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Abstract—This paper presents the properties and design pro-
cedure of the configuration matrix of over-actuated marine
systems. Performance indices introduced in manipulator robots
are extended in over-actuated marine vehicles. Moreover, two
novel indices, namely reactive index and robust index, are
proposed for configuration matrix design process. The problem is
formulated as a multi-objective optimization problem. Simulation
and preliminary experimental results show the solutions of the
design process.

Index Terms—Over-actuated systems, underwater robots, per-
formance indices, multi-objective optimization

I. INTRODUCTION

Actuation System (AS) is a pivotal part of a robotic system.
It is in charge of realizing the desired fore/torque provided
by the control system (F‘fg)(see Figure la). Actuation sys-
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Fig. 1: Navigation Guidance Control and Actuation System

tem is classically classified into 3 categories: under-actuated,
iso-actuated and over-actuated systems, depending on the
numbers, positions and directions of thrusters carried by the
robot in comparison with the numbers of degrees of freedom
(DOFs). However, this classification should be considered
along each axis since a robot can be under-actuated with more
thrusters than DOFs (for instances, some thrusters have the
same direction). The properties of an over-actuated system
have been studied in aerospace control, where critical safety
is required [1], and for marine vehicles [2] where the harsh
oceanic condition may easily produce actuator failures.

The typical structure of an actuation system is shown in
Figure 1b. In this paper, we only focus on the actuator config-
uration part which is the geometric distribution of actuators. In

This work is supported by Labex NUMEYV, Region Occitanie, FEDER, and
MUSE

Montpellier, France
zapata@lirmm.fr

Montpellier, France
lepinay @lirmm.fr

Montpellier, France
benoit.ropars @lirmm.fr

linear case, this is called a configuration matrix. The evaluation
of the performance of a given geometric configuration of
thrusters can be done in evaluating the properties of the
configuration matrix with respect to several indices.

Different performance criteria related to the actuators con-
figuration design have been proposed in the literature. For
mobile manipulation, manipulability index was proposed in
[3]. Attainability was studied using workspace volume es-
timation in [4], [5], and [6]. Regarding to the comparison
of known actuators configurations of over-actuated marine
systems, manipulability index, energetic index and force index
were proposed in [7]. However, these indices are only used to
evaluate a given configuration. Considering reverse process,
designing a configuration matrix which optimizes some criteria
is not addressed in the literature, especially in the marine field.

This paper focuses on the design process of the config-
uration matrix of an over-actuated marine system with the
performance indices in which some of them, namely manip-
ulability, energetic, workspace indices, are extended from the
manipulator robotic field and two of them, namely reactive
and robust indices, are originally proposed. The novelties of
the paper can be summarized as follows:

1) To extend the performance indices of manipulators to

marine systems and to propose two novel indices.

2) To analyze the relationship between different perfor-

mance indices.

3) To propose a solution for multi-objective formulated

optimization problem.

The paper is organized as follows. The used nomenclatures
are shown in the section II. Performance indices and problem
formulation are depicted in the section III. Mathematical
analysis and problem solution are displayed in the next section.
Simulation and preliminary experimental results are presented
in the section V and VI respectively. Finally, conclusion is
given in the section VII. All proofs are given in the appendix
section.

II. NOTATIONS

This section depicts most of notations used in the paper.
However, specific notations will be introduced when needed.
In order to illustrate the notations, a given robot configuration
is shown in Figure 2a.
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Fig. 2: Configuration model

A Configuration matrix

AT Moore-Penrose pseudo-inverse of
A matrix

u; (3 x 1)- normalized vector of direc-
tion of the i** thruster

r; (3 x 1)- normalized vector of posi-

tion of the i*" thruster

F,, (m x 1)- Force vector of m thrusters

o Force magnitude of the i thruster

F% (6 x 1)- Desired force (force and
torque) w.r.t body frame

Fp=(f) (6 x1)- Resulting force (force and
torque) w.r.t body frame

Cm (m x 1)- Input vector of thrusters

® Cross product

Il Euclidian norm

-1 p-norm

m the number of thrusters

n the number of degree of freedoms
(DOFs)

f (3 x 1)-the vector of force elements
in the resulting force Fp

T (3 x 1)-the vector of torque ele-

ments in the resulting force Fp
III. PROBLEM FORMULATION

A. Model of actuators configuration

In the configuration matrix design problem, thrusters carried
by the robot are characterized by their positions and orienta-
tions w.r.t the body frame of the robot. This can be seen in
Figures 2a and 2b. The configuration matrix A is described:

A ( u; us U, )
T \dir1 ®@u; dera ® uz AdmTm @ Um
(D
_ (w1 a2 Um \ _ A,
o (7'1 T2 Tm) - (A2)

where A, Ay € R3*™ are sub-matrices of A which concern
force and torque elements respectively; u; and r; are direction
and position vector of the i*" thruster w.r.t the body frame. It
is obvious to see that 77.u; = 0. This is one of the constraints
of the configuration matrix; m is the number of thrusters, d;
is the distance from origin of body-frame to the position of
it" thruster.

In this paper, we assume that all distances from thrusters
positions to the center of body-frame are the same, d; =

const,i = 1...m. Without loss of generality, we can assume
that d; = 1,s =1,...,m.

B. Manipulability index

Manipulability index was first introduced in [8] for manip-
ulator mechanisms. It measures the capability of producing
the same force/torque in any direction. It is defined as the
condition number of the configuration matrix A:

In = Cond(A) = Zmaz )

Omin
where 0,,4: and o,,;, are the maximum and minimum
singular value of configuration matrix, A, respectively. The
objective is to minimize this index. If I,,, = 1, the robot is
isotropic or if 1,,, = oo the robot only acts along one direction.

C. Energetic index

In fact, energy consumption of a robot depends on many
factors such as the mission of the robot, architecture of the
robot, and so on. In this paper, energetic index measures the
variation of energy consumption of a marine system when
the desired force/torque changes. It was first introduced in
[7]. However, being different from [7], the norm of thruster
force vector, pg = ||Fim|l2, is used to qualify the energy
consumption that a marine robot spends to produce forces and
torques, and can be calculated as Equation (3).

pe = |Fulla= | D Fi; = |AT.Fgll2 @)
=1

The energetic index is measured when the normalized vector
of desired force and torque change all over a 3D-sphere.
Therefore, it is defined as:

1
I, = g / (weprf + weTpE‘r)dS 4
S

where S is the surface area of 3D sphere; w.s and we, are
weighting coefficients; pgy, pr- are derived from pg as:

pes = |ATFEE)]| = AT ()
per = [|[ATFEL(7)| = [[A*T(2)], for torque sphere case.
&)

where u; = [cosfcosy sinfcosy siny]l is a normal-
ized vector in spherical coordinates with § € [—m, 7], and

Y e [—n/2,7/2].
D. Workspace index

|, for force sphere case

Workspace index measures the volume of attainable region
of resulting force/torque space w.r.t body frame. It is defined
as:

Iy = wyfVOl(Fp) 4+ wyr Vol (Fr) (6)

where Vol is the attainable volume of a space; w,,; and w,
are weighting coefficients; Fr and Fp are resulting force and
torque space with respect to saturation values of each thruster
respectively.



E. Reactive index

Reactive index quantifies how fast the actuation system
is able to change the orientation of the resulting force Fp
(ideally F%). Suppose that the robot is travelling in a direction
with a set of thrusters forces F,,; induced from desired force
vector F4,. The desired body-frame action changes to another
direction (or the same direction with the different manigtude)
with the desired force vector F%,, so thrusters have to produce
another set of thruster forces F',,». The 2-norm of deviation
of thruster forces, AF,, = Fp,1 — Fro = [AF1AF s - -
AF,m]T, is considered as the reactive capability of the robot.
Referring to the approximation of characteristic of thrusters as
Fig 3a, the response time from F),; to F},o is less than the
response time from Fj,; to Fj,3 (in linear section, the dead-
zone of thrusters charactersistics is neglected in this paper).
Hence, we have:

AF,, = A*(F§, — F,) = ATAFg (7
|AF,, | = [|[ATAFS|| < |AT[|AFS] (8)
| AF |
te—ml < AT )
|AFE||

From Equation (9), the sensitivity of the thruster forces with
respect to desired forces, in other words the variation of
thruster forces w.r.t desired forces, is upper-bounded by the
norm of pseudo-inverse of the configuration matrix, |A™].

We define the reactive index as:
Ire = ||AT| (10)

It is obvious to see that if this index is small, the robot is more
reactive. Then, the objective of design process is to minimize
reactive index.
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We have:

m
Fp = AF,, = ZaiFm,i (11)
i=1
where a; is the 7" column of the matrix A, and Fy, ; is the
force magnitude of i*" thruster.

When one or more thrusters completely fail, the value of
F,, i = 0. Note that in the case where the i*" thruster is partly
failed, the value of F,, ; can be bounded to a small value (not
addressed in this paper). This is equivalent to consider that
the corresponding column a; of the configuration matrix A
equals to zero vector. Therefore, Equation (11) can be written
as:

Fzs=AF,, (12)

where A’ matrix is the A matrix with one or more corre-
sponding columns equal zero vectors.

We discuss hereafter the two questions: conditions of the
matrix A’ to guarantee that the desired action (F%) can still
be attainable, and what is the maximum number of thrusters
failure?

For addressing these two questions, suppose that k-thrusters
fail, and the Equation (12) results in 6 equations (dimension
of F is 6 x 1) and (m — k) variables because the matrix A’
is 6 x m with k columns are zero vectors. It is obvious to see
that if rank(A') = 6, for given F%, there always exits F,,
such that Fg = A/Fm. This can be interpreted as m —k > 6
or k < m — 6. The conditions of the configuration matrix and
the maximum number of thrusters failure that guarantee the
robustness of a marine robot are stated as:

1) The maximum of thrusters failure: m — 6

2) Robust condition: the rank of configuration matrix al-

ways equals to 6, i.e, rank(A') = 6, if any columns,
from 1 to maximum (m — 6), of A matrix equal to
zero vectors. If rank(A') < 6, the system becomes
under-actuated, the guidance and control have to change
to guarantee the robot’s mission. This problem is not
addressed in this paper.

We define the robust index as:

I, = rank(Al<;—¢) =6 (13)

where A|<,,_¢ is the A matrix with the maximum number
of columns being zero is (m — 6). This novel index will be
verified in the solving process of the problem.

(a) Model of thruster character- (b) Real thruster characteristic(Blue Robotics) G. Conﬁguration matrix design problem

istic

Fig. 3: Thruster characteristic

F. Robust index

This criterion measures the robust level the AS of a marine
robot. It means that if any thrusters of the robot fails, the
remaining ones can still perform the robot’s mission. In
particular, for any F% vector, there always exists a F,,, vector
to satisfy the equation Fp = AF,, and Fp is as close as
possible to F%.

The design problem is written as:

. . 1 T
m&nV(A) = mAln[Im 1. T I.] (14)
st |l =1,i=1,2,..m

|7l < 1,6 =1,2,..m
TZTui = 071 = 17 27 m
Iro = Tank(A|§1n—6) =n==06

A multi-objective optimization technique, goal attainment

approach, is used to find a Pareto solution of the design
problem.



IV. PROBLEM SOLUTION

Our objective is to find an optimal distribution (positions
and orientations) of thrusters of the marine system. This can
be derived from an optimal configuration matrix A which is
a solution of (14).

A. Mathematical analysis

The configuration matrix A has the form as:

u u u
A= 1 2 m (15)
T1 T2 Tm
We have:
u u u r u u u
1 2 1 2
B = ATA _ m m
T1 T2 Tm T1 T2 Tm
(16)
ulTu1+1'T‘r1 ufu2+1'?‘r2 ulTum+‘r'?‘rm
u§u1+1'§1'1 u§u2+1'§7'2 u;um+rgrm
B= a7
ufnu1+Tfn71 UZ;LU2+T£T2 ugum+‘rfn‘rm

B is a m x m symetric matrix where each element is denoted
as b;;. We have:

=1
3
=1
“th

where \; is the i""* eigenvalue of matrix B, and 7'r(B) denotes
the trace of matrix B .

From Equations (17), and (18), we have:
m m
Z Ai = Z u/u + 71T
i=1 i=1

m
=D il + ll7al?

(18)

1=
m

PIPED IR

i=1

19

In the case of manipulability index optimization, the condition
of configuration matrix A is 1, cond(A) = 1. This means
that the maximum singular value equals the minimum singular
value, 0,00 = Omin. Note that the matrix A is the n x m
matrix with n < m. The matrix A has n non-zero singular
values (we have to guarantee that rank(A) = n), then
the matrix B has n non-zero eigenvalues and m — n zero

eigenvalues.
In the optimization case of manipulability index,
cond(A) = 1 =  Omazx = Omin. We have

Xi = Mgz = Amin = X (¢ = V). Equation (19) is

rewritten:

m
A =m+ 3|l

=1

m 1
A= —4= |12 20
RPN 0)
The fact that ||7;]|?> < 1, we have:
A< @1
n

Therefore, we have Apqz = 22 when [|7;]]* = 1.
In the singular value decomposition of a matrix, when
cond(A) = 1, the matrix A can be written as:
A =USV? = Ulo]um VT (22)

where U € R"*", V € R™*"™ are orthogonal matrices, S =

[U]nxm — o 0 c RnX'rrL
0o - o 0

The pseudo-inverse of matrix A is AT can be written:

1
A+ = VS+UT = V[f]anUT (23)
g
1 0
Where ST = [1],,,, = L0 grmxn
0 0 %
0 0

Our objective with reactive index is to minimize the ||A ™.
From Equation (23), the reactive index I,. = [[AT| = 1,
the minimum value of reactive index is equivalent with the
maximum value of o. Equality of Equation (21) holds.

In order to minimize the reactive index and manipulability
index, the configuration matrix A is written as the following
structure:

A =Usv"
o 0 0 0 0
0 o O 0 0
00 0 o 0 O
where S(n x m) is like-diagonal and ¢ = VvV = V25

U(n x n) and V(m x m) are orthogonal matrices (UU7T =
I,VVT = I). This results can be used as initial value of
numerical optimization process and useful for solving the
problem. We continue discussing about the energetic index.
First, we introduce a proposition as follows:

Proposition 4.1: Let M be a p x ¢ matrix (p > q), M €
RP*4_ For all x € RY, if M = PXQT, where P € RP*?, Q ¢



no 0 0

0 u 0

0 w0
R9%? are orthogonal matrices, 3 = | 0 nl| €

0 0 0 0

RP4, then |[Mx|| = |[MI][}x].
The proof is given in the appendix.
The energetic index is stated as:

1
o= 5 [ ATFHO)] + e |ATFh(r) s 25)

Choose w.y = wer = 1 (because desired force vectors,
F4(f),F4(7), are normalized), we have:

1
=5 [ATPEO)+ ARy s o)

In case where a solution minimizes reactive index and ma-
nipulability index, the configuration matrix A (n x m) has the
form as Equation (24), therefore the pseudo-inverse matrix

AT(m xn, m >n) has the following structure:
10 0
0 % e 0
0 --- % 0
AT=VStuT =v | o L|lUut (@7
0 0 0 0

where VU are orthogonal matrices.

It is clear that matrix A satisfies the condition of Proposi-
tion 4.1. Applying this proposition, we have: |A+YF%(f)|| =
| AH[[FS(E)]| and [ATFS(r)]| = [ A*[[F% ()]l There-
fore, Equation (26) becomes:

I, = %/S(||A+||||Fd3(f)\| +[|A[[FE(T)[)ds

= 1A% [R5+ [P (r) s

=2||A%| (28)

For aforementioned mathematical analysis of the energetic
index, we can see that the energetic index belongs to the norm
of pseudo-inverse of configuration matrix, I, = 2||AY|,
when the configuration matrix A has the form of (24).

We discuss about the upper-bound of workspace index. For
units consistency, the workspace index for force space and
for torque space are investigate separately, denoted as I,
and [,,, respectively. Recall that the objective of workspace
index is to maximize the volume of resulting force space (F'p
space) including resulting space for force and resulting space
for torque with given thrusters force space (F,, space).

The fact that for all vector F,, € R™, ||[AF,| <
[|A||||F |- The volume of the resulting force space is maxi-
mum when the equality holds. Following Figure 4, the volume
of resulting force spaces (F p)(force and torque spaces) are
always less than the volume of exterior hyper-sphere of Fp

IAQ:3,:) 11

/_Fm space

[1A(4:8,: ) |

F3 space for torque

Fig. 4: Upper-bound of resulting force space

spaces of force and torque (may be the circumscribed spheres
or not). This means that:

I,y < Volume(B(R1))

Ly < Volume(B(R2)) (29)
where B(R1) and B(R2) are an Euclidean balls of ra-
dius R1 = ||[A(1:3,)]|[|Fn| = ||A1|||Fy| and R2 =

[A(4:6,)|||Fml = ||Az||||Fsm| respectively; A(1:3,:) is
the A matrix with three first rows, and A(4 : 6,:) is the A
matrix with three last rows.

The fact that n-dimensional volume of an Euclidean ball of
radius R in n-dimensional Euclidean space is:

v = | ER if n = 2k o
T %R%H’ if n=2k+1.

where (2k + 1)!l = 1.3.5...(2k — 1).(2k + 1).

Proposition 4.2: If the configuration matrix A has the form
of (24) then cond(A;) = cond(Az) = 1 and ||A4| =
|Azl = o
The proof is given in the appendix.

From (29) and (30) and Proposition 4.2, it is obvious to
get the upper-bound of resulting spaces of force and torque
of the system, and then the upper-bound of workspace index.
Normally, the weighting coefficients in workspace index are
chosen as 1 because of our assumption for d;.

B. Problem solution

The multi-objective optimization problem (14) with afore-
mentioned analyses derives a choice of a solving method,
called goal attainment approach. The underlying idea of this
method is to minimize the deviation of desired values and
guessing values. Our problem using goal attainment method
becomes:

e
st A€A

V(A) - WY S Vgoal (31)

where A = A\ I,,, i.e, A set without robust index I.,, v
is a slack vector variable, Vo0 = [I¢, I ﬁ I ] is the
desired objective vector, w is a weighting vector which can be
chosen by Decision Maker. The goal attainment method with
two objective functions is illustrated in Figure 5. By altering w

vector, we get Pareto optimal solutions. Therefore, the problem



F2 A

w Pareto
optimal
point
Desired
point

Pareto
optimal set

] L
Fi, F1

Fig. 5: Goal attainment method with two objective functions

solving process includes two phase:

1) Phase 1: Find one Pareto solution of configuration
matrix with goal attainment method.

2) Phase 2: Check robust index of the chosen solution in
phase 1.

The optimization toolbox in Matlab environment is used to
solve and simulate our problem.

V. SIMULATION RESULTS

This section shows the results with m = 8 thrusters and
n = 6 DOFs: the general case, in which positions and
orientations of thrusters are unknown, and the given position
case, in which the positions of thrusters are given. After that,
the comparison between two configurations is shown to prove
the aforementioned approach.

A. General case

Solving the problem (14) for the general case, one Pareto
optimal configuration matrix is found as:

—0.8891 —0.3645 0.5438 0.9879 0.3134 0.0148 0.0495 0.6090
—0.0985 —0.3036 —0.5911 —0.0608 —0.9493 0.0515 0.8919 0.7158
0.4471 0.8803 0.5957 0.1429 0.0260 0.9986 0.4495 0.3417
—0.4308 0.4701 —0.8386 0.0379 —0.1336 0.5628 —0.9972 0.4758
0.5107 0.7561 —0.4103 0.9868 —0.0712 —0.8259 0.0690 0.0149
—0.7441 0.4554 0.3583 0.1577 —0.9885 0.0342 —0.0272 —0.8794

A =

The positions and orientations of thrusters are shown in Figure
6a, the attainable force space and torque space are illustrated
in Figures 6b and 6c, respectively. It is easy to see that these
spaces are almost isotropic.

Force space

Xi-axis

B. Given position case

Solving the problem (14) with given position of thrusters (a
cube shape with the motors installed on the 8 cube corners),
one optimal configuration matrix is derived as:

0.0836
0.7452

0.6616 —0.8122 0.4785 —0.6616 —0.0836 —0.4785 —0.8122
0.7452 0.3337 0.3337 0.7452 0.7452 0.3337 —0.3337

A — 0.6616 —0.0836 —0.4785 —0.8122 0.0836 —0.6616 0.8122 —0.4785
—0.8122 0.4785 —0.0836 —0.6616 —0.4785 0.8122 0.6616 —0.0836
—0.3337 —0.3337 0.7452 0.7452 —0.3337 —0.3337 0.7452 —0.7452
0.4785 0.8122 0.6616 —0.0836 —0.8122 —0.4785 0.0836 066%%3)

Figure 7a shows the positions and directions of thrusters of
robots. Figures 7b and 7c show the attainable force and torque
space respectively. From these figures, it is obvious to see that
these spaces are also almost isotropic.

Force space

4 Xl-axis 5 2

(b) Attainable force space

Torque space.

(c) Attainable torque space

Fig. 7: Given position case simulation

C. A comparison of two cases

In this section, a comparison of two configurations is
illustrated. The first one is a normal configuration (C') in
which the thrusters are distributed vertically or horizontally(in
practice, this configuration is easier to install as Figure 2a).
The configuration matrix of C! configuration, denoted A1, is
shown in Equation (34).

0 1 0 0 0 0 -1 0
1 0 0 -1 1 0 0 0
_ 0 0 —1 0 0 1 0 —1
A1 - 0.27 0 —0.27 0.27 0.27 027 O 0.27 (34)
0 —0.27 0.27 0 0 0.27 —0.27 —0.27
0.27 -0.27 0 —0.27 —-0.27 0 0.27 0

The second one (C?) is an optimal configuration, denoted
as Ao, which is a solution of optimization problem (given
position case) and the optimal configuration matrix is shown
in Equation (35).

0.6616 —0.8122 0.4785

0.0836 —0.0836 —0.4785 —0.8122 —0.6616
0.7452 0.3337 0.3337 0.7452 0.7452 0.3337 —0.3337 0.7452
—0.0836 —0.4785 —0.8122 0.6616 —0.6616 0.8122 —0.4785 0.0836
0.1608 0.0111 —0.2459 —0.3708 0.3642 0.2015 0.0011 —0.1658
—0.0989 0.3556 0.3633 —0.0989 —0.1056 0.3508 —0.3456 —0.1056
0.3906 0.2292 0.0044 0.1583 —0.1649 —0.0254 0.2392 7%,§708

(b) Attainable force space

A, =

Torque space

Note that the configuration matrices A; and A, are cali-
brated with corresponding geometrical properties of real cube
robot in LIRMM. The attainable force space and torque
space corresponding with two configurations C' and C? are
illustrated in Figures 8a and 8b. It is obvious to see that the
C? configuration is more isotropic than the C! configuration.

(c) Attainable torque space

Fig. 6: General case simulation



No. | Indices CT C?
1 I, 4.7729 2.5592
2 I 5.4387 3.1243
3 Iy 6.6466e+06 | 1.0919e+07
4 Ire 2.7194 1.5622
5 Iro false true

TABLE I: Comparison between two configurations

However, for some specific points of attainable fore and torque
space, the C' configuration is larger than the C? configuration.

1orque space

Force space

100

o 0
-100 -100
Fy(N) Fx(N) Ty(N.m)

(a) Cl(red), C?(blue)

50
a0

(b) Cl(red), C2(blue)

Fig. 8: Attainable spaces for different configurations

Thanks to the properties of matrices A; and Ay (Equation
(34) and (35)) and the motor characteristic (3b), Table I shows
the values of performance indices for two configurations. The
performances of C? configuration are better than ones of C!.
Because of the calibration (the distance d; is different between
motors), the manipulability index (I,,) is larger than 1.

In order to verify the attainability of two configurations
(workspace index), incremental torques are applied about X, Y,
and Z axis respectively (Figures 9a, 10a, and 11a), the corre-
sponding PWM (Pulse Width Modulation) inputs of 8 thrusters
are computed. The results are shown in Figures 9b, 9c, 10b,
10c, 11b, and 11c in which the two PWM’s saturation values of
thrusters (upper saturation value: 1900, lower saturation value:
1100) are plotted with two bold lines. We can see that the
performances of the robot with two configurations are almost
the same with the rotation about X and Y axis. However, the
C? configuration shows better performance with the rotation
about Z-axis. In fact, the thrusters with C! configuration reach
saturations very earlier in comparison with the thrusters with
C? configuration (Figures 11b and 11c).

In order to validate the robustness of the optimal configura-
tion (C?) in comparison with the normal configuration (C'),
the rank of matrices A; and A, is checked when arbitrary
one or two columns have been nullified. When the resulting
matrices are rank deficient, this means that the robustness is
not guaranteed because one DOF is not actuated. Therefore,
we can not control all 6 DOFs independently. The robust index
in Table I shows the checking results. In particular, when the
5t thruster of C! configuration fails, the robustness is not
guaranteed.

VI. PRELIMINARY EXPERIMENTAL RESULTS

This section presents some preliminary experimental studies
to compare normal configuration, C!, and optimal configura-
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Fig. 9: The simulation of cube rotation about X-axis for C*
and C?
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Fig. 10: The simulation of cube rotation about Y-axis for C*
and C?

tion, C2, of the cube robot. An incremental torques about X-
axis, Y-axis, and Z-axis are applied on cube robot respectively,
angular velocities and PWM input values are stored for evalu-
ating these two configurations. For safety, the experiment will
be stopped when one thruster reaches the saturation values.
The experimental results are shown in Figures 12, 13 and 14.

For X-axis rotation, the performances of both configurations
are almost the same. Nevertheless, for Y-axis rotation, the
performance of C2 configuration is better than one of C!
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Fig. 11: The simulation of cube rotation about Z-axis for C*
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configuration (Figure 13). In fact, for C! configuration, the
one of thrusters get saturation value at time instant 771s
and the experimentation stops, while the robot continues to
operate after that time for C? configuration. This is clearer
for Z-axis rotation experiment (Figure 14). The thrusters of
C! configuration stop quite earlier, at time instant 451s, in
comparison with the thrusters of C2 configuration. Therefore,
the attainability (workspace index) of C? configuration is
better than C' configuration.
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Fig. 12: The cube rotates about X-axis for C' and C?

In the next section, we verify the energy spending during
these experiments for two configurations. An energy-like cri-
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Fig. 13: The cube rotates about Y-axis for C! and C?
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Fig. 14: The cube rotates about Z-axis for C! and C?

terion is proposed:

m T
E=)" /t . PW M (t)dt
=1 -

where m is the number of thrusters, 7" is the time of experi-
ment, PW M'(t) is PWM inputs of i'" thruster.

Table II shows the energy consumption of robot during three
rotations experiments. For X-axis rotation, the attainability of
two configurations is the same but the the spent energy of
C? configuration is lower. For Y-axis and Z-axis rotation, the
duration of experiments of C2 configuration is longer, the
energy consumption, therefore, is higher.

(36)

No. | Rotation Ec: Eq2
1 X 7.2303e+04 | 6.9603e+04
2 Y 7.5480e+04 | 1.0590e+05
3 Z 3.1637e+04 | 7.4350e+04

TABLE II: Energy consumption of two configurations



Table III shows the comparison of energy consumption of
two configurations with the same time duration. For Y-axis
rotation, the energy value of C? configuration is lower than
one of C! configuration. However, for Z-axis, the energy
values of C? configuration is higher. This happens because
the robot dived deeper for C? configuration experiments of
Z-axis rotation, the robot had to deliver more power to keep
at higher constant depth.

No. | Rotation Ec Eq2
1 Y 7.5480e+04 | 7.2715e+04
2 Z 3.1637e+04 | 3.3312e+04

TABLE III: Energy consumption of two configurations with
the same time duration

VII. CONCLUSION

This paper presents the optimal design of geometric dis-
tribution of thrusters of marine systems, mathematically de-
scribed as a configuration matrix. Three performance indices
of manipulators are extended to over-actuated marine systems
and two novel indices are proposed. The mathematical analysis
of performance indices are also studied. One Pareto solution is
found and the simulation and preliminary experimental results
shows the effectiveness of the design. For the next researches,
finding all Pareto solutions are quite attractive and more
experiments are carried out to validate all performance indices.
Moreover, dynamic configuration matrix design depending the
robot’s mission and other issues is still open and interesting
topic.
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APPENDIX

Proposition A.1: Let M be a p X ¢ matrix (p > q), M €
RPX9. For all x € RY,if M = PEQ7, where P € RP*P, Q €

no 0 0
0 0
y 0 nwo 0
axq ; _
R?*4 are orthogonal matrices, 3 = | 0 ul| €
0 0 0 0
RP*4 then |[Mx|| = [[M]|[|x]|
Proof We have:
[Mx|]? = (Mx)? (Mx) = x’ M"Mx (37)
With M = PXQ7T
IMx|* = x"(PEQ")" (PEQT)x
=xT'QxTPTPEQ x
=x'QxT=Q"x (38)

We have:
w 0 - 0\ /u 0 0
0 pu -0 0 pu 0
- 0O -+ pu O 0 w0
XX=1o0 0 u 0 0 u
0 0 0 0 0 0 0
w0 0
0 N2 e 0
=|. . . . |=p1 (39)
o --- 0 N2
where I is ¢ x ¢ identity matrix.
Replacing the equation (39) to (38), we have:
[Mx|]? = xTVu2TVTx
= pPx"x = | M|]?|1x]|? (40)

Therefore, |[Mx|| = |M]||||Ix]|. §}

Proposition A.2: 1f the configuration matrix A has the form
of (24) then cond(A;) = cond(Az) = 1 and ||A4| =
[Azll =0

Proof We have:
AAT = (Usvh(usvh)T =usvTvsTu”

=USSTuT =21 (41)
On the other hand:
AN /AN /A,
AAT = = ATAT
(A2> (A) o) (ATAD)
A1A1T>
= (42)
(AzAzT
From (41) and (42), we have:
AAT =0T,
ALAT = 5%1, (43)

where I; and I, are partitioned matrices of matrix I.

From (43) and the uniqueness of singular value decompo-
sition [9], it is obvious to get the structures of A; and A,
are the same as (24) with different dimensions. Therefore,
cond(A1) = cond(Ay) =1 and ||[A1]| = ||Az]|=0. |}
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