
HAL Id: hal-02129651
https://hal.science/hal-02129651

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Pre-exascale Architectures: OpenPOWER Performance
and Usability Assessment for French Scientific

Community
Gabriel Hautreux, Alfredo Buttari, Arnaud Beck, Victor Cameo, Dimitri

Lecas, Laurence Voutquenne-Nazabadioko, Emeric Brun, Eric Boyer, Fausto
Malvagi, Gabriel Staffelbach, et al.

To cite this version:
Gabriel Hautreux, Alfredo Buttari, Arnaud Beck, Victor Cameo, Dimitri Lecas, et al.. Pre-exascale
Architectures: OpenPOWER Performance and Usability Assessment for French Scientific Community.
ISC High Performance 2017: High Performance Computing, 2017, Frankfurt, Germany. pp.309-324,
�10.1007/978-3-319-67630-2_23�. �hal-02129651�

https://hal.science/hal-02129651
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Pre-exascale Architectures: OpenPOWER
Performance and Usability Assessment for

French Scientific Community

Gabriel Hautreux1, Alfredo Buttari7, Arnaud Beck11, Victor Cameo, Dimitri
Lecas, Dominique Aubert9, Emeric Brun10, Eric Boyer1, Fausto Malvagi10,

Gabriel Staffelbach, Isabelle d’Ast, Joeffrey Legaux4, Ghislain Lartigue5, Gilles
Grasseau11, Guillaume Latu, Juan Escobar, Julien Bigot2, Julien Derouillat2,
Matthieu Haefele2, Nicolas Renon8, Philippe Parnaudeau, Philippe Wautelet,
Pierre-Francois Lavallee, Pierre Kestener, Remi Lacroix, Stephane Requena1,
Anthony Scemama3, Vincent Moureau5, Jean-Matthieu Etancelin6, and Yann

Meurdesoif

1 GENCI, Paris, France,
2 Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ,

Université Paris-Saclay, 91191 Gif-sur-Yvette, France
3 Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS,

UPS, France
4 CERFACS, Toulouse FRANCE

5 CORIA, CNRS UMR6614, Normandie Université, Saint-Etienne-du-Rouvray,
France

6 CReSTIC EA3804, ROMEO HPC Center, University of Reims
Champagne-Ardenne, France

7 IRIT, CNRS UMR5505, Université de Toulouse, France
8 CALMIP, Université de Toulouse, Université Paul Sabatier, CNRS, UMS3667,

France
9 Observatoire Astronomique de Strasbourg, UMR 7550 Universite de Strasbourg -

CNRS, Strasbourg, France
10 Den-Service d´Études des Réacteurs et de Mathématiques Appliquées (SERMA),

CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
11 Leprince-Ringuet Laboratory (LLR), CNRS/IN2P3, Ecole polytechnique

Abstract. Exascale implies a major pre-requisite in terms of energy ef-
ficiency, as an improvement of an order of magnitude must be reached in
order to stay within an acceptable envelope of 20 MW. To address this ob-
jective and to continue to sustain performance, HPC architectures have
to become denser, embedding many-core processors (to several hundreds
of computing cores) and/or become heterogeneous, that is, using graphic
processors or FPGAs. These energy-saving constraints will also affect the
underlying hardware architectures (e.g., memory and storage hierarchies,
networks) as well as system software (runtime, resource managers, file
systems, etc.) and programming models. While some of these architec-
tures, such as hybrid machines, have existed for a number of years and
occupy noticeable ranks in the TOP 500 list, they are still limited to
a small number of scientific domains and, moreover, require significant

2 Gabriel Hautreux et al.

porting effort. However, recent developments of new paradigms (espe-
cially around OpenMP and OpenACC) make these architectures much
more accessible to programmers. In order to make the most of these
breakthrough upcoming technologies, GENCI and its partners have set
up a technology watch group and lead collaborations with vendors, re-
lying on HPC experts and early adopted HPC solutions. The two main
objectives are providing guidance and prepare the scientific communities
to challenges of exascale architectures.

The work performed on the OpenPOWER platform, one of the targeted
platform for exascale, is described in this paper.

Keywords: OpenPOWER assessment, technological watch, OpenMP,
OpenACC, benchmarks, usability, programmability

1 Introduction: Technological watch group environment

1.1 Partners and goals

The technological watch group, lead by GENCI, is gathering 20 experts from the
French HPC community including: CEA, CNRS, Inria, Maison de la Simulation,
Groupe Calcul and the national computing centers (CINES, IDRIS, TGCC) The
main goal of this activity is to assess the usability of standard programming
paradigms in order to port/optimize scientific applications and tools on multiple
heterogeneous novel HPC platforms. As many efforts have been done during the
past to port applications using standards like OpenMP, it has been defined as
the main pre-requisite for our assessment.

On top of that, the collaboration initiated with IBM and NVidia within
this project helped us to enable the application thanks to multiple workshops
performed since the beginning of 2016.

1.2 Platform and environment available

One of the key platform assessed by GENCI and its partners is the Ouessant
OpenPOWER system, hosted at IDRIS, Orsay, integrated by IBM with the
following characteristics:

– 12 IBM System S822LC ”Minsky” nodes with for each :

• 2 IBM POWER8 10-core processors clocked at 4.2 GHZ and 128 GB of
main memory;

• 2 NVidia P100 GPUs per socket;

• each socket is connected to the 2 GPUs via NVLink 1.0;

– all the nodes are federated through a Mellanox EDR Infiniband interconnect

– and access to a high bandwidth filesystem (IBM Spectrum Scale, formerly
known as GPFS)

GENCI OpenPOWER assessment 3

This platform is installed using a Linux distribution (RedHat7) and has a
variety in its compilation/execution environment. PGI, IBM and LLVM com-
pilers were used on the platform to assess the applications. The main difficulty
is that, at the moment, those compilers all have pros and cons. As LLVM had
(beginning of 2016) difficulties to compile Fortran applications for the POWER8
architecture, most of the users compiled using either PGI or IBM compilers.

The compilers are evolving very frequently (almost every other week). Hence,
the results presented in this paper are a snapshot of the work performed at the
end of March 2017.

1.3 Applications

To assess the platform, we first used the following portfolio of 15 representative
”real” applications, running daily in production, with the involvement of their
respective developers:

– AVBP[1]: a parallel CFD code that solves the three-dimensional compress-
ible Navier-Stokes equations on unstructured and hybrid grids.

– CMS-MEM[2]: a Matrix Element Method for High Energy Physics (HEP)

– Dynamico: a new dynamical core for LMD-Z, the atmospheric general cir-
culation model (GCM) part of IPSL-CM Earth System Model

– EMMA[3]: an adaptive mesh refinement cosmological simulation code with
radiative transfer.

– GPS[4]: Gross Pitaevskii Simulator : modeling of Bose-Einstein Conden-
sates, quantum turbulence, or ultracold quantum gases in optical lattices

– Gysela: models the electrostatic branch of the Ion Temperature Gradient
turbulence in tokamak plasmas

– Hydro[5]: a mini-application which implements a simplified version of RAM-
SES, a code developed to study large scale structure and galaxy formation

– Meso-NH[6]: the non-hydrostatic mesoscale atmospheric model of the French
research community

– Metalwalls: a French molecular dynamic application

– PATMOS[7]: a Monte Carlo transport application

– QMC=Chem: a Quantum Monte Carlo code applied to chemistry

– qr mumps: a direct solver for sparse linear systems

– RAMSES: CFD applications for astrophysics

– SPECFEM3D GLOBE: simulates global and regional (continental-scale)
seismic wave propagation

– YALES2[8]: parallel CFD for two-phase combustion in complex geometries,
solving 3D low-Mach number Navier-Stokes equations on unstructured grids.

This portfolio of applications has been chosen as it represents a wide range
of domains and the close collaboration we have with the developers helped us to
define significant (scientifically speaking) test cases.

4 Gabriel Hautreux et al.

1.4 Performance Indicators

The aime of this project is to provide guidance for the future HPC users of such
architecture. First workshops have demonstrated that porting an application to
the POWER8 architecture is completely straightforward (compile and run), at
least since the end of 2016.

However, the OpenPOWER platform involving its 4 NVidia GPUs enables
the nodes to provide such a huge computational capacity that the POWER8
processor alone can not be the target for an application.

Hence, the relevant results obtained on Ouessant aim to define:

– Baselines in terms of performance (time to solution) for a given field of
application ported on a full Minsky node

– the GPU porting effort for different paradigms (CUDA, OpenMP, Ope-
nACC, . . .)

– the maturity of the software stack for code offloading to GPUs

The results obtained will help the scientific communities and GENCI to de-
fine if OpenPOWER is a suitable architecture for their simulations on top of
providing guidance for the upcoming HPC procurements for French national
computing centers.

2 Work performed on each application

The contributions in this section are mainly provided by the users. Hence, some
of the applications listed earlier are not described as the worked performed on
the platform is not sufficient in order to get relevant results.

2.1 AVBP

AVBP is an explicit compressible code for fluid mechanics and reactive applica-
tions used by both research and industry groups12. It has a hybrid, parallel MPI
+ OpenMP implementation. The domain is partitioned over the MPI tasks. For
each MPI task, the local domain is partitioned into groups of cells.

The main computational section of the code is constituted by an external
loop over the groups of cells. The internal routine scheme includes 50% of the
code with internal vectorized loops over the cells. The data implementation is
structured in FORTRAN modules and globally shared over the routines. AVBP
is based on a coarse grain OpenMP approach with the parallel static loop over
the groups of cells. In order to remove memory bottlenecks, variables and arrays
are declared with OpenMP Private clause and Threadprivate directive in the
modules. The contributions of every thread are store independently in the arrays
passed in parameter and indexed in the latest dimension over the groups, as
illustrated below with the arrays avis.

12 http://cerfacs.fr/logiciels-de-simulation-pour-la-mecanique-des-fluides/

GENCI OpenPOWER assessment 5

!$OMP PARALLEL DO SHARED(nvert,avis,...) &

PRIVATE(kgroup,itype,ng1,...)

DO kgroup=1,ngroup

call scheme(nglen, nvert(kgroup),kgroup,ng1,itype,...,&

volc(ng1), factor(ng5), avis(kgroup), .. avis2(kgroup),&

avis4_tpf(kgroup),dw_spec_c_nv_buf(:,:,:,kgroup),&

dw_fic_c_nv_buf(:,:,:,kgroup),...)

The first GPU implementation has been performed using OpenACC pro-
graming model; a switch to OpenMP 4.5 will be eventually studied in a second
step. The choice of OpenACC over OpenMP 4.5 has been motivated by the
existence of the Unified Memory feature, even though in the very first imple-
mentation of the code, the data transfers have been manually managed using
explicit directives. The GPU implementation uses the same scheme as the cur-
rent OpenMP implementation, with an offload of the entire scheme function
to the GPU. The OpenMP directive controlling the main loop over the groups
has been substituted by an OpenACC directive to generate OpenACC gang or
CUDA block. The internal, vectorized loops are parallelized over OpenACC vec-
tors and threads, to ensure a good GPU occupancy. Compared to the current,
pure-CPU implementation, the following evolutions are required to manage the
GPU offload:

– Data from modules used within the scheme routine has to be allocated on the
GPU using the OpenACC declare create directive in the corresponding
module, bound with enter and exit data directives, and copied or updated
to/from the GPU using OpenACC copy/update_device/update_host di-
rectives before and after the main loop.

– Private variables and arrays in the threads with OpenMP Threadprivate
directive was declared in the private clause of the OpenACC loop over the
gang.

– All the routines and function potentially offloaded to the GPU have been
declared with OpenACC seq/vector directives. These directives direct the
compiler to generate both CPU and GPU paths.

2.2 EMMA

EMMA is an MPI + CUDA code which was already running on GPUs before the
beginning of the project. The porting effort was very small, a simple compilation
and then a run enabled to get first results on the platform. At the moment,
around 50% of the code is running on GPUs. The goal is to reach 80% of the
code by the end of 2017. However, first results on the platform are available for
this application.

The CUDA kernel results are summarized in 1 while the full application is
presented in 2.

We see a huge decrease in terms of performance for running the entire ap-
plication, this is clearly explained as the full application has not been ported to
CUDA.

6 Gabriel Hautreux et al.

Table 1. EMMA Single Kernel on OpenPOWER

Node SMT Mode Processes/Node Tasks/GPU Time Speed-up

P8 1 4 0 5.75 1.0

P8+4P100 1 4 1 0.21 27.4

Table 2. EMMA Full Application on OpenPOWER

Node SMT Mode Processes/Node Tasks/GPU Time Speed-up

P8 1 4 0 14.6 1.0

P8+4P100 1 4 1 5.8 2.5

2.3 GPS

GPS is an application developed in MPI and relying heavily on Fast Fourier
Transforms.

Approximately 100% of the code used by the test case is offloaded using
OpenACC.

The performance of this OpenACC implementation suffers from the absence
of the GPU-Direct feature, which is set to be made available in 2018 with the next
generation of systems based on POWER9. This leads to a significant performance
penalty when using the Managed Memory feature in OpenACC.

In order to evaluate the expected performance gain from GPU acceleration
once the GPU-Direct feature will be released, the code has been tested without
MPI ; numerical results will not be valid, but the same amount of computation
is performed. In this configuration (with no specific optimization), the execution
is approximately twice faster when using 4 GPU versus 16 POWER8 cores.

2.4 GYSELA

The first target was to evaluate the potential of the performance boost which
could be provided through GPU acceleration, and thus confirm that the Open-
POWER platform was a valid architecture for the GYSELA exploitation.

In the context of this preliminary validation phase, the work was conducted:

– On a subset of the full application: the 2D-Advection Kernel.
– Through a CUDA implementation, in order to bypass the potential current

limitations of the compilation environment with respect to directive-based
programming models (OpenACC or OpenMP).

The performance results achieved at the end of this first step are available in
table 3.

These performance levels fully validate the capacity to benefit from a signifi-
cant performance boost thanks to GPU acceleration. Based on this first outcome,
the second phase started in Q2 2017, which will shift:

– From the single 2D-Advection Kernel to the whole application.
– From a CUDA-based implementation to an OpenACC-based implementa-

tion.

GENCI OpenPOWER assessment 7

Table 3. GYSELA 2D-Advection Kernel Performance on OpenPOWER

Node Processes/Node MCells/s Speed-up

P8 1 9.0 1.0

P8+1P100 1 56.9 6.3

2.5 Hydro

Hydro is a MPI + OpenMP code widely used by IDRIS in their workshops as
a tutorial to learn MPI and OpenMP. This application is not involving deep
optimization and tries to mimic what a common developer could implement in
its application. The idea with Hydro is therefore to develop an OpenACC and an
OpenMP implementation that could make the most of the P100 with a limited
effort of development. This code could also become a good porting example for
the community.

However, a CUDA implementation has been developed as a first step, in
order to evaluate the performance gain the GPU acceleration can offer. The
performance level achieved through the CUDA implementation will constitute a
reference target for the directive-based implementations.

The following performance results have been obtained on a 8192x8192 grid
(0.5 GB memory usage) using the CUDA implementation:

Table 4. HYDRO Performance on OpenPOWER

Node Time (s) Speed-up

OpenPOWER, POWER8, SMT4 29 1.0

OpenPOWER, POWER8 + 1P100 1.9 15.5

The development of an OpenACC implementation has already started. The
performance of this implementation currently suffers from the absence of the
GPU-Direct feature, which is set to be made available in 2018 with the next
generation of systems based on POWER9.

2.6 Meso-NH

Meso-NH is a code developed in MPI and OpenACC.
A part of the code was already ported in OpenACC before the beginning of

the project. There is an ongoing development and the team aims to port a huge
part of the application before the end of 2017.

First results on one node are already available for a given kernel in 5.
For this particular kernel, we see a speedup of 5.6 for using 4 GPUs on top of

the POWER8 processor. We also can see a speedup of 2.2 using 4 P100 compared
to 2 K80.

Those results are pretty good, however if we run the full application, the
speedups, in table 6 are not as good.

8 Gabriel Hautreux et al.

Table 5. Meso-NH Single Kernel Performance on OpenPOWER

Node Processes/Node Tasks/GPU Speedup

P8 16 0 1.0

P8+2K80 16 8 2.6

P8+4P100 16 4 5.6

Table 6. Meso-NH Whole Application Performance on OpenPOWER

Node Processes/Node Tasks/GPU Speedup

P8 16 0 1.0

P8+2K80 16 8 1.3

P8+4P100 16 4 1.5

At the moment, the developer have troubles to port a significant part of
the application on GPU. The solver involved is not as easy to port as the one
previously ported. A porting effort of 2 years is envisioned in order to obtain a
speed-up of 5 on the full application.

2.7 Metalwalls

Metalwalls is a full MPI application for molecular dynamics. The code is written
in Fortran 90 and has 20.000 lines of codes. The time loop (computational part) is
3.500 lines long and represents almost 100% of the time spent in the application.
The strategy chosen by the development team was to port this application using
OpenACC as it seemed, in their opinion, to be the most reliable technology
available. 75% (of loop time) of the application is now ported to OpenACC, it
took them 1 month to carry out this work. The estimated time for porting the
full application is one other month.

The first results are in table 7.

Table 7. Metalwalls Performance on OpenPOWER

Test Case Nodes SMT Mode Tasks/Node Tasks/GPU Time Speed-up

Small 1 4 80 0 5.9 1.0

Small 1 1 4 1 2.0 3.0

Large 1 4 80 0 364.7 1.00

Large 1 1 1 1 96.7 3.8

Large 1 1 4 1 74.6 4.9

Those results, after only one month of work are pretty good. However the
work now has to be focused on running multiple GPUs and porting the remain-
ing part of the code(the speed-up for 1 GPU is 3.8, while 4GPUs is 4.9, which
means that the scalability on multiple GPUs is not good at the moment).
However, as only a bit more than 75% of the code has been ported, that means

GENCI OpenPOWER assessment 9

the theoretical speed-up they can achieve is around 4.0 (Amdahl’s law). That’s
the reason why we can consider that porting this application on the Open-
POWER architecture is a success for them at the moment.

2.8 PATMOS

PATMOS is developed in C++11/14 with an hybrid parallelism based on MPI
+ OpenMP. A CUDA version of the application was also available in a prior
release and the main work performed by the development team was to include
those CUDA kernels into the main branch of the application. This work has been
done during the project and now 5% of the code (in lines, but representing 75%
of the CPU time) is available in CUDA. The target is to port another 5% in
order to almost cover the whole application.

The results in table 8 and 9 are obtained using 1 MPI process per node,
OpenMP threads are then used for the in-node parallelism. The results obtained
on multiple nodes are almost as good as the ones obtained on the single node,
which shows that the scalability of the application on this platform is very good.

Table 8. PATMOS single node result

Test Case Nodes SMT Mode Threads/Node GPU used Time Speed-up

Small 1 4 80 0 24.0 1.0

Small 1 4 80 4 6.0 4.0

Table 9. PATMOS multiple node result

Test Case Nodes SMT Mode Threads/Node GPU used Time Speed-up

Large 8 4 80 0 582.1 1.0

Large 8 4 80 4 152.2 3.8

Unfortunately, no test has been done using OpenMP for offloading to GPUs,
but still we hope that we could run an OpenMP version on the platform in
order to compare the performances we reach in CUDA and the performances
we can reach using OpenMP. This part is ongoing and we expect to have good
performances using OpenMP as well.

2.9 QMC=Chem

QMC=Chem is a quantum chemistry code which applies the quantum Monte
Carlo (QMC) method to molecules to solve the Schrödinger equation.[9] Due
to the embarrassingly parallel nature of the algorithm, its parallel scaling is

10 Gabriel Hautreux et al.

almost ideal, and single-core optimization is crucial to improve the performance.
Hence, QMC=Chem was specifically optimized for Intel Xeon processors, used
in combination with the Intel Fortran compiler.

In this study, we have used QMC=Chem as a benchmark to test the perfor-
mance obtained with the Power8 CPU combined with the XL compiler toolchain.
We compare the results obtained on one node of the Ouessant cluster with those
obtained on one node of the Occigen cluster, namely a dual-socket Intel Xeon
CPU E5-2690v3 @ 2.6GHz (Haswell). We used two test cases, one small and one
large, for which the hot spots are different kernels, both very representative of
the usual production runs. For the two test cases, we have counted, with the Intel
Software Development Emulator,[10] the total number of single precision (SP)
and double precision (DP) floating point instructions using an SSE2 executable.
This information combined with the elapsed time of the benchmarks allows us
to give an estimate of the performance in GFlops/s. Using the ratios of single
and double precision instructions (86% SP, 14% DP for the small case, and 4%
SP, 96% DP for the large case), we can also give an estimate of the percent of
the peak performance that was reached. The results are given in table 10.

Table 10. Single node performance in GFlops/s. Percent of the peak (mixed single
and double precision) is given in parenthesis.

Compiler CPU Number of Small Large
threads GFlops/s % Peak GFlops/s % Peak

GNU Haswell 1 6.8 7.1
24 134.5 (7.2%) 145.0 (13.9%)
48 158.5 (8.5%) 136.9 (13.2%)

GNU Power8 1 10.2 2.1
20 182.5 (15.5%) 39.3 (5.9%)
40 230.1 (19.2%) 68.4 (10.2%)
160 258.2 (21.6%) 119.7 (17.9%)

Intel Haswell 1 18.3 10.9
24 332.9 (17.9%) 219.1 (21.1%)
48 346.6 (18.7%) 183.4 (17.8%)

IBM XL Power8 1 12.1 3.5
20 218.3 (18.3%) 64.4 (9.6%)
40 272.2 (22.8%) 96.4 (14.4%)
160 244.2 (20.4%) 103.0 (15.4%)

To reduce the bias due to the compiler we have first used the GNU Fortran
compiler on both architectures. On the small benchmark, the performance is
higher on the Power8 than on the Haswell, probably due to its larger L3 cache.
On the large benchmark, the performance is higher on the Haswell node, and the
multi-threading on the Power8 is really crucial to approach the performance of
the Xeon. Then, we have run the benchmarks compiled with vendor compilers.
Using the Intel compiler gives a ×2.1 acceleration on the Haswell node for the
small test case, and a ×1.5 acceleration of the large test case. Such a large

GENCI OpenPOWER assessment 11

difference is due to the heavy use of Intel compiler directives in the hottest
loops. Going from the GNU to the IBM XL compiler, only a ×1.05 acceleration
is gained on the small test case, and the large test case becomes less efficient by
a factor of ×0.86.

These results show that, without any particular tuning, QMC=Chem is able
to reach 22.8% of the peak performance of the Power8 node on small cases, and
17.9% on large cases. This is a good start, and as there is no performance gain
using the XL compiler, we expect that a substantial performance increase could
be obtained with the XL compiler if some parts of the code are rewritten in a
more Power8-friendly fashion.

2.10 qr mumps

qr mumps is a direct solver for sparse linear systems based on the multifrontal
QR factorization. It currently supports single nodes with multiple cores and one
GPU. The parallelization is achieved through the StarPU runtime system. The
problem data is decomposed into blocks and the computations are arranged into
tasks whose dependencies are expressed by a Directed Acyclic Graph. StarPU
takes care of launching the execution of tasks when the related dependencies
are satisfied and when computational units are available [11]. In qr mumps a
dynamic and hierarchical data partitioning is used in order to have a good mix
of large grain tasks, which are executed on the GPU, and fine grain tasks which
are executed on the CPU cores. Moreover, when a GPU is available, a dedicated
scheduling policy is used which aims at maximizing the efficiency of tasks by
assigning each to the unit which is best suited for its execution. These techniques
allow for an effective use of all the computational resources available on the
node [12].

The porting on the OpenPOWER platform was relatively easy and needed
only minor code fixes due the strict compliance to the Fortran standards en-
forced by IBM compilers. The graph below reports the strong scalability of the
qr mumps solver on a number of problems from the University of Florida Sparse
Matrix Collection.

On the largest problem (matrix TF18) a performance of 407 Gflop/s was
achieved using 20 cores, which corresponds to a remarkable 73% of the peak,
with a very good scalability.

Using one GPU with the 20 cores, the performance of 1.2 Tflop/s was reached
(sse 11, meaning of speed-up of 3 between one P8 node and one P8 node + one
P100.

Table 11. qr mumps: Performance in Tflop/s

Nodes Processes/Node GPUs Performance Speed-up

1 80 0 0.4 1.0

1 80 1 1.2 3.0

12 Gabriel Hautreux et al.

The main problem at the moment is that the code does not use multiple GPUs
on a single node as this functionality has not been implemented. qr mumps will
soon be integrated in a larger code which will enable this feature. The multi-GPU
results are expected to be very good as well.

2.11 RAMSES

RAMSES-GPU is developed since 2009 in CUDA/C++ for astrophysics appli-
cations on regular grid. The code is 70k lines long (out of which about 16k are
written in CUDA).

The main goal of the project was to make the code more portable. In order
to achieve this goal, the developer decided to use Kokkos[13]. The first result
using this paradigm is very interesting.

On average Pascal P100 is 2.8 to 4.0 faster than Kepler K80 (single GPU)
with no special optimization, only using rebuild architecture flags in the CUDA
implementation.
On top of that, Pascal P100 is about 10 times faster than Power8 (with 8 threads
per core), still with CUDA. This result is illustrated in table 12.

Table 12. RAMSES cell-update per second on POWER8, K80 and P100

Test Case POWER8 K80 P100 Speed-up P100 vs POWER8

”P1” 6.7 32.8 83.5 12.5

”P2” 2.1 4.7 19.5 9.3

”P3” 0.7 X 7.5 10.7

”P4” 0.27 0.83 2.7 10.0

On the Kokkos part, the 2nd-order MUSCL (2D / 3D) performance are 2%
to 5% slower compared to hand-written CUDA kernels in RamsesGPU, which is
an impressive result for a less intrusive implementation.

2.12 SPECFFEM3D GLOBE

Specfem3D is widely known code developed in MPI, OpenMP and CUDA. The
two test cases tested here are those available in the git repository (test small
bench very simple earth and test small bench more complex earth).

The code is running well on one node, with a speed-up up to 27 using a
GPU versus a single P8 core. The constraint with Specfem3D is that the test
case defines a number of MPI processes (which corresponds to the mesh parti-
tioning). Moreover, we tried using the NVIDIA MPS (Multi-Process Service) for
the P100 which would enable to run multiple CUDA kernels sent by different
MPI processes on the same GPU. This lead to huge slow-down caused by mem-
ory copy to the GPU. This constraint has to be addressed in order to improve
performance.

GENCI OpenPOWER assessment 13

Table 13. Specfem3D: test small bench more complex earth

Nodes Processes/Node GPUs Time Speed-up

1 24 0 707.27 1.00

1 24 2 52.66 13.43

1 24 4 37.83 18.69

The code is generated with the PGI compiler, CUDA gencode60 and IBM
Spectrum MPI. Results for a single node workload are available in 13.

Results are good as we have a 18.69× speed-up between P8 node and P8
node + 4GPUs. However, as we had a 13.43× using only 2GPUs, we could have
expected at least a speed-up of 20 for using the 4 of them. A deeper analysis on
this point has to be done. On top of that, a scalability test on multiple nodes
using a bigger test case has to be considered.

2.13 YALES2

The main flow solver of YALES2 relies on hybrid MPI+OpenMP parallelism and
on object-oriented Fortran. The project of the development team was to assess
the usability of the GPUs by porting one of the most time consuming kernel (the
conjugate gradient algorithm for the solving of the Poisson equation) to CUDA
and by running a realistic test case. This work consisted in i) changing the
conjugate gradient iteration to exhibit data parallelism, ii) writing a generic C
to Fortran interface so that CUDA can access to the data structures of the code,
iii) integrating the kernel in the full application. A work is ongoing for porting
all the kernels to GPUs, this task is starting and may take a few months/years
before it is completed.

The performances for the simulation of the flow around a 3D cylinder with
3.9 million cells are given in table 14. The speed-up is measured only for the
conjugate gradient (CG) step. Interestingly, running with a single process and
a single GPU is faster than using 4 processes. The changes in the CG step, to
exhibit data parallelism, slow down the code by approximately 20% but this is
largely compensated by the speed-up of the GPU. Running with 1 GPU per
process lead to a speed-up close to 4.

Table 14. Yales2 simulation of the flow around a 3D cylinder performances on Open-
POWER

Node Code SMT Mode Processes/Node Tasks/GPU Speed-up

P8 standard 1 4 0 1.00

P8+1P100 CUDA 1 1 1 1.16

P8+4P100 CUDA 1 4 1 3.63

14 Gabriel Hautreux et al.

3 Conclusion and Future Work

First of all, the POWER8 processor has to be defined as a very easy to use
processor. We clearly have seen over the last year an improvement in the compi-
lation environment which helped all of our users to port their application on the
machine very easily. Unfortunately, for now, the goal that we want to achieve
(i.e. porting all our applications to GPUs using OpenMP) is still a bit far from
us. Indeed, the main difficulty for the users on this platform is to understand the
GPU and how to adapt their application to it. While all of the users managed to
port their application on the POWER8, only a few applications were run on the
GPUs with a relevant level of performance. The platform can achieve very high
performances while using CUDA kernels, the IBM XL compiler is mainly used
for the code using CUDA kernels and provides a good level of performances.
First results on OpenACC show that we can also get good performances using
this paradigm but the time to achieve the performance is not in days, but in
weeks (and even sometimes months or years). However, we have seen over the
past year that the PGI compiler really adapted to the POWER8 architecture and
can achieve very high performance. The first results obtained on the platform
are available in figure 1.

Fig. 1. First results obtained on Ouessant

OpenMP remains our main goal for legacy and portability of our applications,
but we do have troubles at the moment using this paradigm on the platform.
Indeed, the few tests we performed on the platform didn’t give us good per-
formances for GPU offloading, that’s one of the reason why none of our users
ported their application using OpenMP. On top of that, as the project started
at the beginning of 2016, the OpenMP functionality were not available and that
did not help the community to choose this paradigm. However, we still expect
that this platform will manage to run OpenMP for GPUs and get the same level
of performances than OpenACC. Those features should be implemented in the

GENCI OpenPOWER assessment 15

IBM compiler by the end of the year. We also expect that modifying the code
from OpenACC to write OpenMP kernel will not be too much time consuming.

The opening of the platform, since April 2017, to the full French scientific
community will be a new opportunity for us to push for OpenMP and to continue
working using this paradigm at the national level. On top of that, we will assess
the scalability of the platform, using even larger test cases. The results obtained
with PATMOS (having an almost perfect scalability up to 8 nodes) make us
believe that this particular point should not be an issue.

Despite some porting troubles, the first results on the platform are very
promising and we are looking forward to the next generation of OpenPOWER
nodes.

Besides, we now have a focus on deep learning applications and the number
of project that applies for the Ouessant platform using PowerAI is increasing.
The first results are impressive and we are sure that this platform will help the
artificial intelligence community to address new challenges.

16 Gabriel Hautreux et al.

Acknowledgments

GENCI thanks all its partners within the project for their support as well as
IBM and nVIDIA experts and all the developers that contributed to the work
performed on this platform.

References

1. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach,
G., Garcia, M., Boussuge, J.F., Poinsot, T.: High performance parallel computing
of flows in complex geometries - part 1: methods. Computational Science and
Discovery 2(November) (2009) 015003

2. Grasseau, G., Chamont, D., Beaudette, F., Bianchini, L., Davignon, O., Mas-
trolorenzo, L., Ochando, C., Paganini, P., Strebler, T.: Matrix element method
for high performance computing platforms. Volume 664 of Journal of Physics:
Conference Series., Bristol, Institute of Physics Publishing (2015) 092009–

3. Aubert, D., Deparis, N., Ocvirk, P.: EMMA: an adaptive mesh refinement cosmo-
logical simulation code with radiative transfer. 454 (November 2015) 1012–1037

4. P. Parnaudeau, A. Suzuki, J.M.S.E.: Gps: An efficient & spectrally accurate code
for computing gross-pitaevskii equation. ISC-2015, Research Posters Session, July
12 - 16, 2015, Germany.

5. Pierre-Francois Lavallée, Guillaume Colin de Verdière, P.W.D.L.J.M.D.: Porting
and optimizing hydro to new platforms and programming paradigms - lessons
learnt

6. http://mesonh.aero.obs-mip.fr/mesonh53/MesoNHReferences
7. Brun, E., Chauveau, S., Malvagi, F.: Patmos: A prototype monte carlo transport

code to test high performance architectures. In: M&C 2017 - International Con-
ference on Mathematics & Computational Methods Applied to Nuclear Science &
Engineering, April 16-20, Jeju, Korea (2017)

8. Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel cfd code
for complex geometries. Comptes Rendus Mcanique 339(2) (2011) 141 – 148

9. Scemama, A., Caffarel, M., Oseret, E., Jalby, W.: Quantum Monte Carlo for large
chemical systems: Implementing efficient strategies for petascale platforms and
beyond. J. Comput. Chem. 34(11) (jan 2013) 938–951

10. : Intel software development emulator. https://software.intel.com/en-
us/articles/intel-software-development-emulator Accessed: 2017-04-26.

11. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Implementing multifrontal
sparse solvers for multicore architectures with sequential task flow runtime systems.
ACM Trans. Math. Softw. 43(2) (August 2016) 13:1–13:22

12. Agullo, E., Buttari, A., Guermouche, A., Lopez, F.: Task-based multifrontal QR
solver for GPU-accelerated multicore architectures. In: HiPC, IEEE Computer
Society (2015) 54–63

13. https://github.com/kokkos

