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Abstract

We consider a complete probability space (Ω,F ,P), which is endowed with two �l-

trations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this

probability space we consider a real valued special G-semimartingale X. The results

can be generalized to the case of Rn valued special semimartingales, in a straightfor-

ward manner. We �x a truncation function with respect to which the semimartingale

characteristics are computed.

The purpose of this work is to study the following two problems:

A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of

the G-semimartingale characteristics of X.
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B. If X is not F-adapted, given that the F-optional projection of X is a special

semimartingale, compute the F-semimartingale characteristics of F-optional pro-
jection of X in terms of the G-canonical decomposition and G-semimartingale

characteristics of X.

An important motivation behind the study originated in this paper is coming from

the theory of stochastic structures that has been under works in recent years. One

of the problems arising in this theory can be summarized as follows: Suppose that

S = (S1, . . . , Sn) is a multivariate semimartingale. Suppose that (Bi, Ci, νi) are the

semimartingale characteristics of the semimartingale Si in the natural �ltration of S.
The problem is to �nd the semimartingale characteristics of Si in the �ltration of a sub-

group of coordinates Si1 , . . . , Sik , i1, . . . , ik ∈ {1, . . . , n}, of S, in terms of (Bi, Ci, νi).

Keywords: Special semimartingale, �ltration shrinkage, optional projection, semi-

martingale characteristics

Mathematics Subjects Classi�cation (2010): 60G99, 60H99

1 Introduction

This paper is meant to initiate a systematic study of the change of properties of semimartin-
gales under shrinkage of �ltrations and, when appropriate, under respective projections. The
paper does not aim at a complete and comprehensive study of the topic. Rather, we analyze
in some special settings a selection of relevant research problems. Our study contributes, we
believe, to understanding and solution of these problems.

We consider a complete probability space (Ω,F ,P), which is endowed with two �ltrations,
G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability
space we consider a real valued special G-semimartingale X. The results can be generalized
to the case of Rn valued special semimartingales, in a straightforward manner. We �x a
truncation function with respect to which the semimartingale characteristics are computed.

The purpose of this work is to study the following two problems:

A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the
G-semimartingale characteristics of X.

B. If X is not F-adapted, given that the F-optional projection of X is a special semi-
martingale, compute the F-semimartingale characteristics of F-optional projection of
X in terms of the G-canonical decomposition and G-semimartingale characteristics of
X.

So, in a sense, we study problems, which are complementary to problems that arise when
one studies what happens to a semimartingale under enlargement of �ltration. The litera-
ture regarding enlargement of �ltrations is quite abundant (see, e.g., the recent monograph
[AJ17] and the references therein). On the contrary, the literature regarding the shrinkage
of �ltration and its e�ect on the properties of a semimartingale is essentially non-existent.
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Two notable exceptions are Section II�6 in [LS89] and Section IX.2 in [Jac79], that fea-
ture partial versions of some of our results. Related study is also done in [BY78] where,
however, a di�erent, from our special semimartingales, class of processes was investigated
(called semimartingales there); interestingly enough, our formula (4.22) can be obtained
from Proposition 4 in [BY78]. Special cases of our Lemma 3.3 are present in the literature
in the context of the �ltering theory. So, to the great extent our work provides an original
contribution to the systematic study of the change of properties of semimartingales under
shrinkage of �ltrations.

Also, contrary to the theory of the enlargement of the �ltrations, where only initial
and progressive enlargements are studied, here we do not make any speci�c restrictions
regarding relation between the �ltrations G and F, except for the inclusion condition F ⊂ G,
and, additionally the immersion condition in Section 4.

An important motivation behind the study originated in this paper is coming from the
theory of stochastic structures that has been under works in recent years (cf. [BJNng]).
One of the problems arising in this theory can be summarized as follows: Suppose that
S = (S1, . . . , Sn) is a multivariate semimartingale. Suppose that (Bi, Ci, νi) are the semi-
martingale characteristics of the semimatingale Si in the natural �ltration of S. The problem
is to �nd the semimartingale characteristics of Si in the �ltration of a sub-group of coordi-
nates Si1 , . . . , Sik , i1, . . . , ik ∈ {1, . . . , n}, of S, in terms of (Bi, Ci, νi).

The paper is organized as follows. In Section 2 we formulate the mathematical set-up
for our study and we recall some useful concepts and results. In Section 3 we study problem
A. In Section 4 we study problem B. In Section 5 we provide several examples illustrating
and complementing our theoretical developments. The complexity of the examples varies.
But all of them are meant to illustrate our theoretical developments, even though results
presented in some of the examples might possibly be obtained directly.

Finally, in Section 6 we formulate some non-trivial open problems, solution of which will
require more in-depth understanding of subject matters discussed in this paper.

2 Preliminaries

We assume that the semimartingale X has jumps with absolute value bounded from above
by some constant a > 0. Without loss of generality we take a = 1.

The (special) G-semimartingale X admits the unique canonical decomposition of the
form

Xt = X0 +MG
t +BG

t , t ≥ 0,

where MG is a G-local martingale such that MG
0 = 0, and BG is a G-predictable process

with �nite variation and BG
0 = 0. Under our set-up, the process X can be written as

Xt = X0 +Xc,G
t +

∫ t

0

∫
R
x(µ(ds, dx)− νG(ds, dx)) +BG

t , t ≥ 0,

where Xc,G is the continuous G-martingale part, µ is the jump measure of X as de�ned in
Proposition II.1.16 in [JS03], and νG is the G-compensator of µ. The above representation
is the consequence of the Corollary II 2.38 in [JS03].
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In what follows, we will use the standard truncation function χ(x) = x1|x|≤1, and all the
semimartingale characteristics will be considered with respect to this function.

For X as above, i.e., with jumps bounded by 1, the G-semimartingale characteristics are
(BG, CG, νG), where CG is the G-predictable bracket of Xc,G (cf. [JS03] Proposition II.2.29).

In view of Proposition II.2.9 in [JS03], there exists a G-predictable, locally integrable
increasing process, say AG, such that

BG = bG ·AG, CG = cG ·AG, νG(dt, dx) = KG
t (dx)dAG

t ,

where

i. bG is an R-valued and G-predictable process,

ii. cG is an R+-valued and G-predictable process,

iii. KG
t (ω, dx) is a transition kernel from (Ω× R+,PG) to (R,B(R)), satisfying condition

analogous to condition II.2.11 in [JS03], and where PG is the G-predictable σ -�eld on
Ω× R+,

and where · denotes the stochastic or Stieltjes integral, wherever appropriate.
We will assume that

AG
t =

∫ t

0

aGudu, (2.1)

where aG is a G-progressively measurable process. This assumption will be satis�ed in
examples studied in Section 5.

In what follows we use the following notions and notation:

1. For a given process Z, we denote by o,FZ the optional projection of Z on F de�ned in
the sense of He et al. [HWY92], i.e., the unique F-optional, �nite valued process such
that for every F-stopping time τ we have

E(Zτ1τ<∞|Fτ ) = o,FZτ1τ<∞.

Note that by Theorem 5.1 in [HWY92] this optional projection exists if Z is a measur-
able process such that Zτ1τ<∞ is σ-integrable with respect to Fτ for every F-stopping
time τ . That is, there exists a sequence of sets (An)∞n=1 such that An ∈ Fτ , An ↑ Ω
and E(Zτ1τ<∞1An) <∞ for n = 1, 2, . . ..

2. For a given process Z, we denote by p,FZ the predictable projection of Z on F de�ned
in the sense of He et al. [HWY92], i.e., the unique F-predictable, �nite valued process
such that for every F-stopping time τ we have

E(Zτ1τ<∞|Fτ−) = p,FZτ1τ<∞.

Note that by Theorem 5.2 in [HWY92] this predictable projection exists if Z is a
measurable process such that Zτ1τ<∞ is σ-integrable with respect to Fτ− for every
predictable F-stopping time τ . That is, there exists a sequence of sets (An)∞n=1 such
that An ∈ Fτ−, An ↑ Ω and E(Zτ1τ<∞1An) <∞ for n = 1, 2, . . ..
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3. We will also need a notion of F-optional and F-predictable projections for any function
W : Ω̃→ R, which is measurable with respect to F̃ , where

Ω̃ := Ω× R+ × R, F̃ := F ⊗ B(R+)⊗ B(R) .

The F-optional projection of such a function W is de�ned as the function o,FW on
Ω × R+ × R, which is such that for all x ∈ R the process o,FW (·, x) is the optional
projection on F of the process W (·, x). Similarly, the F-predictable projection of such
a function W is de�ned as the function p,FW on Ω×R+×R, which is such that for all
x ∈ R the process p,FW (·, x) is the predictable projection on F of the process W (·, x).

4. We denote by OF (resp. PF), the F-optional (resp. the F-predictable) sigma-�eld on
Ω× R+ generated by F-adapted càdlàg (resp. continuous) processes. Analogously we
introduce the sigma �elds ÕF and P̃F on Ω̃ de�ned by

ÕF := OF ⊗ B(R), P̃F := PF ⊗ B(R).

5. A random measure π on B(R+) ⊗ B(R) is F-optional (resp. F-predictable) if for any
ÕF-measurable (resp. P̃F-measurable) positive real functionW , the real valued process

V (ω, t) :=

∫
[0,t]×R

W (ω, s, x)π(ω; ds, dx)

is F-optional (resp. F-predictable); equivalently if for any positive real, measurable
function W on Ω̃

E
(∫

R+×R
W (s, x)π(ds, dx)

)
= E

(∫
R+×R

q,FW (s, x)π(ds, dx)

)
,

where q = o (resp. q = p).

6. We say that a randommeasure π on B(R+)⊗B(R) is F-optionally (resp. F-predictably),
σ-integrable if the measure Mπ on F̃ de�ned by

Mπ(B̃) := E
(∫

R+×R
1B̃(ω, t, x)π(ω, dt, dx)

)
, B̃ ∈ F̃ , (2.2)

restricted to ÕF (resp. to P̃F), is a σ-�nite measure. In other words π is F-optionally,
resp. F-predictable, σ-integrable if there exist a sequence of sets Ãk ∈ ÕF, resp.
Ãk ∈ P̃F , such that Ãk ↑ Ω̃ and Mπ(Ãk) <∞ for each k.

7. For a random measure π on B(R+) ⊗ B(R) we denote by πo,F the F-dual optional
projection of π on F, i.e., the unique F-optional measure on B(R+)⊗ B(R) such that
it is F-optionally σ-integrable and for every positive ÕF-measurable function W on Ω̃,
we have

E
(∫

R+×R
W (t, x)π(dt, dx)

)
= E

(∫
R+×R

W (t, x)πo,F(dt, dx)
)
.
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The F-dual predictable projection of π on F, denoted by πp,F, is de�ned analogously,
as the unique F-predictable measure on B(R+) ⊗ B(R) such that it is F-predictably
σ-integrable and for every positive P̃F-measurable function W on Ω̃, we have

E
(∫

R+×R
W (t, x)π(dt, dx)

)
= E

(∫
R+×R

W (t, x)πp,F(dt, dx)
)
.

We note that existence and uniqueness of πo,F (resp. πp,F(dt, dx)) holds under as-
sumption that π is F-optionally (resp. F-predictably), σ-integrable (see e.g. [HWY92,
Theorem 11.8]).

8. For any process A and any (stopping) time T , we denote by AT the process A stopped
at T .

In the rest of the paper we shall study the F-characteristics of X in the case when X is
F-adapted, and the F-characteristics of the optional projection of X on F in the case when
X is not F-adapted, assuming that such optional projection exists.

3 Study of Problem A: The Case of X adapted to F
In this section, we consider the case where X is F-adapted. Then, according to [Str77] X is
a special F-semimartingale and it can be decomposed as

Xt = X0 +MF
t +BF

t = X0 +Xc,F
t +

∫ t

0

∫
E

x(µ(ds, dx)− νF(ds, dx)) +BF
t .

As before, we have that in view of Proposition II.2.9 in [JS03], there exists an F-
predictable, locally integrable increasing process, say AF, such that

BF = bF ·AF, CF = cF ·AF, νF(dt, dx) = KF
t (dx)dAF

t .

We make the following assumptions:
A1. For every t ≥ 0 we have

E
∫ t

0

|bGuaGu |du <∞,

where aG is de�ned in 2.1.
A2. The process bGaG admits an F-optional projection.
A3. The process MG is a true G-martingale.

Remark 3.1. In view of assumption A3 process MG is a true F-martingale as well. If the
process MG were a G-local-martingale but not a true G-martingale, then it might not nec-
essarily be an F-local-martingale.

We will need the following two technical results.
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Lemma 3.2. Suppose that A is an F-adapted process with prelocally integrable variation,

H is a process admitting an F-optional projection, and such that H · A has an integrable

variation. Then

M =o,F(H ·A)− (o,FH)·A

is a uniformly integrable F-martingale.

Proof. Applying [HWY92, Corollary 5.31.(2)] to the process H · A, we conclude that the
process

M =o,F(H ·A)− (H ·A)o,F

is a uniformly integrable martingale. Now, by [HWY92, Theorem 5.25 ] and the remark
following this theorem, we have

(H · A)o,F = (o,FH) · A ,

which �nishes the proof.

Lemma 3.3. Let A1 and A2 be satis�ed. Then, o,FBG and
∫ ·

0
o,F(bGaG)udu exist and the

process MB given as

MB
t = o,FBG

t −
∫ t

0

o,F(bGaG)udu, t ≥ 0, (3.1)

is an F-martingale. In particular, if F is immersed in G then MB is a null process.

Proof. Since, by assumption A1, the process BG
t =

∫ t
0
Hsds, where Hs = aGs b

G
s , is prelocally

integrable and, by assumption A2, H has an optional projection, we may apply [HWY92,
Theorem 5.25] and conclude that o,FBG and

∫ ·
0
o,F(bGaG)udu exist.

Now, �x T > 0 and let
Lt = aGt b

G
t 1{t≤T}, t ≥ 0.

Then, invoking A1, A2 and applying Lemma 3.2 with At = t we conclude that o,F(L·A) and
o,FL·A exist and the process

Nt := o,F(L·A)t − (o,FL·A)t, t ≥ 0, (3.2)

is a uniformly integrable F-martingale. Now note that L ·A = (L ·A)T = (H ·A)T so, by
[HWY92, Theorem 5.7], we have for t ∈ [0, T ]

o,F(L·A)t = o,F((H ·A)T )t = o,F(H ·A)t. (3.3)

Using the de�nition of L and applying again [HWY92, Theorem 5.7] we have

o,FL = o,F(L1[0,T ]) = 1[0,T ]
o,FL = 1[0,T ]

o,F(LT ) = 1[0,T ]
o,F(HT ) = 1[0,T ]

o,FH,

which implies that
o,FL·A = (1[0,T ]

o,FH)·A = (o,FH ·A)T . (3.4)
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Using (3.3) and (3.4) we see that the martingale N de�ned by (3.2) can be written on [0, T ]
as

Nt = o,F(H ·A)t − (o,FH ·A)t = o,FBG
t −

∫ t

0

o,F(bGaG)udu, t ∈ [0, T ].

Since T was arbitrary, this proves that the process given by (3.1) is an F-martingale.
Finally, we will now prove that if F is immersed in G, then the martingale MB is a null

process. Indeed, for any t ≥ 0, we have

o,FBG
t = E

(∫ t

0

bGua
G
udu|Ft

)
=

∫ t

0

E
(
bGua

G
u |Ft

)
du

=

∫ t

0

E
(
bGua

G
u |Fu

)
du =

∫ t

0

o,F(bGaG)udu,

where the third equality is a consequence of immersion of F in G .
The proof of the lemma is complete.

Remark 3.4. Special versions of the above lemma are known in the �ltering theory. See for
example Lemma 8.4 in [LS01], or the proof of Theorem 8.11 in [RW00].

The next theorem is the main result in this section.

Theorem 3.5. Assume A1-A3. Then, the F-characteristic triple of X is given as

BF =

∫ ·
0

o,F(bGaG)sds, CF = CG, νF(dt, dx) =
(
KG
t (dx)aGt dt

)p,F
.

Proof. Given our assumptions A1 and A2 we see from Lemma 3.3 that o,FBG exists. In view
of A3 process MG is a martingale and thus the optional projection o,FMG exists as well (see
[HWY92, Remark 5.3 and Theorem 5.8]). From this and from the linearity of the optional
projection we thus conclude that the optional projection o,FX exists, and is given as

o,FX = X0 + o,FMG + o,FBG. (3.5)

Since X is F-adapted we have
o,FX = X. (3.6)

Combining (3.5) and (3.6) we obtain

X = X0 + o,FMG + o,FBG.

Thus, since the process o,FBG
t −
∫ t

0
o,F(bGaG)udu is an F-martingale (by Lemma 3.3 again),

and since, in view of A3, the process o,FMG is an F-martingale, we see that

Xt = X0 +MF
t +

∫ t

0

o,F(bGaG)sds,

where MF
t = o,FMG

t + o,FBG
t −

∫ t
0
o,F(bGaG)udu. Thus, by uniqueness of the decomposition

of the special F-semimartingale X, we conclude that

BF
t =

∫ t

0

o,F(bGaG)sds.
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The second formula, CF = CG, follows from [Jac79, Remark 9.20, p.288].

It remains to derive a formula for νF. Towards this end, we recall that νG = µp,G is a
P̃G-predictably σ-integrable random measure (i.e., using the notation (2.2), MνG is σ-�nite
on P̃G, ) such that

MνG |P̃G
= Mµ|P̃G

.

Thus since P̃F ⊂ P̃G we have
MνG|P̃F

= Mµ|P̃F
. (3.7)

Since Mµ is σ-�nite on P̃F (see the proof of Theorem 11.15 [HWY92], with P̃ there replaced
by P̃F), the above implies thatMνG is also σ-�nite on P̃F. So νG is F-predictably σ-integrable.
Thus it has the F-dual predictable projection (νG)p,F which is characterized by

M(νG)p,F|P̃F
= MνG|P̃F

. (3.8)

This and (3.7) implies that
M(νG)p,F|P̃F

= Mµ|P̃F
.

So, by the uniqueness of dual predictable projections we have (νG)p,F = νF. The proof is
complete.

Remark 3.6. Let us note that we also have

(νG)p,F = ((νG)o,F)p,F.

Indeed, by analogous reasoning as in the proof of [HWY92, Theorem 11.8] we can prove that
the random measure νG admits an F-dual optional projection if and only if it is F-optionally
σ-integrable. Now, recall that MνG is σ-�nite on P̃F. This and the fact that P̃F ⊂ ÕF
implies that MνG is also σ-�nite on ÕF, so νG is F-optionally σ-integrable. Thus there exists
(νG)o,F � the F-dual optional projection of νG, i.e., the unique F-optional measure which is
F-optionally σ-integrable such that

MνG|ÕF
= M(νG)o,F|ÕF

.

Hence we have
MνG|P̃F

= M(νG)o,F|P̃F
. (3.9)

Since MνG is σ-�nite on P̃F, so is M(νG)o,F . Therefore, invoking again [HWY92, Theorem
11.8], we conclude that there exists the F-predictable projection of (νG)o,F, i.e. ((νG)o,F)p,F,
for which we have

M((νG)o,F)p,F|P̃F
= M(νG)o,F|P̃F

.

From the latter equality and from (3.7) and (3.9) we deduce that

M((νG)o,F)p,F |P̃F
= Mµ|P̃F

.

By uniqueness of the F-dual predictable projection of µ we �nally obtain νF = µp,F =
((νG)o,F)p,F.
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The case of immersion between F and G.
We brie�y discuss here the case when F is immersed in G, i.e., any F-local martingale is a

G-local martingale. In this case we may relax our assumptions regarding the semimartingale
X.

In particular, we assume that X is a G-semimartingale with G-characteristic triple
(BG, CG, νG), but we do not assume that its jumps are bounded by 1, neither that X is
a special G-semimartingale. As before, X being F-adapted, it is an F-semimartingale and
we denote its F-characteristic triple as (BF, CF, νF).

We will show that (BF, CF, νF) = (BG, CG, νG). Towards this end, let us consider the
process X̆ de�ned by

X̆t = Xt −X0 −
∑

0<u≤t

∆Xu1|∆Xu|>1.

Clearly, the process X̆ has bounded jumps and is both G-adapted and F-adapted. Thus,
it is a special semimartingale in both �ltrations, and hence it has the canonical decomposi-
tions

X̆ = MF +BF = MG +BG.

Since, by immersion, MF is a G martingale and, obviously, BF is G-predictable, one has
that MG = MF and BG = BF (by uniqueness of canonical G-decomposition of X̆).

The fact that CF = CG follows, again, from [Jac79, Remark 9.20, p.288].

Finally, we verify that νG = νF. Note that, for any positive real measurable function g, the
process g ∗µ−g ∗νF is an F-local martingale and hence, by immersion, a G-local martingale.
This implies, by uniqueness of the compensator and by the fact that νF is G-predictable,
that νF = νG.

In conclusion,
(BF, CF, νF) = (BG, CG, νG).

4 Study of Problem B: The Case of X not adapted to F
In this section we will work under the following additional standing assumptions:

B1. There exists a square integrable F-martingale Z such that the predictable representa-
tion property holds for (F, Z): any square integrable F-martingaleM admits a representation
Mt = M0 +

∫ t
0
ψu dZu, t ≥ 0, with an F-predictable process ψ.

B2. The F-martingale Z is a G-martingale.
B3. G0 is trivial (so F0 is also trivial).

Note that, under B1 and B2, the immersion property holds between F and G. Here we
consider the case where X is a G-special semimartingale, but it is not necessarily adapted to
F. We will additionally assume that o,FX exists and that it is an F-special semimartingale.

Remark 4.1. It is well known that the F-optional projection of X exists and is an F-special
semimartingale under the strong condition that EX∗t < ∞ for all t > 0, where X∗t =
sups≤t |Xs| see, e.g., [HWY92, Theorem 8.6].
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We have the following canonical decompositions of X and o,FX:

Xt = X0 +Xc,G
t +

∫ t

0

∫
E

x(µG(ds, dx)− νG(ds, dx)) +BG
t = X0 +MG

t +BG
t , (4.1)

o,FXt = X0 + (o,FX)c,Ft +

∫ t

0

∫
E

x(µF(ds, dx)− νF(ds, dx)) +BF
t = X0 +MF

t +BF
t . (4.2)

The following theorem presents computation of the �rst two F-characteristics of o,FX.
The computation of the third F-characteristic of o,FX will be discussed later in a special
setting of Proposition 4.3, as well as in some of the examples in Section 5 on the case by
case basis.

Theorem 4.2. Let X be a special G-semimartingale with G-characteristic triple (BG, CG, νG).
Assume that:

1. The optional projection of X on F exists and has jumps bounded by 1.

2. A1, A2 and B1 to B3 are satis�ed.

3. MG is a square integrable martingale.1

Then the �rst two F-characteristics o,FX are

BF
· =

∫ ·
0

o,F(bGaG)sds, (4.3)

CF
· =

∫ ·
0

h2
sd〈Zc〉s, (4.4)

where

ht = E
(
d〈MG, Z〉Gt
d〈Z〉Gt

∣∣∣∣Ft) d[Z]⊗ dP a.e. (4.5)

Proof. In view of Assumption 3 above, we know that the process MG admits a Kunita-
Watanabe decomposition of the form

MG
t = MG

0 +

∫ t

0

HsdZs +M⊥
t , (4.6)

where M⊥ is a square integrable G-martingale orthogonal to Z satisfying M⊥
0 = 0, and H

is a G-predictable process such that
∫ ·

0
HsdZs is a square integrable G-martingale (see e.g.

[Sch01]). In particular, since Z is assumed to be square integrable, we have

d〈MG, Z〉Gt � d〈Z〉Gt ,
1Note that in Assumption A3 we postulated that MG is a martingale, but not necessarily a square

integrable martingale.
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and, in particular,

Ht =
d〈MG, Z〉Gt
d〈Z〉Gt

. (4.7)

We will show that E(M⊥
t |Ft) = 0 for every t ≥ 0. Fix t ≥ 0, note that the equality

E(M⊥
t |Ft) = 0 is equivalent to E(M⊥

t η) = 0 for any Ft-measurable bounded random variable
η. Let ηs = E(η|Fs), for any s ∈ R+.

The fact that M⊥ is orthogonal to the martingale (ηs, s ≥ 0), due to B1 and B2, implies
that E(M⊥

t ηt) = M⊥
0 E(η0) = 0. Thus, since ηt = η, we obtain E(M⊥

t η) = 0.
By linearity of F-optional projections, we may write

o,FXt = X0 +o,FMG
t +o,FBG

t = X0 +o,FMG
t +o,FBG

t −
∫ t

0

o,F(bGaG)udu+

∫ t

0

o,F(bGaG)udu. (4.8)

The process MB
t = o,FBG

t −
∫ t

0
o,F(bGaG)udu is an F-martingale (see Lemma 3.3). Invoking

assumption B2, which, in fact, postulates the immersion between F and G, and recalling
Lemma 3.3 again we see that this process is null. Hence, by uniqueness of canonical decom-
position of o,FX, we have

MF
t = o,FMG

t . (4.9)

Thus,
o,FXt = X0 + o,FMG

t +

∫ t

0

o,F(bGaG)sds = X0 +MF
t +

∫ t

0

o,F(bGaG)sds.

The above and the assumption that o,FX has jumps bounded by 1 imply that the �rst
characteristic of o,FX, that is BF, is given by (4.3).

Now, sinceMG is square integrable then, invoking the Jensen inequality, we conclude that
MF = o,FMG is square integrable. Next, invoking the predictable representation property we
see that there exists an F-predictable process h such that E

∫ t
0
h2
sd[Z]s <∞ and

MF
t =

∫ t

0

hsdZs. (4.10)

The continuous martingale part of o,FX is thus given as
∫ t

0
hsdZ

c
s , where Z

c is continuous
part of F-martingale Z, so that

CF
t =

∫ t

0

h2
sd〈Zc〉s.

We will now compute h. Towards this end, we �x t ≥ 0 and we observe using (4.9) that for
any bounded Ft-measurable random variable γ we have

E(γMG
t ) = E(γMF

t ). (4.11)

By using integration by parts formula we may write the left-hand side of (4.11) as

E(γMG
t ) = E

(∫ t

0

γ̂s−dM
G
s +

∫ t

0

MG
s−ksdZs + [γ̂,MG]t

)
, (4.12)
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where (γ̂s)s∈[0,t] is a bounded martingale de�ned (and represented) by

γ̂s := E(γ|Fs) = E(γ) +

∫ s

0

kudZu, s ∈ [0, t]. (4.13)

Now, let us note that from the above representation of γ̂ as stochastic integral with respect
to Z and from (4.6) we may write

[γ̂,MG]t =

∫ t

0

ksd[Z,MG]s =

∫ t

0

ks

(
Hsd[Z]s + d[Z,M⊥]s

)
.

Using this we obtain from (4.12)

E(γMG
t ) = E

(∫ t

0

γ̂s−dM
G
s +

∫ t

0

MG
s−ksdZs +

∫ t

0

ksHsd[Z]s +

∫ t

0

ksd[Z,M⊥]s

)
. (4.14)

Now we prove that the stochastic integrals
∫ ·

0
γ̂s−dM

G
s ,
∫ ·

0
MG

s−ksdZs and
∫ ·

0
ksd[Z,M⊥]s in

(4.14) are G-martingales on [0, t]. The �rst stochastic integral, i.e.,
∫ ·

0
γ̂s−dM

G
s , is a G-

martingale since (γ̂s−)s∈[0,t] is a bounded predictable process. Next, we prove that the local
martingale ∫ u

0

MG
s−ksdZs, u ∈ [0, t], (4.15)

is a G-martingale. Using [CE15, Lemma 16.2.5], [CE15, Theorem 16.2.6] and the Èmery
inequality for BMO ([CE15, Theorem A.8.15.]) applied to local martingales (with p = 1)
we obtain

E(MG
− ·(k ·Z))∗t ≤ CE(MG)∗t ‖(k ·Z)‖BMO.

From the Doob maximal inequality, we obtain that E(MG)∗t <∞. Next, since γ̂ is bounded,
using [CE15, Remark A.8.3.] we see that ‖(k·Z)‖BMO <∞. Therefore the local martingale
given by (4.15) is a martingale. Finally, we consider∫ u

0

ksd[Z,M⊥]s, u ∈ [0, t]. (4.16)

Using Kunita-Watanabe's inequality and the Cauchy-Schwartz's inequality we obtain that

E(k ·[Z,M⊥])∗t ≤ E
∫ t

0

|ks||d[Z,M⊥]s| ≤
(
E
∫ t

0

k2
sd[Z]s

)1/2 (
E[M⊥]t

)1/2
< +∞.

So the process given by (4.16) is a martingale. Consequently, since the processes
∫ ·

0
γ̂s−dM

G
s ,∫ ·

0
MG

s−ksdZs and
∫ ·

0
ksd[Z,M⊥]s in (4.14) are G-martingales on [0, t], the left hand side of

(4.11) takes the form

E(γMG
t ) = E

(∫ t

0

ksHsd[Z]s

)
. (4.17)

Now we deal with the right-hand side of (4.11). Invoking (4.9) and (4.13), and using inte-
gration by parts formula, we may write the right-hand side of (4.11) as

E(γMF
t ) = E(γ o,FMG

t ) = E
(∫ t

0

γ̂s−d
o,FMG

s +

∫ t

0

o,FMG
s−ksdZs + [γ̂,o,FMG]t

)
. (4.18)



May 11, 2019 Shrinkage of Filtration 14 of 28

Next, let us note that from (4.9), (4.13) and (4.10) we get

[γ̂, o,FMG]t =

∫ t

0

ksd[Z,MF]s =

∫ t

0

kshsd[Z]s.

Using this and (4.18) we obtain

E(γMF
t ) = E

(∫ t

0

γ̂s−dM
F
s +

∫ t

0

MF
s−ksdZs +

∫ t

0

kshsd[Z]s

)
. (4.19)

Applying reasoning analogous to the one that led to (4.17), and invoking (4.19) we conclude
that

E(γMF
t ) = E

(∫ t

0

kshsd[Z]s

)
. (4.20)

Putting together (4.11), (4.17) and (4.20), we see that (4.11) is equivalent to

E
(∫ t

0

Hsksd[Z]s

)
= E

(∫ t

0

hsksd[Z]s

)
(4.21)

for any k, such that
∫ t

0
ksdZs is bounded.

We will now show that (4.21) extends to any k bounded, a result that we will need in
what follows. Towards this end let us take an arbitrary predictable and bounded k and
de�ne a square integrable random variable ψ by

ψ :=

∫ t

0

ksdZs.

The random variable ψ is a (point-wise) limit of the sequence ψn := ψ ∧ n of bounded
random variables and hence Eψn → Eψ = 0. Moreover, for each n we have the predictable
representation ψn = E(ψn) +

∫ t
0
kns dZs, and thus

E
(∫ t

0

(kns − ks)2d[Z]s

)
= E

(∫ t

0

kns dZs −
∫ t

0

ksdZs

)2

= E((ψn − ψ − E(ψn))2)

≤ 2E((ψn − ψ)2) + 2 (E(ψn))2 −→
n→∞

0.

Using this and the Kunita-Watanabe inequality we obtain

E
(∫ t

0

|Hs(k
n
s − ks)|d[Z]s

)
≤
(
E
(∫ t

0

|Hs|2d[Z]s

)) 1
2
(
E
(∫ t

0

|kns − ks|2d[Z]s

)) 1
2

−→
n→∞

0

and

E
(∫ t

0

|hs(kns − ks)|d[Z]s

)
≤
(
E
(∫ t

0

|hs|2d[Z]s

)) 1
2
(
E
(∫ t

0

|kns − ks|2d[Z]s

)) 1
2

−→
n→∞

0.

Using these two facts and (4.21) for kn, we can pass to the limit in (4.21) and obtain that
(4.21) holds for any bounded k. Thus, using [HWY92, Theorem 5.16], we have

E
(∫ t

0

(E(Hs|Fs)− hs)ksd[Z]s

)
= 0
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for any bounded k. Hence taking

ks = 1{(E(Hs|Fs)−hs)>0} and ks = 1{(E(Hs|Fs)−hs)<0}

we obtain
hs = E(Hs|Fs) d[Z]⊗ dP a.e. on [0, t]× Ω. (4.22)

This, together with formula (5.10) gives (4.5).

Theorem 4.2 did not impose any special structural assumptions on the G-special semi-
martingale X. Below, we shall provide a result, which deals with a special case of the
problem studied in this section.

Proposition 4.3. Assume that conditions B1-B3 hold. Additionally, assume that the process

Z satis�es

d[Z]t = dYt + κtdt, t ≥ 0, (4.23)

where κ is F-predictable and κ 6= 0 outside an evanescent set. Let X be a square integrable

G-martingale with Galtchouk-Kunita-Watanabe decomposition of the form

Xt =

∫ t

0

HudZu +Ot, t ≥ 0, (4.24)

where O is a G-martingale orthogonal to Z and H is integrable with respect to Z and such

that its predictable projection p,FH exists. Then

do,FXt = htdZt, t ≥ 0, (4.25)

with h = p,FH outside an evanescent set, so that ht(ω) = E(Ht|Ft−)(ω) for (ω, t) outside an

evanescent set. In particular the F-characteristics of o,FX are

BF = 0, (4.26)

CF =

∫ ·
0

h2
sd〈Zc〉s, (4.27)

and

νF(A, dt) =

∫
R
1A\{0}(htx)νZ,F(dx, dt), A ∈ B(R), (4.28)

where νZ,F is the F-compensator of the jump measure of Z.

Proof. The canonical decomposition of the F-semimartingale o,FX is (cf. (4.2))

o,FXt = X0 + (o,FX)c,Ft +

∫ t

0

∫
E

x(µF(ds, dx)− νF(ds, dx)) +BF
t = X0 +MF

t +BF
t .

Now, in view of (4.3) we see that BF is a null process. Consequently, o,FX is a square
integrable F-martingale. Thus, invoking assumption B1 we conclude that

do,FXt = htdZt, t ≥ 0,
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for an F-predictable process h. The process h is such that for any bounded F-predictable
process φ and any t ≥ 0, one has

E
(∫ t

0

hsdZs

∫ t

0

φsdZs

)
= E

((∫ t

0

HsdZs +Ot

)∫ t

0

φsdZz

)
,

or, equivalently,

E
[ ∫ ·

0

hsdZs ,

∫ ·
0

φsdZs

]
t

= E
[ ∫ ·

0

HsdZs +M.,

∫ ·
0

φsdZs

]
t
.

Hence, since in view of B2 process Z is both an F-semimartingale and a G-semimartingale,
by [HWY92, Theorem 9.15 part 3)] and the fact that M is orthogonal to Z we obtain that,
for any bounded F-predictable process φ and any t ≥ 0,

E
(∫ t

0

hsφsd[Z]s

)
= E

(∫ t

0

Hsφsd[Z]s

)
,

which, by using (4.23), may be written as

E
(∫ t

0

hsφs(dYs + κsds)
)

= E
(∫ t

0

Hsφs(dYs + κsds)
)
.

This and the fact that Y is both an F and a G-martingale imply, with help of a localizing
sequence of stopping times if needed, that

E
[ ∫ t

0

hsφsκsds
]

= E
[ ∫ t

0

Hsφsκsds
]
.

Theorem 5.16. part 2) in [HWY92] applied for S = 0 and T = t, combined with [HWY92,
Theorem 5.5] yield

E
[ ∫ t

0

Hsφsκsds
]

= E
[ ∫ t

0

p,F(Hsφsκs)ds
]

= E
[ ∫ t

0

φsκs
p,FHsds

]
= E

[ ∫ t

0

φsκshsds
]
.

Since φ is arbitrary we obtain from the above that, outside an evanescent set,

κtht = κt
p,FHt

and thus, by the fact that κ does not vanish, we have h = p,FH outside an evanescent set.
The above proves (4.25). Formulae (4.26) and (4.27) follow immediately from (4.25).

To �nish the proof we need to justify (4.28). This formula is a consequence of the fact
that ∆o,FXt = ht∆Zt, which entails that the jump measure of o,FX is the image of the jump
measure of Z under the mapping (t, x) → (t, xht1{ht 6=0}), and thus the F-compensator of
o,FX is the image of the F-compensator of Z.

The proof is complete.
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5 Examples

Examples 5.1�5.4 below illustrate the results in the case when X is F-adapted. In what
follows the natural �ltration of a process Y is denoted by FY .

Example 5.1. Consider two one-point càdlág processes Y 1 and Y 2 on a probability space
(Ω,F ,P), and let Y = (Y 1, Y 2). That is, Y i (i = 1, 2) starts from 0 at time t = 0 and jumps
to 1 at some random time. Thus, Y can be identi�ed with a pair of positive random variables
T1 and T2 given by Ti := inf{t > 0 : Y i

t = 1}, i = 1, 2. In other words, Y i
t = 1{Ti≤t}, i = 1, 2.

We assume that, under P, the probability distribution of (T1, T2) admits a density function
f(u, v) which is continuous in both variables.

Now, let X = Y 1, F = FX and G = FY . Clearly, X is a special G-semimartingale and a
special F-semimartingale on (Ω,F ,P).

The G-characteristics of X are (BG, 0, νG), where

BG
t =

∫ t

0

κsds, νG(ds, dx) = δ1(dx)κs ds,

δ1 is the Dirac measure at 1, and κ is given by (this result follows, for example, by application
of [LB95, Theorem 4.1.11])

κs =

∫∞
s
f(s, v) dv∫∞

s

∫∞
s
f(u, v) du dv

1{s≤T1∧T2} +
f(s, T2)∫∞

s
f(u, T2) du

1{T2<s≤T1}, s ≥ 0.

Thus, according to Theorem 3.5, the F-characteristics of X are (BF, 0, νF), where

BF
t =

∫ t

0

o,F(κ)sds, νF = (νG)p,F.

Now, we will provide explicit formulae for BF and νF; for the latter, we only need to compute
νF(dt, {1}). It can be easily shown that these computations boil down to computing the F-
optional projection of the process κ. Indeed, for an arbitrary F-predictable, bounded function
W on Ω× R we have

E
(∫

R+×R
W (s, x)νG(ds, dx)

)
= E

(∫
R+

W (s, 1)κsds
)

= E
(∫

R+

p,F(W (·, 1)κ·)sds
)

= E
(∫

R+

p,F(κ)sW (s, 1)ds
)

= E
(∫

R+×R

p,F(κ)sW (s, x)δ1(dx)ds
)
,

where p,F(κ) denotes the F-predictable projection of κ. Next, we note that the measure ρ
de�ned as

ρ(dt, dx) := p,F(κ)tδ1(dx)dt

is F-predictable, and thus, due to uniqueness of the dual predictable projections, we have
ρ = (νG)p,F, and so νF = δ1(dx) p,F(κ). Finally, we note that, in view of the continuity
assumptions on f and that fact that κ admits two jumps only, we have

E
(∫

R+×R

p,F(κ)sW (s, x)δ1(dx)ds
)

= E
(∫

R+×R

o,F(κ)sW (s, x)δ1(dx)ds
)
,
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where o,F(κ) denotes the F-optional projection of κ. Using the key lemma (see e.g. [AJ17,
Lemma 2.9]) we obtain

o,F(κ)s = E
( ∫∞

s
f(s, v) dv∫∞

s

∫∞
s
f(u, v) du dv

1{s≤T1∧T2} +
f(s, T2)∫∞

s
f(u, T2) du

1{T2<s≤T1}

∣∣∣∣Fs)
=

∫∞
0
f(s, v) dv∫∞

s

∫∞
0
f(u, v) du dv

1{T1>s}.

Consequently,

BF
t =

∫ t

0

∫∞
0
f(s, v) dv∫∞

s

∫∞
0
f(u, v) du dv

1{T1>s}ds

and νF((0, t], {1}) is given as

νF((0, t], {1}) =

∫ t

0

∫∞
0
f(s, v) dv∫∞

s

∫∞
0
f(u, v) du dv

1{T1>s}ds.

We note that the last result agrees with the classical computation of intensity of T1 in its
own �ltration, which is given as λ1

s = f1(s)
1−F 1(s)

with F 1(s) = P(T1 ≤ s) and f 1(s) = ∂F 1(s)
∂s

.

Example 5.2. Let X be a real-valued process on (Ω,F ,P) satisfying

dXt = mtdt+
2∑
j=1

σjtdW
j
t + dMt, t ≥ 0,

whereW js are independent standard Brownian motions (SBMs), andMt =
∫ t

0

∫
R x(µ(ds, dx)−

ν(ds, dx)) is a pure jump martingale, with absolutely continuous compensating part, say
ν(dx, dt) = η(t, dx)dt. We assume that M is independent of W js. The coe�cients m and
σj > 0, j = 1, 2 are adapted to G := FW 1,W 2,M and bounded.
Let F = FX . Since M and σ1 ·W 1 + σ2 ·W 2 are true G-martingales, then X is a special
semimartingale in G and thus in F.

The G-characteristics of X are

BG
t =

∫ t

0

msds, CG
t =

∫ t

0

((σ1
s)

2 + (σ2
s)

2)ds, νG(dx, dt) = η(t, dx)dt.

Now, in view of Theorem 3.5, we conclude that the F-characteristics of X are

BF
t =

∫ t

0

o,F(m)sds, CF
t =

∫ t

0

((σ1
s)

2 + (σ2
s)

2)ds, νF(dx, dt) = (η(t, dx)dt)p,F.

Example 5.3. In this example we consider time homogeneous Poisson process with values in
R2. There is a one-to-one correspondence between any time homogeneous Poisson process
with values in R2, say N = (N1, N2), and a homogeneous Poisson measure, say µ, on
E := {0, 1}2 \ {(0, 0)}.2 See for instance discussion in [BJVV08].

2We refer to [JS03] for the de�nition of the Poisson measure.
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Let G = FN , and let ν denote the G-dual predictable projection of µ. The measure ν
is a measure on a �nite set, so it is uniquely determined by its values on the atoms in E.
Therefore the Poisson process N = (N1, N2) is uniquely determined by

ν(dt, {1, 0}) = λ10dt, ν(dt, {0, 1}) = λ01dt, ν(dt, {1, 1}) = λ11dt (5.1)

for some positive constants λ10, λ01 and λ11. Clearly, the Poisson process N = (N1, N2) is
a G-special semimartingale, and the G-characteristic triple of N is (B, 0, ν), where

Bt =

[
(λ10 + λ00)t

(λ01 + λ00)t

]
.

Let X = N1. Then, X is a G-special semimartingale, and the G-characteristic triple of
X is (BG, 0, νG), where

νG(dt, {1}) = ν(dt, {(1, 0)}) + ν(dt, {(1, 1)}) = λ10dt+ λ11dt, νG(dt, {0}) = 0,

and BG
t = (λ10 + λ00)t.

Now, let us set F = FX . To �nd the F-characteristics of X we use Theorem 3.5. Since
the G-characteristics of X are deterministic we have

o,F(bGua
G
u ) = o,F(λ10 + λ00) = λ10 + λ00.

Analogously

(KG
t (dx)aGt dt)

p,F = ((λ10 + λ11)δ1(dx)dt)p,F = (λ10 + λ11)δ1(dx)dt.

Thus the F-characteristics of X are the same as its G-characteristics, that is

(BF, 0, νF) = (BG, 0, νG).

Example 5.4. Let Y = (Y 1, Y 2)> be given as the strong solution of the SDE

dY (t) = m(Y (t))dt+ Σ(Y (t))dW (t), Y (0) = (1, 1)>, (5.2)

where W = (W1,W2)> is a two dimensional SBM process on (Ω,F ,P), and where

m(y1, y2) = (m1(y1, y2),m2(y1, y2))>, Σ(y1, y2) =

(
σ11(y1, y2) σ12(y1, y2)
σ21(y1, y2) σ22(y1, y2)

)
are bounded. Next, let us set G = FY , X = Y 1 and F = FX . Hence

dX(t) = m1(X(t), Y 2(t))dt+ σ1,1(X(t), Y 2(t))dW 1(t) + σ1,2(X(t), Y 2(t))dW 2(t) (5.3)

Suppose that function Σ satis�es the following condition

σ2
11(y1, y2) + σ2

12(y1, y2) = σ2
1(y1), (y1, y2) ∈ R2,
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for some function σ1 > 0, and suppose that function m1 satis�es

m1(y1, y2) = µ1(y1) (y1, y2) ∈ R2.

Then (5.3) takes form

dX(t) = µ1(X(t))dt+ σ1(X(t))dZ(t), X(0) = 1,

where

Z(t) =

∫ t

0

σ1,1(X(t), Y 2(t))

σ1(X(t))
dW1(t) +

∫ t

0

σ1,2(X(t), Y 2(t))

σ1(X(t))
dW2(t)

is a G-adapted process, which is a continuous G-local martingale. Since (Z2(t) − t)t≥0 is a
local martingale we obtain by Lévy's characterization theorem that Z is a standard Brownian
motion in the �ltration G. Thus using continuity of paths of X we conclude that X has the
G-characteristic triple given as (BG, CG, 0), where

BG
t =

∫ t

0

µ1(Xu)du, CG
t =

∫ t

0

σ2
1(Xu)du, t ≥ 0.

We will now apply Theorem 3.5 so to compute the F-characteristics of X. Since X is
F-adapted the F-characteristics of X are

BF
t =

∫ t

0

o,F(µ1(Xu))du =

∫ t

0

µ1(Xu)du, CF
t = CG

t =

∫ t

0

σ2
1(Xu)du

Finally by continuity of paths

νF(dt, dx) = (νG(dt, dx))p,F = (0)p,F = 0.

So we conclude that (BG, CG, 0) = (BF, CF, 0).

The remaining examples refer to the case when X is not F-adapted. As discussed in
Section 4, the Theorem 4.2 addresses computation of the �rst two F�characteristics of the
optional projection of X on the �ltration F. As of now, we do not have a generic formula
that would allow for the computation of the third characteristic, that is the computation
of νF. This, in general, needs to be done on the case by case basis. Nevertheless, in the
special set-up that �ts Proposition 4.3, the complete story about the F�characteristics of
the optional projection of X on the �ltration F can be told.

Example 5.5. Let (Ω,F ,P) be the underlying probability space and let G be the �ltra-
tion generated by a Brownian motion B and a time inhomogeneous Poisson process N
with deterministic compensator ν(t) =

∫ t
0
λ(s)ds, t ∈ R+, so that (ν(t))t∈R+ is the unique

continuous deterministic function such that (Mt)t∈R+ := (Nt − ν(t))t∈R+ is an (FN ,P)-
martingale. We assume that B and N are independent under P, hence M is also a (G,P)-
martingale. Let φ : R+ −→ R and α : R+ −→]0,∞[ be two deterministic functions, with∫ t

0
α2(s)ds <∞, t ≥ 0. Let i(t) = 1{φ(t)=0}, and set

λ(t) =

{
α2(t)/φ2(t) if φ(t) 6= 0,
0 if φ(t) = 0,

t ∈ R+.
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We assume that λ is such that limt→∞ ν(t) =∞ and ν(t) <∞, t ≥ 0.
By Proposition 4 in [É89] the process V given by

dVt = i(t)dBt +
φ(t)

α(t)
(dNt − λ(t)dt), t ≥ 0, V0 = 0, (5.4)

is the unique strong solution of the following structure equation

d[V ]t = dt+
φ(t)

α(t)
dVt, t ≥ 0, V0 = 0. (5.5)

By Proposition 3 ii) in [É89] the process V has the predictable representation property in
F. Taking Zt =

∫ t
0
α(s)dVs, t ≥ 0, as in [JP02] we see that Z satis�es

dZt = i(t)α(t)dBt + φ(t) (dNt − λ(t)dt) , t ≥ 0, Z0 = 0. (5.6)

and
d[Z]t = α2(t)dt+ φ(t)dZ(t), t ≥ 0, Z0 = 0, (5.7)

The process Z is obviously a square integrable (G,P)-martingale. We shall denote by F the
natural �ltration of Z, which is the same as the natural �ltration of V and satis�es F ⊂ G
so that Z is a square integrable (F,P)-martingale. Clearly, Z has predictable representation
property in F since α > 0 and V has predictable representation property in F.

Clearly, conditions B1-B3 are satis�ed here. Moreover, the process Z satis�es condition
(4.23) with dYt = φ(t)dZt and κ(t) = α2(t).

Let now X be a square integrable G-martingale. Since G is the �ltration generated by
B and N , the martingale X can be represented in the form

Xt = X0 +

∫ t

0

γsdBs +

∫ t

0

∆sdMs

for someG-predictable processes γ and ∆. Thus as aG semimartingale, X has characteristics
(0, CG, νG) where

CG =

∫ ·
0

γ2
t dt,

and

νG(A, dt) =
(∫

R
1A\{0}(x)δ∆t(dx)

)
λ(t)dt, A ∈ B(R).

On the other hand X can be written in the form of the Galtchouk-Kunita-Watanabe de-
composition with respect to Z as

Xt = X0 +

∫ t

0

HudZu +Ot, t ≥ 0, (5.8)

where O is a G-martingale orthogonal to Z and H is a G�predictable process.
Thus, for t ≥ 0 we have

Ot =

∫ t

0

(
γs −Hsi(s)α(s)

)
dBs +

∫ t

0

(
∆s −Hsφ(s)

)
dMs. (5.9)
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The orthogonality of O and Z implies that 〈Z,O〉t = 0 for any t ≥ 0. This together with
(5.9) imply that for any t ≥ s ≥ 0, the process H satis�es∫ t

s

((
γt −Hti(t)α(t)

)
i(t)α(t) +

(
∆t −Htφ(t)

)
φ(t)λ(t)

)
dt = 0.

Thus, for any t ≥ 0 we have

Ht =
γti(t)α(t) + ∆tφ(t)λ(t)

i2(t)α2(t) + φ2(t)λ(t)
=

γt
α(t)

i(t) + (1− i(t)) ∆t

φ(t)
dt⊗ dP a.e. . (5.10)

Now, according to Proposition 4.3, we have

do,FXt = htdZt, t ≥ 0, (5.11)

with ht = p,FHt for t ≥ 0 outside of an evanescent set, so that ht = E(Ht|Ft−) for t > 0
outside of an evanescent set. In particular, in view of Proposition 4.3 again, this implies
that the F-characteristics of o,FX are

BF = 0, (5.12)

CF =

∫ ·
0

h2
si

2(s)α2(s)ds =

∫ ·
0

(E(γs|Fs−))2i(s)ds, (5.13)

and, for any A ∈ B(R),

νF(A, dt) =
(∫

R
1A\{0}(htx)δφ(t)(dx)

)
λ(t)dt

=
(∫

R
1A\{0}(E(Ht|Ft−)x)δφ(t)(dx)

)
(1− i(t))λ(t)dt

=
(∫

R
1A\{0}

(
(1− i(t))E(∆t|Ft−)

φ(t)
x
)
δφ(t)(dx)

)
(1− i(t))λ(t)dt

=
(∫

R
1A\{0}(x)δE(∆t|Ft−)(dx)

)
λ(t)dt.

Example 5.6. Consider a Poisson process N with intensity λ and an independent standard
Brownian motionW . Take X = N , G = FX∨FW . Clearly, X is a special G-semimartingale,
and we have

Xt = MG
t +BG

t , t ≥ 0,

where
MG

t = Xt − λt, BG
t = λt, t ≥ 0.

The G-characteristic triple of X is (BG, 0, νG), where

BG
t = λt, νG(dt, dx) = λδ1(dx)dt, t ≥ 0.

In particular, bGt = λ and aGt = 1 for t ≥ 0.
Take F = FW . We will use Theorem 4.2 taking Z = W to compute the �rst two F-

characteristics of o,FX. Then, we see that M⊥ = MG (cf. (4.6)), and thus, in view of (4.5),
we conclude that h = 0. Consequently, using Theorem 4.2, we obtain

BF
t = λt, CF

t = 0, t ≥ 0.
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In order to compute the third F-characteristic of o,FX we note that

o,FXt = E(Xt) = λt, t ≥ 0, (5.14)

and so, νF = 0. Observe that formula (5.14) also renders the �rst two F-characteristics of
o,FX: BF

t = λt, CF
t = 0, t ≥ 0, which (of course) agrees with the formulae we derived using

Theorem 4.2.

We will now present an example where X is continuous special G�semimartingale, and
o,FX is a purely discontinuous special F�semimartingale.

Example 5.7. Consider a standard Brownian motion W . Let X = W and take G = FX .
The G-characteristics triple of W is (0, CG, 0), where CG

t = t. In particular, we have bG = 0
and aG = 1. Next, de�ne the �ltration F as

Ft = FXn , t ∈ [n, n+ 1), n = 0, 1, 2, . . .

The optional projection of X on F exists and is given as

o,FXt = Xn, t ∈ [n, n+ 1), n = 0, 1, 2, . . .

In order to compute the F-characteristics of o,FX we �rst observe that the canonical semi-
martingale representation of o,FX, with respect to the standard truncation function, is given
as

o,FX = x ∗ µ = (x1|x|≤1) ∗ ν + (x1|x|≤1) ∗ (µ− ν) + (x1|x|>1) ∗ µ, (5.15)

where
µ(dt, dx) =

∑
n≥1

δ(n,Xn−Xn−1)(dt, dx),

and

ν(ω, dt, dx) =
∑
n≥1

δn(dt)
1√
2π
e−

x2

2 dx.

From (5.15) we obtain

BF
t =

∫ t

0

∫
|x|≤1

xν(dt, dx) = 0.

Thus, the F-characteristics triple of o,FX is (BF, 0, νF), where

νF = ν.

Example 5.8. Let us consider the case where F is a Brownian �ltration, G its progressive
enlargement with a strictly positive random time τ . Taking Xt = 11{τ≤t}, t ≥ 0 we have (cf.
[AJ17]),

G = FOFX ,
where FOFX is the smallest right-continuous �ltration which contains F and FX . Now, we
de�ne the Azéma supermartingale A by

At = P(τ > t|Ft), t ≥ 0,
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and we write its Doob-Meyer decomposition as

At = mt − bt, t ≥ 0,

where m is an F-martingale, and b is an F-predictable, increasing process which is the F-
dual predictable projection of X. We assume that τ satis�es the following Jacod's absolute
continuity assumption

P(τ > s|Ft) =

∫ ∞
s

αt(u)du, s, t ≥ 0, (5.16)

where, for any u ≥ 0, the process α·(u) is a positive continuous F-martingale and the map
(ω, t, u) → αt(ω;u) is P̃F-measurable. Using the fact that

∫∞
0
αt(u)du = P(τ > 0) = 1 and

α·(u) is a martingale, it is shown in Proposition 4.1 in [EKJJ10] that

dbt = αt(t)dt

and

mt = E
(∫ ∞

0

αu(u)du|Ft
)

= 1 +

∫ t

0

αu(u)du−
∫ t

0

αt(u)du. (5.17)

Note that in the above set-up, the process A is continuous.
The process X is a special G-semimartingale and we know (cf. Corollary 5.27 in [AJ17])

that its canonical decomposition is given as

X = MG +BG,

and its G-characteristics are (BG, 0, νG), where

BG
t =

∫ t

0

(1−Xs)
dbs
As

=

∫ t

0

(1−Xs)αs(s)

As
ds, t ≥ 0

and

νG(dt, dx) = δ1(dx)
(1−Xt−)αt(t)

At
dt.

In particular, note that here we have bGt = (1−Xt)αt(t)
At

and aGt = 1.
Now, using Lemma 3.3 and observing that o,FX = 1−A we can easily compute the �rst

F-characteristic of o,FX,

BF
t =

∫ t

0

o,F
(

(1−Xs)αs(s)

As

)
ds =

∫ t

0

αs(s)ds.

Next, recalling that A is a continuous process we conclude that νF = 0. Moreover, we see
that CF = 〈m〉. This completes the computation of the F-characteristics of o,FX which are
(BF, 〈m〉, 0).

The next example is, in a sense, opposite to Example 5.7: here, X is a purely discontin-
uous special G�semimartingale, and o,FX is a continuous special F�semimartingale.
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Example 5.9. Let F be a Brownian �ltration and G its progressive enlargement with a
strictly positive random time τ ∈ F∞ satisfying Jacod's absolute continuity assumption
(5.16) with some density αt(u), t, u ≥ 0. Such a random time can be de�ned as τ :=
ψ(
∫∞

0
f(t)dBt), where ψ is a di�erentiable, positive and strictly increasing function, and B

is a real valued standard F-Brownian motion (see [EKJJZ14]). Let X̂ be the compensated
martingale

X̂t = 11{τ≤t} −
∫ t∧τ

0

αs(s)

As
ds, t ≥ 0.

We see that its G-characteristic triple is (0, 0, νG) where, as in the previous example,

νG(dt, dx) = δ1(dx)
11{t<τ}αt(t)

At
dt.

The F-optional projection of X̂, say υ, is a continuous martingale, which is not constant.
Indeed, note that if υ were constant then υ∞ = υ0 = 0. Given that, one has X̂∞ =
1 −

∫ τ
0
αs(s)
As

ds ∈ F∞ and υ∞ = X̂∞. But since υ∞ = 0, then X̂∞ = 0, and X̂ being a
martingale would be null, which it is not. This is a contradiction, showing that υ is not
constant. Consequently, its F characteristic triple is (0, CF, 0), with CF 6= 0.

6 Conclusion and open problems for future research

As stated in the Introduction this paper is meant to initiate a systematic study of the change
of properties of semimartingales under shrinkage of �ltrations and, when appropriate, under
respective projections. The paper does not aim at a complete and comprehensive study of the
topic. Rather, we analyze in some special settings a selection of relevant research problems.
Our study contributes, we believe, to understanding and solution of these problems.

Given its pioneering nature the study originated here leads to numerous open problems
and calls for extensions in numerous directions. Below, we indicate some such open problems
and suggestions for continuation of the research presented in this paper.

The results presented in this paper use several non-trivial assumptions. A natural direc-
tion for continuation of the present work will be to try to eliminate some of these assump-
tions.

Recall the decomposition (4.8)

o,FXt = X0 + o,FMG
t + o,FBG

t = X0 + o,FMG
t + o,FBG

t −
∫ t

0

o,F(bGaG)udu+

∫ t

0

o,F(bGaG)udu.

As it was shown in the proof of Theorem 4.2, if the immersion hypothesis B2 is postulated,
then the martingale MB

t = o,FBG
t −

∫ t
0
o,F(bGaG)udu is null. Therefore it does not intervene

in the representation of the F-characteristics of o,FX. If however the martingale MB is not
null, then the computation of the F-characteristics of o,FX in terms of the G-characteristics
of X is much more challenging, and perhaps may not be doable.

The immersion hypothesis B2 postulated Theorem 4.2 is also heavily exploited in compu-
tation of the second F-characteristic ofX, that is in computation of CF. In fact, computation
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of CF in terms of G-canonical decomposition appears to be much more di�cult, or even im-
possible, without the hypothesis B2, as the following reasoning shows: Assume that F is a
Brownian �ltration generated by W , so that W enjoys the predictable representation prop-
erty in F. Also, take G to be the progressive enlargement of F by a random time τ .3 Assume
that there exists µ, a G-predictable integrable process such that WG de�ned for any t ∈ R+

as

WG
t := Wt +

∫ t

0

µsds

is a G-martingale (hence, a G-Brownian motion). Then, any G-martingale X can be written
as

Xt = X0 +

∫ t

0

ψsdW
G
s +M⊥

t , t ≥ 0,

where ψ is a G-predictable process and M⊥ a G-martingale orthogonal to WG (in fact, it is
a purely discontinuous martingale). Moreover, one can show (using the same methodology
as in [GJW19]) that o,FX, which is an F-martingale, has the form

o,FXt = o,FX0 +

∫ t

0

γsdWs, t ≥ 0,

where γ satis�es γt = E(ψt + µtXt|Ft). So here we have that

CF
t =

∫ t

0

(E(ψs + µsXs|Fs))2ds,

CG
t =

∫ t

0

ψ2
sds.

Clearly, CG alone does not su�ce to compute CF, unless µ ≡ 0 � i.e., F is immersed in G.
In fact, it is not clear at all, how to compute the CF characteristic of X in terms of the
canonical decomposition and G characteristics of X.

The discussion above points to an important open problem: extend, if possible, the
results of Theorem 4.2 to the case when the immersion hypothesis B2 is abandoned, and
extend the result of [GJW19] to the case of general continuous semi-martingales.

Another challenging problem for future research is weakening of the predictable repre-
sentation property condition B1, and replacing it with the postulate of the weak predictable
representation property condition for Z, that is with the postulate that every local F�
martingale Y admits the representation

Yt = Y0 + ψ · Zc
t + ξ ∗ µ̃Zt , t ≥ 0,

where ψ is an F-predictable process, ξ is a P̃F-measurable function, Zc is the continuous
martingale part of Z, and µ̃Z is the F�compensated measure of jumps of Z.

Finally, one would like to explicitly compute h showing in (4.4) in terms of cG and bG.
A possible starting point for this may be the following �master equation�

CG
t =

∫ t

0

H2
sd〈Zc〉s + 〈M⊥,c〉t =

∫ t

0

cGs a
G
s ds

3See e.g. Chapter 5 in [AJ17] for the concept of the progressive enlargement of �ltrations.
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From this equation on would try to compute H in terms of cG and aG and then use (4.5)
to compute h. In special cases, such as the one presented in Example 5.5, the quasi-explicit
computation of h can be done. But, in general, this remains a challenging open problem.
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