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Extended Kalman Filtering with Nonlinear Equality
Constraints: a Geometric Approach

Axel Barrau, Silvère Bonnabel ∗

Abstract

In this paper, we focus on extended Kalman filtering (EKF), in the difficult
case where a function of the state has been perfectly observed, and is thus known
with certainty, while the full state still has unobserved degrees of freedom. In the
linear case, the Kalman filter seamlessly handles such constraints, which result in
the state being in an affine subspace. Yet, in the nonlinear case, the EKF poorly
handles such type of constraints. As a remedy, we propose a novel general method-
ology of EKF based on an (arbitrary) nonlinear error e. And we prove that under
compatibility of the error e with the constraints, the EKF based on e seamlessly
handles the constraints. Furthermore, when the state space is a Lie group, we prove
the EKF based on invariant errors is exactly the invariant EKF (IEKF), and we
prove further properties. The theory is applied to the problem of simultaneous
localization and mapping (SLAM), where the IEKF is shown to perfectly handle
some partial deterministic information about the map. As a byproduct, the theory
is also shown to readily allow devising EKFs on state spaces defined by a class of
equality constraints.

1 Introduction

The extended Kalman filter (EKF) is an estimation algorithm that is pervasively used in
various fields involving dynamical systems’ state estimation from measurements of phys-
ical sensors. When the considered system is linear and the uncertainties are modeled by
Gaussian random variables, the Kalman filter (KF) is optimal. On the other hand, when
the system is nonlinear the EKF relies on first-order Taylor expansion of the nonlinear
system, and it is not optimal.

It is common to use the EKF in contexts where some side (deterministic) information
about the state is available. This has led to the realm of state constrained extended
Kalman filtering, see e.g. [24], where a variety of tools allows forcing the state to belong
to a set where it is known to be: for instance concentrations in chemical reactors are
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positive. More recently, some techniques have also emerged in the domain of optimization
based Kalman smoothing [7].

In this paper, we consider a class of constraints poorly handled by the EKF, and
remedy its problems by introducing a general methodology of EKF based on a nonlinear
error e (see Section 1.1). Furthermore, when the state space is a Lie group we relate
the proposed methodology to the invariant EKF (IEKF) of [3]. Building upon Lie group
theory, and notably the Lie group - Lie algebra correspondance, we show stronger results
may be obtained for the Lie group case.

The starting point of our study was the recent successful implementation of the IEKF
in an industrial product for high precision navigation described in [6], where a high end
inertial measurement unit yields increments of such precision that the dynamics is almost
noise free, and where in contrast, the initial heading of the vehicle is totally unknown,
yielding a (theoretical) covariance matrix with a mixture of large eigenvalues and very
small eigenvalues. For this problem the IEKF was found to outperform the EKF so
univocally that strong underlying theoretical properties could be suspected.

Partial explanations can be found in the preliminary conference paper [2], where
a simplified example of high precision navigation was considered, which is recalled in
Figure 1. In a following preliminary conference paper [12], we proved some properties of
the IEKF regarding state constraints for the particular class of mixed-invariant noise free
dynamics on Lie groups, see e.g., [5,19].

The constraints we consider are technically related to rank deficiency of the EKF’s
covariance matrix. To this respect, we would like to mention that KF and EKF with rank
deficient covariance matrices have been the object of recent research in atmospheric and
oceanographic contexts, where filtering and smoothing are referred to as data assimila-
tion, and where the dynamical models are based on fluid mechanics described by partial
differential equations, and their discretization results in high dimensional state spaces
that make Kalman filtering intractable. Yet, there has been evidence that Kalman filter-
ing with reduced dimensional covariance matrices could prove sufficient. Mathematical
analysis of the linear KF with rank deficient covariance matrices is the subject of ongoing
research, see e.g., [8,16].

1.1 The contribution simply explained

Assume at some point the constraint1 is h(X) = c. Consider an EKF, and pick an
estimate X̂ that verifies h(X̂) = c. To make sure the covariance matrix also reflects this
information, that is, all the uncertainty must be within the subset defined by h(X) = c,
we make a virtual noise-free observation Y = h(X) where we set Y = c to update
the EKF. The fact that h(X) = c is now supposedly known for certain. However, if we
immediately make a number of other observations Y1 = h1(X)+V1, · · · , Yn = hn(X)+Vn,
with Vi’s independent noises, and denote X̂+ the EKF’s estimate taking into account all
the latter measurements, do we have h(X̂+) = c ? If h is linear, then yes, the EKF does
behave as if it had encoded h(X) = c as a “hard constraint”. But if h is nonlinear, then
unfortunately the answer is no.

In this paper we first advocate that if e is a nonlinear estimation error of the general
form e = Π(X̂,X), which offers an alternative to the usual linear state error X − X̂,

1in the paper we rather use notation q(X) = c in order not to confuse q with the observation map h.
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an alternative EKF may in turn be built based on this estimation error: the covariance
matrix then reflects the statistical dispersion of e instead of the one of X − X̂. Then,
suppose we have a constraint of the form h(X) = c, and we apply the same procedure
as above to an EKF based on error e. We pick an estimate such that h(X̂) = c, then
update the EKF with the noise-free virtual observation h(X) = c, and then consider the
updated state X̂+ after additional observations Y1, · · · , Yn. Then, the desirable condition
h(X̂+) = c, is automatically satisfied under the following very simple condition: the
kernel of ∂h

∂e
|X viewed2 as a function of X, is a function of the components of

h(X) only, i.e., does not fully depend on X.
For example, the conventional EKF is based on linear error e = Π(X̂,X) = X − X̂.

If h(X) = HX is linear, we have ∂h
∂X

= H. Thus ∂h
∂e

= ∂h
∂X

∂X
∂e

= ∂h
∂X

( ∂e
∂X

)−1 = H ∗ I−1 = H
and Ker ∂h

∂e
= {z | Hz = 0}. As this subspace does not even depend on X, the condition

is trivially met, and the theory confirms the EKF has a desirable behavior with respect
to linear observations.

1.2 Organization of the paper

The linear case is studied in Section 2. The nonlinear case and the caveats of the EKF
are described in Section 3. In Section 4, we introduce the novel general methodology
of EKFs based on nonlinear errors, and prove it may remedy the problems of the EKF
with respect to the considered class of constraints. The theory is then applied to the
case where the state space is a (matrix) Lie group G, where we recover the IEKF of [3].
The obtained EKF not only keeps the state inside an embedded matrix Lie group, as
customary in Bayesian filtering on Lie groups, e.g., [9,10,15], but we obtain powerful
results in Section 5 for problems which involve additional constraints that the state shall
belong to a subgroup Gt of G, that moreover may change over time. This is true even if
the constraint appears during the experiment due to an observation, and without ad-hoc
adaptation of the algorithm. Finally, in Section 6, the theory is applied to the problem
of simultaneous localization and mapping (SLAM), see e.g. [14], where we consider a
type of constraint that has never been explored before, and that is violated by the EKF.
Although the paper is self-contained, the reader is advised to read [2] as an introduction.

2 The linear case

We recall in this section a known property of linear Kalman filtering regarding its ability
to handle partially deterministic information in the absence of process noise.

2.1 Considered problem

Consider a continuous-discrete linear system in Rd with deterministic dynamics:

d

dt
Xt = AtXt +But, (1)

Yn = HnXtn + Vn, (2)

2 ∂h
∂e |X is rigorously defined in the paper as ∂h

∂e |X = ∂h
∂X

∂X
∂e := ∂h

∂X |X(DΠ(X))−1 with DΠ(X) :=
∂

∂X Π(X̂,X)|(X,X) the partial derivative of e = Π(·, ·) w.r.t. the second variable at (X,X).
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where Xt ∈ Rp is the state of the system, ut a known deterministic input, (tn)n≥0 the
sequence of observation times, (Yn)n≥0 the corresponding observations and Vn a centered
Gaussian noise with covariance matrix Rn (assumed positive definite) corrupting n-th
observation.

We also make the additional assumption that the initial distribution of the state lies
in an affine subspace, that is:

X0 ∼ N (X̂0, P0), where P0 has rank k < d. (3)

Definition 1 (prior distribution). Combining the initial distribution given by (3) and
the dynamics (1), one gets a probability distribution π(dxt) of the state Xt at all times
t ≥ 0. This is called the prior on the state Xt and represents the information without the
observations.

Bayesian filtering consists in computing in real time the statistics of the unknown
state Xt given all the information y0, y1, · · · , yn up to present time t.

Definition 2 (posterior distribution). The posterior distribution of Xt is the prior con-
ditioned on past measurements, that is, the probability measure π(dxt | y0, y1, · · · , yn),
where tn ≤ t < tn+1.

Definition 3 (optimal filter). A filter that would be able to compute at all times the
posterior distribution conditioned on the past is called the optimal filter.

2.2 Support of the posterior distribution

Definition 4 (Support of a distribution). If X is a random variable in Rd, the support
of the distribution is the smallest closed set W ⊂ Rd such that we have (X ∈ W ) with
probability 1, i.e., the set where X lives.

Owing to (1)-(3), support of the posterior is restricted to an affine subspace of Rd.

Indeed, let W0 denote the affine space X̂0 +ImP0: it has dimension k, and let
−→
W0 = ImP0

be the associated vector space. We have:

Proposition 1. Let Ft ∈ Rd×d be defined through d
dt
Ft = AtFt where F0 = I, and Zt ∈ Rd

be defined by d
dt
Zt = AtZt + But with Z0 any element of W0. At time t, the support of

the prior distribution is Wt = Zt +
−→
Wt, where

−→
Wt = Ft

−→
Wt. Thus, we see the prior at any

time is also supported by an affine subspace Wt of Rd.

Proof. At time t ≥ 0, the distribution of Xt is supported by the image of W0 through the
linear equation (1), and we see Xt − Zt = Ft(X0 − Z0).

Proposition 2. From the definitions of conditional probability, we see the support of
the posterior distribution is contained in the support of the prior. Thus Proposition 1
implies that at time t ≥ 0 the distribution computed by the optimal filter is supported by

Wt = Zt +
−→
Wt.
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2.3 Support of the Kalman filter’s belief

Definition 5. For any (not necessary optimal) filter, we call belief the posterior distri-
bution output by the filter.

As the Kalman filter (KF) is the optimal filter for the linear-Gaussian systems of the

form (1)-(2), its belief is necessarily supported by the affine subspace Wt = Zt +
−→
Wt.

However, it is instructive to see how the KF actually maintains the belief in Wt.

2.3.1 Kalman filter’s equations

At each time the KF’s belief is as follows Xt ∼ N (X̂t, Pt) where X̂t, Pt are defined through
an alternation between propagation and update steps.

• Initialization: The initial belief is X0 ∼ N (X̂0, P0).

• Propagation step: Between two measurements tn−1 ≤ t < tn, the belief is propagated
as:

d

dt
X̂t = AtX̂t +But,

d

dt
Pt = AtPt + PtA

T
t . (4)

• Update step: When a measurement arrives at time tn the belief is updated as Xtn ∼
N (X̂+

tn , P
+
tn) where

zn := Yn −HnX̂tn , (5)

Kn := PtnH
T
n (HnPtnH

T
n +Rn)−1, (6)

X̂+
tn = X̂tn +Knzn, P+

tn = (I −KnHn)Ptn , (7)

and where zn is called the innovation.

2.3.2 Support of the belief

We can prove:

Proposition 3. The support of the Kalman Filter’s belief is Wt, i.e., at all times we
have X̂t + ImPt = Wt.

Proof. From Proposition 1, we may take Zt := X̂t and all we have to prove is ImPt =−→
Wt. By induction: assume ImPtn−1 =

−−−→
Wtn−1 . Pick arbitrary x̃tn−1 ∈ Rd. We have

[Ptn−1x̃tn−1 ] ∈ ImPtn−1 =
−−−→
Wtn−1 . For t ≥ tn−1 let x̃t satisfy the equation d

dt
x̃t = −ATt x̃t.

Using (4) we have d
dt

[Ptx̃t] = At[Ptx̃t] + PtA
T
t x̃t − PtATt x̃t = At[Ptx̃t]. Thus ImPt =

−→
Wt

owing to definition of Ft in Proposition 1, implying ImPtn =
−−→
Wtn . At the update,

ImKn ⊂ ImPtn from (6) implying that X̂+
tn = X̂tn +Knzn ∈ Wtn , and that ImP+

tn ⊂
−−→
Wtn

since P+
tn = Ptn −KnHnPtn . This proves X̂+

tn + ImP+
tn = Wtn .

3 The nonlinear case

In this section, we discuss the case where the initial covariance matrix is singular and
the dynamics deterministic but nonlinear. We also evidence the caveats of rank-deficient
extended Kalman filtering.
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3.1 Considered problem

Consider the nonlinear system in Rd:

d

dt
Xt = f(Xt, ut), (8)

Yn = h(Xtn) + Vn, (9)

where f, h are smooth nonlinear maps, ut a deterministic and fully known input, and
Vn ∼ N (0, Rn). Assume as previously that the initial distribution of the state lies in an
affine subspace, i.e.,

X0 ∼ N (X̂0, P0), where P0 has rank k < d. (10)

Definition 6. Denote by Ψ(t;x) the solution of equation (8) at time t when initialized
on x. Ψ is called the flow of the equation. It is characterized by d

dt
Ψ(t;x) = f

(
Ψ(t;x), t

)
with Ψ(0;x) = x.

Note that, in the linear case (1) of the preceding section, we have Ψ(t;x) = Ftx, see
Proposition 1.

Remark 1. More generally, we can assume that the initial distribution is supported by
some manifold M0, and all the developments to come remain perfectly valid. However,
the present section is concerned with initial prior (10) for simplicity of exposition.

3.2 Support of the posterior distribution

Owing to nonlinear dynamics (8), the initial affine subspace gets distorted over time.

Proposition 4. The image of the affine subspace W0 = X̂0 + ImP0 through the flow Ψ
of (8) defines a submanifold Mt = {Ψ(t;x) | x ∈ W0} of Rd of dimension k. Moreover,
the tangent space TΨ(t;x)Mt of Mt at Ψ(t;x) is given by the partial derivatives of Ψ(t;x)

with respect to x in directions defined by
−→
W0.

More precisely we have:

Proposition 5. Consider a solution (Xt)t≥0 of (8), with X0 = x0. At Xt = Ψ(t;x0), the
tangent space to Mt is spanned by the columns of a matrix M(Ψ(t;x0), t) ∈ Rd×k, which

satisfies the equation d
dt
M = ∂f

∂x
M with initial condition ImM(x0, 0) =

−→
W0.

Proof. As f is smooth so is Ψ. Denote ∂x̄Ψ(t;x0) the partial derivative in the direction of
x̄ ∈ Rd. We have ∂t(∂x̄Ψ(t;x0)) = ∂x̄∂tΨ(t;x0) = ∂x̄f(Ψ(t;x0), t) = ∂f

∂x
(Ψ(t;x0), t)∂x̄Ψ(t;x0).

Using a basis x̄1, · · · , x̄d and the corresponding vectors ∂x̄iΨ(t;x0) ∈ Rd as columns of
a matrix Nt we have proved Ṅt = ∂f

∂x
(Ψ(t;x0), t)Nt. From Liouville’s formula (Lemma

3.11 of [26]) detNt = detN0 exp(
∫ t

0
tr(∂f

∂x
(Ψ(s;x0), s))ds) and thus Nt is invertible and

thus so is the differential of Ψ. Thus W0 provides a set of local coordinates on the set
Mt = {Ψ(t;x) | x ∈ W0} through Ψ(t; ·). This proves Mt is a submanifold of di-
mension k = dimW0. It also proves ∂x̄Ψ(t;x) is a tangent vector of Mt at Ψ(t;x) for

x̄ ∈
−→
W0. Similarly, the set {∂x̄Ψ(t;x0) | x̄ ∈

−→
W0} is spanned by the columns of a matrix

Mt ∈ Rd×k solution to d
dt
Mt = ∂f

∂x
Mt with initial condition ImM0 =

−→
W0, and naturally

ImM(Ψ(t;x0), t) = TΨ(t;x0)Mt.
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Note that, (Xt,M) may in fact be defined intrinsically through the notion of vari-
ational system as introduced in [13]. Proposition 4 implies the prior distribution is
supported by Mt. From the definitions of conditional probability, we have the following
result which is the nonlinear counterpart of Proposition 2.

Proposition 6. The posterior distribution is supported at all times by the k-dimensional
manifold Mt. In other terms, Mt supports the belief of the optimal filter.

3.3 Support of the extended Kalman filter belief

The extended Kalman filter (EKF), is an extension of the KF to the nonlinear case,
based upon linearizations. Its very “linear” structure, turns out to be inappropriate in
the context of nonlinear dynamics along with singular covariance matrices. The reasons
why are as follows.

3.3.1 Extended Kalman filter’s equations

At each time the EKF’s belief Xt ∼ N (X̂t, Pt) is defined through an alternation of
propagation and update:

• Initialization: The initial belief is X0 ∼ N (X̂0, P0).

• Propagation step: Between two measurements tn−1 ≤ t < tn, the belief is propagated
as follows:

d

dt
X̂t = f(X̂t, ut),

d

dt
Pt = AtPt + PtA

T
t , (11)

where At = ∂f
∂x

(X̂t, ut).

• Update step: When a measurement arrives at time tn the belief is updated as Xtn ∼
N (X̂+

tn , P
+
tn) where

zn := Yn − X̂tn , Hn :=
∂h

∂x
(X̂tn) (12)

Kn := PtnH
T
n (HnPtnH

T
n +Rn)−1, (13)

X̂+
tn = X̂tn +Knzn, P+

tn = (I −KnHn)Ptn . (14)

3.3.2 Support of the belief

First of all, as the EKF represents the belief as a Gaussian, it is hopeless that the sup-
port of the belief match with Mt, since the latter is a curved space whereas Gaussians
are supported by affine spaces (in other words the EKF computes linear Gaussian ap-
proximations to the posterior). However, what one may desire is that belief distribution
N (X̂, Pt) of the EKF be consistent with the geometric constraints.

Definition 7. We say that the EKF (or any Gaussian filter) belief N (X̂t, Pt) is consistent
with the state space constraint Mt if at all times t ≥ 0 we have necessarily 1- X̂t ∈ Mt,
and 2- ImPt = TX̂t

Mt. In other words, the support of the distribution N (X̂t, Pt) must
coincide with the tangent space TX̂t

Mt.
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Unfortunately, when the constraints are induced by initial rank deficient prior co-
variance matrix and the dynamics nonlinear, Definition 7 is never met by the EKF, as
a consequence of its “linear” structure. Indeed, to meet conditions 1 and 2 of Defini-
tion 7 at all times, both propagation and update steps must preserve those conditions.
Propagation step is not problematic in itself:

Proposition 7. During the propagation step, the EKF preserves conditions 1 and 2.

Proof. First of all, it is clear that X̂t will remain in Mt during propagation since the
EKF merely integrates the model equations, see (11). Between two updates, we see
from Proposition 5 that TX̂Mt is spanned by a matrix Mt which is a solution to the
equation d

dt
Mt = AtMt. Thus as shown in the proof of Proposition 3, if at some point

ImPt = ImMt this will remain true in the absence of updates.

On the other hand, the update step is problematic for the reasons to follow. To
provide a more concrete picture, we have illustrated the following items using an example
of engineering interest discussed in the preliminary conference paper [2], please see Figure
1.

• Assume that just before update at time tn the EKF is consistent with the constraint
and meets conditions 1 and 2 of Definition 7.

• Condition 1: as ImPtn = TX̂tn
Mtn the correction term Knzn points in a constraint-

consistent direction, i.e., Knzn ∈ TX̂tn
Mtn . But then the updated state X̂+

tn =

X̂tn +Knzn is generally not an element ofMtn sinceMtn is not a vector space, see
Figure 1 (b).

• Condition 2: even if X̂+
tn ∈ Mtn , condition 2 will not be met since, owing to the

update step, we have also ImP+
tn ⊂ TX̂tn

Mtn , and there is no reason why TX̂tn
Mtn

should coincide with TX̂+
tn
Mtn , the manifold Mtn being curved, see Fig. 1 (c).

3.3.3 Discussion on state constrained based solutions

One possible solution is to consider that the state be part ofMt as a state constraint. For
a review on state constrained EKFs see e.g. [23]. The present article aims at providing
a geometric framework that offers alternatives to this route. Indeed, contrary to state
constrained solutions, the solutions presented in the remainder of the paper do not require
specific adaptation to the particular constraints considered so that first-order optimality
properties are conserved, as the EKF’s outputs are never transformed nor projected in
order to artificially enforce the constraint. Moreover, the constraints considered in the
present paper are time-varying, which is a further challenge. Besides, our framework
becomes especially powerful when soft contraints such as ”the car is close to the circle”
are created by the observations, please see the paper’s conclusion.
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(a) (b) (c)

Figure 1: Consider a simplified car in 2D, equipped with perfect differential wheel speeds,
and a GPS that returns discrete noisy measurements of the position. (a) The (green)
car starts from perfectly known initial position with unknown heading, and wheel speeds
inform the filter that the car drives in straight (green) line until time t > 0. It is thus
known to be located with certainty on a circle centered at the initial position, but at
an unknown location (all red cars are possible locations): there is uncertainty along the
circle, and certainty orthogonally to it. (b) An EKF may be used to estimate the position
and the orientation. Suppose at t, a GPS measurement is available and must be combined
with current knowledge about the state. To do so, the EKF corrects the state, by moving
the position in the direction of the measurement. It locally uses the information the car
should be on the circle, and thus computes a correction term which is tangential to the
circle. But due to the “linear” structure of the filter, adding the computed correction to
update the state results in an updated position that lies out of the circle. (c) Moreover,
starting with a belief indicating uncertainty in the direction tangential to the circle, even
if the updated state is artificially projected onto the circle, the new belief of the EKF
becomes transverse to the circle. This is due to the image of covariance matrix after the
update being always included in the image of the covariance matrix before the update.
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4 A general approach: EKF based on nonlinear er-

rors

The problem of the EKF is its linear structure, that does not match with the true dis-
persion of the belief inside a curved spaceMt. The estimation error shall increase along
Mt indeed, but never transversally to it.

4.1 EKF based on an alternative error

Instead of considering the standard estimation error X̂t − Xt, we propose to define an
alternative nonlinear estimation error as et = Π(X̂t, Xt), with Π : Rd × Rd → Rd a
function that satisfies Π(x, x) ≡ 0, and which is locally invertible with respect to both of
its arguments at the diagonal set {(x, x) | x ∈ Rd}. A Taylor expansion of the nonlinear
error yields Π(X̂, X̂ + δX) = DΠ(X̂)δX + O(||δX||2). The operator DΠ is everywhere
invertible owing to the local invertibility property of Π about the diagonal. It relates the
error e to the usual error δX = X − X̂, and this may be memorized as

“ e = DΠ(X̂)δX ” up to the first order. (15)

An EKF based on this error works by letting P e
t reflect the local (linearized) dispersion

of this alternative error. This naturally yields the following equations.

• Initialization: The initial belief is X0 = X̂0 + e0, with e0 ∼ N (0, P e
0 ).

• Propagation step: Between two measurements tn−1 ≤ t < tn, the belief is propagated
as follows:

d

dt
X̂t = f(X̂t, ut),

d

dt
P e
t = AetP

e
t + P e

t (Aet )
T , (16)

where Aet represents the first-order approximation to the error evolution, namely it
is defined by

d

dt
et = Aetet +O(||et||2). (17)

• Update step: When a measurement arrives at time tn the belief about state Xtn is
updated as having mean X̂+

tn , and error with respect to X̂+
tn is updated as having

distribution e+
tn ∼ N (0, (P e

tn)+), where we let

zn := Yn − h(X̂tn), (18)

Kn := P e
tn(He

n)T (He
nP

e
tn(He

n)T +Rn)−1, (19)

X̂+
tn = ϕ(X̂tn , Knzn), (20)

(P e
tn)+ = (I −KnH

e
n)P e

tn , (21)

and where He
n is the linearized output map with respect to the error e, i.e., it is

defined by

zn := Yn − h(X̂tn) = He
netn + Vn +O(||etn||2), (22)

and where ϕ is a function (we call exponential) to be introduced at Definition 8.
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Figure 2: Same setting as Fig. 1, but where update is performed using nonlinear state
error e = (θ̂− θ, R(θ)T (x̂− x)) with θ the orientation of the car, x ∈ R2 its position, and
R(θ) the rotation of angle θ, see Section 6.1. We see the update follows the circle.

Note that, the practitioner may need to output the covariance in the original variables X.
According to our belief that et ∼ N (0, P e

t ), and owing to (15), we may write Cov(Xt) =
DΠ(X̂t)

−1P e
t (DΠ(X̂t)

−1)T . This will be more thoroughly proved and discussed at (26).

Remark 2. Obviously He
n = ∂h

∂X
(X̂tn)DΠ(X̂tn)−1. It can be memorized as “He

n := ∂h
∂e

=
∂h
∂X

∂X
∂e

” and referring to (15), we see indeed “ (∂X
∂e

)−1 = ∂e
∂X

= DΠ”.

Knzn is a correction term to be applied to the state X̂tn in order to take into account
the measurement Yn. It defines a direction, in terms of the nonlinear error e, along which
the estimate should be moved.

Definition 8. We define the function ϕ in (20), that we call “exponential”, as follows:

ϕ(X̂, δe) := χ̃(1), (23)

where χ̃ is defined as the solution of the differential equation:

d

ds
χ̃(s) = (DΠ(χ̃(s)))−1δe, χ̃(0) = X̂. (24)

The rationale is as follows. Before the latest measurement Yn, the EKF classically
makes the approximation the average error between the true state Xtn and the predicted
state X̂tn is null. The correction term δe = Kz is then a linear approximation to the
(linear) Kalman filter estimate of the average error between the estimated and the true
state, taking into account Yn. As a result, the updated error must be equated with δe,
at least up to the first order, that is, we could have picked any function ϕ being such
that X̂+ = ϕ(X̂, δe) ⇔ δe = Π(X̂, X̂+) up to first order terms in δe. This is obviously
the case with Definition 8 since ϕ(X̂, δe) = X̂ + (DΠ(X̂))−1δe + O(||δe||2). There are
further reasons for using our “exponential”, though, that will be made clear in Section
4.3 dealing with the constraints Mt we want to enforce, see Figure 2 for an illustration.

Remark 3. The conventional EKF of Section 3.3.1 is easily seen to be the EKF based
on error e = X − X̂.

Remark 4. In the considered problem, dynamics (8) are noise free. If they were corrupted
by an additive white noise with covariance matrix Qt, an EKF based on e could still be
devised, but the right hand side of (16) should be replaced with d

dt
P e
t = AetP

e
t +P e

t (Aet )
T +

DΠ(X̂t)QtDΠ(X̂t)
T , see Section 4.4 for details.
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4.2 Relation to changes of coordinates

To gain insight into the choice of our exponential map (23), we first relate EKFs based on
nonlinear errors to changes of coordinates. It can be proven inded that in the particular
case where the nonlinear error e corresponds to the linear error Z − Ẑ in alternative
coordinates φ(X) = Z with φ a nonlinear map, then the EKF based on error e =
Π(X̂,X) := Z− Ẑ = φ(X)−φ(X̂) in the sense of Section 4.1, and the conventional EKF
built using directly the coordinates Z coincide, as proved by Proposition 12 in Appendix
A. In particular, the map ϕ of Definition 8 then boils down to a mere vector addition in
the Z coordinates system, i.e., φ ◦ ϕ(X, δe) = φ(X) + δe. This result offers insight into
the interest of the method: if it turns out there exists alternative coordinates that make
the constraints Mt linear subspaces, then one should definitely devise an EKF using
these coordinates. And to some extent, this is the rationale we pursue in this paper.
However, it should be noted that our method is broader, as EKFs based on nonlinear
errors define a much larger class than EKFs devised in another coordinate system: we
never required Π(X̂,X) to be of the form φ(X)−φ(X̂). Notably, it may be proved there
exists no alternative coordinate system in which the IEKF of Section 5 boils down to a
conventional EKF built using those coordinates.

4.3 Support of the belief of the EKF based on nonlinear esti-
mation errors

In this section, we are going to show how nonlinear errors may allow enforcing the con-
straint Mt. To do so, we will assume that, 1) at each time t, there exists a submersion
qt : Rd 7→ Rd−k, i.e., a map such that its differential Dqt(x) has constant rank d− k over
Rd, and that 2) the submanifold Mt is equal to q−1

t (c) = {x ∈ Rd | qt(x) = c} for some
constant c ∈ Rd−k; that is,Mt is an embedded submanifold that corresponds to a level set
of qt. Under those assumptions, the tangent space to Mt at X is TXMt = KerDqt(X),
that is,

TXMt = {δx ∈ Rd | Dqt(X)δx = 0}.
Letting e = Π(X̂,X), we can define the differential of qt with respect to error e as
Dqet (X̂t) := Dqt(X̂t)(DΠ(X̂t))

−1 along the lines of (22), that is

qt(X)− qt(X̂) = Dqet (X̂)e+O(||e||2). (25)

Definition 9. The nonlinear error e = Π(X̂,X) is said compatible with the constraints

Mt if, for each t ≥ 0, there exists a k-dimensional linear subspace
−→
Wt ⊂ Rd such that

KerDqet (X) =
−→
Wt for all X ∈Mt.

AsMt is assumed of the form q−1
t (c), this definition admits a more practical alterna-

tive formulation.

Proposition 8 (Alternative definition). If KerDqet (X) (viewed as a function of X) is
a function of qt(X) only, then the nonlinear error e is compatible with the constraint
qt(x) = c in the sense of Definition 9.

This is the simple condition highlighted in Section 1.1. It is slightly more restrictive
than Definition 9 since it is required to hold for all c, but proves more practical.
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Theorem 1. Assume the nonlinear error e = Π(X̂,X) is compatible with the constraints
Mt. Then, the EKF based on the nonlinear error e is consistent with the constraints in
the sense of Definition 7, that is, 1- X̂t ∈Mt, and 2- ImP e

t ⊂ KerDqet (X̂t), ∀t ≥ 0, if it
is initalized such that 1 and 2 are satisfied at t = 0.

Note indeed that, as P e
t reflects the dispersion of alternative error e, in condition 2-,

we had to translate Definition 7 into conditions related to e.

Proof. Propagation step: Start from the initial belief at t = 0, and consider a first phase of

propagation. During this phase, the estimate X̂t naturally remains in Mt. Let us verify
that during propagation ImP e

t ⊂ KerDqet (X̂t), i.e., Dqet (X̂t)P
e
t = 0, or equivalently

Dqet (X̂t)P
e
t Dq

e
t (X̂t)

T = 0 owing to the fact that P e
t is symmetric. Let Pt denote the

conventional EKF covariance matrix. Recall from Proposition 7 that the image of Pt
remains inside the tangent space at X̂t, that is, Dqt(X̂t)PtDqt(X̂t)

T = 0. As we have
Dqet (X̂t) = Dqt(X̂t)(DΠ(X̂t))

−1, see (15) and (25), it would then suffice to prove the
relation

DΠ(X̂t)PtDΠ(X̂t)
T = P e

t (26)

remains true if it is initially true, to readily prove Dqet (X̂t)P
e
t Dq

e
t (X̂t)

T = 0.
To prove (26) it suffices to prove that if P e

t satisfies Riccati equation d
dt
P e
t = AetP

e
t +

P e
t (Aet )

T , the matrix DΠ(X̂t)
−1P e

t (DΠ(X̂t)
−1)T satisfies d

dt
Pt = AtPt + PtA

T
t . Denote

DΠ(X̂t)
−1 = Nt. We have d

dt
NtP

e
t N

T
t = ṄtP

e
t N

T
t + NtṖ

e
t N

T
t + NtP

e
t Ṅ

T
t = ṄtP

e
t N

T
t +

Nt(A
e
tP

e
t + P e

t (Aet )
T )NT

t + NtP
e
t Ṅ

T
t = At(NtP

e
t N

T
t ) + (NtP

e
t N

T
t )ATt , provided that the

relation Aet = N−1
t [AtNt− Ṅt] holds true. This is the case as if we let δXt = X̂t−Xt, we

have d
dt
δXt = AtδXt,

d
dt
et = Aetet, and Ntet = δXt up to first order terms in δXt. Thus

d
dt
Nt +NtA

e
t = AtNt, proving the result.

Update step: Just before the first update, at t = t0 > 0, we have just shown that

1- X̂t0 ∈ Mt0 , and 2- ImP e
t0
⊂ KerDqet0(X̂t0). We first need to check that X̂+

t0 ∈
Mt0 . According to our update definition (20), (21), (23), we have X̂+

t0 = χ̃(1) where

X̂t0 = χ̃(0) and χ̃(s) satisfies d
ds
χ̃(s) = DΠ(χ̃(s))−1K0z0. Besides, we have K0z0 ∈

ImP e
t0
⊂ KerDqet0(X̂t0), owing to the definition of the gain K0. Due to our compat-

ibility assumption of Definition 9 that the Kernel of Dqet0 is fixed over Mt, we have

KerDqet0(X̂t0) = KerDqet0(X) := KerDqt0(X)DΠ(X)−1 for all X ∈ Mt0 , proving that
DΠ(X)−1K0z0 ∈ TXMt0 , as Dqt0 was required to have constant rank. Thus the vector
field {DΠ(X)−1K0z0, X ∈Mt0} is tangent toMt0 . By unicity of solutions of differential
equations, the solution of d

ds
χ̃(s) = DΠ(χ̃(s))−1K0z0 is thus a curve contained in Mt0 ,

and in particular χ̃(1) = X̂+
t0 ∈Mt0 .

Regarding condition 2-, as we have proved that ImP e
t0
⊂ KerDqet0(X̂t0), we immedi-

ately see from equations (19), (21) that Im(P e
t0

)+ ⊂ ImP e
t0
⊂ KerDqet0(X̂t0). Under our

compatibility assumption of Definition 9, and since we have just proved that X̂+
t0 ∈Mt0 ,

we have KerDqet0(X̂t0) = KerDqet0(X̂
+
t0), which implies indeed Im(P e

t0
)+ ⊂ KerDqet0(X̂

+
t0).

The extension to arbitrary t ≥ t0 is easily done by induction, as we have proved both
propagation and update steps preserve the two conditions we pursue.
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4.4 Complementary results in the presence of process noise

The results may be extended beyond systems with deterministic dynamics and noisy
measurements, sometimes referred to as output error systems [22]. Indeed, consider
dynamics (1), and assume it is corrupted by noise as follows (Stratonovitch’s stochastic
integral) :

d

dt
Xt = f(Xt, ut) + Ḡ(Xt)wt, (27)

where wt is a Langevin noise with covariance Qt. Then, an EKF based on error et
can also be devised but it must take into account the dispersion of the error under the
noise. The Riccati equation for system (27) of the conventional EKF writes d

dt
Pt =

AtPt + PtA
T
t + ḠtQtḠ

T
t , with Ḡt := Ḡ(X̂t). Recalling (15), the conventional dispersion

term ḠtQtḠ
T
t associated to error δX, naturally writes DΠ(X̂t)ḠtQtḠ

T
t DΠ(X̂t)

T in terms
of error et.

Thus, an EKF based on error et for system (27) can be defined as in Section 4.1, with
the only difference that covariance propagates as

d

dt
P e
t = AetP

e
t + P e

t (Aet )
T +DΠ(X̂t)ḠtQtḠ

T
t DΠ(X̂t)

T .

Proposition 9. Consider noisy dynamics (27), and assume the noise diffuses insideMt,
i.e., Im(Ḡ(Xt)) ∈ TXtMt for any t > 0. Then Theorem 1 still holds true.

Proof. We have to prove Dqet (X̂t)P
e
t = 0 for any t > 0. Differentiating the relation gives:

d
dt

(Dqet (X̂t)Pt) = ( d
dt
Dqet (X̂t))P

e
t + Dqet (X̂t)(AtPt + PtA

T
t + DΠ(X̂t)ḠtQtḠ

T
t DΠ(X̂t)

T ).

By definition Dqet (X̂t)DΠ(X̂t)Ḡt = Dqt(X̂t)Ḡt, which is equal to 0 since we assumed
Im(Ḡ(X̂t)) ∈ TX̂t

Mt. Thus d
dt

(Dqet (X̂t)Pt) = ( d
dt
Dqet (X̂t))P

e
t + Dqet (X̂t)(AtPt + PtA

T
t ),

which is the same as in the noise free case. By unicity of the solution Dqet (X̂t)P
e
t =

0, ∀t > 0.

5 The Lie group case

Coming up with a nonlinear error that is compatible with all the constraints Mt may
prove difficult in practice. However, this can be done automatically in the case where the
state space is a Lie group, under a set of conditions.

5.1 A brief primer on Lie groups

For a complete introduction to Lie groups, the reader is referred to [25]. A d-dimensional
Lie group G is a smooth manifold endowed with a group structure, such that the group
operation and the inverse map are smooth. In this paper, we will only consider matrix
Lie groups, that is, we will assume that G ⊂ RN×N is a subgroup of the space of invertible
square matrices. All the results are valid for a general Lie group, but matrix Lie groups
provide a more concrete picture.

The tangent space TIG at the identity matrix I, is called the Lie algebra of G, and is
denoted by g ⊂ RN×N . It has dimension d, as the group. In turn, g may be identified with
the vector space Rd, through a map Rd → g that we denote ξ 7→ ξ∧. There is a natural
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map between g and G, called the exponential map of G, and denoted by exp, which is
merely the matrix exponential expm. In the remainder of the paper, we will identify g
to Rd, and we will directly denote exp(ξ) = expm(ξ∧) the exponential of ξ∧ ∈ g. The
exponential defines a local diffeomorphism between g and an open subset of G containing
the identity. Its local inverse is called the Lie logarithm. In general, the exponential is
not surjective.

Recalling our identifying g with Rd we define the Lie bracket of ξ, ζ ∈ Rd as [ξ, ζ] :=
[ξ∧, ζ∧]g where [·, ·]g denotes the Lie bracket in g, and call Lie subalgebra L any linear
subspace of Rd such that [ξ, ζ] ∈ L for ξ, ζ ∈ L. The Baker-Campbell-Hausdorff (BCH)
formula states exp(ξ) exp(ζ) = exp(η) with η = ξ + ζ+ Lie bracket terms composed from
ξ and ζ, see [25].

Similarly, the tangent space TgG at arbitrary g ∈ G can be identified to Rd through
left and right multiplications, i.e., the matrices gξ∧ and (ξ∧)g are both (distinct) vectors
of TgG. Throughout this section, we will privilege left multiplications, for exposition
purposes. To linearize a map h : G 7→ Rp, at an arbitrary point g ∈ G, we can evaluate
how it changes by infinitesimally following an arbitrary tangent vector gξ∧ at g. The
left linear approximation to h : G → Rp at g in the direction ξ ∈ Rd can then be
defined as the matrix H ∈ Rp×d such that h(g exp(ξ)) − h(g) = Hξ + O(||ξ||2), that is,
Hξ = d

ds
h(g exp(sξ)) |s=0. One must then bear in mind that infinitesimal shifts at any

g ∈ G are thus always represented by elements of Rd.

5.2 Group affine systems on Lie groups

Consider deterministic dynamics on a Lie group G with state χt ∈ G defined by :

d

dt
χt = f(χt, ut) := fut(χt). (28)

Definition 10. For two trajectories χt and χ̄t of the system (28), the left-invariant error
ηt is defined as:

ηt = χ−1
t χ̄t. (29)

The right-invariant error between two trajectories is ηt = χtχ̄t
−1. A key result of [3]

is as follows.

Theorem 2 ( [3]). For the dynamics (28), the left- and right-invariant errors satisfy an
equation of the form

d

dt
ηt = gut(ηt), (30)

for some map gut = G 7→ TηtG, if and only if

∀a, b ∈ G, fut(ab) = afut(b) + fut(a)b− afut(I)b. (31)

In that case, the dynamics are called “group-affine”, and errors are (slightly abusively)
said to have an autonomous evolution (30), in the sense it does not explicitly depend on
χt. Moreover, we have

∀a, b, gut(ab) = agut(b) + gut(a)b. (32)
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The group-affine property (31) encompasses many systems of engineering interest
revolving around attitude estimation, localization, and SLAM, see [1,3,4], and notably
includes invariant systems.

Another key result of [3] is the fact the error system is encoded by a linear differential
equation, see Corollary 1. This stems from the fact that gut necessarily satisfies (32).
The theory is concisely recapped as follows.

Definition 11. Group automorphisms are the maps Φ : G → G such that ∀a, a′ ∈
G,Φ(aa′) = Φ(a)Φ(a′). The Lie algebra automorphisms are the linear maps Ψ such that
∀ξ, ζ we have Ψ([ξ, ζ]) = [Ψ(ξ),Ψ(ζ)].

A very well-known and prototypical automorphism is the Adjoint operator.

Definition 12. The Adjoint operator Adg, with g ∈ G, is a Lie algebra automorphism,
defined through the equality g exp(ξ)g−1 = exp(Adg(ξ)).

Proposition 10. [3] Let Φg
t be the flow associated to the system (30). Because of (32),

Φg
t necessarily defines an automorphism of the Lie group G for all t.

This is because for η0, η
′
0 ∈ G, Φg

t (η0)Φg
t (η
′
0) is a solution of (30) with initial condition

η0η
′
0, using (32).
According to the Lie group - Lie algebra correspondence, and to the fact that Φg

t is
an automorphism, we have necessarily:

Theorem 3. Let d(gut)I : TIG → TIG denote the differential at I of gut of (30). As
g = TIG was identified to Rd, d(gut)I may be encoded by a matrix At ∈ Rd×d. Let Φg

t and
Ψg
t denote the flows of d

dt
ηt = gut(ηt) and d

dt
ζt = Atζt respectively. We have:

• Ψg
t is a Lie algebra automorphism,

• ∀t, ∀ζ0 ∈ Rd, Φg
t (exp ζ0) = exp(Ψg

t (ζ0)).

This readily proves:

Corollary 1. [3] We have for all ξ ∈ Rd: Φg
t (exp ξ) = exp(Ftξ), where Ft is the linear

operator being solution of the operator equation F0 = I, d
dt
Ft = d(gut)I ◦ Ft.

5.3 Considered problem and support of the posterior

Consider a system defined by the noise-free dynamics (28), with the group-affine condition
(31) and initial condition χ0 ∈ G. Moreover, consider noisy observations Yn ∈ Rp:

Yn = h(χtn) + Vn (33)

where the Vn’s are Gaussian independent noises. Suppose the prior is initially supported
by the subset

M0 = χ0G0, (34)

with χ0 ∈ G, and G0 a closed Lie subgroup of dimension k. Let L0 denote its Lie algbera.
L0 is a Lie subalgebra of the Lie algebra g. The problem fits into the framework of Section
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3, see Remark 1. In the particular case where G = Rd endowed with addition, note (34)
boils down to a k-dimensional affine subspace.

We can use the Lie group machinery to prove that the support of the posterior dis-
tribution not only is a manifold, but has a group structure.

Proposition 11. Let Mt denote the support of the posterior, that is, the image of M0

of (34) through the flow Φf
t of (28). Let Φg

t be the flow of (30). Then Mt = χtGt, with
χt := Φf

t (χ0) and Gt := Φg
t (G0). Gt is a (closed) embedded subgroup of G and its Lie

algebra is Lt = Ψg
t (L0), where Ψg

t is defined in Theorem 3.

Proof. By definition χt satisfies (28). Let χ̃t satisfy (28). Then ηt := χ−1
t χ̃t satisfies (30).

If χ̃0 ∈ M0 then η0 := χ−1
0 χ̃0 ∈ G0 and as χ̃t = χtηt we see that necessarily Mt = χtGt

with Gt = Φg
t (G0). The flow has continuous inverse so Gt is closed. According to

Proposition 10, Φg
t is a group automorphism and Ψg

t a Lie-algebra automorphism from
Theorem 3. Thus Gt is a subgroup of G and Lt a Lie subalgebra of g.

5.4 Support of the belief of EKFs based on invariant errors

In this paragraph, we consider the EKF based on the nonlinear left-invariant error

et = Π(χ̂t, χt) := χ̂−1
t χt, (35)

by applying the methodology of Section 4. The error is said left-invariant as Π(χ̂t, χt) =
Π(gχ̂t, gχt) ∀g ∈ G.

Remark 5. In Section 4 the state space is Rd to make the exposition more tutorial.
However, the methodology readily carries over to the case where the state space is a
manifold, and in particular a matrix Lie group. When referring to the methodology of
Section 4, we will in fact systematically refer to its immediate extension to the Lie group
case, that leverages the Lie algebra to encode tangent vectors, see Section 5.1.

Recalling Section 5.1, this immediate extension is as follows. First, we will need
to linearize error (35). On G this is done writing Π(χ̂, χ̂ exp(δe)) = χ̂−1χ̂ exp(δe) =
exp(δe) = expm((δe)∧) = I+ (δe)∧+O(||δe||2), and null error corresponds to e = I. As a
result we will refer to the linearized error as δe ∈ Rd such that e = I + (δe)∧+O(||δe||2).
Then, we will need to define the differential He of any map h : G → Rp with respect to
error e. To do so, we proceed as in Section 4, and for any e ∈ G, we let h(χ) − h(χ̂) =
Heδe+O(||δe||2), where Π(χ̂, χ) = e = exp(δe), that is, where we let χ = χ̂ exp δe.

The following theorem is our second major result.

Theorem 4. Consider system (28) with the group-affine condition (31), with observa-
tions (33), and let Mt be the image of M0 of (34) through the flow Φf

t of (28). The
EKF based on the left-invariant error et of (35) is consistent with the constraints Mt in
the sense of Definition 7. In other terms, all the estimates χ̂t are elements of Mt at all
times, and the covariance matrix P e

t indicates dispersion only whithin the tangent space
to Mt at χ̂t, and null dispersion transversally to it.

Moreover, exactly the same holds if the EKF is based on the right-invariant error
et = Π(χ̂t, χt) = χtχ̂

−1
t .

17



Proof. This stems from the theory of Section 4.3. To apply Theorem 1, we only need
to prove et is compatible with the constraints Mt, i.e. the condition of Proposition 8.
To do so we use the quotient manifold theorem 7.15 of [20], that states that if Gt is
a closed subgroup of G, then the quotient map qt : G → G/Gt associated with the
left coset space G/Gt is a smooth submersion. Let χ̂ ∈ Mt := χtGt. For left-invariant
errors (35), we proved linearized errors satisfy (δe)∧ = d

ds
|s=0 Π(χ̂, χ̂ exp(sδe)). Thus

KerDqet (χ̂) consists of elements δe ∈ TIG such that d
ds
|s=0 χ̂ exp(sδe) ∈ Tχ̂Mt. This

means KerDqet (χ̂) = {ξ ∈ Rd | χ̂ξ∧ ∈ Tχ̂Mt} = {ξ ∈ Rd | χ−1
t χ̂ξ∧ ∈ Tχ−1

t χ̂Gt}. Using left

translation by χ−1
t χ̂ we see the condition is equivalent to ξ being in the Lie algebra of

Gt, which is Lt. And thus KerDqet (χ̂) = Tχ̂Mt = Lt. As Lt = ψgt (L0) is independent of
chosen χ̂ ∈Mt, the condition of Proposition 8 is trivially met. Regarding right-invariant
errors, (34) may be re-writtenM0 = exp(L0)χ0 = χ0 exp(L′0) with L′0 = Ad−1

χ0
(L0) which

is a subalgebra. Switching left and right the proof is identical.

Remark 6. The result is remarkable, as it shows that a single EKF achieves consistency
of the belief support for a very large class of (time-varying) constraints all at once, and
without ad-hoc adaptation. Indeed, it suffices that M0 = χ0G0 with G0 a subgroup of
dimension k ≤ d for the implied constraints on the support to be met at all times. This
in sharp contrast with the usual state constrained solutions [23], where each constraint
generates an ad-hoc adaptation of the EKF’s output estimate. Note that, the EKF may
be based on left or right-invariant error, leading to two different filters that both are
consistent with the constraints.

5.5 Explicit derivation of EKFs based on invariant estimation
errors

We have not actually derived the equations for the EKF based on error et of (35). It turns
out that 1- the map ϕ of Definition 8 is merely the Lie exponential (hence its name), and
2- for specific classes of output maps, we recover the invariant EKF (IEKF) of [3].

Lemma 1. Consider the map ϕ of Definition 8 for the left-invariant error et of (35).
Then for χ̂ ∈ G and δe ∈ Rd, it simply writes

ϕ(χ̂, δe) = χ̂ exp(δe). (36)

For a right-invariant error et = χtχ̂
−1
t we have instead

ϕ(χ̂, δe) = exp(δe)χ̂. (37)

Proof. The Lie exponential of δe ∈ Rd gets its name from the fact that it satisfies
exp(δe) = χ̃(1) ∈ G, with χ̃(0) = I and where χ̃ satisfies the differential equation
d
ds
χ̃(s) = χ̃(s)δe ∈ Tχ̃(s)G.

On the other hand, we can apply Definition 8. The latter definition uses coordinates
in Rd, and needs to be defined more abstractly to match the fact the state space is a
group, that is, a curved space, see Remark 5. This is immediate, though, since ϕ(χ̂, δe)
of Definition 8 is in fact defined as χ̃(1) where χ̃(0) = χ̂, and where d

ds
χ̃(s) ∈ Tχ̃(s)G

is a tangent vector χ̃(s)ξ(s)∧ at χ̃(s) that corresponds to infinitesimally shifting χ̃(s) in
direction of error δe, i.e., such that Π(χ̃(s), χ̃(s) exp(ξ(s))) = I + δe∧ + O(||ξ||2). As a
result ξ(s) ≡ δe. Thus ϕ(χ̂, δe) = χ̃(1) = χ̂ exp(δe).

18



The full correspondance with IEKF is as follows:

Theorem 5. For the system (28) observed through noisy measurements (33) where we
let h(χtn) = χtn · d̄ for some d̄ ∈ RN , the EKF based on the left-invariant error (35) along
the lines of Section 4 actually is the left invariant EKF (LIEKF) of [3].

When on the other hand h(χtn) := χ−1
tn · d̄ ∈ RN , then the EKF based on the right-

invariant error Π(χ̂t, χt) = χtχ̂
−1
t is the RIEKF of [3].

The proof has been moved to the Appendix.

5.6 A theoretical example

Our preliminary conference paper [12] was devoted to systems of the form d
dt
χt = χtut +

νtχt with χt the state belonging to a Lie group G, with measurements of the form Yn =
χtn · d̄ + Vn. It was proved that for the latter systems, the IEKF is compatible with
constraints of the form χt · bt = ct where of course bt, ct ∈ RN are such that the latter
equality is preserved by (28). To prove this is a direct consequence of the theory of
Section 5, all we need to show is that 1- systems of the form d

dt
χt = χtut + νtχt are

group-affine, and 2- the setMt = {χ ∈ G | χ · bt = ct} is of the formMt = χ̄tGt, with Gt

a closed subgroup. The first point is easily checked, and has already been noticed in [3].
Regarding the second, we have Mt = χ̄tGt with χ̄t any element such that χ̄tbt = ct, and
Gt = {χ̃ ∈ G | χ̃bt = bt}. Note that, this shows in passing that the theory of the present
section is more general than [12].

6 Applications

6.1 Navigation example

In the example of Figure 1, the unicycle model serves as simplified dynamical equations
d
dt
θt = ωt,

d
dt
x

(1)
t = ut cos θt,

d
dt
x

(2)
t = ut sin θt, where the state (θt, xt) consists of the

orientation θt ∈ S1 of the car in the plane, and its position xt = (x
(1)
t , x

(2)
t )T ∈ R2. The

angular and linear velocities ωt, ut ∈ R are computed from the wheel speed sensors. As
they are assumed to be perfect, the dynamics are noise free. Assume that, at discrete
times 0 < t1 < t2, · · · a GPS-like sensor returns the noisy position of the car, that is,
measurements of the form Yn = (x

(1)
tn , x

(2)
tn ) + Vn where Vn is a random variable. Suppose

that initially the absolute position of the car is perfectly known, that is, x
(1)
0 = x

(2)
0 = 0,

and that the orientation is uncertain, say, Var(θ0) = π/2 and Var(x
(1)
0 ) = Var(x

(2)
0 ) = 0.

As shown in [2], the information that we have at time t is of the form q(θt, xt) = bt
with q(θ, x) = R(θ)Tx with R(θ) the planar rotation of angle θ. Moreover, a nonlinear
error can be defined as et = (eθ, ex) := (θ̂t − θt, R(θt)

T (x̂t − xt)). Then, q(θt, xt) −
q(θ̂t, x̂t)=R(θt)

Txt − R(θ̂t)
T x̂t = −ex + eθJR(θ̂t)

T x̂t + O(||et||2), where J is the skew-
symmetric matrix [0, 1;−1, 0]. As q(θ, x) = R(θ)Tx, we have Dqe |θ̂,x̂ (eθ, ex) = −ex +

eθJq(θ̂, x̂), so it depends on the state only via q(θ̂, x̂), so the error is compatible, see
Proposition 8, and Theorem 1 applies.

Thus, the main result of [2],which is that the updates of the EKF based on e (which
coincides with the IEKF, see Section 5.5) always move the car along the appropriate
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Figure 3: Numerical experiment. A robot having approximately known initial position
and unknown orientation explores a room, and builds a map of 8 characteristic unknown
features. Then, it leaves the building until it observes the bearing of a clearly visible
landmark with known location (the Pisa tower). This new observation brings information
about its orientation, and consequently on the general orientation of the map it has built.

circle, see Figure 1, with belief tangential to it, now appears as a consequence of the
proposed general theory. Moreover, the fact the IEKF is compatible with the constraints
was key to prove global convergence properties of the IEKF for the present problem in [2],
whereas simulations show the standard EKF does actually not converge, even for small
initial errors.

Remark 7. The constraint set Mt varies with time. Moreover, even for fixed t, each
particular motion (ωs, us)0≤s≤t of the vehicle generates a different set Mt. Yet, the EKF
based on e automatically meets all the constraints at all times, regardless of the motion,
and Mt never needs to be computed. This is in contrast with standard EKF state con-
strained techniques.

6.2 Simultaneous localization and mapping (SLAM) with par-
tial prior map

6.2.1 Problem and results

The following example revolves around the field of SLAM, which has drawn a lot of atten-
tion over the past two decades in the robotics community, see e.g. [14]. A wheeled robot
equipped with a Red Green Blue depth (RGBD) sensor (such as the Kinect) navigates
in an unknown building, and builds a map that consists of characteristic static features
that the robot can track through its vision system. In the present example we assume
the robot moves in a 2D plane and is modeled by the unicycle equations as in Section
6.1, see also [14,27]. The dynamics of the SLAM problem thus write:

d

dt
θt = ωt,

d

dt
xt = R(θt)(ut, 0)T ,

d

dt
pit = 0 for 1 6 i 6 k,

where the state consists of the robot’s position xt = (x
(1)
t , x

(2)
t )T ∈ R2, its orientation

θt ∈ S1, and the positions p1, p2, . . . , pm ∈ R2 of m unknown static features, and where
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Figure 4: Left and center plots: estimations of EKF and EKF with an adapted error e
(dashed), true trajectory (plain), true feature locations (crosses) and estimated feature
locations (circles). During the indoors phase, the robot builds a very acurate map up to
a global rotation and translation. Thus the filters ends up with a covariance matrix very
close to being singular: only the heading is still to be observed but the general shape of the
map is known. In particular, the distances between features should not change anymore
even if information regarding global position and heading is then obtained. Right plot
(best seen in color) shows that they do for the EKF, meaning the shape of the map
is changed by the observation, whereas it remains steady for the IEKF despite seeing
the Pisa tower at time step 417. This is the point of the present paper: an information
acquired by an EKF-like algorithm can be maintained over time only as long as the chosen
state error variable of the filter displays “compatibility” with this information.
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the measurements ωt, ut ∈ R are obtained using differential wheel speeds. Observations
are made at discrete times 0 < t1 < t2, · · · , and consist of the positions of the features
viewed from the robot Y i

n = R(θtn)T (pi − xtn) + V p
n , 1 ≤ i ≤ m when those features are

sufficiently close to the robot to be visible, and V p
n are centered i.i.d. random variables

that model measurement noise.
To estimate the state Xt = (θt, xt, p

1, · · · , pm), one can use an EKF, which is the
historical approach to the SLAM problem [14]. Consider then the following (numerical)
experiment displayed in Figure 3. The robot starts with approximately known location,
e.g. knows in which building it is located, and totally unknown orientation. Using its
sensors, it estimates a map of the buliding which consists of 8 priorly unknown features
(p1, · · · , p8). Staying in the building for sufficiently long, the measurement noise is pro-
gressively filtered out, and the relative position between landmarks, that is, the map in
the robot’s frame, becomes perfectly known although the robot’s position and orientation
remain uncertain, since the robot does not possess any absolute information. Thus, ac-
cording to the EKF’s covariance matrix, the distance between two landmarks is certain,
i.e., it has null (or extremely small) variance. Then, the robot moves out of the building
(the Kinect fails to return depth outdoors), and observes the bearing of a visible remote
landmark with known location, the Pisa tower (i.e., a typically highly visible landmark,
see [27]). Owing to the latter measurement, the robot infers its approximate orientation,
and the EKF updates the state Xt to take it into account.

As the relative position of unknown features (p1, · · · , pm) has been perfectly estimated,
it should stay as is, no matter what further measurements are made. However, we see
on Figure 4 this is not the case: the distance between two arbitrary features increases
according to the EKF when the tower (with known location) becomes visible. This
“unphysical” behavior is a problem due to the linear structure of the EKF update that
mismatches the nonlinear structure of the dynamics. As can be seen on Figure 4, if
in contrast an invariant EKF (IEKF) [1] is used instead, the distance between any two
landmarks stays constant no matter what further measurements are made (both filters
are identically initialized and tuned).

6.2.2 Relation to the general theory

The function we want the filter to preserve is the map in the robot’s frame, i.e., q(θ, x, p1, · · · , pm) =
R(θ)T ((p1−x), · · · , (pm−x)) and the aquired information we want to preserve is thus of
the form q(θ, x, p1, · · · , pm) = bt with bt ∈ R2m. Moreover, a nonlinear error can be defined
as e = (eθ, ex, e

1
p, · · · , emp ) := (θ−θ̂, R(θ−θ̂)Tx−x̂, R(θ−θ̂)Tp1−p̂1, . . . , R(θ−θ̂)Tpm−p̂m).

We have q(θ, x, p1, · · · , pm)− q(θ̂, x̂, p̂1, · · · , p̂m) = R(θ̂)T (e1
p− ex, · · · , emp − ex). Thus the

kernel of Dqe is the set defined by ex = e1
p = · · · = emp and it is fixed, so the error is

compatible in the sense of Definition 9 and Theorem 1 applies.
The error e is the right-invariant error in the sense of the group SEm+1(2) introduced

in [1,3]. Thus from Section 5.5 we know the EKF based on error e for the present problem
corresponds to the IEKF SLAM of [1].

Alternatively, the results may be applied to an EKF devised using the alternative
robot-centered state variables (θ, R(θ)Tx,R(θ)T (p1−x), . . . , R(θ)T (pm−x)). It is known
as the Robocentric mapping EKF [11]. According to Section 4.2, and more precisely
Proposition 12 of the Appendix it corresponds to the EKF based on error e = (θ −
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Figure 5: Same experiment as before, where the robot has aquired information about the
shape of the map, then goes outdoors and observes Pisa tower whose location is known.
Both plots display distance between two arbitrary features between steps 400 and 435. On
the left, a single observation is made at step 417. On the right 10 observations are made
from step 417 to 426 with a variance multiplied by 10 (i.e. equivalent total information) to
emulate continuous updates. Update frequency has no impact: the discrepancy displayed
by the EKF reaches the exact same value and the IEKF preserves the acquired information
in both cases.

θ̂, R(θ)Tx−R(θ̂)T x̂, R(θ)T (p1−x)−R(θ̂)T (p̂1− x̂), . . . , R(θ)T (pm−x)−R(θ̂)T (p̂m− x̂)).
It is then straightforward to check Theorem 1 also applies to this filter.

Remark 8. Numerous papers have drawn attention and commented on the caveats of the
EKF for SLAM, and notably its problems of consistency see e.g., [17,18]. We would like
to emphasize the caveats of the EKF evidenced in the present section are wholly different.
The former inconsistencies stem from unobservability of the global map’s orientation,
whereas the present example is concerned with deterministic information that should be
preserved when the problem becomes observable. Note that this is quite relevant to the
field of robotics, and can be considered a contribution in itself: the IEKF of [1] and the
Robocentric EKF of [11] have just been shown to also resolve another unexplored type
of consistency issue of the EKF, related to its unability to produce state updates being
consistent with a map previously observed with certainty.

6.2.3 Case of continous time updates

One could suspect the differences with a standard EKF are noticeable only in discrete time
when an observation creates a large and sudden update which does not occur with high
frequency updates. However this is not the case, as proved in the numerical experiment
whose results are displayed in Figure 5: if the information arrives in continuous time the
induced EKF inconsistency increases progressively but reaches the exact same value as if
the same information were provided all at once to the filter.
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6.3 Extended Kalman filtering with (static) nonlinear equality
constraints

As a byproduct secondary result, the general present theory readily allows enforcing a
large range of static nonlinear state equality constraints in Rd.

Corollary 2 (Of Theorem 1). Suppose one wants to enforce nonlinear equality constraint
q(X) = c with q : Rd → Rd−k where Dq(X) has constant full rank, and such that
q−1(c) := M is a parallelizable submanifold of Rd. Then one can necessarily find an
error e which is compatible with M, and the EKF based on e is consistent with the
constraint. The estimate thus remains in M, regardless of the measurements.

Error e may be constructively built as follows. IfM is of dimension k and paralleliz-
able there exists smooth vector fields such that {V1(X), · · ·Vk(X)} is a basis of TXM for
all X ∈M. Consider an error Π(X, X̂) such that the k first columns of DΠ(X)−1 ∈ Rd×d

consist of (V1(X), · · ·Vk(X)), and the d− k remaining columns are a basis of ImDq(X).
This error is compatible: for X ∈ M, KerDq(X) = Im(V1(X), · · ·Vk(X)) and thus
KerDqe(X) = KerDq(X)(DΠ(X))−1 is fixed (spanned by the first k columns of Id×d)
and Theorem 1 applies. Note that, with process noise, the results still hold along the
lines of Section 4.4.

Extended Kalman filtering on Lie groups has been the subject of recent research.
Indeed, one may want the estimate to remain on the group, such as in e.g., [9,10,15], and
this is one type of (static) constraint one may consider, albeit far less challenging than
the time-varying subgroup constraints of Section 5.

For instance for attitude estimation, if X ∈ R4, and ∗ denotes the quaternion product
extended in a straightforward way to all vectors of R4, then the EKF based on error
e = X−1 ∗ X̂ automatically enforces ||X|| = 1 if correctly initialized, and thus that X
is a quaternion. Indeed for q(X) = ||X||2, KerDqe is spanned by vectors whose first
coordinate is 0, and is thus fixed. The error is thus compatible and Theorem 1 applies.
Note that, the alternative error e = X̂ ∗X−1 leads to identical results. See also the recent
work of [15] on the subject.

7 Conclusion

In this paper we have proposed a general methodology of EKF based on nonlinear errors.
We have proved it may be applied to the problem of nonlinear filtering in the presence of
partial deterministic information, i.e., constraints, in order to have the EKF account for
this information, and not violate it as is the case with the conventional EKF. Given the
constraints, there is no systematic way to construct the appropriate error, but given an
error, Proposition 8 provides a simple way to check its compatibility with the constraints.
The special case where the state space is a Lie group, was shown to come with much
stronger results. Finally, we have provided a novel application to SLAM.

A very important point is as follows. Our method consists in using alternative EKFs,
not in artificially constraining EKFs. As a result, there is a continuum between the
constrained case and the non-constrained case in our theory, which is not the case of state-
constrained solutions. This is a strong indication that our EKF will perform well in the
presence of small, albeit not necessarily null, eigenvalues in the covariance matrix. This
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is illustrated by our SLAM example, where in simulations eigenvalues in the covariance
matrix actually become very small due to multiple observations, but not strictly null,
and the desired behavior is yet achieved. This is also key to the success of the industrial
application of IEKF to inertial navigation as described in [6], where the dynamics are
close to being noise-free, owing to high precision inertial sensors, but not completely
noise-free as sensors always come with (small) noises that engineers do account for in the
process noise covariance matrix Q of the IEKF.

As a perspective, one could study the benefits of the present theory in the context of
data assimilation, and attempt to extend some linear results of [8,16,21] to the nonlinear
case.
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Appendix A: Change of variables

Proposition 12. Let φ : Rd → Rd be a diffeomorphism encoding a change of variables.
Let Z = φ(X). Then, the EKF based on the error variable e = Π(X̂,X) := φ(X)−φ(X̂),
that is, the standard linear error Z − Ẑ in the alternative variable Z, coincides with the
conventional EKF built using variable Z. More precisely if X̂t, P

e
t are the parameters

output by the EKF based on error e, and if Ẑt, P
Z
t are those output by the conventional

EKF built using the Z-coordinates system, then we have at all times Ẑt = φ(X̂t) and
P e
t = PZ

t , as soon as initially Ẑ0 = φ(X̂0) and P e
0 = PZ

0 .

Proof. In this case we have DΠ(X̂) = Dφ(X̂). The propagation step obviously preserves
that Ẑt = φ(X̂t), since it consists of a mere integration of the dynamics. To prove it
preserves P e

t = PZ
t we first need to prove the equality of the linearized systems, i.e., that

Aet = AZt . We will skip this step, which can easily be established similarly to (26). As
concerns the update step, the proof is based on the following technical result:

Lemma 2. φ ◦ ϕ(x, δe) = φ(x) + δe for all x, δe.

Proof. ϕ(x, δe) is defined as the solution χ̃(1) at s = 1 to d
ds
χ̃(s) = [Dφ(χ̃(s))]−1δe =

Dφ−1(φ(χ̃(s)))δe. But d
ds
φ−1(φ(x) + sδe) = Dφ−1(φ(x) + sδe)δe. As φ(χ̃(0)) = φ(x) we

have φ(χ̃(s)) = φ(x) + sδe or all s ≥ 0, proving χ̃(1) = φ(x) + δe.

In the Z coordinates, the linearized output map writes HZ
n = ∂

∂z
h ◦ φ−1(Ẑ) =

HnDφ
−1(φ(X̂)) where Hn = ∂

∂x
h(X̂), and using (22) and (15) He

n = Hn(Dφ(X̂))−1 = HZ
n ,

yielding identical Kn, P
+
tn , and Knzn for both filters. Using Lemma 2, we then see that

both filters also yield the same updated state.

Appendix B : Proof of Theorem 5

Lemma 3. The propagation step of the EKF based on error et in the sense of Section 4,
writes:

d

dt
χ̂t = fut(χ̂t),

d

dt
P e
t = AetP

e
t + P e

t (Aet )
T , (38)

where Aet is defined at Theorem 3. Moreover, (38) is the propagation step of the LIEKF
of [3].

Proof. Aet represents the first-order approximation to the error evolution. Let us apply
the methodology of Section 4 using the first-order geometry of G, see Remark 5. Indeed,
according to (29) and (30) the full error equation during propagation is d

dt
et = gut(et).

To linearize the error around the diagonal Π(χ, χ) = I, we posit et = exp(δet) with
δet ∈ Rd. Remarkably, the evolution of ξt needs not be linearized as Theorem 3 proves
there is Aet ∈ Rd×d indeed, defined as d(gut)I , such that d

dt
δet = Aetδet, and where exp(δet)
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is exactly et. As this is true in particular at the first order, (38) corresponds indeed to
the propagation step (17) of the EKF based on et. And it turns out this is exactly the
definition of the propagation step of the LIEKF of [3].

Lemma 4. Under conditions of Theorem 5, the update step of the EKF based on error
et in the sense of Section 4 writes:

zn := Yn − χ̂tn · d̄, (39)

Kn := P e
tn(He

n)T (He
nP

e
tn(He

n)T +Rn)−1, (40)

χ̂+
tn = χ̂tn exp(Knzn), (P e

tn)+ = (I −KnH
e
n)P e

tn , (41)

with He
n : Rd 7→ RN the linear map defined by δe 7→ χ̂tn(δe)∧d̄. Moreover, this exactly

coincides with the update step of the LIEKF of [3].

Proof. Regarding the definition of χ̂+
tn in (41), we used (20) and the result (36). In the

methodology of Section 4, He
n is defined as the differential of h with respect to error e. As

noticed, this means on G that h(χ)−h(χ̂tn) = He
nδe+O(||δe||2) where Π(χ̂tn , χ) = exp δe,

that is, χ = χ̂tn exp(δe). Assuming h(χ̂tn exp(δe)) = χ̂tn exp(δe)·d̄, a first-order expansion
of the exponential yields He

nδe = χ̂tn(δe)∧d̄.
The seemingly different update of the LIEKF [3] is:

K̃n = P e
tn(H)T (HP e

tnH
T + R̂n)−1,

χ̂+
tn = χ̂tn exp

[
K̃n(χ̂−1

tn Yn − d̄)
]
,

(P e
tn)+ = (I − K̃nH)P e

tn ,

with H : δe 7→ (δe)∧d̄, and R̂n = χ̂−1
tn Rn(χ̂−1

tn )T . But it is easily seen that He
n = χ̂tnH,

that Kn = K̃n(χ̂tn)−1 and thus both steps exactly coincide.
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