 and rapidly falls to zero
for ω|ξ| & 3.83R−1. This result can easily be generalised to
an analysis domain of arbitrary shape, introducing its power
spectrum PA,

Pρ(kx, ξ) '
Pε(kx; θ = 0)

F(0)2 × PA(ξ), (G.1)

and we naturally recover the limiting case discussed several
times in this paper where the emissivity ε(x, θ) = ε(x) does
not depend on the line of sight θ over the analysis domain. Fi-
nally, R(�rc) can still be very large and therefore PA(ξ) →(

2π
ω

)2
SAδ(ξ): the component of Pρ in the ξ plane can then be

seen as a sharp low-pass filter; this corresponds to the case dis-
cussed in previous works (e.g. ZuHone et al. 2016).

Appendix H: Numerical validation results,
continued

We show here the equivalent of Figs. 5, 6, 9, and 10 for the
two other sets of 100 simulations (Table 1). All parameters
remain the same apart from the injection scales, respectively
Linj = 200 kpc (Figs. H.1–H.4) and Linj = 300 kpc (Figs. H.5–
H.8). These comparisons still demonstrate a good match be-
tween the simulations and analytic results.
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Fig. H.1. As Fig. 5 for the simulation with injection scale 200 kpc.
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Fig. H.2. As Fig. 6 for the simulation with injection scale 200 kpc.

Fig. H.3. As Fig. 9 for the simulation with injection scale 200 kpc.
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Fig. H.4. As Fig. 10 for the simulation with injection scale 200 kpc.
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Fig. H.5. As Fig. 5 for the simulation with injection scale 300 kpc.
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Fig. H.6. As Fig. 6 for the simulation with injection scale 300 kpc.

Fig. H.7. As Fig. 9 for the simulation with injection scale 300 kpc.
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Fig. H.8. As Fig. 10 for the simulation with injection scale 300 kpc.
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