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1Extended Kalman Filtering with Nonlinear
Equality Constraints: a Geometric Approach

Axel Barrau, Silvère Bonnabel

Abstract—In this paper, we focus on extended Kalman
filtering (EKF), in the difficult case where a function of the
state has been perfectly observed, and is thus known with
certainty, while the full state still has unobserved degrees
of freedom. In the linear case, the Kalman filter perfectly
handles such constraints, which result in the state being
in an affine subspace. Yet, in the nonlinear case, the EKF
poorly handles such type of constraints. As a remedy, we
propose a novel general methodology of EKF based on an
(arbitrary) nonlinear error e. And we prove that under
compatibility of the error e with the constraints, the EKF
based on e perfectly handles the constraints. Furthermore,
when the state space is a Lie group, we prove the EKF
based on invariant errors is exactly the invariant EKF
(IEKF), and we prove further properties. The theory is
applied to the problem of simultaneous localization and
mapping (SLAM), where the IEKF is shown to perfectly
handle some partial deterministic information about the
map. As a byproduct, the theory is also shown to readily
allow devising EKFs on state spaces defined by a class of
equality constraints.

I. INTRODUCTION

The extended Kalman filter (EKF) is an estimation
algorithm that is pervasively used in various fields
involving dynamical systems’ state estimation from
measurements of physical sensors. When the considered
system is linear and the uncertainties are modeled by
Gaussian random variables, the Kalman filter (KF) is
optimal. On the other hand, when the system is non-
linear the EKF relies on first-order Taylor expansion of
the nonlinear system, and it is not optimal.

It is common to use the EKF in contexts where
some side (deterministic) information about the state is
available. This has led to the realm of state constrained
extended Kalman filtering, see e.g. [23], where a variety
of tools allows forcing the state to belong to a set
where it is known to be, e.g., concentrations in chemical
reactors are positive. More recently, some techniques
have also emerged in the domain of optimization based
Kalman smoothing [6].

In this paper, we focus on extended Kalman filtering
(EKF), in the difficult case where a function of the
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state has been perfectly observed, and is thus known
with certainty, while the full state still has unobserved
degrees of freedom. In the linear case, the Kalman filter
perfectly handles such constraints, which result in the
state being in an affine subspace. Yet, in the nonlinear
case, the EKF poorly handles such type of constraints.
As a remedy, we propose a novel general methodology
of EKF based on an (arbitrary) nonlinear error e. And
we prove that under compatibility of the error e with
the constraints, the EKF based on e perfectly handles
the constraints. Furthermore, when the state space is a
Lie group, we prove the noteworthy result that then,
the EKF based on an error which is invariant is exactly
the invariant EKF (IEKF) of [3], which means the
present methodology generalizes the IEKF’s. Moreover,
building upon Lie group theory, and notably the Lie
group Lie-algebra correspondance, we obtain stronger
results for the Lie group case.

The starting point of our study was the recent success-
ful implementation of the IEKF in an industrial product
for high precision navigation described in [5], where a
high end inertial measurement unit yields increments of
such precision that the dynamics is almost noise free,
and where in contrast, the initial heading of the vehicle
is totally unknown, yielding a (theoretical) covariance
matrix with a mixture of large eigenvalues and very
small eigenvalues. For this problem the IEKF was
found to outperform the EKF so univocally that strong
underlying theoretical properties could be suspected.

Partial explanations can be found in the preliminary
conference paper [2], where a simplified example of
high precision navigation was considered, which is
recalled in Figure 1. In a following preliminary con-
ference paper [11], we proved some properties of the
IEKF regarding state constraints for the class of mixed-
invariant noise free dynamics on Lie groups (see [18]
for a definition). Note that, [11] is generalized here at
two different levels: first, the part of the present article
dedicated to Lie groups is much more general than [11],
and then, a general theory of EKF based on nonlinear
errors generalizes the approach to arbitrary state spaces,
with arbitrary (non-invariant) errors.

The constraints we consider are technically related to
rank deficiency of the EKF’s covariance matrix. To this
respect, we would like to mention that KF and EKF with
rank deficient covariance matrices have been the object
of recent research in atmospheric and oceanographic



contexts, where filtering and smoothing are referred to
as data assimilation, and where the dynamical models
are based on fluid mechanics described by partial differ-
ential equations, and their discretization results in high
dimensional state spaces that make Kalman filtering
intractable. Yet, there has been evidence that Kalman
filtering with reduced dimensional covariance matrices
could prove sufficient. Mathematical analysis of the
linear KF with rank deficient covariance matrices is the
subject of ongoing research, see e.g., [7,15].

A. The contribution simply explained

Assume at some point the constraint h(X) = c is
known about the state X . Consider an EKF, and pick
an estimate X̂ that verifies h(X̂) = c. To make sure the
covariance matrix also reflects this information, that is,
all the uncertainty must be within the subspace defined
by h(X) = c, we make a virtual noise-free observation
Y = h(X) where we set Y = c to update the EKF. The
fact h(X) = c is now supposedly known for certain.
However, if we immediately make a number of other
observations Y1 = h1(X) +V1, · · · , Yn = hn(X) +Vn,
with Vi’s independent noises, and denote X̂+ the EKF’s
estimate taking into account all the latter measurements,
do we have h(X̂+) = c ? If h is linear, then yes,
the EKF does behave as if it had encoded h(X) = c
as a “hard constraint”. But if h is nonlinear, then
unfortunately the answer is no.

In this paper we first advocate that if e is a nonlinear
estimation error of the general form e = Π(X̂,X),
which offers an alternative to the usual linear state
error X − X̂ , an alternative EKF may in turn be built
based on this estimation error: the covariance matrix
then reflects the statistical dispersion of e instead of the
one of X − X̂ . Then, suppose we have a constraint of
the form h(X) = c, and we apply the same procedure
as above to an EKF based on error e. We pick an
estimate such that h(X̂) = c, then update the EKF
with the noise-free virtual observation h(X) = c, and
then consider the updated state X̂+ after additional
observations Y1, · · · , Yn. Then, the desirable condition
h(X̂+) = c, is automatically satisfied under the follow-
ing very simple condition1: the kernel of ∂h

∂e |X viewed
as a function of X , is a function of the components
of h(X), i.e., does not fully depend on X .

For example, the conventional EKF is based on linear
error e = Π(X̂,X) = X−X̂ . If h(X) = HX is linear,
we have ∂h

∂X = H . Thus ∂h
∂e = ∂h

∂X
∂X
∂e = ∂h

∂X ( ∂e∂X )−1 =
H ∗ I−1 = H and Ker ∂h∂e = {z | Hz = 0}. As this
subspace does not even depend on X , the condition is

1 ∂h
∂e
|X is rigorously defined in the paper as ∂h

∂e
|X = ∂h

∂X
∂X
∂e

:=
∂h
∂X
|X(DΠ(X))−1 with DΠ(X) := ∂

∂X
Π(X̂,X)|(X,X) the par-

tial derivative of e = Π(·, ·) w.r.t. the second variable at (X,X).

trivially met, and the theory confirms the EKF has a
desirable behavior with respect to linear observations.

B. Organization of the paper
The linear case is studied in Section II. The nonlinear

case and the caveats of the EKF are described in Section
III. In Section IV, we introduce the novel general
methodology of EKFs based on nonlinear errors, and
prove it may remedy the problems of the EKF with
respect the considered class of constraints. The theory
is then applied to the case where the state space is
a (matrix) Lie group G, where we recover the IEKF
of [3]. The obtained EKF not only keeps the state
inside an embedded matrix Lie group, as customary
in Bayesian filtering on Lie groups, e.g., [8,9,14], but
we obtain powerful results in Section V for problems
which involve additional constraints that the state shall
belong to a subgroup Gt of G, that moreover may
change over time. Finally, in Section VI, the theory is
applied to the problem of simultaneous localization and
mapping (SLAM), see e.g. [13], where we consider a
type of constraint that has never been explored before,
and that is violated by the EKF. Although the paper is
self-contained, the reader is advised to read [2] as an
introduction.

II. THE LINEAR CASE

We recall in this section a known property of linear
Kalman filtering regarding its ability to handle partially
deterministic information in the absence of process
noise.

A. Considered problem
Consider a continuous-discrete linear system in Rd

with deterministic dynamics:

d

dt
Xt = AtXt, (1)

Yn = HnXtn + Vn, (2)

where Xt ∈ Rp is the state of the system at time t,
(tn)n≥0 the sequence of observation times, (Yn)n≥0 the
corresponding observations and Vn a centered Gaussian
noise with covariance matrix Rn (assumed to be positive
definite) corrupting observation n.

We also make the additional assumption that the
initial distribution of the state lies in an affine subspace,
that is:

X0 ∼ N (X̂0, P0), where P0 has rank k < d. (3)

Definition 1 (prior distribution). Combining the initial
distribution given by (3) and the dynamics (1), one gets
a probability distribution π(dxt) of the state Xt at all
times t ≥ 0. This distribution is called the prior on the
state Xt.
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The prior distribution encodes the information we
have without using the observations. The goal of
Bayesian filtering is to compute in real time the statistics
of the unknown state Xt given all the information
y0, y1, · · · , yn we have had up to present time t.

Definition 2 (posterior distribution). The posterior dis-
tribution of Xt is the prior conditioned on past mea-
surements, that is, the probability measure π(dxt |
y0, y1, · · · , yn), where tn ≤ t < tn+1.

Definition 3 (optimal filter). A filter that would be
able to compute at all times the posterior distribution
conditioned on the past is called the optimal filter.

B. Support of the posterior distribution
Definition 4 (Support of a distribution). If X is a
random variable in Rd, the support of the distribution
is the subset of Rd where X lives, i.e. the probability
that X takes values outside the support is null.

Owing to (1)-(3), the support of the posterior is
restricted to a subset of Rd. Indeed, let W0 denote the
affine space X0 + ImP0: it has dimension k. We have:

Proposition 1. Let Ft ∈ Rd×d be defined by F0 = I
and d

dtFt = AtFt. Then at time t, the support of the
prior distribution is Wt, where Wt = FtW0. Thus Wt

is also an affine subspace of Rd.

Proof: At time t ≥ 0, the distribution of Xt

is supported by the image of W0 through the linear
equation (1), which is exactly FtW0.

Proposition 2. Applying Bayes’ rule and Proposition
1 we see at time t ≥ 0, the support of the posterior
distribution is the k-dimensional affine subspace Wt.
As a result, the distribution computed by the optimal
filter is supported by Wt.

C. Support of the Kalman filter’s belief
Definition 5. For any (not necessary optimal) filter, we
call belief the posterior distribution output by the filter.

As the Kalman filter (KF) is the optimal filter for the
linear-Gaussian systems of the form (1)-(2), its belief
is necessarily supported by the affine subspace Wt.
However, it is instructive to see how the KF actually
maintains the belief in Wt.

1) Kalman filter’s equations: At each time the KF’s
belief is as follows Xt ∼ N (X̂t, Pt) where X̂t, Pt are
defined through an alternation between propagation and
update steps.
• Initialization: The initial belief is X0 ∼ N (X̂0, P0).
• Propagation step: Between two measurements

tn−1 ≤ t < tn, the belief is propagated as:

d

dt
X̂t = AtX̂t,

d

dt
Pt = AtPt + PtA

T
t . (4)

• Update step: When a measurement arrives at time tn
the belief is updated as Xtn ∼ N (X̂+

tn , P
+
tn) where

zn := Yn −HnX̂tn , (5)
Kn := PtnH

T
n (HnPtnH

T
n +Rn)−1, (6)

X̂+
tn = X̂tn +Knzn, P+

tn = (I −KnHn)Ptn ,
(7)

and where zn is called the innovation.
2) Support of the belief: We can prove:

Proposition 3. The support of the Kalman Filter’s belief
is Wt, i.e., at all times we have X̂t + ImPt = Wt.

Proof: This is easily proved by induction. In-
deed, let

−→
Wt denote the vector space associated to

Wt, and assume that at time tn−1 we have both
X̂tn−1

∈ Wtn−1
and ImPtn−1

=
−−−−→
Wtn−1

. During prop-
agation, the estimate X̂t automatically remains inside
Wt since its evolution is governed by left-hand side
of (4) which coincides with (1). As concerns Pt, let
x̃t ∈ Rd satisfy the equation d

dt x̃t = −ATt x̃t. We
have [Ptn−1

x̃tn−1
] ∈ ImPtn−1

=
−−−−→
Wtn−1

. Then we have
d
dt [Ptx̃t] = At[Ptx̃t] + PtA

T
t x̃t − PtATt x̃t = At[Ptx̃t],

so that [Ptx̃t] remains in Wt during propagation. At the
update step, assuming X̂tn ∈Wtn , and ImPtn =

−−→
Wtn ,

we have ImKn ⊂ ImPtn implying that X̂+
tn =

X̂tn + Knzn ∈ Wtn , and that ImP+
tn ⊂

−−→
Wtn since

P+
tn = Ptn −KnHnPtn .

III. THE NONLINEAR CASE

In this section, we discuss the case where the initial
covariance matrix is singular and the dynamics deter-
ministic but nonlinear. We also evidence the caveats of
rank-deficient extended Kalman filtering.

A. Considered problem
Consider the nonlinear system in Rd:

d

dt
Xt = f(Xt, ut), (8)

Yn = h(Xtn) + Vn, (9)

where f, h are smooth nonlinear maps, and Vn ∼
N (0, Rn). Assume as previously that the initial distri-
bution of the state lies in an affine subspace, i.e.,

X0 ∼ N (X̂0, P0), where P0 has rank k < d. (10)

Definition 6. Denote by Ψ(t;x) the solution of equation
(8) at time t when initialized on x. Ψ is called the
flow of the equation. It is characterized by d

dtΨ(t;x) =
f
(
Ψ(t;x), t

)
with Ψ(0;x) = x.

Note that, in the linear case (1) of the preceding
section, we have Ψ(t;x) = Ftx.
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Remark 1. More generally, we can assume that the
initial distribution is supported by some manifold M0,
and all the developments to come remain perfectly valid.
However, the present section is concerned with initial
prior (10) for simplicity of exposition.

B. Support of the posterior distribution

Owing to nonlinear dynamics (8), the initial affine
subspace gets distorted over time.

Proposition 4. The image of the affine subspace W0 =
X̂0 + ImP0 through the flow Ψ of (8) defines a
submanifold Mt = {Ψ(t;x) | x ∈ W0} of Rd of
dimension k. Moreover, the tangent space TΨ(t;x)Mt

of Mt at Ψ(t;x) is given by the partial derivatives of
Ψ(t;x) with respect to x in directions defined by

−→
W0.

More precisely we have:

Proposition 5. Consider a solution of (8), with X0 =
x0. At Ψ(t;x0), the tangent space to Mt is spanned
by the columns of a matrix M(Ψ(t;x0), t) ∈ Rd×k,
which satisfies the equation d

dtM = ∂f
∂xM with initial

condition ImM(x0, 0) =
−→
W0.

Proof: As f is smooth so is Ψ. Denote ∂x̄Ψ(t;x0)
the partial derivative in the direction of x̄ ∈ Rd. We have
∂t(∂x̄Ψ(t;x0)) = ∂x̄∂tΨ(t;x0) = ∂x̄f(Ψ(t;x0), t) =
∂f
∂x (Ψ(t;x0), t)∂x̄Ψ(t;x0). Using a basis x̄1, · · · , x̄d
and the corresponding solutions ∂x̄iΨ(t;x0) as columns
of a matrix Nt we have proved Ṅt = ∂f

∂x (Ψ(t;x0), t)Nt.
From Liouville’s formula (Lemma 3.11 of [25])
detNt = detN0 exp(

∫ t
0

tr(∂f∂x (Ψ(s;x0), s))ds) and
thus Nt is invertible and thus so is the differential of
Ψ. Thus W0 provides a set of local coordinates on the
set Mt = {Ψ(t;x) | x ∈ W0} through Ψ(t; ·). This
provesMt is a submanifold of dimension k = dimW0.
It also proves ∂x̄Ψ(t;x) is a tangent vector of Mt at
Ψ(t;x) for x̄ ∈

−→
W0. The same token proves the set

{∂x̄Ψ(t;x0) | x̄ ∈
−→
W0} is spanned by the columns

of a matrix Mt ∈ Rd×k solution to d
dtMt = ∂f

∂xMt

with initial condition ImM0 =
−→
W0, and naturally

ImM(Ψ(t;x0), t) = TΨ(t;x0)Mt.
Note that, (Xt,M) may in fact be defined intrin-

sically through the notion of variational system as
introduced in [12]. The following result is the nonlinear
counterpart of Proposition 2:

Proposition 6. The posterior distribution is supported
at all times by the k-dimensional manifoldMt. In other
terms, Mt supports the belief of the optimal filter.

Proof: Proposition 4 implies the prior distribution
can only take strictly positive values on Mt. So does
the posterior, owing to Bayes formula.

C. Support of the extended Kalman filter belief
The extended Kalman filter (EKF), is an extension of

the KF to the nonlinear case, based upon linearizations.
Its very “linear” structure, turns out to be inappropriate
in the presence of singular covariance matrices and
nonlinear dynamics. Let us explain why.

1) Extended Kalman filter’s equations: At each time
the EKF’s belief Xt ∼ N (X̂t, Pt) is defined through an
alternation of propagation and update:
• Initialization: The initial belief is X0 ∼ N (X̂0, P0).
• Propagation step: Between two measurements

tn−1 ≤ t < tn, the belief is propagated as follows:

d

dt
X̂t = f(X̂t, ut),

d

dt
Pt = AtPt + PtA

T
t ,

(11)
where At = ∂f

∂x (X̂t, ut).
• Update step: When a measurement arrives at time tn

the belief is updated as Xtn ∼ N (X̂+
tn , P

+
tn) where

zn := Yn − X̂tn , Hn :=
∂h

∂x
(X̂tn) (12)

Kn := PtnH
T
n (HnPtnH

T
n +Rn)−1, (13)

X̂+
tn = X̂tn +Knzn, P+

tn = (I −KnHn)Ptn .
(14)

2) Support of the belief: First of all, as the EKF
represents the belief as a Gaussian, it is hopeless that the
support of the belief match withMt, since the latter is a
curved space whereas Gaussians are supported by affine
spaces (in other words the EKF computes linear Gaus-
sian approximations to the posterior). However, what
one might expect is that belief distribution N (X̂, Pt) of
the EKF be consistent with the geometric constraints.

Definition 7. We say that the EKF (or any Gaussian
filter) belief N (X̂, Pt) is consistent with the state space
constraintMt if at all times t ≥ 0 we have necessarily
1- X̂t ∈ Mt, and 2- ImPt = TX̂t

Mt. In other words,
the support of the distribution N (X̂, Pt) must coincide
with the tangent space TX̂t

Mt.

Unfortunately, the EKF is generally never consistent
with the constraints induced by the initial rank defi-
ciency in the nonlinear case. This is a direct conse-
quence of the “linear” structure of the filter. Indeed, to
meet conditions 1 and 2 of Definition 7 at all times,
both propagation and update steps must preserve those
conditions. Propagation step is not problematic in itself:

Proposition 7. During the propagation step, the EKF
preserves conditions 1 and 2.

Proof: First of all, it is clear that X̂t will remain in
Mt during propagation since the EKF merely integrates
the model equations, see (16). Between two updates,
we see from Proposition 5 that TX̂Mt is spanned by a
matrix Mt which is a solution to the equation d

dtMt =

4



AtMt. Thus as shown in the proof of Proposition 3, if
at some point ImPt = ImMt this will remain true in
the absence of updates.

On the other hand, the update step is problematic
for the reasons to follow. To provide a more concrete
picture, we have illustrated the following items using
an example of engineering interest discussed in the
preliminary conference paper [2], see Figure 1.
• Assume that just before update at time tn the

EKF is consistent with the constraint and meets
conditions 1 and 2 of Definition 7.
• Condition 1: as ImPtn = TX̂tn

Mtn the correction
term Knzn points in a constraint-consistent direc-
tion, i.e., Knzn ∈ TX̂tn

Mtn . But then the updated
state X̂+

tn = X̂tn +Knzn will generally not be an
element of Mtn since Mtn is not a vector space,
see Figure 1 (b).
• Condition 2: even if X̂+

tn ∈Mtn , condition 2 will
not be met since, owing to the update step, we have
also ImP+

tn ⊂ TX̂tn
Mtn , and there is no reason

why TX̂tn
Mtn should coincide with TX̂+

tn
Mtn ,

the manifold being curved, see Fig. 1 (c).
3) Discussion on state constrained based solutions:

One possible solution is to consider that the state
be part of Mt as a state constraint. For a review
on state constrained EKFs see e.g. [22]. The present
article aims at providing a geometric framework that
offers alternatives to this route. Indeed, contrary to
state constrained solutions, the solutions presented in
the remainder of the paper do not require specific
adaptation to the particular constraints considered so
that first-order optimality properties are conserved, as
the EKF’s outputs are never transformed or projected
in order to artificially enforce the constraint. Moreover,
the constraints considered in the present paper are time-
varying, which is a further challenge.

IV. A GENERAL APPROACH: EKF BASED ON
NONLINEAR ERRORS

The problem of the EKF is its very linear structure,
that does not match with the geometry of the true
dispersion of the belief, which is a curved spaceMt in
the nonlinear case. The problem is that the estimation
error should increase alongMt, but never transversally
to Mt, so that nonlinear estimation errors that “match”
with the constraint Mt may prove useful.

A. EKF based on an alternative error
Instead of considering the standard estimation er-

ror X̂t − Xt, we propose to define an alternative
nonlinear estimation error as et = Π(X̂t, Xt), with
Π : Rd×Rd → Rd a function that satisfies Π(x, x) ≡ 0,
and which is locally invertible with respect to both of
its arguments at the diagonal {(x, x) | x ∈ Rd}. A

(a)

(b)

(c)

Fig. 1: Consider a simplified car in 2D, equipped with
perfect high frequency differential wheel speeds, and
a GPS that returns discrete noisy measurements of the
position. (a) The (green) car starts from perfectly known
initial position with unknown heading, and drives in
straight (green) line until time t > 0. Owing to its
perfect differential wheel speeds, it is known to be
located with certainty on a circle centered at the initial
position, but at an unknown location (all red cars are
possible locations): there is uncertainty along the cirle,
and certainty orthogonally to it. (b) An EKF may
be used to estimate the position and the orientation.
Suppose at time t, a noisy GPS measurement is available
and must be combined with current knowledge about
the state. To do so, the EKF corrects the state, by
moving the position in the direction of the measurement.
It locally uses the information the car should be on
the circle, and thus computes a correction term which
is tangential to the circle. But due to the “linear”
structure of the filter, adding the computed correction to
update the state results in an updated position that lies
out of the circle. (c) Moreover, starting with a belief
indicating uncertainty in the direction tangential to the
circle, even if the updated state is artificially projected
onto the circle, the new belief of the EKF is not any
more tangential to the circle. This is due to the image
of covariance matrix after the update being always
included in the image of the covariance matrix before
the update. In our 2-dimentional case for example, the
supports of prior and posteror belief are parallel.
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Taylor expansion of the nonlinear error yields Π(X̂, X̂+
δX) = DΠ(X̂)δX + O(||δX||2). The operator DΠ is
everywhere invertible owing to the local invertibility
property of Π about the diagonal. It relates the error
e to the usual error δX = X − X̂ , and this may be
memorized as

“ e = DΠ(X̂)δX ” up to the first order. (15)

An EKF based on this error, works by letting P et
reflect the local (linearized) dispersion of this alternative
error. This naturally yields the following equations.

• Initialization: The initial belief is X0 = X̂0+e0, with
e0 ∼ N (0, P e0 ).

• Propagation step: Between two measurements
tn−1 ≤ t < tn, the belief is propagated as follows:

d

dt
X̂t = f(X̂t, ut),

d

dt
P et = AetP

e
t +P et (Aet )

T ,

(16)
where Aet represents the first-order approximation
to the error evolution, namely it is defined by

d

dt
et = Aetet +O(||et||2). (17)

• Update step: When a measurement arrives at time tn
the belief is updated as Xtn = X̂+

tn + e+
tn with

e+
tn ∼ N (0, (P etn)+) where

zn := Yn − h(X̂tn), (18)
Kn := P etn(He

n)T (He
nP

e
tn(He

n)T +Rn)−1, (19)

X̂+
tn = ϕ(X̂tn ,Knzn), (20)

(P etn)+ = (I −KnH
e
n)P etn . (21)

and where He
n is the linearized output map with

respect to the error, i.e., it is defined by

zn := Yn − h(X̂tn) = He
netn + Vn +O(||etn ||2),

(22)

and where ϕ is a function (called a retraction) to
be defined at Definition 8.

Remark 2. Obviously He
n = ∂h

∂X (X̂tn)DΠ(X̂tn)−1. It
can be memorized as “He

n := ∂h
∂e = ∂h

∂X
∂X
∂e ” and refer-

ring to (15), we see indeed “ (∂X∂e )−1 = ∂e
∂X = DΠ”.

Knzn is a correction term to be applied to the state
X̂tn in order to take into account the measurement Yn.
It defines a direction, in terms of the nonlinear error e,
along which the estimate should be moved.

Definition 8. We define the function ϕ in (20), that we
will call a retraction, as follows:

ϕ(X̂, δe) = χ̃(1), (23)

where χ̃ is defined as the solution of the differential

Fig. 2: Same setting as Fig. 1, but where the update is
performed using a well-chosen state error (see VI-A).

equation:

d

ds
χ̃(s) = (DΠ(χ̃(s)))−1δe, χ̃(0) = X̂. (24)

The rationale is as follows. Before the latest mea-
surement Yn, the EKF classically makes the approx-
imation the average error between the true state Xtn

and the predicted state X̂tn is null. The correction term
δe = Kz is then a linear approximation to the (linear)
Kalman filter estimate of the average error between the
estimated and the true state, taking into account Yn.
As a result, the updated error must be equated with
δe, at least up to the first order, that is, we could
have picked any function ϕ being such that X+ =
ϕ(X̂, δe) ⇔ δe = Π(X̂,X+) up to first order terms
in δe. This is obviously the case with Definition 8 since
ϕ(X̂, δe) = X̂ + (DΠ(X̂))−1δe + O(||δe||2). There
are further reasons for using such a retraction, though,
that will be made clear in Section IV-C dedicated to
the enforcement of the constraints Mt, see Figure 2
for an illustration. But before that, we can gain insight
into our choice of retraction by relating EKFs based on
nonlinear errors with changes of coordinates.

Remark 3. The conventional EKF merely is the EKF
based on error e = X − X̂ .

B. Relation to changes of coordinates
It can be proven that when the nonlinear error e corre-

sponds to the linear error Z−Ẑ in alternate coordinates
φ(X) = Z with φ a nonlinear map, then the EKF based
on error e = Π(X̂,X) := Z − Ẑ = φ(X) − φ(X̂)
in the sense of Section IV-A, and the conventional
EKF built using directly the coordinates Z coincide, as
proved by Proposition 11 in Appendix A. In particular,
the retraction ϕ of Definition 8 then boils down to a
mere vector addition in the Z coordinates system, i.e.,
φ ◦ ϕ(X, δe) = φ(X) + δe. This result offers insight
into the interest of the method: if it turns out there
exists alternative coordinates that make the constraints
Mt linear subspaces, then one should definitely devise
an EKF using these coordinates. And to some extent,
this is the rationale we pursue in this paper. However,
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it should be noted that our method is broader, as EKFs
based on nonlinear errors are not limited to conventional
EKFs built using alternative coordinates, but actually
define a much larger class of EKFs. Note indeed for
instance that we never required in the general theory
that Π(X̂,X) = −Π(X, X̂).

C. Support of the belief of the EKF based on nonlinear
estimation errors

In this section, we are going to show how nonlinear
errors may allow enforcing the constraint Mt. To do
so, we will assume that, 1) at each time t, there exists
a submersion qt : Rd 7→ Rd−k, i.e., a map such that
its differential Dqt(x) has constant rank d−k over Rd,
and that 2) the submanifold Mt is equal to q−1

t (c) =
{x ∈ Rd | qt(x) = c} for some constant c ∈ Rd−k; that
is,Mt is an embedded submanifold that corresponds to
a level set of qt. Under those assumptions, the tangent
space to Mt at X is TXMt = KerDqt(X), that is,

TXMt = {δx ∈ Rd | Dqt(X)δx = 0}.

Letting e = Π(X̂,X), we can define the differen-
tial of qt with respect to error e as Dqet (X̂t) :=
Dqt(X̂t)(DΠ(X̂t))

−1 along the lines of (22)

qt(X)− qt(X̂) = Dqet (X̂)e+O(||e||2). (25)

Definition 9. The nonlinear error e = Π(X̂,X) is said
compatible with the constraints Mt if, for each t ≥ 0,
there exists a k-dimensional linear subspace

−→
Wt ⊂ Rd

such that KerDqet (X) =
−→
Wt for all X ∈Mt.

AsMt is defined as q−1
t (c), this definition admits an

equivalent and more practical alternative formulation.

Definition 10 (Alternative definition). The nonlinear
error e is compatible with the constraint qt(x) = c if
and only if KerDqet (X) (viewed as a function of X) is
a function of qt(X) only.

This is the simple condition we highlighted in Section
I-A. We have the following first main result:

Theorem 1. Assume the nonlinear error e = Π(X̂,X)
is compatible with the constraints Mt. Then, the EKF
based on the nonlinear error e, initialized such that
X̂0 ∈ M0 and ImP e0 ⊂ KerDqe(X̂0), is consistent
with the constraints in the sense of Definition 7, that is,
1- X̂t ∈Mt, and 2- ImP et ⊂ KerDqet (X̂t), ∀t ≥ 0.

Note indeed that, as P et reflects the dispersion of
alternative error e, in condition 2-, we had to translate
Definition 7 into conditions related to e.

Proof: Propagation step: Start from the initial be-
lief at t = 0, and consider a first phase of propa-
gation. During this phase, the estimate X̂t naturally
remains in Mt. The hard part is to verify that dur-
ing propagation we have ImP et ⊂ KerDqet (X̂t),

or in other terms Dqet (X̂t)P
e
t = 0, or equiva-

lently Dqet (X̂t)P
e
t Dq

e
t (X̂t)

T = 0 owing to the fact
that P et is symmetric. As we have Dqet (X̂t) =
Dqt(X̂t)(DΠ(X̂t))

−1, see (15) and (25), it would suf-
fice to prove that during propagation the relation

DΠ(X̂t)PtDΠ(X̂t)
T = P et (26)

remains true if it is initially true, where Pt denotes
the conventional EKF covariance matrix. Indeed, owing
to Proposition 7, the image of Pt remains inside the
tangent space at X̂t, that is, Dqt(X̂t)PtDqt(X̂t)

T = 0,
readily proving Dqet (X̂t)P

e
t Dq

e
t (X̂t)

T = 0.

To prove (26) it suffices to prove that if P et satis-
fies Riccati equation d

dtP
e
t = AetP

e
t + P et (Aet )

T , the
matrix DΠ(X̂t)

−1P et (DΠ(X̂t)
−1)T satisfies d

dtPt =

AtPt + PtA
T
t . Denote DΠ(X̂t)

−1 = Nt. We have
d
dtNtP

e
t N

T
t = ṄtP

e
t N

T
t + NtṖ

e
t N

T
t + NtP

e
t Ṅ

T
t =

ṄtP
e
t N

T
t + Nt(A

e
tP

e
t + P et (Aet )

T )NT
t + NtP

e
t Ṅ

T
t =

At(NtP
e
t N

T
t ) + (NtP

e
t N

T
t )ATt , provided that the rela-

tion Aet = N−1
t [AtNt− Ṅt] holds true. This is the case

as if we let δXt = X̂t−Xt, we have d
dtδXt = AtδXt,

d
dtet = Aetet, and Ntet = δXt up to first order terms in
δXt. Thus d

dtNt +NtA
e
t = AtNt, proving the result.

Update step: Just before the first update, at t = t0 >

0, we have just shown that 1- X̂t0 ∈ Mt0 , and 2-
ImP et0 ⊂ KerDqet0(X̂t0). We first need to check that
X̂+
t0 ∈ Mt0 . According to our update definition (21)-

(23), we have X̂+
t0 = χ̃(1) where X̂t0 = χ̃(0) and

χ̃(s) satisfies d
ds χ̃(s) = DΠ(χ̃(s))−1K0z0. Besides, we

have K0z0 ∈ ImP et0 ⊂ KerDqet0(X̂t0), owing to the
definition of the gain K. Due to our compatibility as-
sumption of Definition 9 that the Kernel of Dqet0 is fixed
over Mt, we have KerDqet0(X̂t0) = KerDqet0(X) :=
KerDqt0(X)DΠ(X)−1 for all X ∈ Mt0 , proving
that DΠ(X)−1K0z0 ∈ TXMt0 . Thus the vector field
{DΠ(X)−1K0z0, X ∈ Rd} is tangent to Mt0 . Thus,
by unicity of solutions of differential equations, the
solution of d

ds χ̃(s) = DΠ(χ̃(s))−1K0z0 is a curve
contained inMt0 , and in particular χ̃(1) = X̂+

t0 ∈Mt0 .

Regarding condition 2-, as we have proved that
ImP et0 ⊂ KerDqet0(X̂t0), we immediately see from
equations (19)-(21) that Im(P et0)+ ⊂ ImP et0 ⊂
KerDqet0(X̂t0). Under our compatibility assumption of
Definition 9, and since we have just proved that X̂+

t0 ∈
Mt0 , we have KerDqet0(X̂t0) = KerDqet0(X̂+

t0), which
implies Im(P et0)+ ⊂ KerDqet0(X̂+

t0).

The extension to arbitrary t ≥ t0 is easily done
by induction, as we have proved both propagation and
update steps preserve the two conditions we pursue.
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D. Complementary results in the presence of process
noise

The results may be extended beyond systems with
deterministic dynamics and noisy measurements, some-
times referred to as output error systems [21]. Indeed,
consider dynamics (1), and assume it is corrupted by
noise as follows:

d

dt
Xt = f(Xt, ut) +G(Xt)wt, (27)

where wt is a Langevin noise to be understood in the
sense of Stratonovitch’s stochastic integral. Then, an
EKF based on error et can also be devised but it must
take into account the dispersion of the error under the
noise. The Riccati equation for system (27) of the con-
ventional EKF writes d

dtPt = AtPt+PtA
T
t +GtQtG

T
t ,

with Gt = G(X̂t). Recalling (15), the dispersion term
GtQtG

T
t for conventional error δX naturally writes

DΠ(X̂t)GtQtG
T
t DΠ(X̂t)

T in terms of error et.
Thus, an EKF based on error et for system (27) can

be defined as in Section IV-A, with the only differ-
ence that covariance propagates as d

dtP
e
t = AetP

e
t +

P et (Aet )
T +DΠ(X̂t)GtQtG

T
t DΠ(X̂t)

T .

Proposition 8. Consider noisy dynamics (27), and
assume the noise diffuses insideMt, i.e., Im(G(Xt)) ∈
TXt
Mt for any t > 0. Then Theorem 1 still holds true.

Proof: We have to prove Dqet (X̂t)P
e
t = 0

for any t > 0. Differentiating the relation gives:
d
dt (Dq

e
t (X̂t)Pt) = ( ddtDq

e
t (X̂t))P

e
t +Dqet (X̂t)(AtPt+

PtA
T
t + DΠ(X̂t)GtQtG

T
t DΠ(X̂t)

T ). By definition
Dqet (X̂t)DΠ(X̂t)Gt = Dqt(X̂t)Gt , which is equal
to 0 since we assumed Im(G(X̂t)) ∈ TX̂t

Mt. Thus
d
dt (Dq

e
t (X̂t)Pt) = ( ddtDq

e
t (X̂t))P

e
t +Dqet (X̂t)(AtPt+

PtA
T
t ), which is the same as in the noise free case. By

unicity of the solution Dqet (X̂t)P
e
t = 0, t > 0.

V. THE LIE GROUP CASE

Coming up with a nonlinear error that is compatible
with all the constraints Mt may prove difficult in
practice. However, this can be done automatically in
the case where the state space is a Lie group, under a
set of conditions.

A. A brief primer on Lie groups
For a complete introduction to Lie groups, the reader

is referred to [24]. A d-dimensional Lie group G is a
smooth manifold endowed with a group structure, such
that the group operation and the inverse map are smooth.
In this paper, we will only consider matrix Lie groups,
that is, we will assume that G ⊂ RN×N is a subgroup
of the space of invertible square matrices. All the results
are valid for a general Lie group, but matrix Lie groups
provide a more concrete picture.

The tangent space TIG at the identity matrix I , is
called the Lie algebra of G, and is denoted by g ⊂
RN×N . It has dimension d, as the group. In turn, g may
be identified with the vector space Rd, through a map
Rd → g that we denote ξ 7→ ξ∧. There is a natural map
between g and G, called the exponential map of G, and
denoted by exp, which is merely the matrix exponential
expm. In the remainder of the paper, we will identify g to
Rd, and we will directly denote exp(ξ) = expm(ξ∧) the
exponential of ξ∧ ∈ g. The exponential defines a local
diffeomorphism between g and an open subset of G
containing the identity. Its local inverse is called the Lie
logarithm. In general, the exponential is not surjective.

Recalling our identifying g with Rd we define the Lie
bracket of ξ, ζ ∈ Rd as [ξ, ζ] := [ξ∧, ζ∧]g where [·, ·]g
denotes the Lie bracket in g, and call Lie subalgebra
L any linear subspace of Rd such that [ξ, ζ] ∈ L
for ξ, ζ ∈ L. The Baker-Campbell-Hausdorff (BCH)
formula states exp(ξ) exp(ζ) = exp(η) with η = ξ+ζ+
Lie bracket terms composed from ξ and ζ, see [24].

Similarly, the tangent space TgG at arbitrary g ∈ G
can be identified to Rd through left and right multiplica-
tions, i.e., the matrices gξ∧ and (ξ∧)g are both (distinct)
vectors of TgG. Throughout this section, we will priv-
ilege left multiplications, for exposition purposes. To
linearize a map h : G 7→ Rp, at an arbitrary point g ∈ G,
we can evaluate how it changes by infinitesimally fol-
lowing an arbitrary tangent vector gξ∧ at g. The left
linear approximation to h : G→ Rp at g in the direction
ξ ∈ Rd can then be defined as the matrix H ∈ Rp×d
such that h(g exp(ξ)) − h(g) = Hξ + O(||ξ||2), that
is, Hξ = d

dsh(g exp(sξ)) |s=0. One must then bear in
mind that infinitesimal shifts at any g ∈ G are thus
always represented by elements of Rd.

B. Group affine systems on Lie groups
Consider deterministic dynamics on a Lie group G

with state χt ∈ G defined by :

d

dt
χt = fut(χt). (28)

Definition 11. For two trajectories χt and χ̄t of the
system (28), the left-invariant error ηt is defined as:

ηt = χ−1
t χ̄t. (29)

The right-invariant error between two trajectories is
ηt = χtχ̄t

−1. A key result of [3] is as follows.

Theorem 2 (from [3]). For the dynamics (28), the left-
and right-invariant errors satisfy an equation of the
form

d

dt
ηt = gut

(ηt) (30)

for some map gut
= G 7→ TηtG, if and only if

∀a, b ∈ G, fut(ab) = afut(b) + fut(a)b− afut(I)b.
(31)
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In that case, the dynamics are called “group-affine”,
and errors are (slightly abusively) said to have an
autonomous evolution (30), in the sense it does not
explicitly depend on χt. Moreover, we have

∀a, b, gut
(ab) = agut

(b) + gut
(a)b. (32)

The group-affine property (31) encompasses many
systems of engineering interest revolving around atti-
tude estimation, localization, and SLAM, see [1,3,4],
and notably includes invariant systems.

The second key result of [3] is the fact the error
system actually corresponds to a linear differential
equation. This stems from the fact that gut

necessarily
satisfies (32). Let us explain why.

Definition 12. Group automorphisms are the maps Φ :
G → G such that ∀a, a′ ∈ G,Φ(aa′) = Φ(a)Φ(a′).
The Lie subalgebra automorphisms are the linear maps
Φ such that ∀ξ, ζ we have Φ([ξ, ζ]) = [Φ(ξ),Φ(ζ)].

A very well-known and prototypical automorphism is
the Adjoint operator.

Definition 13. The Adjoint operator Adg , with g ∈ G,
is a Lie algebra automorphism, defined through the
equality g exp(ξ)g−1 = exp(Adg(ξ)).

Proposition 9. [3] Let Φgt be the flow associated to
the system d

dtηt = gut(ηt) satisfying (32). For all t, Φgt
defines an automorphism of the Lie group G.

This merely stems from the fact that for η0, η
′
0 ∈ G,

Φgt (η0)Φgt (η
′
0) is solution of d

dtηt = gut
(ηt) using (32).

According to the well-known Lie group Lie algebra
correspondence, and to the fact that Φgt is an automor-
phism, we have necessarily:

Theorem 3. Let d(gut)I : TIG → TIG denote the
tagent map to gut : G → G at I . As g = TIG was
identified to Rd, d(gut)I may be encoded in a matrix
At ∈ Rd×d. Let Φgt and Ψg

t denote the flows of d
dtηt =

gut(ηt) and d
dtζt = Atζt respectively. We have:

• Ψg
t is a Lie algebra automorphism,

• ∀t, Φgt (exp ζ0) = exp(Ψg
t (ζ0)).

This readily proves:

Corollary 1. [3] We have for all ξ ∈ Rd: Φgt (exp ξ) =
exp(Ftξ), where Ft is the linear operator being solution
of the operator equation F0 = I , d

dtFt = d(gut
)I ◦Ft.

C. Considered problem and support of the posterior
Consider a system defined by the noise-free dynamics

(28), with the group-affine condition (31) and initial
condition χ0 ∈ G. Moreover, consider noisy observa-
tions Yn ∈ Rp:

Yn = h(χtn) + Vn (33)

where the Vn’s are Gaussian independent noises. Sup-
pose the prior is initially supported by the subset

M0 = χ0 exp(L0), (34)

where L0 is any subalgebra of dimension k of the Lie
algebra g, and χ0 ∈ G. The latter condition is the
group analog of having the distribution supported by a
k-dimensional affine subspace. The considered problem
fits into the framework of Section III, see Remark 1.

We can use the Lie group machinery to prove that
the support of the posterior distribution not only is a
manifold, but has a group structure.

Proposition 10. Let Mt denote the support of the
posterior, that is, the image of M0 of (34) through
the flow Φft of (28). Then Mt can be written as
Mt = χtGt, where Gt = exp(Lt), with Lt = Ψg

t (L0)
and with Ψg

t defined as in Theorem 3, and where
χt = Φft (χ0). Moreover, Lt is a Lie subalgebra and
Gt a subgroup of G.

Proof: According to Proposition 9 and Theorem 3,
Φgt is a group automorphism and Ψg

t a Lie-algebra auto-
morphism. Thus Gt and Lt are respectively a subgroup
of G and a Lie subalgebra of g indeed. Theorem 3 also
ensures the relation Gt = exp(Lt).

D. Support of the belief of EKFs based on invariant
errors

In this paragraph, we consider the EKF based on the
nonlinear left-invariant error

et = Π(χ̂t, χt) := χ̂−1
t χt, (35)

by applying the methodology of Section IV. The error is
said left-invariant as Π(χ̂t, χt) = Π(gχ̂t, gχt) ∀g ∈ G.

Remark 4. In Section IV the state space was chosen to
be Rd, to make the exposition more tutorial. However,
the methodology readily applies when the state space is
a matrix Lie group G, using the first-order geometry
of G. When referring to the methodology of Section
IV, we will in fact systematically refer to its immediate
extension to the Lie group case.

Recalling Section V-A, this immediate extension
is as follows. First, we will need to linearize error
(35). On G this is done writing Π(χ̂, χ̂ exp(δe)) =
χ̂−1χ̂ exp(δe) = exp(δe) = expm((δe)∧) = I +
(δe)∧+O(||δe||2), and null error corresponds to e = I .
As a result we will refer to the linearized error as
δe ∈ Rd such that e = I + (δe)∧ + O(||δe||2). Then,
we will need to define the differential He of any map
h : G → Rp with respect to error e. To do so, we
proceed along the lines of Section IV, and for any error
e ∈ G, we let h(χ) − h(χ̂) = Heδe + O(||δe||2),
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where Π(χ̂, χ) = e = exp(δe), that is, where we let
χ = χ̂ exp δe.

The following theorem is our second major result.

Theorem 4. Consider system (28) with the group-affine
condition (31), with observations (33), and let Mt be
the image of M0 of (34) through the flow Φft of (28).
The EKF based on the left-invariant error et of (35)
is consistent with the constraints Mt in the sense of
Definition 7. In other terms, all the estimates χ̂t are
elements ofMt at all times, and the covariance matrix
P et indicates dispersion only whithin the tangent space
to Mt at χ̂t, and null dispersion transversally to it.

Moreover, exactly the same results hold if the EKF
is alternatively based on the right-invariant error et =
Π(χ̂t, χt) = χtχ̂

−1
t .

Proof: This is a consequence of the theory of
Section IV-C. To apply Theorem 1, we only need to
prove et is compatible with the constraints Mt. To
do so we use the quotient manifold theorem 7.15 of
[19], that states that if Gt is a closed subgroup of G,
which is obviously the case owing to Proposition 10 and
the continuity of the exponential, then the quotient map
qt : G → G/Gt associated with the left coset space
G/Gt is a smooth submersion. We haveMt = q−1

t (χ̄t)
with χ̄t := qt(χt). Let χ ∈ Mt. Then KerDqet (χ)
is the set of all ξ ∈ Rd such that χξ∧ ∈ TχMt. As
Mt = χtGt with Gt = exp(Lt), ηξ∧ ∈ TηGt where
we let η = χ−1

t χ. Let ζ ∈ Lt such that exp ζ = η.
The BCH formula proves that for all ξ ∈ Lt we have
exp(ζ) exp(ξ) ∈ exp(Lt) since Lt is a (sub)algebra,
which implies by differentiation ηξ∧ ∈ TηGt. Thus
Lt ⊂ KerDqet (χ). As both have the same dimension
we have KerDqet (χ) = Lt, which is independent of
χ ∈Mt indeed.

Regarding right-invariant errors, (34) may be re-
written M0 = exp(L0)χ0 = χ0 exp(L′0) with L′0 =
Ad−1

χ0
(L0) which is a subalgebra. Switching left with

right multiplications the same token applies.

Remark 5. The result is remarkable, as it shows that a
single EKF achieves consistency of the belief support
for a very large class of (time-varying) constraints
all at once, and without ad-hoc adaptation. Indeed,
for any initial rank deficient covariance matrix P0, it
suffices that ImP0 be a Lie subalgebra L0 for the
implied constraints on the support to be met at all times.
This in sharp contrast with the usual state constrained
solutions [22], where each constraint generates an ad-
hoc adaptation of the EKF’s output estimate. Note that,
the EKF may be based on left or right-invariant error,
leading to two different filters that both are consistent
with the constraints.

E. Explicit derivation of EKFs based on invariant esti-
mation errors

We have not actually derived the equations for the
EKF based on error et of (35). It turns out that 1-
the retraction ϕ of Definition 8 is merely the Lie
exponential, and 2- for specific classes of output maps,
we recover the invariant EKF (IEKF) of [3].

Lemma 1. Consider the retraction ϕ of Definition 8 for
the left-invariant error et of (35). Then for χ̂ ∈ G and
δe ∈ Rd, it simply writes

ϕ(χ̂, δe) = χ̂ exp(δe). (36)

For a right-invariant error et = χtχ̂
−1
t we have instead

ϕ(χ̂, δe) = exp(δe)χ̂. (37)

Proof: The Lie exponential of δe ∈ Rd gets its
name from the fact that it satisfies exp(δe) = χ̃(1) ∈ G,
with χ̃(0) = I and where χ̃ satisfies the differential
equation d

ds χ̃(s) = χ̃(s)δe ∈ Tχ̃(s)G.
On the other hand, we can apply Definition 8. The

latter definition uses coordinates in Rd, and needs
to be defined more abstractly to match the fact the
state space is a group, that is, a curved space, see
Remark 4. This is immediate, though, since ϕ(χ̂, δe) of
Definition 8 is in fact defined as χ̃(1) where χ̃(0) =
χ̂, and where d

ds χ̃(s) ∈ Tχ̃(s)G is a tangent vector
χ̃(s)ξ(s)∧ at χ̃(s) that corresponds to infinitesimally
shifting χ̃(s) in direction of error δe, i.e., such that
Π(χ̃(s), χ̃(s) exp(ξ(s))) = I + δe∧ + O(||ξ||2). As a
result ξ(s) = δe. Thus ϕ(χ̂, δe) = χ̃(1) = χ̂ exp(δe).

The correspondance with IEKF is as follows:

Theorem 5. For the system (28) observed through noisy
measurements (33) where h(χtn) = χtn · d̄ for some
d̄ ∈ RN , the EKF based on the left-invariant error (35)
along the lines of Section IV actually is the left invariant
EKF (LIEKF) of [3].

When on the other hand h(χtn) := χ−1
tn · d̄ ∈

RN , then the EKF based on the right-invariant error
Π(χ̂t, χt) = χtχ̂

−1
t is the RIEKF of [3].

The proof has been moved to the Appendix.

F. A theoretical example
Our preliminary conference paper [11] was devoted

to systems of the form d
dtχt = χtut + νtχt with χt the

state belonging to a Lie group G, with measurements of
the form Yn = χtn · d̄+ Vn. It was proved that for the
latter systems, the IEKF is compatible with constraints
of the form χt · bt = ct with bt, ct ∈ RN . To prove this
is a direct consequence of the theory of Section V, all
we need to show is that 1- systems of the form d

dtχt =
χtut+νtχt are group-affine, and 2- the setMt = {χ ∈
G | χ · bt = ct} is of the form Mt = χt exp(Lt), with

10



Lt a subalgebra. The first point is easily checked, and
has already been noticed in [3]. As concerns the second,
it is easily checked that {ξ ∈ g | exp(ξ) · bt = bt} is a
subalgebra Lt for any bt ∈ RN indeed. Note that, this
shows in passing that the theory of the present section
is much more general than [11].

VI. APPLICATIONS

A. Navigation example
In the example of Figure 1, the unicycle model

serves as simplified dynamical equations d
dtθt = ωt,

d
dtx

(1)
t = ut cos θt,

d
dtx

(2)
t = ut sin θt, where the state

(θt, xt) consists of the orientation of the car in the plane
θt ∈ S1, and its position xt = (x

(1)
t , x

(2)
t )T ∈ R2. The

angular and linear velocities ωt, ut ∈ R are computed
from the wheel speed sensors. As they are assumed
to be perfect, the dynamics are noise free. Assume
that, at discrete times 0 < t1 < t2, · · · a GPS-like
sensor returns the noisy position of the car, that is,
measurements of the form Yn = (x

(1)
tn , x

(2)
tn ) + Vn

where Vn is a random variable. Suppose that initially
the absolute position of the car is perfectly known, that
is, x(1)

0 = x
(2)
0 = 0, and that the orientation is uncertain,

say, Var(θ0) = π/2 and Var(x
(1)
0 ) = Var(x

(2)
0 ) = 0.

As shown in [2], the information that we have
at time t is of the form q(θt, xt) = bt with
q(θ, x) = R(θ)Tx with R(θ) the planar rotation of
angle θ. Moreover, a nonlinear error can be defined
as et = (eθ, ex) := (θ̂t − θt, R(θt)

T (x̂t − xt)).
Then, q(θt, xt) − q(θ̂t, x̂t)=R(θt)

Txt − R(θ̂t)
T x̂t =

−ex + eθJR(θ̂t)
T x̂t +O(||et||2), where J is the skew-

symmetric matrix [0, 1;−1, 0]. As q(θ, x) = R(θ)Tx,
we have Dqe |θ̂,x̂ (eθ, ex) = −ex + eθJq(θ̂, x̂), so the
error is compatible, see Definition 10, and Theorem 1
applies.

Thus, the main result of [2] now appears as a mere
consequence of the general theory proposed in the
present article. Moreover, the fact the IEKF is com-
patible with the constraints was key to prove global
convergence properties of the IEKF for the present
problem in [2], whereas simulations show the EKF does
actually not converge, even for small initial errors.

Remark 6. The constraint set Mt varies with time.
Moreover, even for fixed t, each particular motion
(ωs, us)0≤s≤t of the vehicle generates a different set
Mt. Yet, the EKF based on e automatically meets all
the constraints at all times, regardless of the motion,
andMt never needs to be computed. This is in contrast
with standard EKF state constrained techniques.

B. Simultaneous localization and mapping (SLAM)
with partial prior map

1) Problem and results: The following example re-
volves around the field of SLAM, which has drawn

a lot of attention over the past two decades in the
robotics community, see e.g. [13]. A wheeled robot
equipped with a Right Green Blue depth (RGBD) sensor
(such as the Kinect) navigates in an unknown building
through and builds a map that consists of characteristic
static features that the robot can track through its vision
system. In the present example we assume the robot
moves in a 2D plane and is modeled by the unicycle
equations as before, see [13,26]. The dynamics of the
SLAM problem thus write

d

dt
θt = ωt,

d

dt
xt = R(θt)(ut, 0)T ,

d

dt
pit = 0 for 1 6 i 6 k,

where the state consists of the robot’s position xt =

(x
(1)
t , x

(2)
t )T ∈ R2, its orientation θt ∈ S1, and the

positions p1, p2, . . . , pm ∈ R2 of m unknown features,
and where the measurements ωt, ut ∈ R returned
by differential wheel speeds. Observations are made
at discrete times 0 < t1 < t2, · · · , and consist of
the positions of the features viewed from the robot
Y in = R(θtn)T (pi − xtn) + V pn , 1 ≤ i ≤ m when those
features are sufficiently close to the robot to be visible,
and V pn are centered i.i.d. random variables that model
measurement noise.

To estimate the state Xt = (θt, xt, p
1, · · · , pm), one

can use an EKF, which is the historical approach to
the SLAM problem [13]. Consider then the following
(numerical) experiment displayed in Figure 3. The robot
starts with approximately known location, e.g. knows
in which building it is located, and totally unknown
orientation. Using its sensors, it builds a map of the
buliding which consists of 8 priorly unknown features
(p1, · · · , p8). Staying in the building for sufficiently
long, the measurement noise is progressively filtered
out, and the relative position between landmarks, that is,
the map in the robot’s frame, becomes perfectly known
although the robot’s position and orientation remain
uncertain, since the robot does not possess any absolute
information. Thus, according to the EKF’s covariance
matrix, the distance between two landmarks is certain,
i.e., it has null (or extremely small) variance. Then, the
robot moves out of the building (the Kinect does not
return depth outdoors), and observes the bearing of a
visible landmark with known location, the Pisa tower
(the Eiffel tower is presented as a typically highly visi-
ble landmark in [26]). Owing to the latter measurement,
the robot infers its approximate orientation, and the EKF
updates the state Xt to take it into account.

As the relative position of unknown features
(p1, · · · , pm) has been perfectly estimated, it should
stay as is, no matter what further measurements are
made. However, we see on Figure 4 this is not the case:
the distance between two arbitrary features increases
according to the EKF when the tower (with known
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Fig. 3: Numerical experiment. A robot having unknown initial position and orientation explores a room, and builds
a map of 8 characteristic unknown features. Then, it leaves the building until it observes the bearing of a clearly
visible landmark with known location (the Pisa tower). This new observation brings information about its position
and orientation, and consequently on the general orientation and origin of the map it has built.

Fig. 4: Left and center plots: estimations of EKF and IEKF (dashed), true trajectory (plain), true feature locations
(crosses) and estimated feature locations (circles). During the phase indoors, the robot builds a very acurate map up
to a global rotation and translation. Thus the filters ends up with a covariance matrix very close to being singular:
only the heading is still to be observed but the general shape of the map is known. In particular, the distances
between features should not change anymore even if information regarding global position and heading is obtained.
Right plot (best seen in color) shows that they do for the EKF, meaning the shape of the map is slightly changed
by the observation, whereas it remains steady for the IEKF despite seeing the Pisa tower at time step 417. This
is the point of the present paper: an information acquired by an EKF-like algorithm can be maintained over time
only as long as the chosen state error variable of the filter displays “compatibility” with this information.

location) becomes visible. This “unphysical” behavior
is a problem due to the the linear structure of the EKF
update that mismatches the nonlinear structure of the
dynamics. As can be seen on Figure 4, if in contrast
an invariant EKF (IEKF) is used instead, the distance
between any two landmarks stays constant no matter
what further measurements are made (both filters are
identically initialized and tuned).

2) Relation to the general theory: The function
we want the filter to preserve is the map in the
robot’s frame, i.e., q(θ, x, p1, · · · , pm) = R(θ)T ((p1 −
x), · · · , (pm − x)) and the information we want to
preserve is thus q(θ, x, p1, · · · , pm) = bt with bt ∈
R2m. Moreover, a nonlinear error can be defined as
e = (eθ, ex, e

1
p, · · · , emp ) := (θ − θ̂, R(θ − θ̂)Tx −

x̂, R(θ− θ̂)T p1− p̂1, . . . , R(θ− θ̂)T pm− p̂m). We have
q(θ, x, p1, · · · , pm)−q(θ̂, x̂, p̂1, · · · , p̂m) = R(θ̂)T (e1

p−
ex, · · · , emp − ex). Thus the kernel of Dqe is the set
defined by ex = e1

p = · · · = emp and it is fixed, so
the error is compatible in the sense of Definition 9 and
Theorem 1 applies.

The error e is the right-invariant error in the sense
of the group SEm+1(2) introduced in [1,3]. Thus from
Section V-E we know the EKF based on error e for the
present problem corresponds to the IEKF SLAM of [1].

Alternatively, the results may be applied to an EKF
devised using the alternative robot-centered state vari-
ables (θ,R(θ)Tx,R(θ)T (p1−x), . . . , R(θ)T (pm−x)).
It is known as the Robocentric mapping EKF [10]. Ac-
cording to Section IV-B, and more precisely Proposition
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Fig. 5: Same experiment as before, where the robot has
aquired information about the shape of the map, then
goes outdoors and observes Pisa tower whose location
is known. Both plots display distance between two
arbitrary features between steps 400 and 435. On the
left, a single observation is made at step 417. On the
right 10 observations are made from step 417 to 426
with a variance multiplied by 10 (i.e. equivalent total
information) to emulate continuous updates. Update
frequency has no impact: the discrepancy displayed by
the EKF reaches the exact same value and the IEKF
displays desirable behavior in both cases.

11 of the Appendix it corresponds to the EKF based on
error e = (θ − θ̂, R(θ)Tx− R(θ̂)T x̂, R(θ)T (p1 − x)−
R(θ̂)T (p̂1−x̂), . . . , R(θ)T (pm−x)−R(θ̂)T (p̂m−x̂)). It
is then straightforward to check Theorem 1 also applies
to this filter.

Remark 7. Numerous papers have drawn attention and
commented on the caveats of the EKF for SLAM, and
notably its problems of consistency see e.g., [16,17].
We would like to emphasize the caveats of the EKF
evidenced in the present section have nothing to do
with those consistency issues. The latter deal with
unobservability of the global map’s orientation, whereas
the present examples are concerned with prior deter-
ministic information independently from the form of
the measurements. Note that, the presented example
is quite relevant to the field of robotics, and can be
considered a contribution in itself: the IEKF of [1] and
the Robocentric EKF of [10] have just been shown to
resolve another (unexplored) type of consistency issue
of the EKF, related to its unability to produce state
updates being consistent with a map priorly known with
certainty.

3) Case of continous time updates: One could suspect
the differences with a standard EKF are noticeable only
in discrete time when an observation creates a large
and sudden update which does not occur with high
frequency updates. However this is not the case, as
proved in the numerical experiment whose results are
displayed in Figure 5: if the information arrives in con-
tinuous time the induced EKF inconsistency increases
progressively but reaches the exact same value as if the
same information were provided all at once to the filter.

C. Extended Kalman filtering with (static) nonlinear
equality constraints

As a byproduct secondary result, the general present
theory readily allows enforcing a large range of static
nonlinear state equality constraints in Rd.

Corollary 2 (Of Theorem 1). Suppose one wants to
enforce nonlinear equality constraint q(X) = c with
q : Rd → Rd−k where Dq(X) has constant full
rank, and such that q−1(c) := M is a parallelizable
submanifold of Rd. Then one can necessarily find an
error e which is compatible withM, and the EKF based
on e is consistent with the constraint. The estimate thus
remains in M, regardless of the measurements.

Error e may be constructively built as follows. If M
is of dimension k and parallelizable there exists smooth
vector fields such that {V1(X), · · ·Vk(X)} is a basis of
TXM for all X ∈M. Consider an error Π(X, X̂) such
that the k first columns of DΠ(X)−1 ∈ Rd×d consist of
(V1(X), · · ·Vk(X)), and the d − k remaining columns
are a basis of ImDq(X). This error is compatible: for
X ∈ M, KerDq(X) = Im(V1(X), · · ·Vk(X)) and
thus KerDqe(X) = KerDq(X)(DΠ(X))−1 is fixed
(spanned by the first k columns of Id×d) and Theorem
1 applies.

Note that, with process noise, the results still hold
along the lines of Section IV-D.

For instance for attitude estimation, if X ∈ R4,
and ∗ denotes the quaternion product extended in a
straightforward way to all vectors of R4, then the EKF
based on error e = X−1 ∗ X̂ automatically enforces
||X|| = 1 if correctly initialized, and thus that X is
a quaternion. Indeed for q(X) = ||X||2, KerDqe is
spanned by vectors whose first coordinate is 0, and is
thus fixed. The error is thus compatible and Theorem 1
applies. Note that, the alternative error e = X̂ ∗ X−1

leads to identical results. See also the recent work of
[14] on the subject.

More generally, extended Kalman filtering on Lie
groups has been the subject of recent research. Indeed,
one may want the estimate to remain on the group,
such as in e.g., [8,9,14], and this is one type of (static)
constraint one may consider, albeit less challenging than
the time-varying subgroup constraints of Section V.

VII. CONCLUSION

In this paper we have proposed a general methodol-
ogy of EKF based on nonlinear errors. We have proved
it may be applied to the problem of nonlinear filtering
in the presence of partial deterministic information, i.e.,
constraints, in order to have the EKF account for this
information, and not violate it as is the case with the
conventional EKF. Given the constraints, there is no
systematic way to construct the appropriate error, but
given an error Definition 10 provides a simple way to
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check its compatibility with the constraints. The special
case where the state space is a Lie group, was shown
to come with much stronger results. Finally, we have
provided a novel application to SLAM, which is a
contribution in itself.

A very important point is as follows. Our method
consists in using alternative EKFs, not in artificially
constraining EKFs. As a result, there is a continuum
between the constrained case and the non-constrained
case in our theory, which is not the case of state-
constrained solutions. This is a strong indication that
our EKF will perform well in the presence of small,
albeit not necessarily null, eigenvalues in the covariance
matrix. This is illustrated by our SLAM example, where
in simulations eigenvalues in the covariance matrix ac-
tually become very small due to multiple observations,
but not strictly null, and we see we yet achieve the
desired behavior. This is also key to the success of the
industrial application of IEKF to inertial navigation as
described in [5], where the dynamics are close to being
noise-free, owing to high precision inertial sensors, but
not completely noise-free as sensors always come with
(small) noises that engineers do account for in the
process noise covariance matrix Q of the IEKF.

As a perspective, one could study the benefits of
the present theory in the context of data assimilation,
possibly extending some linear results of [7,15,20] to
the nonlinear case.
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APPENDIX A
CHANGE OF VARIABLES

Proposition 11. Let φ : Rd → Rd be a diffeomorphism
encoding a change of variables. Let Z = φ(X). Then,
the EKF based on the error variable e = Π(X̂,X) :=
φ(X)− φ(X̂), that is, the standard linear error Z − Ẑ
in the alternative variable Z, coincides with the con-
ventional EKF built using variable Z. More precisely if
X̂t, P

e
t are the parameters output by the EKF based

on error e, and if Ẑt, PZt are those output by the
conventional EKF built using the Z-coordinates system,

14



then we have at all times Ẑt = φ(X̂t) and P et = PZt ,
as soon as Ẑ0 = φ(X̂0) and P e0 = PZ0 .

Proof: In this case we have DΠ(X̂) = Dφ(X̂).
The propagation step obviously preserves that Ẑt =
φ(X̂t), since it consists of a mere integration of the
dynamics. To prove it preserves P et = PZt we need to
prove the equality of the linearized systems, i.e., that
Aet and AZt . We will skip this step, which can easily
be established as in the proof of (26). As concerns the
update, the proof is based on the following result:

Lemma 2. We have φ ◦ ϕ(x, δe) = φ(x) + δe for all
x, δe.

Proof: ϕ(x, δe) is defined as the solution
χ̃(1) at s = 1 to d

ds χ̃(s) = [Dφ(χ̃(s))]−1δe =
Dφ−1(φ(χ̃(s)))δe. But d

dsφ
−1(φ(x) + sδe) =

Dφ−1(φ(x) + sδe)δe. As φ(χ̃(0)) = φ(x) we
have φ(χ̃(s)) = φ(x) + sδe or all s ≥ 0, proving
χ̃(1) = φ(x) + δe.

In the Z coordinates, the linearized output map writes
HZ
n = ∂

∂zh ◦ φ
−1(Ẑ) = HnDφ

−1(φ(X̂)) where
Hn = ∂

∂xh(X̂), and using (22) and (15) He
n =

Hn(Dφ(X̂))−1 = HZ
n , yielding identical Kn, P

+
tn , and

Knzn for both filters. Using Lemma 2, we then see that
both filters also yield the same updated state.

APPENDIX B
PROOF OF THEOREM 5

Lemma 3. The propagation step of the EKF based on
error et in the sense of Section IV, writes:

d

dt
χ̂t = fut

(χ̂t),
d

dt
P et = AetP

e
t +P et (Aet )

T , (38)

where Aet is defined at Theorem 3. Moreover, (38) is the
propagation step of the LIEKF of [3].

Proof: Aet represents the first-order approximation
to the error evolution. Let us apply the methodology
of Section IV using the first-order geometry of G, see
Remark 4. Indeed, according to (29) and (30) the full
error equation during propagation is d

dtet = gut
(et). To

linearize the error around the diagonal Π(χ, χ) = I , we
posit et = exp(δet) with δet ∈ Rd. Quite remarkably,
the evolution of ξt needs not be linearized, though,
as Theorem 3 indicates there is a matrix Aet ∈ Rd×d
indeed, defined as d(gut)I , such that d

dtδet = Aetδet,
and where exp(δet) is exactly et. As this is true in
particular at the first order, (38) corresponds indeed to
the propagation step (17) of the EKF based on et. And it
turns out this is exactly the definition of the propagation
step of the LIEKF of [3].

Lemma 4. Under conditions of Theorem 5, the
update step of the EKF based on error et in the sense

of Section IV writes:

zn := Yn − χ̂tn · d̄, (39)
Kn := P etn(He

n)T (He
nP

e
tn(He

n)T +Rn)−1, (40)
χ̂+
tn = χ̂tn exp(Knzn), (P etn)+ = (I −KnH

e
n)P etn ,

(41)

with He
n : Rd 7→ RN the linear map defined by

δe 7→ χ̂tn(δe)∧d̄. Moreover, this exactly coincides with
the update step of the LIEKF of [3].

Proof: Regarding the definition of χ̂+
tn in (41),

we used (20) and the result (36). In the methodology
of Section IV, He

n is defined as the differential of
h with respect to error e. As noticed, this means on
G that h(χ) − h(χ̂tn) = He

nδe + O(||δe||2) where
Π(χ̂tn , χ) = exp δe, that is, χ = χ̂tn exp(δe). As-
suming h(χ̂tn exp(δe)) = χ̂tn exp(δe) · d̄, a first-order
expansion of the exponential yields He

nδe = χ̂tn(δe)∧d̄.
The seemingly different update of the LIEKF [3] is:

K̃n = P etn(H)T (HP etnH
T + R̂n)−1,

χ̂+
tn = χ̂tn exp

[
K̃n(χ̂−1

tn Yn − d̄)
]
,

(P etn)+ = (I − K̃nH)P etn ,

with H : δe 7→ (δe)∧d̄, and R̂n = χ̂−1
tn Rn(χ̂−1

tn )T .
But it is easily seen that He

n = χ̂tnH , that Kn =
K̃n(χ̂tn)−1 and thus both steps exactly coincide.
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