
HAL Id: hal-02129729
https://hal.science/hal-02129729v1

Submitted on 15 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Self-reconfiguration using a Deterministic
Autonomous Scaffolding Structure

Pierre Thalamy, Benoit Piranda, Julien Bourgeois

To cite this version:
Pierre Thalamy, Benoit Piranda, Julien Bourgeois. Distributed Self-reconfiguration using a Deter-
ministic Autonomous Scaffolding Structure. [Research Report] 2843, UBFC. 2019. �hal-02129729�

https://hal.science/hal-02129729v1
https://hal.archives-ouvertes.fr

INSTITUT FEMTO-ST

UMR CNRS 6174

Distributed Self-Reconfiguration using a Deterministic
Autonomous Scaffolding Structure

Version 1

Pierre Thalamy — Benoı̂t Piranda — Julien Bourgeois

Rapport de Recherche no RR–FEMTO-ST–2843

DÉPARTEMENT DISC – February 26, 2019

Distributed Self-Reconfiguration using a Deterministic Autonomous
Scaffolding Structure

Version 1

Pierre Thalamy , Benoı̂t Piranda , Julien Bourgeois

Département DISC

OMNI

Rapport de Recherche no RR –FEMTO-ST–2843 February 26, 2019 (17 pages)

Résumé : In the context of large distributed modular robots, self-reconfiguration is the process of
having modules, seen as autonomous agents, acting together and moving to transform the morphology
of their physical arrangement to produce a desired shape. However, due to motion constraints, the
number of modules that can move concurrently is greatly limited, thus making self-reconfiguration a
very slow process.
In this paper, we propose an approach for accelerating self-reconfi–guration to build a porous version
of the desired shape, using scaffolding. We expand this idea and propose a method for constructing
a parametric scaffolding model that increases the parallelism of the reconfiguration, supports its
mechanical stability, and simplifies planning and coordination between agents. Each agent has a set
of basic rules using only four states which guarantees that module movements and the construction
of the scaffold are deterministic.
Coupled with an underneath reserve of modules that allows the introduction of rotating quasi-spherical
modules at various ground locations of the growing porous structure, our method is able to build
the scaffolding structure in O(N

2
3) time with N the number of modules composing the structure.

Furthermore, we provide simulation results showing that our method uses O(N
4
3) messages with no

congestion.

Mots-clés : Self-Reconfiguration, Robots Autonomes, Algorithmique Distribuée

FEMTO-ST Institute, DISC research department
UFR Sciences - Route de Gray - F-25030 BESANÇON cedex FRANCE
Tel: (33 3) 81 66 65 15 – Fax: (33 3) 81 66 64 50 – e-mail: dmenetri@femto-st.fr

Distributed Self-Reconfiguration using a Deterministic Autonomous
Scaffolding Structure

Version 1

Abstract: In the context of large distributed modular robots, self-reconfiguration is the process of
having modules, seen as autonomous agents, acting together and moving to transform the morphology
of their physical arrangement to produce a desired shape. However, due to motion constraints, the
number of modules that can move concurrently is greatly limited, thus making self-reconfiguration a
very slow process.
In this paper, we propose an approach for accelerating self-reconfi–guration to build a porous version
of the desired shape, using scaffolding. We expand this idea and propose a method for constructing
a parametric scaffolding model that increases the parallelism of the reconfiguration, supports its me-
chanical stability, and simplifies planning and coordination between agents. Each agent has a set of
basic rules using only four states which guarantees that module movements and the construction of
the scaffold are deterministic.
Coupled with an underneath reserve of modules that allows the introduction of rotating quasi-spherical
modules at various ground locations of the growing porous structure, our method is able to build the
scaffolding structure in O(N

2
3) time with N the number of modules composing the structure. Fur-

thermore, we provide simulation results showing that our method uses O(N
4
3) messages with no

congestion.

Key-words: Self-Reconfiguration; Autonomous Robots; Distributed Algorithm

FEMTO-ST Institute, DISC research department
UFR Sciences - Route de Gray - F-25030 BESANÇON cedex FRANCE
Tel: (33 3) 81 66 65 15 – Fax: (33 3) 81 66 64 50 – e-mail: dmenetri@femto-st.fr

Deterministic Scaffolding Self-Reconfiguration 1

Distributed Self-Reconfiguration using a Deterministic

Autonomous Scaffolding Structure

Pierre Thalamy, Benôıt Piranda, Julien Bourgeois

February 26, 2019

1 Introduction

Programmable Matter (PM) [11] is defined as matter that can auto-nomously alter its phys-
ical properties such as its shape or color, as a response to an internal or an external event.
While many technologies on the rise claim to be PM, we believe PM based on Modular Self-
reconfigurable Robots (MSR) [9] to be the most promising endeavor, owing to the versatility of
the systems [4].

MSR are robots composed of an arbitrary number of individual modules, which can be
seen as autonomous agents, that can physically attach to each other and coordinate through
communication to achieve a common goal. Though various types of modular robot architec-
ture exist [2], we are interested in lattice-based modular robots, where connected modules are
organized in a regular lattice structure, on which modules navigate using their neighbors.

Self-reconfiguration is a notoriously intricate problem [14, 12] which can be stated as finding
a series of individual motions (preferably performed in parallel) that can transform an initial
arrangement of modular robotic modules (also named configuration or shape) into a goal one.
It is a fundamental algorithm for large modular robots and PM that encompasses a number of
non-trivial sub-problems, such as defining the goal shape [26, 25, 21, 3], computing a feasible
construction plan [27, 6], or coordinating the motion of modules along multiple paths in parallel
while avoiding collisions [7, 19]. Solutions have been proposed from various research perspectives
such as control theory, computational geometry, multi-agent systems, and biomimetics [1].

Self-reconfiguration can be viewed both as a destruction [10, 6] and a construction process;
while we mainly tackle the latter problem in this article, the algorithm proposed in this article
could easily be reversed to perform a clean destruction.

Self-reconfiguration is a notably slow process that is very demanding in term of resources.
Therefore, in this article, we would like to propose a method for building 3D objects that is
both fast and efficient in term of communication and computation. Furthermore, we would like
to offer more guarantees on the respect of mechanical constraints throughout the construction.

In order to attain these objectives, we start by redefining the notion of a shape as its Bound-
ary Representation, an external surface with a mechanically sound internal organization. This
is then transposed into the context of self-reconfiguration as the construction of a scaffolding
structure representing the object that satisfies mechanical constraints and provides a structure
for supporting a massive number of module movements. We, hence, introduce an algorithm for
deterministically constructing this structure based on simple local rules and only 4 agent states.

Such a deterministic approach naturally poses fault-tolerance issues, which will be the topic
of future works.

In this article, we obtain the following results. By using scaffolding and coating instead of
a filled object, a pyramid requires b3

3 times less modules with b the tile branches length. Our

RR -FEMTO-ST-2843

2 P. Thalamy, B. Piranda, J. Bourgeois

method is able to build the scaffolding structure of a coated pyramid in O(N
2
3) time with N the

number of modules composing the structure whereas the filled pyramid requires O(N
4
3) time,

that is N
2
3 times more. Furthermore, we demonstrate that our method uses O(N

4
3) messages

with no congestion as the modules having the highest throughput manage 4 messages/time step
and we provide simulation results that confirm this complexity for several scenarios.

2 Context

We mainly perceive objects by their optical and mechanical characteristics. From an optical
standpoint, an object can be represented by its external surface, which reflects the light that is
provided by an external source. In order to visually materialize an object, it is sufficient to coat
the boundary between the interior and the exterior of the object with light-scattering matter
(in image synthesis, this is called the Boundary Representation (BRep) [8]) model of an object).
(See Figure 3.c)

From a mechanical standpoint, however, an object must, thanks to its internal structure,
be able to withstand external forces such as gravity or contact forces. An internal structure is
therefore practical for the mechanical coherence of an object (Figure 3.b).

In the context of the self-reconfiguration of an arbitrary shape A into a goal shape B, every
module has to navigate a path from its initial position in configuration A to its final position
in configuration B. If we consider a filled object then all the possible paths are placed on the
external surface of the object, which lowers the number of possible simultaneous movements.

Indeed, moving through the volume of an object multiplies the number of potential paths
that can be followed by modules in parallel. This can be guided by a skeletal structure forming
a scaffold on the interior of the object, where all these paths can be followed simultaneously by
moving modules.

In order to preserve the external aspect of the object, it is then necessary to cover, or coat,
the scaffolding structure, which can be done by navigating the many paths provided by the
scaffold in parallel.

In this paper, we focus on a solution for the construction of this scaffolding structure.
To do so, we have made the following assumptions:

1. The object we aim to build resides in a regular Face-Centered Cubic (FCC) lattice which
ensures a high density of modules and therefore a compelling visual representation of the
shape as it will be more difficult for light to traverse its boundary.

2. Underneath the object lies a sandbox-like environment, acting as a reserve of modules,
and from which modules can be moved at various ground locations of a regular square
grid (Figure 3.a).

3. This sandbox also brings the energy and the initial communication that provides the
description of the goal shape.

3 Related Works

One particularly tricky aspect of self-reconfiguration stated earlier is the coordination of motions
between concurrently moving modules so that they avoid blocking the motion of each other or
attempting to simultaneously move into the same space. Some authors such as Naz et al. [19]
proposed to leave a gap between moving modules through communication-based coordination
in order to limit the risk of collisions. While this is powerful and practical for the rotating
motion of 2D space modules, it cannot be applied efficiently to 3D space as is.

FEMTO-ST Institute

Deterministic Scaffolding Self-Reconfiguration 3

Furthermore, most existing solutions to the self-reconfiguration problem in large modular
robots consider simple module geometries (such as different flavors of cubes [15, 28, 31, 5, 17]),
and actuators capable of performing both translation and rotation motions. Yet, the self-
reconfiguration of modules with more complex geometries [29, 30] has proven itself much harder,
especially when only the latter form of motion is possible [18], as modules are more likely to
prevent the motion of another due to blocking constraints, especially when they have rigid
non-deformable bodies.

The most relevant reconfiguration work to our module geometry is the one of Yim et al.
[29], where the authors proposed a probabilistic self-reconfiguration algorithm for reconfiguring
rhombic dodecahedron modules residing in a FCC lattice, and that can only move using rotation.
They proposed a method named Goal-Ordering, in which modules use one or two metrics to
decide which target location in the goal configuration they should go fill. Their method however,
suffers from overcrowding around the open goal positions, and is likely to get stuck in local
minima and avoid converging altogether, especially in solid and hollow shapes.

In order to ease the motion constraints of self-reconfiguration and increase motion paral-
lelism, Kotay and Rus [16] proposed to engineer the interior of the target shape by discretizing
it into repeating hollow multi-module sub-structures named tiles, that would leave large tunnels
for modules to navigate the structure in parallel, at the cost of a large increase in the granularity
of the shape. This approach is referred to as Scaffolding. In this work, we are also interested
in scaffolding as a way to increase the parallelism potential of the reconfiguration, as well as to
ease coordination between moving modules and avoid blocking issues due to overcrowding.

More recent works have also considered a similar approach to lowering the complexity of
reconfiguration for cubic modules capable of both rotation and translation. Støy approximated
the target shape with a porous representation made by removing individual modules from its
volume in a manner that would guarantee an absence of local minima, and hollow or solid
sub-configurations. He, then, proposed to use local rules and cellular automata to perform the
reconfiguration in [24], or through a gradient descent method in [25].

Furthermore, an aspect of self-reconfiguration that should be further considered is the me-
chanical constraints imposed on the system. Two main types of mechanical failures are identified
in [13]: (1) loss of stability due to a shift in the center of mass of the system; (2) structural
failure, caused by the breaking of a bond between modules after an excessive stress. While
Ho lobut and Lengiewicz also present a distributed procedure for predicting if the next recon-
figuration step will cause a structural failure in their paper, to the best of our knowledge,
no self-reconfiguration algorithm truly considers mechanical constraints in their design—when
these same constraints might prevent them from working in practice. With our novel approach
to scaffolding, we aim to make progress towards achieving mechanically sound reconfigurations
by structural design, hence without having to resort to such software methods that involve a
costly performance overhead.

4 Modular Robotic Model

In this work, we consider a modular robot made from an arbitrary number of quasi-spherical
modules named 3D Catoms, that move by rotating on the surface of neighbors, and connect to
up to 12 neighbor modules, one on each of their connectors (see Figure 1). We strongly advise
readers to browse through [23] for a better sense of the geometry and motion mechanisms of
3D Catoms. Our project is a follow-up of the Claytronics project [11] and Catom stands for
Claytronics atoms. 3D Catoms reside in a 3-dimensional grid described as a Face-Centered-
Cubic Lattice (FCC), with coordinates in Z3. 3D Catoms are symmetrical and therefore their

RR -FEMTO-ST-2843

4 P. Thalamy, B. Piranda, J. Bourgeois

orientation does not matter. Positions on the grid are referred throughout the paper as lattice
cells, or simply as positions.

A 3D Catom M is able to move from one cell to a free neighbor position by rotating on
the surface of another 3D Catom P acting as a pivot. This corresponds to a change of latching
connectors on the surface of P ; a rotation can therefore be described as a couple 〈Ci, Cj〉P , where
Ci and Cj refer to connectors with identifier i, j ∈ [0, 11]. These connectors are also used by
3D Catoms to communicate with their immediate neighbors, the only mode of communication
available to them. Furthermore, a rotation 〈Ci, Cj〉P can be performed through one of two
paths on the surface of P , either by rotation on an hexagonal face, or through an octagonal face
(Rh and Ro on Figure 1, respectively). We provide a YouTube video illustrating this mode of
motion (see footnote1).

A 3D Catom is said to be mobile if it can reach at least one of its neighbor cells according
to its motion constraints. The set of all motion constraints imposed on a module M that seeks
to move to a neighbor position N is identical to the one introduced by Yim et al. in Proteo [29].

Due to the geometry of the modules and the resulting blocking constraints, it is not possible
to bridge the gap between two lines of modules growing towards each other, therefore the
construction of a shape that has all its elements connected on each layer needs to be grown from
a single initial point, and with a carefully designed set of construction rules, likely resulting in
a diagonal growth of the volume of the object.

Figure 1: Two possible paths that can be used to perform motion 〈C0, C2〉P on the surface of
a module P .

5 Scaffolding

Our scaffold model is defined as an arrangement of canonical components sharing a common
structure named tiles.

5.1 Anatomy of a Scaffold Tile

A tile is composed of a core made of a root module surrounded by 4 support modules (placed
to help others to vertically traverse the structure), and a number of branches connecting it to
other tiles. The length of these branches b is a parameter of our model, it is determined by
the mechanical capabilities of the structure, in relation to the connector strength of the 3D
Catom hardware. However, b has to be greater than 4 as the space would be too tight for
module motion otherwise.
We can express the number of modules that compose a tile using the relation Ntile modules =

1Youtube video illustrating 3D Catom motions https://youtu.be/IZh-5p1dbKk

FEMTO-ST Institute

https://youtu.be/IZh-5p1dbKk

Deterministic Scaffolding Self-Reconfiguration 5

6(b − 1) + 5. In the remaining figures, we will use b = 6, which yields Ntile modules = 35. This
number can be compared to the fully filled bounding box of the tile that would use b3 modules
(216 with b = 6).

Each tile is an arrangement of modules that follows the axes of the FCC grid. As shown in
Figure 2.b, the center node R (also referred to as Tile Root, drawn in white) is connected to:

• a branch made of modules {Xi|i ∈ [1..b− 1]} (in orange) following the −→x axis;

• a branch {Yi|i ∈ [1..b− 1]} (drawn in green in Figure 2.c) following the −→y axis;

• four branches {Zi|i ∈ [1..b− 1]}, {RightZi|i ∈ [1..b− 1]},
{RevZi|i ∈ [1..b− 1]}, {LeftZi|i ∈ [1..b− 1]} (in blue in Figure 2.e) following axes −→z ,
(1,−1, 1), (−1,−1, 1) and (−1, 1, 1), respectively.

Finally, the tile is also composed of four support modules named SZ, SRightZ, SRevZ and
SLeftZ at respective positions (1, 1, 0), (1,−1, 0), (−1,−1, 0) and (−1, 1, 0) relative to R (in
yellow on Figure 2.b).

Figure 2: 3D structure of a tile with b = 6. a) Existing structure made from previous tile.
Transparent cells represent entry points into the tile; b) White module represents the root R of
the new tile, origin of the local coordinates system; c,d,e) 3D position of branch and support
modules of the tile; f) Assembly of multiple tiles to construct a scaffold.

We also define eight special empty positions below the tile, placed near the tip of incoming
vertical branches named Entry Point Locations (EPL), and shown as transparent cells on Fig-
ure 2.a. EPL are the positions that allow modules to enter a growing tile from the lower levels.
When a module enters one of these positions (as a FreeAgent), it stops and either requests
a goal destination into this tile from the Coordinator of this tile (i.e., Tile Root), or in some
cases waits for some condition to clear before moving to its destination. There are two types of
entry points, appearing in purple and blue on Figure 2.a: the blue EPL are temporary and will
become unreachable as branches X and Y start growing, they are used for introducing future
Support modules into the tile; purple EPL are the main entry points that are used for the rest
of the life cycle of the tile, but can only be used once support modules are in place.

RR -FEMTO-ST-2843

6 P. Thalamy, B. Piranda, J. Bourgeois

Our scaffolding is then made of regularly placed instances of partial or complete tiles that
can be connected to up to 6 neighbor tiles through modules Xb−1, Yb−1, Zb−1, RightZb−1,
RevZb−1 and LeftZb−1 as shown in Figure 2.f. Partial tiles are tiles whose number of branches
is lower than 6, as found on the borders of the object.

5.2 Hierarchical Organization

We define an h-pyramid as a pyramid with a height of h tiles (that is to say b(h−1)+1 modules
from the base to the tip). For instance, in the example of the 4-pyramid shown on Figure 2,
the scaffold results from the assembly of 30 scaffold tiles.

Let us consider a h-pyramid shape composed of Ntiles scaffold tiles assembled together in
the FCC lattice. This shape is made of 5 modules at the tip of the pyramid (constituting the
top tile at height h), 4 tiles under these modules at height h− 1, and again 4 overlapping tiles
under each of these tiles and so on until reaching the base level at height 1).

This h-pyramid is composed of tiles whose origins Ri,j,k are placed at:

Ri,j,k(b× i, b× j, b× k) with

0 ≤ i ≤ h− k
0 ≤ j ≤ h− k
0 ≤ k ≤ h

In our example shown on Figure 3, for a 4-pyramid with b = 6, the number of modules
comprising the scaffold is 630 and the coating uses 760 additional modules.

Ntiles =

h∑
i=1

i2 =
h3

3
+

h2

2
+

h

6
(1)

Then, we can express the number of modules used to construct the scaffold of the h-pyramid
(including support modules drawn in yellow in Figure 3.b). First, consider Ni the number of
modules from tiles at level i of the pyramid, as they appear on Figure 3.b. We sum i segments
along the hich axis composed of one white module plus (i− 1) groups of 1 white and b− 1 red
modules; (i− 1) segments along the −→y axis made of (b− 1 green modules); 4(i− 1)2 ascending
branches of (b− 1) blue modules; and 4i2 support modules in yellow.

Ni = i ((i− 1)b + 1 + (i− 1)(b− 1)) + 4(b− 1)(i− 1)2 + 4i2 (2)

Nmodules =

h∑
i=1

Ni = (2b− 1

3
)h3 + (

9

2
− 2b)h2 +

5

6
h (3)

And the number of modules comprising the coating of the pyramid (h ≥ 2) as:

Ncoating = 4

(h−1)b+1∑
i=1

i = 2
(
b2h2 + (3b− 2b2)h− 3b + 2

)
(4)

Note that from h = 6 and on, more modules are required for building the structure than for
building the coating of the pyramid.

Since that due to the geometrical constraint of 3D Catoms, we need to enforce a strict con-
struction order of the tiles of the pyramid (bottom to top, left to right, front to back), we can

FEMTO-ST Institute

Deterministic Scaffolding Self-Reconfiguration 7

Figure 3: Construction of a 3D model using scaffolding (b = 6). a) Support structure; b)
Scaffold of the 4-pyramid; c) Coated 4-pyramid, after removal of support modules.

construct a graph connecting these tiles, and a spanning tree within that graph expressing the
precedence of the tiles in term of their construction order.

The scaffold formation problem fits into our idea of a larger and more comprehensive self-
reconfiguration scheme, introduced in the next section.

5.3 Self-Reconfiguration Scheme

In the context of the self-reconfiguration into an arbitrary goal shape G from an empty sandbox,
our approach consists in a sequence of several phases:

1. Scaffold construction: If the desired shape is not convex by itself or when connected
to the sandbox, we build a scaffold encompassing a tile approximation of the convex hull
of the union of the object and the base of the sandbox (e.g, in Figure 4.a, the native white
scaffolding of the sphere is complemented by a red scaffolding, filling the gap between the
object and the base), and fill holes in the shapes. Under a carefully designed construction
plan, this supports the mechanical stability of intermediate configurations.

2. Removing excess modules: Non-essential modules are removed from the shape, and
stored onto the scaffold, ready to be used as coating later on.

3. Coating: Construction of the surface of the shape, using excess modules and additional
modules called in from the sandbox (see Figure 4.b).

5.4 Construction Agent Roles

Each tile is composed of {6i + 5|i ∈ [0..b− 1]} modules (see Figure 2) that must be inserted
in a specific order so as to avoid deadlocks. When docked as a tile component, some of these
modules endorse active roles, while others are simply passive structural components.

We consider that during its life, a module can be in four different states. For each of these
state it runs a corresponding agent code:

1. Idle modules are sandbox modules which are waiting to be called in to partake in the
reconfiguration by modules from the growing structure.

2. Free Agent modules are Idle modules that have been called in and entered the recon-
figuration scene, waiting to be assigned a goal position or in motion to their assigned
position.

RR -FEMTO-ST-2843

8 P. Thalamy, B. Piranda, J. Bourgeois

3. Coordinators are modules docked in the root position of a tile, and which are responsible
for scheduling the construction of their tile. More specifically, the role of the Coordinator
is to ensure that modules arrive at specific branches in an order compatible with the
construction order of the components of the tile, and inform incoming modules on where
they are needed.

4. Relay modules are docked robots whose only role is to forward messages between FreeAgents
transiting through its tile and the local Coordinator. This role can be endorsed by supports
or vertical branch tip modules.

5.5 Tile Construction Process

The tile construction process is performed by modules arriving at the various EPL of the vertical
incident branches of parent tiles (i.e., FreeAgent modules), and coordinated by the root module
of the tile (i.e., Coordinator module).

The construction is started by the arrival of the coordinator into the tile root position,
which can only happen once the branches incident to its tile are complete. While waiting for
this condition to clear, the future coordinator awaits on one of the entry points of the RevZ
branch. If there are no incoming branches whose completion to wait for, as on some corner
cases, it can directly proceed to its position; otherwise, it keeps waiting for the tip module of
the last incoming branch to notify it that the tile is ready to start growing.

When the coordinator gets into position, it immediately sends down all the vertical branches
below it a message expressing the requirements of the construction of its tile: an 8-bit word
indicating which branches it has to build, and whether or not it will need to provide a tile
root through its RevZ branch. This message is routed all the way down to the four ground
coordinators located under the current tile, where ground coordinators can then summon Idle
modules from the sandbox according to the requirements and send them up towards the growing
root. It is assumed that the four ground coordinators are able to share a common notion of
time, that allows them to temporally coordinate their feeding of modules to the system.

When a previously Idle module is called in for construction, it endorses the FreeAgent (FA)
role, behaving as specified by Algorithm 1, getting routed from tile to tile by local coordinators
and locally navigating each tile from an entry point to a destination using a set of local rules
common to all modules. Every time a FA module enters a new tile, it updates its coordinate
system to use positions relative to the local coordinator, set as its origin. If the module is just

Figure 4: Complete self-reconfiguration scheme example for the construction of a more complex
shape, a sphere. a) Extended scaffold; b) Coating of the white part of the scaffold.

FEMTO-ST Institute

Deterministic Scaffolding Self-Reconfiguration 9

Algorithm 1: Distributed control algorithm for the FreeAgent module role.

Function reachedNewTileEntryPoint():
coordinatorPos = getNearestTileRoot(getPosition());
relayModule = findSupportOrBranchTipNeighbor();
sendMessage(relayModule, REQUEST GOAL POSITION);

Function planNextRotation():
nbh = getNeighborhood();
nextPosition = matchLocalRules(nbh, goalPosition, step);
rotateTo(nextPosition);

Event Handler ROTATION END:
if getPosition() == goalPosition then

if isScaffoldComponent(getPosition()) then
agentRole = agentRoleForComponent(getPosition());

else
reachedNewTileEntryPoint();
return;

else
step++;
planNextRotation();

Message Handler PROVIDE GOAL POSITION(rcvdPosition):
step = 0;
goalPosition = rcvdPosition;
planNextRotation();

transiting through the tile, the position returned by the coordinator will be an EPL, otherwise
it will be one of the 6b+4 non-root tile components. The local rules can be seen as a dictionary
whose key is the tuple 〈N,PGoal, Step〉, and Pdisp is the value. N is a 12-bit representation of the
local neighborhood of the module; PGoal is the goal position of the module in the tile (relative
to the position of the coordinator); Step is there to avoid rule-matching collision between rules
and denotes how many motions the module has already performed in the tile; Pdisp is the
displacement corresponding to the rotation that the module has to perform.

Once a FA module has reached its position as a component of the tile, it updates its state
based on its new position, and when relevant, notifies waiting modules that they can resume
their motion.

5.6 Messaging

There are four kinds of messages being exchanged in a distributed manner during the reconfig-
uration process detailed in the last section:

1. REQUEST GOAL POSITION: Sent through Relay modules to the local Coordinator
by a FreeAgent module arriving at a tile entry point location, to request a destination
within this tile.

2. PROVIDE GOAL POSITION: Response to a goal request by a Coordinator to a
FreeAgent. Follows the same path as the request. Contains a grid position to be used as
goal by the receiver.

RR -FEMTO-ST-2843

10 P. Thalamy, B. Piranda, J. Bourgeois

3. TILE INSERTION READY: Sent by the last arrived horizontal branch tip module
to the FreeAgent and future tile root waiting at one of RevZ EPL of the neighbor tile.

4. INITIATE FEEDING: Sent by a freshly arrived Coordinator down all of its incident
vertical branches to express its resource requirements to 4 lower-level Coordinators con-
nected to the sandbox—i.e., how many modules it needs for building its tile.

6 Analysis

6.1 Algorithmic Complexity

In this section we study the time and message complexities of the reconfiguration method in
the case of the pyramid. Results can then be generalized to more complex shapes in subsequent
works.

Let’s consider throughout this section the construction tree of the pyramid, whose vertices
are the tiles of the pyramid, and whose edges denote the precedence in the construction order of
these tiles. The root of the tree is the tile at position (0, 0, 0). An edge between a father and a
child vertex means that the start of the construction of the child is triggered by the completion
of the father. We determine for each of the edges, the time elapsed between the construction of
the father and the one of the child. For instance, within a tile, the X branch is the first branch
to be built, and its completion will allow the child tile at position (b, 0, 0) relative to tile X to
get its construction process under way.

We assume that the duration of the construction of a tile only depends on the number of
modules forming it, it is therefore built in constant time. By studying displacement rules, we
can deduce that the sum of the waiting time and the motion time necessary for a R module to
reach its position depends on its height i in the construction tree, which can be expressed as:

Ttile(i) = [24 + 6b + 2b(i− 1)]× ts = [24 + 4b + 2b× i]× ts (5)

where ts is the duration of an unitary 3D Catom motion, constituting a time step.

Theorem 1. In the case of the h-pyramid, the height of construction tree is 3(h− 1).

Proof. Given that the construction of the tile at (0, 0, i+ b) requires the construction of 4 lower
tiles: (0, 0, i), (b, 0, i), (0, b, i) and (b, b, i), the height of the higher vertex in the tree is equal to
the height of the lower vertex + 3, therefore height(0, 0, h) = 3(h− 1).

Considering that the depth of two vertices placed in the same plane is 2(h − 1) in the
construction tree, which is indeed lower than 3(h − 1), we can deduce that the previous path
(0, 0, i) to (0, 0, i + b) is a critical path.

Theorem 2. The reconfiguration time of the reconfiguration of the h-pyramid is O(N
2
3).

Proof. Using Equation 5, we can express the time required to construct the hth level of the
h− pyramid in number of motion times as:

T =

h∑
i=1

24 + 4b + 2b× i = 24h + b(5h + h2) (6)

We conclude that the reconfiguration time is O(h2) time steps. Using Equation 3, and
considering that the parameter b is a positive constant, we can assume that there exist two
positive real numbers {p, q} ∈ R2 verifying: p× h3 < N < q × h3.

FEMTO-ST Institute

Deterministic Scaffolding Self-Reconfiguration 11

Then, we deduce bounds for h: (
N

q

) 1
3

< h <

(
N

p

) 1
3

Combining with previous Equation 6, we deduce bounds for the motion time T :

6

(
N

q

) 2
3

+ 54

(
N

p

) 1
3

< T < 6

(
N

p

) 2
3

+ 54

(
N

p

) 1
3

We conclude that the reconfiguration time is O(N
2
3).

Theorem 3. The complexity of the number of messages Nmessages sent to schedule the con-

struction of a N modules pyramid is O(N
4
3
modules).

Proof. Each module sends 4 kinds of messages during a reconfiguration: Nmessages = NRGP +
NPGP +NTIR +NIF . Where RGP , PGP , TIR and IF messages denote the messages detailed
in Section 5.6. At worst case NTIR = c ×

∑h
i=1 i

2 = Ntiles, c is a small constant. The number
m of IF messages sent by a module depends on the level i of its docking tile: m = 4b× (h− 1).
Then,

NIF =
h∑

i=1

i2 (4b× (h− i)) =
4b

12
(h− 1)h2(h + 1)

Similarly, messages RGP and PGP are sent k = 3 or k = 4 times every time a FA module
enters a tile, except if it will become root, therefore using Equation 2,

NRGP = NPGP = k ×
h∑

i=1

(
(Ni − i2)× i

)
As NIF , NRGP , and NPGP are O(h4), we can deduce as in the previous proof that Nmessages

is O(N
4
3
modules).

6.2 Comparison with a Filled Pyramid

In this section, we compare our scaffolding approach that builds porous objects with the con-
struction of filled objects.

For the h-pyramid, scaffolding uses Nmodules (cf. Equation 3) modules whereas a filled shape
uses:

N compact
modules =

b(h−1)+1∑
i=1

i2 =
2b3(h− 1)3 + 9b2(h− 1)2 + 13b(h− 1) + 6

6

We observe that the filled pyramid requires b2

6 times more modules than the one using
scaffolding.

In order to evaluate the number of motions for building a filled configuration, we notice that
for each layer j we have a number of motions of:

N layer
j = j2 +

j−1∑
i=1

2i× j

RR -FEMTO-ST-2843

12 P. Thalamy, B. Piranda, J. Bourgeois

As we have n = b(h− 1) + 1 layers, and each 3D Catom has to climb j + 1 layers, then we have
a total number of movements for building the filled h-pyramid of:

Nfilled
motions =

b(h−1)+1∑
j=1

(
h− j + j2 +

j−1∑
i=1

2i× j

)
= O(h4)

Using an algorithm similar to Tucci et al. [27] to cover each plane of the pyramid, we can build
two distinct parts of the structure in parallel, hence:

T filled = O(N
4
3)

However, this does not take into account the construction of the surface of the pyramid.
Nevertheless, as the algorithm does not use the vertical border branches of level i to construct
the tiles of level i + 1, we can use these branches [1..i] to transport modules from the sandbox
to fill the borders during the construction of upper tiles. Then, only the last tile at the top of
the pyramid will remain to be covered, which can be done at the end of the construction of the
scaffold.

To summarize, the reconfiguration time of the construction of the h-pyramid with scaffolding
is O(N

2
3) and the visual aspect is similar to the one of the fully filled pyramid whose construction

takes O(N
4
3) time.

7 Experiments

The experiments were made on the VisibleSim [22] simulator. They consist in building pyramids
of various base sizes (4× 4, 5× 5 ... 9× 9) from an equal-size sandbox.

The video available on YouTube2 shows recordings of these simulations. One notable aspect
of these recordings is that the growth of the scaffold progresses in a roughly diagonal manner.
This is due to the enforced construction order that makes sure that there are never two branches
growing facing each other, as our module geometry would not be able to bridge the gap between
them. Furthermore, it is clear from this video that our method is able to leverage the potential
for parallelism of such a modular robotic system, with a large number of modules moving
concurrently to reach their goal positions, approximately following a bell curve with surges of
parallelism, as can be seen on Figure 5.

In this set of experiments, we will study the following properties of our method: motion
parallelism, number of messages exchanged between any two modules, temporal distribution of
these messages. Other properties of the method can be theoretically derived, which was done
in the previous section.

In the following figures, time is represented as time steps relative to the rotation time of a
module. One time step corresponds to the time it takes for a single module to move from one
position of the grid to a neighbor one. Also, we assume that communication time is negligible
relative to the motion time of a module.

Figure 6 displays the total number of messages exchanged between any two neighbor modules
during reconfiguration, as a function of the number of modules required to build various sizes of
pyramids. We verify that the curve given by simulations for 1x1 to 9x9 base tiles is compliant
with the expression of the complexity of Theorem 3.

Furthermore, Figure 7 provides information on the temporal distribution of these messages,
by showing the maximum throughput observed by each module during a reconfiguration. It

2YouTube video of simulation at https://youtu.be/1pvNBQlcVGE

FEMTO-ST Institute

https://youtu.be/1pvNBQlcVGE

Deterministic Scaffolding Self-Reconfiguration 13

	0

	50

	100

	150

	200

	250

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900

Nu
m
be

r	o
f	M

od
ul
es
	in

	M
ot
io
n

Time	Steps

9x9	Pyramid	b=6

Figure 5: Motion parallelism over time during the reconfiguration into a 9-pyramid (7905 mod-
ules).

	0
	20000
	40000
	60000
	80000

	100000
	120000
	140000
	160000
	180000
	200000

	0 	1000 	2000 	3000 	4000 	5000 	6000 	7000 	8000

y(x)	≈
	0.74

	x
4/3 	+		3.

0	x	+
		2.0	

x2
/3

Nu
m
be

r	o
f	S

en
t	M

es
sa
ge

s

Number	of	Modules

Messages	Exchanged	Relative	to	Size	of	Configuration

Figure 6: Number of messages exchanged during scaffold construction for various sizes of goal
configurations.

shows that a maximum of four messages are sent within a single time step (this corresponds
to INITIATE FEEDING messages by newly arrived Coordinators, being sent down all incident
vertical branches at once). On average, the maximum message rate per module is 1.325, which
together show that a congestion of the network, whose avoidance is a critical aspect of such
large distributed systems [20], cannot occur.

8 Conclusion and future works

In this paper, we introduced of novel approach to the distributed scaffold-based self-reconfigu-
ration of large modular robotic ensembles, using a parameterizable scaffold model, local rules,
and simple coordination. We defined the purpose and geometry of our scaffold, proposed a dis-
tributed and deterministic method for constructing it from a sandbox of modules, and explained
how its construction fits into a larger self-reconfiguration scheme that involves the coating of
the structure. We provided an analysis of this method with the example of the construction
of a pyramid, as well as a set of experiments, which showed that our approach can perform
self-reconfiguration into a porous version of an object in O(N

2
3) time, leveraging the potential

for parallel motion of our modules, and using O(N
4
3) messages, with no possibility of network

RR -FEMTO-ST-2843

14 P. Thalamy, B. Piranda, J. Bourgeois

	0
	0.5
	1

	1.5
	2

	2.5
	3

	3.5
	4

	0 	100 	200 	300 	400 	500 	600

M
ax

im
um

	T
hr
ou

gh
pu

t

Modules

Free	Agent
Coordinator
Relay
Beam

Figure 7: Maximum number of messages sent per module in a single time step for every module
during a reconfiguration into a 4-pyramid

congestion.
We envision as future works to replace the resource requests sent by arriving tile roots, by a
continuous feeding of 3D Catoms up every branch of the scaffold, which could be interrupted
by tile roots when they stop requiring resources. We believe this would allow us to reach a
O(N

1
3) reconfiguration time. Furthermore, we are interested in generalizing this method to any

shape, which requires additional coordination at the tile level to allow modules to traverse the
tile horizontally without colliding. The scaffold coating algorithm for rendering the surface of
objects also needs to be designed. Finally, an interesting topic is the complete removal of tile
root modules, which would direct us towards fully-decentralized and probabilistic construction
methods, and possibly allow a faster growth order to emerge.

Acknowledgment

This work was partially supported by the ANR (ANR-16-CE33-0022-02), the French Investisse-
ments d’Avenir program, ISITE-BFC project (ANR-15-IDEX-03), Labex ACTION program
(ANR-11-LABX-01-01), and the Mobilitech project.

References

[1] Hossein Ahmadzadeh and Ellips Masehian. Modular robotic systems: Methods and al-
gorithms for abstraction, planning, control, and synchronization. Artificial Intelligence,
223:27–64, June 2015.

[2] Hossein Ahmadzadeh, Ellips Masehian, and Masoud Asadpour. Modular Robotic Systems:
Characteristics and Applications. Journal of Intelligent & Robotic Systems, 81(3-4):317–
357, March 2016.

[3] Dongyang Bie, Yanhe Zhu, Xiaolu Wang, Yu Zhang, and Jie Zhao. L-systems driven self-
reconfiguration of modular robots. International Journal of Advanced Robotic Systems,
13(5):172988141666934, September 2016.

FEMTO-ST Institute

Deterministic Scaffolding Self-Reconfiguration 15

[4] Julien Bourgeois, Benoit Piranda, Andre Naz, Nicolas Boillot, Hakim Mabed, Dominique
Dhoutaut, Thadeu Tucci, and Hicham Lakhlef. Programmable matter as a cyber-physical
conjugation. In Systems, Man, and Cybernetics (SMC), 2016 IEEE International Confer-
ence on, pages 002942–002947. IEEE, October 2016.

[5] Zack Butler and Daniela Rus. Distributed Planning and Control for Modular Robots
with Unit-Compressible Modules. The International Journal of Robotics Research, pages
699–715, 2003.

[6] R. Fitch, Z. Butler, and D. Rus. Reconfiguration planning for heterogeneous self-
reconfiguring robots. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, pages 2460–2467, October 2003.

[7] Robert Fitch and Zack Butler. Million Module March: Scalable Locomotion for Large
Self-Reconfigurable Robots. 2008.

[8] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice (2Nd Ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1990.

[9] T. Fukuda and Y. Kawauchi. Cellular robotic system (CEBOT) as one of the realization
of self-organizing intelligent universal manipulator. pages 662–667. IEEE Comput. Soc.
Press, 1990.

[10] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter modules for
programmable matter through self-disassembly. pages 2485–2492. IEEE, May 2010.

[11] Seth Copen Goldstein, Jason D. Campbell, and Todd C. Mowry. Programmable matter.
Computer, 38(6):99–101, 2005.

[12] A. A. Gorbenko and V. Yu. Popov. Programming for modular reconfigurable robots.
Programming and Computer Software, 38(1):13–23, January 2012.

[13] Pawe l Ho lobut and Jakub Lengiewicz. Distributed computation of forces in modular-robotic
ensembles as part of reconfiguration planning. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pages 2103–2109, May 2017.

[14] F. Hou and W. M. Shen. On the complexity of optimal reconfiguration planning for mod-
ular reconfigurable robots. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, May 2010.

[15] Hiroshi Kawano. Distributed Tunneling Reconfiguration of Sliding Cubic Modular Robots
in Severe Space Requirements. In DARS 2018, 14th International Symposium on Dis-
tributed Autonomous Robotic Systems, page 14, 2018.

[16] K. D. Kotay and D. L. Rus. Algorithms for self-reconfiguring molecule motion planning.
In Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ In-
ternational Conference on, volume 3, pages 2184–2193, 2000.

[17] Jakub Lengiewicz and Pawe l Ho lobut. Efficient collective shape shifting and locomotion of
massively-modular robotic structures. Autonomous Robots, February 2018.

[18] Othon Michail, George Skretas, and Paul G. Spirakis. On the Transformation Capability
of Feasible Mechanisms for Programmable Matter. arXiv:1703.04381 [cs], March 2017.
arXiv: 1703.04381.

RR -FEMTO-ST-2843

16 P. Thalamy, B. Piranda, J. Bourgeois

[19] André Naz, Benoit Piranda, Julien Bourgeois, and Seth Copen Goldstein. A distributed
self-reconfiguration algorithm for cylindrical lattice-based modular robots. In Network
Computing and Applications (NCA), 2016 IEEE 15th International Symposium on, pages
254–263. IEEE, 2016.

[20] André Naz, Benoit Piranda, Thadeu Tucci, Seth Copen Goldstein, and Julien Bourgeois.
Network Characterization of Lattice-Based Modular Robots with Neighbor-to-Neighbor
Communications. In Distributed Autonomous Robotic Systems, volume 6, pages 415–429,
Cham, 2018. Springer International Publishing.

[21] Florian Pescher, Benoit Piranda, Stephane Delalande, and Julien Bourgeois. Molding a
Shape-Memory Polymer with Programmable Matter. In DARS 2018, 14th International
Symposium on Distributed Autonomous Robotic Systems, page 13, 2018.

[22] Benoit Piranda. VisibleSim: Your simulator for Programmable Matter. In Algorithmic
Foundations of Programmable Matter (Dagstuhl Seminar 16271). Dagstuhl, May 2016.

[23] Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge mod-
ular robot to create programmable matter. Autonomous Robots, February 2018.

[24] Kasper Støy. Using cellular automata and gradients to control self-reconfiguration. Robotics
and Autonomous Systems, 54(2):135 – 141, 2006.

[25] Kasper Støy and Radhika Nagpal. Self-Reconfiguration Using Directed Growth. In Dis-
tributed Autonomous Robotic Systems 6, pages 3–12, 2007.

[26] Thadeu Tucci, Benoit Piranda, and Julien Bourgeois. Efficient Scene Encoding for Pro-
grammable Matter Self-reconfiguration Algorithms. In Proceedings of the Symposium on
Applied Computing, pages 256–261, 2017.

[27] Thadeu Tucci, Benoit Piranda, and Julien Bourgeois. A Distributed Self-Assembly Plan-
ning Algorithm for Modular Robots. In International Conference on Autonomous Agents
and Multiagent Systems) (AAMAS), Stockholm, Sweden, July 2018. Association for Com-
puting Machinery (ACM).

[28] S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and parallel reconfiguration al-
gorithm for cube style modular robots. In Robotics and Automation, 2002. Proceedings.
ICRA ’02. IEEE International Conference on, volume 1, pages 117–122 vol.1, 2002.

[29] Mark Yim, Ying Zhang, John Lamping, and Eric Mao. Distributed Control for 3d Meta-
morphosis. Autonomous Robots, 10(1):41–56, January 2001.

[30] Echi Yoshida, Satoshi Murata, Haruhisa Kurokawa, Kohji Tomita, and Shigeru Kokaji.
A distributed method for reconfiguration of a three-dimensional homogeneous structure.
Advanced Robotics, 13(4), 1998.

[31] Yanhe Zhu, Dongyang Bie, Xiaolu Wang, Yu Zhang, Hongzhe Jin, and Jie Zhao. A dis-
tributed and parallel control mechanism for self-reconfiguration of modular robots using
L-systems and cellular automata. Journal of Parallel and Distributed Computing, 102:80 –
90, 2017.

FEMTO-ST Institute

FEMTO-ST INSTITUTE, headquarters
15B Avenue des Montboucons - F-25030 Besançon Cedex France

Tel: (33 3) 63 08 24 00 – e-mail: contact@femto-st.fr

FEMTO-ST — AS2M: TEMIS, 24 rue Alain Savary, F-25000 Besançon France
FEMTO-ST — DISC: UFR Sciences - Route de Gray - F-25030 Besançon cedex France

FEMTO-ST — ENERGIE: Parc Technologique, 2 Av. Jean Moulin, Rue des entrepreneurs, F-90000 Belfort France
FEMTO-ST — MEC’APPLI: 24, chemin de l’̈ı¿ 1

2
pitaphe - F-25000 Besançon France

FEMTO-ST — MN2S: 15B Avenue des Montboucons - F-25030 Besançon cedex France
FEMTO-ST — OPTIQUE: 15B Avenue des Montboucons - F-25030 Besançon cedex France

FEMTO-ST — TEMPS-FREQUENCE: 26, Chemin de l’Epitaphe - F-25030 Besançon cedex France

http://www.femto-st.fr

	Introduction
	Context
	Related Works
	Modular Robotic Model
	Scaffolding
	Anatomy of a Scaffold Tile
	Hierarchical Organization
	Self-Reconfiguration Scheme
	Construction Agent Roles
	Tile Construction Process
	Messaging

	Analysis
	Algorithmic Complexity
	Comparison with a Filled Pyramid

	Experiments
	Conclusion and future works
	RÃ©fÃ©rences

