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INTRODUCTION

A number of arguments (theoretical and observational) indicate that galaxies cannot be closed boxes with an ab-initio fixed reservoir of gas. Indeed, numerical simulations show that galaxies grow from the accretion of cool intergalactic Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 094.A-0211, 095.A-0365, 096.A-0609, 096.A-0164, 097.A-0138, 097.A-0144, 098.A-0216, 098.A-0310, 099.A-0059, 293.A-5038 † E-mail: johannes.zabl@univ-lyon1.fr gas (via the cosmic web), a process most efficient in galaxies with luminosities lower than L * (White & Frenk 1991;Birnboim & Dekel 2003;Kereš et al. 2005;Dekel & Birnboim 2006;Dekel et al. 2009;van de Voort et al. 2011;L'Huillier et al. 2012) owing to the short cooling times in these halos (Rees & Ostriker 1977;Silk 1977). Observationally, a number of indirect arguments support the notion that galaxies need to continuously replenish their gas, implying that they are continuously fed by the accretion of gas from the intergalactic medium (IGM), as reviewed in Fox & Davé (2017).

Originally, the most common indirect argument comes from the G-dwarf problem (van den Bergh 1962; Schmidt c 2018 The Authors 1963), which says that the metallicity distribution of G stars in the solar neighbourhood is not consistent with the closedbox expectations, and the data can be reconciled with chemical models provided that there is a significant amount of metal poor infall (Larson 1972a,b;Lynden-Bell 1975;Pagel & Patchett 1975;Casuso & Beckman 2004). Another common indirect argument relies on the observed short gas depletion time-scales (≡ Mgas/SFR), seen in local and distant galaxies to be typically 0.5-2 Gyr (e.g. Daddi et al. 2010;Freundlich et al. 2013;Genzel et al. 2015;Tacconi et al. 2010Tacconi et al. , 2013Tacconi et al. , 2018;;Scoville et al. 2016Scoville et al. , 2017;;Schinnerer et al. 2016;Saintonge et al. 2013Saintonge et al. , 2016Saintonge et al. , 2017)). These short depletion times imply that the observed amount of gas available is too low to sustain their star formation rate (SFR) for more than a few Gyr, i.e. it is not enough to support the galaxies' future star formation. A third indirect argument comes from the slow decline of the cosmic HI density as a function of redshift (e.g. Péroux et al. 2003;Neeleman et al. 2016) tied to the gas content of galaxies (Wong & Blitz 2002).

As mentioned, in low mass galaxies hosted by halos below the virial shock mass threshold (M h 10 11-12 M ) gas accretion is expected to be very efficient (e.g. White & Frenk 1991;Birnboim & Dekel 2003;Kereš et al. 2005;Faucher-Giguère et al. 2011;Nelson et al. 2015;Correa et al. 2018). Once inside the galaxy dark matter halo, the accreted gas is expected to orbit the galaxy, bringing along not just fuel for star formation but also angular momentum (e.g. Stewart et al. 2011bStewart et al. , 2013Stewart et al. , 2017;;Danovich et al. 2015). In this context, the accreting material coming from the large-scale filamentary structure should form a warped, extended gaseous structure (e.g. Pichon et al. 2011;Kimm et al. 2011;Shen et al. 2013;Danovich et al. 2015;Stewart et al. 2017), which co-rotates with the central disk and is sometimes referred to as a 'cold-flow disk' (Stewart et al. 2011b(Stewart et al. , 2013(Stewart et al. , 2017)).

This 'cold-flow disk' scenario leads to large gaseous (T ∼ 10 4 K) structures, which could in part become the large disks often seen around galaxies in H i 21cm surveys and extending 2-3 times beyond the stellar radius (e.g. Bosma 1981;Putman et al. 2009;Bigiel et al. 2010;Kreckel et al. 2011;Wang et al. 2016;Ianjamasimanana et al. 2018).

At higher redshifts, the 'cold-flow disk' scenario is expected to lead to distinct signatures in absorption systems with NHi of 10 17 to 10 21 cm -2 seen in background quasar sight-lines (Dekel et al. 2009;Kimm et al. 2011;Fumagalli et al. 2011;Stewart et al. 2011aStewart et al. , 2013;;Goerdt et al. 2012;van de Voort & Schaye 2012). In particular, some of the infalling gas kinematics is expected to be offset from the galaxy's systemic velocity when observed in absorption along the sightlines of background quasars (Stewart et al. 2011a), because the gas is partly rotationally supported.

These expected signatures are testable against observations with suitably located background sources such as quasars (Barcons et al. 1995;[START_REF] Steidel | [END_REF]Chen et al. 2005;Kacprzak et al. 2010Kacprzak et al. , 2011;;Bouché et al. 2013;Turner et al. 2014;Bouché et al. 2016;Ho et al. 2017;Rahmani et al. 2018), bright galaxies (Diamond-Stanic et al. 2016), or directly in redshifted absorption lines in galaxy spectra (down-the-barrel; Coil et al. 2011;Rubin et al. 2012;Martin et al. 2012; for review see Rubin 2017).

Among background sources, background galaxies are more numerous, but their usefulness is usually limited by the typically low S/N unless one reverts to a stacking ap-proach as in Bordoloi et al. (2011). By contrast, background quasars are rarer, but allow one to obtain more informations, such as the gas location from the host, gas ionization properties (e.g. [START_REF] Muzahid | [END_REF]Lehner et al. 2016;Prochaska et al. 2017) and most importantly the gas kinematics (e.g. Barcons et al. 1995;[START_REF] Steidel | [END_REF]Kacprzak et al. 2010;Bouché et al. 2013Bouché et al. , 2016;;Ho et al. 2017). Among those, Ho et al. (2017) demonstrated the existence of co-rotating structures at z ≈ 0.2 in a sample of half-dozen galaxies, a step forward from the individual analyses of Bouché et al. (2013) and Bouché et al. (2016) Progress in sample size has been slow in spite of decades of research with galaxy-quasar pairs, as studies investigating the connections between the host galaxy kinematics and the low-ionization absorption line kinematics were limited to ∼ 50 pairs (see Kacprzak 2017, for a recent review). Less than half of these have orientations favourable to study extended gas disks (accretion cases) (Barcons et al. 1995;[START_REF] Steidel | [END_REF]Chen et al. 2005;Kacprzak et al. 2010Kacprzak et al. , 2011;;Bouché et al. 2013Bouché et al. , 2016;;Ho et al. 2017;Rahmani et al. 2018).

Thanks to the MUSE (Multi Unit Spectroscopic Explorer; Bacon et al. 2006[START_REF] Bacon | Society of Photo-Optical Instrumentation Engineers[END_REF] instrument on the VLT (Very Large Telescope) with its unprecedented field-of-view (1'×1') and sensitivity, the situation is about to change significantly by taking advantage of the combination of MUSE kinematics and high-resolution UVES (Ultraviolet and Visual Echelle Spectrograph; [START_REF] Dekker | Proc. SPIEVol. 4008, Optical and IR Telescope Instrumentation and Detectors[END_REF] data. Indeed, we recently started the MuseE GAs FLOw and Wind (MEGAFLOW) survey (Bouché et al. in prep), which consists of MUSE+UVES observations of 22 quasar fields, each with multiple (three or more) strong (> 0.5-0.8 Å) Mg ii absorbers at redshifts 0.3 < z abs < 1.5 selected from the JHU-SDSS catalog (Zhu & Ménard 2013). The MEGAFLOW survey leads to one of the largest surveys of Mg ii absorbergalaxy pairs with spectroscopic and kinematic information, with about 80+ galaxy-quasar pairs suitable to study either outflows (as in Schroetter et al. 2016, hereafter Paper I) or accretion (as in Bouché et al. 2016, this work) depending on the apparent location of the quasar with respect to the galaxy major-axis.

In this paper, we present results on nine galaxy-quasar pairs suitable for characterising the kinematics of accreting gas, while the wind cases will be presented in a companion paper (Schroetter et al. in prep). After briefly introducing the MEGAFLOW survey ( §2), we discuss in §3 the observation and reduction strategy both for the MUSE and UVES data. The selection of the nine galaxy-quasar pairs of this study from the ≈ 80 absorbers pairs in the MEGAFLOW survey is discussed in §4. Then, we infer kinematical and physical properties of the selected galaxies and their host halos in §5. As the main result of our work, we compare galaxy to absorber kinematics in §6, with a focus on testing for co-rotation and potential radial infall.

Throughout this paper, we use the ΛCDM standard cosmological parameters: H0 = 70 km s -1 , ΩΛ = 0.7, and Ωm = 0.3. All distances are proper. Further, we assume a Chabrier (2003) stellar Initial Mass Function (IMF) and all stated magnitudes are on the AB system (Oke 1974). When we refer in the following to [O ii] without additional wavelength qualifier, we refer to the [O ii]λλ3727, 3729 doublet. The prefix 'pseudo' in pseudo-filter and pseudo-spectrum refers to the fact that these were created from the MUSE data cube. All stated uncertainties are 68% confidence intervals. The nine galaxy-absorber pairs can be identified throughout by uniquely assigned colours.

THE MEGAFLOW SURVEY

Motivation

Since the initial work of [START_REF] Bergeron | IAU Symp. 130: Large Scale Structures of the Universe[END_REF]; [START_REF] Bergeron | [END_REF] and [START_REF] Steidel | QSO Absorption Lines. ESO Astrophysics Symposia[END_REF]; [START_REF] Steidel | [END_REF], there is a well established association between the cool (T ∼ 10 4 K) component of the CGM traced by the low-ionization Mg ii doublet seen in absorption in background quasar spectra and star-forming galaxies. Large samples of galaxy-quasar pairs are rare and difficult to construct owing to the difficulty in finding the host galaxy responsible for the Mg ii absorption, which is often a painstaking process requiring deep imaging (preferably from the Hubble Space Telescope (HST)) and multi-object spectroscopy, with the added problems of the quasar point spread function (PSF) blocking the view directly along the line-of-sight. One of the largest samples of Mg ii selected galaxy-quasar pairs with morphological data is the MAGIICAT sample (Churchill et al. 2013;Nielsen et al. 2013aNielsen et al. ,b, 2015Nielsen et al. , 2016)), which consists of 123 isolated foreground galaxies with associated Mg ii detections at 0.07 ≤ z ≤ 1.1.

Surveys of galaxy-quasar pairs such as the MAGIICAT sample suffer from two major limitations, namely that they must rely on photometric pre-selection (i.e. suffer from redshift incompleteness) and that they lack kinematical information on the host galaxies. Both of these limitations must be overcome using expensive follow-up spectroscopic campaigns. This can be partially by-passed with integral field unit (IFU) surveys as described in Bouché (2017) because IFU surveys can simultaneously (i) locate the host galaxy; (ii) determine the host photometric and kinematics properties; (iii) determine the host morphological properties in most cases; and (iv) allow for proper PSF subtraction in case of small impact parameters.

The survey

With the field-of-view (1 × 1 ), sensitivity, and wavelength coverage of the VLT/MUSE instrument (∼ 4800 Å-9300 Å), building large samples of absorber-galaxy pairs is now feasible with only a handful of observing nights. In particular, we started the MEGAFLOW survey of 22 quasar fields, which aims at building a sample of ∼ 100 galaxy-quasar pairs. In order to reach this goal, we selected quasars from the JHU-SDSS Mg ii absorber catalogue (Zhu & Ménard 2013) which had at least three (or more) Mg ii absorbers within the redshift range from 0.4 to 1.5, suitable for [O ii] based identification of star-forming galaxies in the MUSE wavelength range. 1 In addition, we imposed that the restframe equivalent width of Mg ii λ2796, EW λ2796 0 , of the three required absorbers be greater than 0.5 Å, with a preference given to sight-lines with multiple EW λ2796 0 > 0.8 Å absorbers. The restriction on Mg ii rest equivalent width EW λ2796 0 > 0.5 Å was chosen because the host galaxy is then expected to be within ≈100 kpc of the quasar lineof-sight, i.e. matching the field-of-view of MUSE, given the well known anti-correlation between the impact parameter and EW λ2796 0 (Lanzetta & Bowen 1990;[START_REF] Bergeron | [END_REF][START_REF] Steidel | QSO Absorption Lines. ESO Astrophysics Symposia[END_REF]Bordoloi et al. 2011;Chen et al. 2010;Nielsen et al. 2013a;Werk et al. 2013). A slightly less stringent equivalent width threshold of EW λ2796 0 > 0.3 Å is often used in the literature to separate strong Mg ii absorbers from weak Mg ii absorbers (e.g. Churchill et al. 1999). Our 22 quasar sight-lines serendipitously include several (10) absorbers with 0.3 Å < EW λ2796 0 < 0.5 Å in the right redshift range. We included these absorbers in the analysis. Even so their equivalent widths are slightly below our survey threshold, the galaxy-absorber association for absorbers of this strength is still expected to be sufficiently robust. In total, the 22 quasar sight-lines contain 79 strong Mg ii absorbers with EW λ2796 0 > 0.3 Å with 0.51 < z < 1.45.

DATA

Each quasar field was observed with MUSE and each quasar was followed up with the high-resolution spectrograph UVES at the VLT.

MUSE observations

We observed all 22 quasar fields with the VLT/MUSE instrument over the period September 2014 to May 20172 as part of guaranteed time observations (GTO). A full description of the data for all 22 fields will be given in a future paper describing the full survey (Bouché et al., in prep.). Briefly, all except three fields were observed for at least 2hr, i.e. the resulting exposure times are ≥ 6 ks. Observation details are listed in Table 1.

Data reduction

We reduced the data using the ESO MUSE pipeline version v1.6 [START_REF] Weilbacher | Society of Photo-Optical Instrumentation Engineers[END_REF](Weilbacher et al. , 2014[START_REF] Weilbacher | MUSE-DRP: MUSE Data Reduction Pipeline[END_REF]. First, each individual exposure was processed by the scibasic recipe to produce a table (hereafter called pixtable) containing relative locations, wavelength, counts, and an estimate of the variance. This recipe removes the instrumental signatures by applying daily calibrations (lamp flat-fields, bias, twilight-flat illumination corrections) and calibrates the wavelength scale (based on daily arc-lamps). Further, scibasic also applies the geometric solution (determined once per GTO run) for each of the 24 IFUs. Bad pixels corresponding to known CCD defects (columns or pixels) are also masked at this time. For each exposure we also used an 'illumination' exposure, which are short flats, to correct for flux variations on the slices due to small temperature changes between the daily calibration exposures and the science exposures.

Second, the individual pixtables were flux-calibrated (using the response from daily standards), telluric corrected (using a telluric absorption estimate from the flux-standard), sky-subtracted, astrometrically calibrated, and resampled onto a cube (using the drizzle algorithm) with the pipeline's scipost recipe. However, clear variations of the residual background level between individual slices were visible in whitelight images created from the cube, caused by imperfections from the flat-fielding/illumination correction. To mitigate these imperfections we used a self-calibration strategy, as in Bacon et al. (2015Bacon et al. ( , 2017)), which is conceptually similar to the CubeFix method developed by Cantalupo (in prep., see also Borisova et al. 2016 andMarino et al. 2018). Essentially, it consists of normalizing the background in all slices to the overall background level.

In practice3 , we were using the 'selfcalibrate' method in the python package MPDAF (MUSE Python Data Analysis Framework) v2.3dev4 (Piqueras et al. 2017). This method computes the multiplicative corrections necessary to bring each slice to the reference background level, which is determined by the mean sky background across the field. Consequently, it requires as input a 'positioned'5 pixtable with the sky subtraction turned off, and an object mask. We used SExtractor on the white light images (as described above) to produce the object masks and we reran the scipost from the 24 scibasic pixtables to produce a 'positioned' scipost pixtable per exposure. In this rerun of scipost, sky subtraction and correction for barycentric velocity were switched off. Because the self-calibration does successfully remove the slice-to-slice variations but fails to remove the sharp flat-field imperfections visible at the edges of the IFUs, we simply masked the affected regions in the scibasic pixtables used as input.

After performing the self-calibration, we resampled the corrected positioned pixtables to datacubes using again the scipost recipe. Here, we performed the sky subtraction, barycentric correction, and use the same 3D output world coordinate system (WCS) grid for each of the cubes. We then used the software-package Zurich Atmosphere Purge (ZAP) (Soto et al. 2016a,b) to remove skyline residuals from each datacube, which makes use of a principal component analysis PCA analysis6 using cftype='fit' and using an improved object mask created from the white-light pseudo-images. After manual inspection of the individual cubes and masking of visible satellites tracks, we combined the cubes. For those fields where the seeing between individual exposures was strongly differing, we weighted each exposure with the inverse of the full width at half maximum (FWHM) of the PSF.

Data characterization

In order to assess the image quality, we measured the PSF on the quasar itself in the combined cubes by fitting an elliptical 2D Moffat profile (Moffat 1969). Due to the large wavelength range covered by the MUSE data (from 4800 to 9300 Å), we measured the PSF as a function of wavelength using 100 Å wide pseudo-filter images at five different wavelengths separated by 1000 Å, and interpolated these measurements for other wavelengths. We first performed the PSF measurement on each of these images using a Moffat profile with β set to 2.5. The Moffat FWHM values at 7050 Å range from 0 .53 to 0 .98 across the 22 fields, with a median value of 0 .76. Second, we also determined the wavelength dependence of the PSF with the Pampelmuse code (Kamann et al. 2013) using a Moffat profile with the β parameter free. Overall, the difference between the fixed-β values and the free-β Pampelmuse values are different by a median of 5% and at most 14%.

In order to obtain a realistic estimate for our sensitivity to [O ii] emitters, we estimated the 5σ point source detection limit in a pseudo-NB filter with an appropriate width of 400 km s -1 . A filter width of 400 km s -1 gives the optimal S/N for the [O ii] λλ3727, 3729 doublet when assuming a line-width of FWHM ≈ 50 km s -1 . In the spatial direction, we assumed a circular detection aperture with radius of 1.5×FWHM Moffat . This aperture size gives the optimal S/N for a point source convolved with a Moffat PSF with β = 2.5 in the background limited case. By using an estimate for the per-pixel noise and scaling it to the number of pixels spanned by the assumed spatial size and filter width, we derived an estimate for the total noise within the aperture. Subsequently, we multiplied this noise estimate by 1/0.52 in order to correct for aperture losses both in the spatial and the wavelength directions.

The wavelength dependent per-pixel noise was estimated from the pipeline's variance map of a cube in source free regions. Using this estimate we derive a typical 5σ [O ii] detection limit ∼ 4 × 10 -18 × (F W HM Moffat /0 .6) × (Texp/6ks) -0.5 erg s -1 cm -2 in MUSE's most sensitive wavelength region around 7000 Å, which corresponds to a [O ii] redshift of z ≈ 0.9. This derived [O ii] flux limit corresponds to an unobscured SFR limit of 0.07 M yr -1 (cf. Eq. ( 2)). The line flux sensitivity both short-wards and long-wards of this wavelength decreases somewhat, with the ends of the relevant wavelength range having about a factor 1.5 lower sensitivity. The SFR sensitivity further changes according to the change of the luminosity distance with redshift. The above estimates assume sky-line free regions. While this means that the sensitivity can in practice be lower, [O ii] is a doublet with a separation larger than the spectral resolution of MUSE and hence usually a substantial part of the doublet is in sky-line free regions. Finally, the presence of the background quasar can impact the [O ii] detection limit, if a galaxy happens to be right in front of the quasar. Our quasars have r-band magnitudes between 19.5 and 17.5, with a median of 18.5. The detection limit would increase to ∼ 11 × 10 -18 erg s -1 cm -2 for a galaxy exactly in front of a 18.5 mag quasar, assuming the same seeing and exposure time as above. In addition, there might remain systematic residuals after the quasar light was subtracted, which are difficult to generalise. However, as the wavelength range covered by the [O ii] doublet is small, neither the PSF nor the quasar continuum change much over the relevant wavelength range. Therefore, a continuum subtraction with two well chosen off-band filters typically leaves very small quasar residuals.

UVES observations

Observations

Each quasar was also observed with the VLT high-resolution spectrograph UVES with settings chosen in order to cover Mg ii λλ2796, 2803, Mg i λ2852, Fe ii λ2600, and when possible other elements such as Ti, Zn. We used a slit width of 1 .0, resulting in a spectral resolution of R≈38000 (F W HM ≈ 8km s -1 ). Further, we chose a 2x2 readout binning for all observations. The UVES observations are presented in Table 2.

Data reduction

The Common Pipeline Language (CPL version 6.3) of the UVES pipeline was used to bias correct and flat-field the exposures and then to extract the wavelength and flux calibrated spectra. After the standard reduction, the custom software UVES POst PipeLine Echelle Reduction (POPLER) [START_REF] Murphy | UVES popler: POst-PipeLine Echelle Reduction software[END_REF]) version 0.66 was used. The processing of the spectra, including the air-to-vacuum correction, was carried out with this software. The spectra of echelle orders were re-dispersed and combined onto a common vacuum heliocentric wavelength scale and a pixel width of 1.3 km s -1 . Left-over cosmic rays were removed by σclipping. The automatic procedure of cosmic ray clipping was verified by visual inspection and the continuum was fitted with fourth order Chebyshev polynomials and adjusted manually whenever deemed necessary.

SAMPLE

As motivated in §2, MEGAFLOW is a Mg ii absorberselected survey and as such the first step is to identify the galaxies whose CGM is associated with the selected strong Mg ii absorption. In this section, we describe how we carefully identify all galaxies within the MUSE field-ofview (FoV) down to the deepest limits (in §4.1), a critical step since Mg ii absorbers could be associated with multiple galaxies. In §4.2, we describe how we assign a primary galaxy to the Mg ii absorbers. In §4.3, we describe the sub-sample of galaxy-absorber pairs suitable for this paper, whose focus is on the extended gaseous disks around star-forming galaxies.

Galaxy detections

Our main identification strategy is based on narrowband (NB) images constructed at the redshift of each absorber. Aside from a visual inspection of [O ii] NB images using QFitsView7 , we performed an automatic source detection designed to detect the lowest SNR galaxies (from both emission lines and absorption lines).

The automatic detection algorithm is based on 'optimized' multi-NB images. The 'optimized' means that we weighted at each spaxel the pixels in the wavelength direction with the squared S/N of the respective pixels. This efficiently filters out sky-lines and gives most weight to wavelengths where the source signal is strong. The 'multi-NB' means that the pseudo-NB filter has transmittance not only around a single emission line but at multiple lines simultaneously with the individual passbands matched in velocity width. Each of the passbands was continuum subtracted by using the median flux density in two off-band NB filters to the blue and red, respectively.

The multi NB images are created by combining NBimages for multiple emission lines (each over the same velocity range). This included [O ii] and depending on the redshift H β and/or [O iii]λ5007. Each NB image is created with a width of8 400 km s -1 . For comparison, a virial velocity of 400 km s -1 corresponds to a virial mass of ∼ 10 13 M , which is the typical halo mass for a galaxy with stellar mass, M * of 10 11 M . For each absorber redshift, we created three NB pseudo-images at three different velocity offsets from the absorber redshifts, namely at -250, 0, 250 km s -1 . We then performed source detection with SExtractor (Bertin & Arnouts 1996) on each of these three images, centred at -250, 0, 250 km s -1 . We optimize SExtractor to detect low SNR objects in order to reduce the possibility of missing real candidates, but this leads to a number of false positives, which have to be removed manually.

We also searched for quiescent galaxies specifically, by creating an 'optimized' multi NB filter including both lines of the Ca H&K doublet. Quiescent galaxies at the right redshift have negative fluxes in the continuum-subtracted NB filter. Therefore, we ran SExtractor in this case on inverted images. Again, we checked for all candidates that the signal is indeed coming from Ca H&K, hence confirming them to be at the right redshift.

In summary, our algorithm is able to detect both emission line galaxies and galaxies with mere H&K absorption.

Mg ii host association

With its 60 wide FoV, MUSE covers at redshift z = 1 about 480kpc, so ∼ 240kpc in each direction from the quasar. To put this into perspective, the virial radius of a z = 1 galaxy with M * and its corresponding halo mass of log(M h /M ) ≈ 12.4 is ≈ 200kpc. Consequently, the MUSE observations allow us to identify the galaxies associated with the absorption, even if the associated absorption would be all the way out at the virial radius. However, due to the anti-correlation between impact parameter and EW λ2796 0 (Lanzetta & Bowen 1990;Chen et al. 2010;Nielsen et al. 2013a), we expect most of the strong Mg ii absorbers to originate from gas at impact parameters, b, smaller than the virial radius. This justifies to focus in the Mg ii host association on galaxy-absorber pairs which have b 100 kpc.

From our MEGAFLOW survey of 79 Mg ii absorbers with EW λ2796 0 0.3 Å, we detect one or more galaxies in 75% (59/79) of the cases within 100 kpc. When there is at least one galaxy, we find that 41 (10) absorbers have one (two) galaxies within 100 kpc, respectively, accounting together for the majority (51/59) of the sample. We choose the absorbers with a maximum of two galaxies within 100 kpc, in order to study isolated galaxies, and avoid groups where a unique host association becomes not practicable. However, when there are two galaxies within 100 kpc, a decision needs to be made whether one of the two galaxies should be identified with the absorption. We decide that this is the case if the galaxy with the smaller impact parameter has also the higher [O ii] flux (4 out of the 10). This decision is motivated by the anti-correlations of EW λ2796 0 with b and the correla- 2018). This results in a final sample of 45 galaxy-absorber associations, which we refer to in the following as 'primary' associations.

tion with SFR (∝ [O ii] luminosity, see §5.3) (Lan & Mo
While one potential caveat with this quasar-galaxy pair identification is that it depends on the depth of the data (down to

f [O ii]
4 × 10 -18 erg s -1 cm -2 ), the final subsample used for this study (in §4.3) will happen to have

f [O ii] > 4 × 10 -17 erg s -1 cm -2
, implying that the satellite missed by our selection ought to be ≈ 10 times fainter than these primary galaxies.

Geometrical classification and sub-sample selection

Since the main goal of our present work is to study kinematics of the approximately co-planar, possibly co-rotating and accreting gas, we selected galaxy-absorber pairs with orientations where the quasar sight-line is most favourable for intersecting the presumed extended gaseous disk (e.g. Stewart et al. 2017) and is the least favourable to galactic winds. This can be ensured using the azimuthal angle α (as in Bordoloi et al. 2011;Bouché et al. 2012;Kacprzak et al. 2012;Schroetter et al. 2015;Ho et al. 2017), since outflows are expelling baryons from the galaxy in the direction of least resistance/density, i.e. more or less perpendicularly to the star-forming disk. The azimuthal angle α is the angle between the apparent quasar location and the galaxy major axis, as indicated in Fig. 1. Determining α does require a robust measurement of the galaxies' position angles, and to a lesser extent inclinations, i, in order to remove face-on galaxies where α is undefined. The position angles were determined by fitting the morphological and kinematic parameters jointly from the [O ii] doublet using the GalP ak 3D (Bouché et al. 2015) algorithm (see §5.1). We also checked the morphological parameters obtained directly from the continuum 2D flux maps with GALFIT (See section A of the Supplementary Appendix).

Fig. 2 shows the distribution of the primary galaxies in the α -i plane, where the top panel shows the α histogram, demonstrating a strong bimodal distribution of strong Mg ii absorption around galaxies. Therefore, strong Mg ii absorption is preferably found either along the minor-axis or the major-axis of 45 primary galaxies, which confirms the earlier results of Bouché et al. (2012) and Kacprzak et al. (2012). In addition, one should note that this non-random distribution arises without making any pre-selection on the orientation of the galaxies and also supports our primary galaxy identification ( §4.2) because the α's would be randomly distributed if our primary galaxies were unrelated to the absorption.

From this result, the galaxy-quasar pairs used in this paper are selected with the following criteria: (i) A primary galaxy identification was possible (see sec. 4.2), i.e. we excluded cases where the identification with a single galaxy is ambiguous or not possible;

(ii) The primary galaxy has an [O ii] flux > 3 × 10 -17 erg s -1 cm -2 , i.e. we did not include galaxies that are too faint to obtain robust kinematics (and position angles (PA) & inclinations) at the depth of the data;

(iii) The orientation is favourable for extended gaseous disks, i.e. the azimuthal angle is |α| < 40 (iv) The primary galaxy is not a clear merger and does not have strong AGN signatures.

After applying (i) we are left with 45 galaxyabsorber pairs. Removing faint galaxies with

f [O ii]
3 × 10 -17 erg s -1 cm -2 with criteria (ii), leaves 33 galaxies. Applying the main geometric selection (iii) leaves a sample of 10 galaxies. With one galaxy9 excluded by criterion (iv) results in a final sample of nine galaxy-absorber pairs, which are listed in Table 3. Two of the selected primary galaxyabsorber pairs have a second galaxy within 100 kpc. Incidentally, all of the selected primary galaxies happen to have

f [O ii] > 4 × 10 -17 erg s -1 cm -2 .
The 9 galaxies selected for this accretion study are indicated in the α -i plot (Fig. 2) as thick green circles. In this figure, the points are colour-coded according to the [O ii] flux. Similarly, Fig. 3 shows the distribution of the accretion sample galaxies compared to all MEGAFLOW primary galaxies in the α -b plane, showing that the we probe a range of impact parameters (b) from a few to 100 kpc.

As for none of the quasar sight-lines more than one absorber ended up in the final sample of the present study, we choose to refer in the following for brevity to the absorber simply by a shortened field ID, e.g. J0103 stands for the absorber at z = 0.788 in the field J0103p1332.

Discussion of individual cases

In Figure 4, and Figs. B1 -B8 of the Supplementary Appendix, we show the entire MUSE FoV for the [O ii] NB image centred on the absorber redshift. The images show all galaxies including primary and secondary galaxies, that we identified to be associated with the relevant absorbers and 3) candidates for this study. One galaxy in the selection region is excluded as it is an AGN (red cross). Two of the 45 primary galaxies are omitted in the α histogram, as we could not obtain robust α for those. Four further primary galaxies are not included in the lower panel, as we could not obtain robust inclinations. are listed in Table 3. The NB images are made from red, green and blue channels, where each channel is a slightly different but overlapping NB image. The green channel is a NB filter of ±150km s -1 around the absorber redshift. The blue (red) channel is made at -(+)300km s -1 from the absorber redshift using a transmittance of 100% and decreases linearly to 0% at (+) -150km s -1 , respectively (a method motivated by Hayashi et al. 2014;Zabl et al. 2016). Hence, the colour represents the velocity offset of the galaxy with respect to the absorber, where blue and red colours represent the corresponding velocity shifts. For galaxies with strong velocity gradients, also the velocity field of individual galaxies is directly visible.

These colour NB images in Figure 4, and Figs. B1 -B8

(see also Table 3) show that for five out of the nine absorbers there is exactly one galaxy associated with the respective absorber over the entire MUSE FoV. For three absorbers (in the fields of J1039, J1358, and J2152 ), there are two galaxies in the FoV, and for one field, J0800, we identified five galaxies in the FoV. Among the absorbers with two host galaxy candidates, for one of them, J2152, the second galaxy is at an impact parameter of 190 kpc, four times further away from the quasar sight-line than the primary galaxy, and is also fainter. For J1039, the second galaxy is at b = 72 kpc, which is a factor 1.5× further away from the quasar than the primary galaxy. Moreover, this second galaxy is aligned so that a potential outflow cone would be covered by the quasar sight-line (α = 68 • ) and is part of the wind analysis of Schroetter et al. (in prep.). This situation needs to be kept in mind for the discussion of the absorption profiles (see §5.5). In the third field with two galaxies, J1358, the second galaxy is only at slightly larger impact parameter than the primary galaxy (b = 32 kpc vs b = 40 kpc). However, the second galaxy has only about 10% of the primary galaxy's [O ii] flux.

For J0800 we identified five galaxies in the FoV, but only one of them is within 100 kpc (b = 64 kpc) and the second closest galaxy is a quiescent galaxy that is a factor two further away and at a large velocity offset of ≈ 400 km s -1 from the absorber.10 For this absorber, we will assume that all absorption is associated with the primary galaxy.

GALAXY PHYSICAL PROPERTIES

The MUSE data allows us to determine both photometric and kinematic properties for each detected galaxy. In the following, we discuss the physical properties for our sample of nine primary galaxies. In §5.1, we describe how we determined the galaxy kinematics and redshifts. In §5.2, we explain our continuum photometric measurements used for stellar mass estimates. In §5.3, we discuss our SFR estimates based on [O ii] fluxes. In §5.4, we derive the halo mass properties. Finally, we describe the absorption properties in §5.5.

Galaxy kinematics and redshifts

The main ingredient for our study is a robust comparison between galaxy and absorber kinematics. Recent 3D fitting codes (e.g. Bouché et al. 2015;[START_REF] Teodoro | [END_REF] allow one to take advantage of the full 3D information provided by IFU data taking into account the spatial PSF and the spectral line spread function (LSF). Here, we measured both the redshift and galaxy kinematics with the 3D algorithm GalP ak 3D (Bouché et al. 2015) and compared the latter to the traditional 2D method using the CAMEL11 code of Epinat et al. (2012).

Morpho-kinematical modelling

In order to apply the 3D line fitting tool GalP ak 3D to the [O ii] data, we subtracted the continuum by taking the median in each spaxel over a wavelength window of ±1250km s -1 around the centre of the [O ii] doublet and excluding the central ±250km s -1 .

In short, GalP ak 3D creates a mock [O ii] observation12 from the parametrised 3D model of a disk galaxy, compares it to the data, and finds the posterior of the parameters through Markov chain Monte Carlo (MCMC) sampling. In such a parametrised approach, a choice for rotation curve and light distribution needs to be made. For the rotation curve, we assume throughout an arctan function, v(R) = vmax 2 π arctan(R/rturn), where the two free parameters are the maximum velocity vmax and the turn-over radius, rturn. For the distribution of the light emitted in [O ii], we assumed an exponential disk, I(R) ∝ exp(-1.68(R/r half )).

For compact galaxies, defined as those which have halflight radii smaller than 0.75 times the Moffat's PSF FWHM, we often tested a Gaussian surface-brightness profile (Sercic index n = 0.5) and chose the appropriate Sersic profile based on the lowest χ 2 . For these compact galaxies, we either limited the allowed range of the turnover radius rturn (to < 0.8 r half ) or fixed the turnover radius to 1/2.7 r half in order to break potential degeneracies. This value of 2.7 is motivated by the tight relation between rotation curve scale length and disk scale length found in local galaxies by Amorisco & Bertin (2010) 13 .

An additional free parameter in our morphokinematical model is a radially constant velocity dispersion, σ0, which is meant to describe a turbulence component added in quadrature to the disk model, i.e. σ0 is not the total velocity dispersion (see Bouché et al. 2015, for details). All inferred parameters for all nine galaxies are listed in Table 4.

As a consistency check, we created 2D velocity maps from our fitted model, which can be compared to a map created from a more classical pixel-by-pixel velocity fit. The latter we performed with the code CAMEL. This code directly fits the [O ii] doublet in each pixel. To increase the S/N, we convolved the cube in the spatial direction with a kernel of FWHM=2 pixels. Both the GalP ak 3D and CAMEL based velocity maps are shown in Fig. 4 and Figs. B1 to B8 of the Supplementary Appendix. Reassuringly, no strong discrepancies are visible.

Redshifts

Our analysis relies heavily on comparing the kinematics of the host galaxy to that of the absorption in the quasar lineof-sight. Thus, this comparison will depend critically on the accuracy of the systemic redshift of the galaxy. While the GalP ak 3D measurements described in §5.1.1 also provided the redshift of the galaxy (see Table 4), we carefully tested the robustness of the GalP ak 3D based redshift through comparison to redshifts inferred using two other methods.

The first of these two comparison methods makes use The yellow shaded area in the 1D figures is the extracted aperture spectrum, the green line is the best-fit 1D spectrum, and the red line is the 1σ noise spectrum. Zero velocity is set to the systemic redshift of the galaxy. Dotted vertical and horizontal lines indicate zero velocity and zero flux, respectively. The 2D spectra are pseudo 2D spectra with the virtual slit aligned along the major axis. Over-plotted is the arctan rotation curve as determined from the GalP ak 3D fit (seeing de-convolved). Lower: The red error bars show the flux-densities measured with GALFIT in the 13 boxcar medium-band filters. The horizontal width of the bars indicates the width of the filter. The blue curve is the best-fit SED obtained from fitting to these filters and the black crosses indicate the filter-averaged flux-densities of this SED. The 1D spectrum extracted from apertures is shown as a grey line, with its vertical width indicating the 1σ uncertainty. For this plot, this spectrum was binned into bins with the same S/N using weighted re-binning (not flux conserving). In addition, it was corrected to total fluxes using the ratios between the GALFIT fluxes. More precisely, we used a straight line fit through the measured ratios for all 13 filters in order to estimate a linear wavelength dependence of the aperture loss. Note. The errors (±) are the statistical 1σ Bayesian uncertainties from GalP ak 3D increased by 20%. For the three parameters used in this paper (vmax, i and α) we list in parenthesis the total uncertainty, which includes systematics (see §A of the Supplementary Appendix).

Field ID Gal ID z b α i r half rturn vmax σ 0 f [O ii] (1) (2) (3) (4) (5) (6) (7) 
of 1D spectra extracted from the cubes using the MPDAF routine extract spectra. The spatial extent used for these extractions was set by the extent of the sources as determined by SExtractor from the 'optimized' NB images (see §4.1). From these 1D source spectra, we simultaneously fit all strong rest-frame emission lines available in the wavelength range covered by the MUSE spectra with a custom MCMC based algorithm that takes into account the spectral FWHM as parametrised by Guérou et al. (2017). The second comparison method is a visual inspection of (pseudo-)2D spectra, which we refer to as position velocity diagrams (PVDs). These PVDs were extracted from the MUSE cubes using a pseudo slit, with the slit aligned along the morpho-kinematic major axis of each galaxy, shown in Fig. 5 and Figs. B1 to B8 of the Supplementary Appendix for each galaxy. We carried out this visual redshift determination for [O ii] λ3729 and, if available also for [O iii] λ5007.

For the first (second) method, the velocity difference with respect to the redshifts from GalP ak 3D is -1±12 km s -1 (5±15 km s -1 ), respectively, with a maximum difference of 22 (40) km s -1 . The individual values are listed in Table C3 of the Supplementary Appendix.

Photometry and stellar masses

In order to determine continuum photometric magnitudes from the MUSE data, and perform spectral energy distribution (SED) fitting, we determined for each of the galaxies photometry in 13 pseudo medium bands covering the wavelength range from 4800 Å to 9090 Å. Here, instead of creating simple aperture photometry, we determined total magnitudes using GALFIT (Peng et al. 2010), which provides two advantages. First, GALFIT can simultaneously fit neighbouring or blended galaxies (foreground or background galaxies) and thus remove this contamination, and second it provides a total flux measurement, i.e. is a natural way to take into account the wavelength dependence of the PSF.

For the main galaxies, we assumed a fixed Sersic index of n = 1 (exponential). Once we had a satisfying model, we ran GALFIT with this model on the medium band filters, allowing only the fluxes to vary. We assumed for each band a Moffat PSF with parameters and wavelength dependence as determined for the quasar (see 3.1.2).

The statistical uncertainties on the flux-densities obtained by the GALFIT fit are very small. In order to crudely account for systematic uncertainties in the GALFIT modelling, we added a somewhat arbitrary systematic 5% relative uncertainty to the flux-densities.

For the SED fitting, we used a custom SED fitting code coniecto (Zabl et al. 2016). As input we used BC03 models (Bruzual & Charlot 2003) with exponential SFHs and nebular line and continuum emission added following the recipe by Schaerer & de Barros (2009) and Ono et al. (2010). Here, we use a Chabrier (2003) IMF and a Calzetti et al. (2000) extinction law. While we used the same extinction law both for nebular and stellar emission, we assumed higher nebular extinction EN(B -V ), than stellar extinction, ES(B -V ) (ES(B -V ) = 0.7 EN(B -V )). We omit in the following the suffix 'N' and use E(B -V ) for the nebular extinction throughout.

The stellar masses, M * , E(B -V ), instantaneous SFRs, and rest-frame B magnitude as obtained from the SED fitting are listed in Table 5. The primary galaxies in our sample cover a relatively small mass range, with all galaxies around log(M * /M ) ≈ 10.0 ± 0.5.

[O ii] Fluxes and Star formation rates

The only strong emission line we have access to for all of our galaxies is In order to get an approximate estimate for the extinction, one could take advantage of the correlation between the star-formation indicator L [O ii] itself and E(B-V ) (e.g. Kewley et al. 2004) which is equivalently to a SFR-E(B -V ) correlation. However, given that the Kewley et al. (2004) relation was determined at z = 0 and that the M -SFR main-sequence (e.g. Brinchmann et al. 2004;Noeske et al. 2007;Salim et al. 2007) evolves strongly with redshift (e.g. Elbaz et al. 2007;Whitaker et al. 2014;Speagle et al. 2014;Ilbert et al. 2015;Boogaard et al. 2018), it might be better to use the M -E(B -V ) relation instead. Indeed, the SFR-E(B -V ) relation does strongly depend on redshift (e.g. Sobral et al. 2012), while the M -E(B -V ) relation seems to have little or no evolution with redshift (e.g. Sobral et al. 2012;Kashino et al. 2013;Cullen et al. 2017;McLure et al. 2018), indicating E(B -V ) is determined by M .

Hence, we use the z = 0 M * -E(B -V ) relation14 from Garn & Best (2010), corrected to a Chabrier (2003) IMF:

E(B -V ) = (0.93 + 0.77 X + 0.11 X 2 -0.09 X 3 )/kHα (1)
Here X = log(M/M )-10 and kHα = 3.326 for the Calzetti et al. (2000) extinction law, both assumed by Garn & Best (2010) and in this study. Garn & Best (2010) state an intrinsic scatter in this relation of about 0.3 dex for the extinction at H α (AHα). Therefore, we include a systematic error of 0.3 dex/kHα in the error budget for E(B -V ).

Another way to get an estimate for the E(B -V ) is through SED fitting ( §5.2). Both the mass based and the SED based E(B -V ) estimates are listed in Table 5. While for most of the galaxies the two E(B-V ) values agree within the uncertainties, there are a few cases where the SED based estimates are significantly higher (J1509, J1039 ).

Using the assumed extinction curve and the estimated E(B -V ) from Eq. (1) we can then de-redden the observed [O ii] luminosity to estimate the intrinsic luminosity, L [O ii];i assuming a Calzetti et al. (2000) curve. The SFR can then be estimated using the calibration from Kewley et al. (2004):

SFR([O ii]) = 4.1 × 10 -42 (L [O ii];i /erg s -1 ) M yr -1
(2)

ID E Mass (B -V ) E SED (B -V ) SFR [O ii];2 SFR [O ii];3 SFR SED M * δ(M S) S05 B (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) J0103p1332 0.22 +0.09
-0.12 0.00 +0.68 -0.00

3.1 +0.7 -0.9 0.9 The version here is adjusted with respect to the original version in Kewley et al. (2004) to convert from the Salpeter IMF to the Chabrier IMF assumed here. The obtained SFRs estimates, both using the E(B -V ) from Eq. ( 1) and the E(B -V ) from the SED fit are listed in Table 5.

Based on these SFR and M * ( §5.2) estimates we assessed whether we selected typical star-forming galaxies on the SFR-M * main-sequence (MS). We list for each of our galaxies in Table 5 the distance from the MS, δ(M S), which is defined as the difference of the logarithms of the measured and expected specific star formation rates (sSFR=SFR/M * ) based on the MS parametrisation by Boogaard et al. (2018) (their eq. 11). Further we show the position of the galaxies in the SFR-M * plane in Fig. D3 of the Supplementary Appendix. While two galaxies have SFRs elevated compared to the ≈ 0.4 dex scatter of the MS, the seven other galaxies are within the scatter. In addition, it appears that eight out of the nine galaxies are slightly above the MS, which might be significant. However, the assessment of the significance of this trend must take into account all selection effects and this is beyond the scope of the present paper and will be part of the MEGAFLOW survey publication.

Halo properties

The interpretation of the kinematics of the circumgalactic gas requires an estimate of the properties of the dark matter halos through which the gas moves. We determine the halo masses of our galaxies using two different methods. First, we use the stellar-halo mass relation as obtained from abundance matching by e.g. Behroozi et al. (2010). Second, we derive halo mass estimates from the galaxy kinematics. From the halo masses, we will then compute virial radii.

Using the stellar masses derived in §5.2, and the z = 1 stellar-halo mass relation from Behroozi et al. (2010), the halo masses of our galaxies range from Mvir ≈ 3 × 10 11 -3 × 10 12 M , covering a range starting from about 1 dex smaller than the halo of a L * galaxy. Using an estimate for the halo's virial velocity vvir from vmax, vvir = vmax/(1.1 ± 0.3) as motivated by Dutton et al. (2010) of our galaxies with:

Mvir = v 3 vir ∆vir 2 -0.5 1 GH(z) (3) 
where the over-density ∆vir is defined as the ratio between the average matter density within the halo's virial radius and the critical density at the considered redshift and can be approximated as ∆vir = 18π 2 + 82x -39x 2 (Bryan & Norman 1998) with x = Ωm(z) -1, for a flat Universe. Both the abundance matching based halo estimate, M vir;abund. , and the dynamical estimate, Mvir, are listed in Table 6. Apart from J0103 and especially J1358, the agreement between the two estimates is generally good (for a visual comparison see Fig. D1 in the Supplementary Appendix).

The two outliers can be explained. When using the vmax measured from the galaxies, we make the assumption that the rotation velocity v φ corresponds to the rotational velocity of the halo vcirc, where vcirc is defined through

M h (< r) = r v 2 circ (r) G
.

The assumption vcirc = v φ will not be correct if the galaxies have substantial pressure support as discussed in Burkert et al. (2010Burkert et al. ( , 2016)). And indeed, the two galaxies with the largest discrepancy between the two halo estimates, are the two galaxies in our sample with substantial pressure support, as J0103 has v/σ0 ≈ 1, while J1358 has a even more extreme v/σ0 = 0.3. Therefore, the approximation of vvir = vmax/1.1 might not be appropriate in these cases.

Using the pressure support correction from (Burkert et al. 2010) to estimate vcirc, where v 2 circ (r) = v φ (r) 2 + 3.3567σ 2 (r) × (r/r half ), evaluated at r half and assuming vvir = vcirc/1.1, leads indeed to an estimate of Mvir which is in much better agreement with the estimate based on the stellar mass. For the remainder of the analysis, we use for J0103 and J1358 the abundance matching estimates for Mvir and calculated the corresponding rvir and vvir. We use the vmax based estimates for the other seven galaxies.

Finally, from our virial mass estimates, we determine the virial radius, rvir (and the scale radius rs for an NFW profile) for the halos. The virial radius, rvir, is related to Mvir through Mvir = 4π

3 ∆virρcritr 3 vir . The scale radius, rs, can be obtained from rvir, by making use of the tight relation between Mvir or rvir and rs (e.g. Navarro et al. 1996; using here the version of Diemer & Kravtsov 2015 and making the conversion with their Colossus code 15 ). The resulting radii are listed in Table 6.

Absorber kinematics

For the purpose of our work, we need an estimate of a 'characteristic' velocity of the absorbing gas with respect to the systemic redshift defined by the primary galaxy. In practice, we use here the velocity where the optical depth is maximum. The caveat here is that Mg ii is for most cases saturated and hence the Mg ii absorption profiles do not allow us to find the peak absorption velocity. Therefore, we used the unsaturated Mg i λ2852 line to measure the peak optical depth, except for J0145. In this case the Mg i line is too weak and we could use here the (nearly) unsaturated Mg iiλ 2796 line.

The absorption profiles as obtained from the normalised UVES spectra are shown both for Mg ii λ2796 and 15 Available at https://bitbucket.org/bdiemer/colossus. Mg i λ2852 in the left panels of Fig. 6 and Fig. D2 of the Supplementary Appendix. The peak absorption velocities are listed in Table 7, where we also list rest-frame equivalent widths for Mg ii λ2796, Mg i λ2852, and Fe ii λ2600.

As mentioned in §4.3, the J1039 galaxy-absorber pair at z = 0.9494 is somewhat complicated by the presence of another galaxy at 72 kpc, i.e. 1.5 times the impact parameter of the primary galaxy. Interestingly, the absorption system has two distinct components: a weaker one (EW λ2796 0 ≈ 0.2 Å) from -40 to 10 km s -1 and a stronger one (EW λ2796 0 ≈ 1.0 Å) from -80 to -224 km s -1 (Fig. D2). Given the anti-correlation between impact parameter and EW λ2796 0 (e.g. Chen et al. 2010;Nielsen et al. 2013b), it is more likely that the stronger component originates from the 'primary' galaxy's extended gas disk and the weaker component is due to an outflow from the more distant galaxy, as further discussed in Schroetter et al. (in prep).

A further complication for this absorption system is that Mg i λ2852 is contaminated by Mg ii λ2796 of an absorber at z = 0.9875. Using the profile shape from the isolated Mg ii λ2803 of the z = 0.9875 system, we could conclude that the Mg i peak absorption of the z = 0.9494 absorber is the reddest peak within the velocity range covered by the strong Mg ii component.

Finally, there is also a complication for the Mg i λ2852 absorption of J1358. At an observed wavelength of 6897 Å it is in a wavelength region strongly affected by telluric absorption. We used the molecfit software (Smette et al. 2015;Kausch et al. 2015) to create a model telluric transmittance spectrum in the region from 6860 Å to 6940 Å. Then we divided the science spectrum by this model telluric transmission. The Mg i spectrum shown in Fig. D2 is the telluric corrected version.

LINE-OF-SIGHT KINEMATICS IN COMPARISON TO GALAXY KINEMATICS

With our sample of nine galaxies geometrically selected to be likely to probe extended disk-like structures (cf. §4.3), we now perform a direct comparison between galaxy and absorber kinematics in order to investigate the existence and properties of a large gaseous structure. In §6.1, we qualitatively compare the Mg ii and Mg i absorptions with the galaxy kinematics. In §6.2, we make a quantitative comparison of the absorption kinematics with simple models for the kinematics of an extended gaseous structure with no radial motion. In §6.3, we discuss the absorption kinematics adding a radial component. In §6.4, we discuss the implication for the angular momentum. Finally, in §6.5 we discuss crude estimates of the accretion rates onto our galaxies.

Comparison of galaxy and absorber kinematics and qualitative test for co-rotation

In order to compare the absorber and galaxy kinematics for each of the nine galaxies in our sample, we show, in Fig. 6 and Fig. D2 of the Supplementary Appendix, the galaxy kinematics in a PVD. The PVD is obtained from a pseudo 2D spectrum including the [O ii] doublet where the x-axis (upper) represents the projected distance along the galaxy major-axis oriented with the quasar line-of-sight on the left. The y-axis represents the velocity scale set for the [O ii] λ3729 line of the doublet, where the zero point of the velocity scale is set by the galaxies' systemic redshift (see §5.1.2). For each galaxy-absorption pair, the absorber kinematics (as discussed in §5. 5) is shown in the left parts of the panels.

In the PVDs, the blue solid squares represent the observed rotation curve, where the velocity is measured using a double Gaussian fit on each spatial pixel of the PVD with the MPDAF (Piqueras et al. 2017) routine gauss dfit. The red solid circles represent the seeing convolved rotation curve obtained from the GalP ak 3D model cube exactly in the same way as for the data, i.e. by performing line fitting on a pseudo PVD generated from the cube along the galaxy major-axis. The red solid line represents the seeing corrected, intrinsic, rotation curve obtained from the GalP ak 3D model ( §5.1). The red dashed line represents the intrinsic rotation curve along the axis intercepting the quasar location. As we selected our galaxy-absorber pairs to have α < 40 deg, this axis and the major axis are typically very close to each other, and solid and dashed rotation curves differ in most cases little from each other. Fig. 6 and Fig. D2 of the Supplementary Appendix show that, qualitatively, the majority of absorbers tends to follow the rotation curve kinematics, i.e. tends to be blue or red-shifted like the rotation curve is for the side towards the quasar location.

In Fig. 7 (upper), we show all the rotation curves and the corresponding absorptions profiles in a single plot. In this figure, we have self-consistently flipped both the GalP ak 3D rotation curve (represented by the solid lines) and the absorber velocity for those cases where the quasar is on the side of the galaxy where the galaxy velocity field is negative (= blue-shifted). The absorption profile is represented by the grey vertical bar where darker regions indicate more absorption. Fig. 7 (lower) shows essentially the same as the upper panel, with the difference that here the impact parameter and the velocity are scaled by their respective virial values, rvir and vvir. In both panels, the stars indicate the peak absorption velocities as defined in §5.5 and listed in Table 7.

From this figure, several important conclusions can be drawn. First and maybe most importantly that the majority of absorbers share the velocity-sign of the galaxy's velocity field. Indeed, seven out of the nine galaxy-absorber pairs in our sample (i.e. all except J2152 (violet) and J1107 (cyan) share the velocity sign and hence meet the minimal condition for co-rotation, if we use the peak velocity. This shows that the gas traced by our Mg ii absorbers is part of co-rotating structures, supporting the basic prediction from a pure corotating disk-like structure (e.g Stewart et al. 2013Stewart et al. , 2017;;Danovich et al. 2015).

This co-rotation is in contrast to the expectation for gas clouds on random orbits. Assuming that the gas is randomly distributed, the probability for 7 or more out of the 9 sight-lines fulfilling the co-rotation criterion is 9%. If we restrict the sample to the four galaxies at b < 25kpc, the probability for four out of four sight-lines to be consistent with co-rotation is 6%.

In addition to this velocity sign test, a second order prediction can be tested. The absorption velocities should not exceed vvir sin(i).16 Fig. 7(b) shows that, reassuringly, very little absorbing gas exceeds vvir sin i, except J1039 which has the most absorption with |v los | > vvir sin i.

To better illustrate the global kinematic shift between the absorbing gas and the systemic redshift, we proceed to stack the nine absorption profiles (normalized as in Fig. 7b). The stacked velocity profile are shown in Fig. 8 for Mg iiλ2796, Mg iλ2852, Fe iiλ2600. In this Figure, gas that is co-rotating with the galaxies' velocity fields is indicated in salmon, while gas that is counter-rotating is coloured light-blue. While the co-rotating part is significantly larger than in the counter-rotating part, this figure also shows that there is almost no absorption below v los = -0.5vvir sin i in the counter-rotating direction. We will relate these features quantitatively to simple disk models in §6.2.

Thin disk with pure circular orbits

In the previous section, we have tested, in a relatively general way, whether the gas probed by the low-α sight-lines approximately shares the orientation of the angular momentum vector with the host galaxy. Drawing more quantitative conclusions from the line-of-sight (LOS) velocities is difficult, for two main reasons. First, a line-of-sight velocity measurement does not allow one to get the 3D velocity vector of the probed gas. Second, the line-of-sight probes gas at different spatial positions with different velocities. Therefore, quantitative conclusions can only be drawn using a parametrised model for the 3D density and kinematic of the gas. The simplest possible model is to assume a thin disk which is spatially perfectly co-aligned with the galaxy-disk, meaning that it can be understood as an extension of the galaxy disk. As the galaxy's disk orientation in space -except for an ambiguity in the sign of the inclination -was determined by means of GalP ak 3D modelling, we can predict where the sight-line would cross such a (thin) disk.

A quantitative comparison requires a description of the velocity field from pure rotation at the galacto-centric radius, i.e. the distance from the galaxy centre to the quasar location in the plane of the galaxy. A natural coordinate system is the cylindrical coordinate system (R, φ) where the cylinder is perpendicular to the disk. In this system, the radial coordinate is the galacto-centric radius R and φ is set arbitrarily to zero along the projected major axis, i.e. φ = 0 • where α = 0 • . The cylindrical coordinates φ and R are related to the azimuthal angle α (introduced in §4.3) and impact parameter b through:

tan φ = tan α cos i (4) R = b(1 + sin 2 α tan 2 i) 1/2 (5) 2 1 0 1 2 0.2 0.4 0.6 0.8 1.0 f stack [normalized] MgII 2796 2 1 0 1 2 v los /(v vir sin(i) MgI 2852 2 1 0 1 2
FeII 2600 co-rot. anti-rot.

Figure 8. Average absorption profile for our sample of nine galaxy-absorber pairs. The Mg ii stack was obtained by calculating the mean of the profiles shown in the lower panel of Fig. 7. The stacks for Mg i and Fe ii were obtained in an identical way. As in Fig. 7, for those pairs where the galaxy-rotation was blue-shifted towards the quasar sight-line, we flipped both galaxy and absorber velocities. Consequently, all co-rotation has positive velocities in these stacks (salmon), while all counter-rotating gas has negative velocities (light-blue).

where i is the galaxy inclination. The velocity vector of the gas in the disk plane can then be described as:

vgas(φ, R) = v φ (R) φ(φ) (6) 
where v φ (R) is the tangential component of the rotation velocity, i.e. there is no radial flow component and the gas is on (perfect) circular orbits. Together with the unit vector along the quasar-sightline, N , the line-of-sight component of the velocity field can be determined by this simple linear relation (e.g. Barcons et al. 1995):

v los = vgas • N (7) = v φ (R) cos α sin i 1 + sin 2 α tan 2 i (8)
The linear relation between the line-of-sight velocity v los and v φ means that we can either predict the v los for gas with a certain v φ , or alternatively, determine the angular velocity, v φ from a measurement of v los of the gas, if the gas is indeed on perfectly circular orbits in the hypothesized disk. Eq. ( 8) shows that the line-of-sight velocity v los will always be smaller than the tangential velocity v φ , i.e. v los ≤ v φ . However, the range of values for the ratio v los /v φ can be estimated for the range of allowed values in azimuthal angle α and inclination i imposed by our geometric selection ( §4.3). For azimuthal angle 30 • , which corresponds to the range in our sample, and inclinations in the range [40-70 • ], Eq. ( 8) implies that v los ranges from 0.5-0.9v φ (= 0.5-1.0 v φ sin i). Only for the highest inclinations (i > 70 • ), the range of values becomes very large, essentially from 0.0-1.0v φ , with the sensitivity on the inclination depending on α. In other words, except for extreme inclinations, v los is expected to be 0.5-1.0 v φ sin i.

While this range of values is consistent with our observations, this simple model would predict an absorption over a very narrow velocity range at v los , whose width would be given by the disk turbulence (∼ 20 -40 km s -1 ). In reality, we do not measure a single v los , but the absorption profiles (or stacked profile) cover a relatively large range in velocities, from -0.5 to 1.5 vvir sin(i) (Fig. 8).

One possibility to explain the spread in the absorption profiles is to assume that the hypothesized disk has some thickness (e.g. [START_REF] Steidel | [END_REF]Kacprzak et al. 2010;Ho et al. 2017). In that case, the sight-line intercepts the gaseous disk at different heights, corresponding to different radii R, leading to a range of projected v los , even if the gas would be on pure circular orbits with a constant v φ . However, this broadening effect would be a few tens of km s -1 , and is not sufficient to explain the range of velocities in Fig. 8. With the possible caveat of a very thick disk observed at high i, we assume that the peak velocity -the velocity where the optical depth reaches its maximum -, as determined in §5.5, can be used as an estimator for v los at the mid-plane. This line-of-sight velocity v los measured at φ and R can then be used to estimate the tangential velocity v φ using Eq. ( 8).

Note that for sight-lines with large azimuthal angle α (i.e. close to our selection limit of 40 • ) and for galaxies with very high inclination (i > 70 • ), the galactocentric radius can be very large and very uncertain. This affects especially J1107 and J1509.

This deprojected tangential velocity v φ can then be compared to the circular velocity vcirc, taken to be ≈ vvir, in order to assess whether the gas motion is consistent with stable circular orbits. Fig. 9 shows the ratio v φ /vvir as a function of the galactocentric radius R (normalized by rvir). The error bars are large for J1107 and J1509, as expected from the discussion above. Excluding these two objects, there seems to be a trend with galacto-centric radius, in a sense that galaxies at smaller R/rvir are closer to being on stable circular orbits in the extended galaxy disk. This trend is also visible by simply looking at the absorption profiles in Fig. 7. We indicate in the lower panel of this Figure the expected v los for circular orbits with vvir at disk-mid plane crossing. While in most cases the peak absorption is not coincident with the expected velocity, there is in many cases at least some absorption at the position of the exact co-rotation. . Tangential velocity v φ inferred from v los under the assumption that the gas is on pure circular orbits in the disk plane. For gas on stable circular orbits the expectation is that v φ ≈ v vir . The two cases at the extreme ends of the v φ /v vir distribution (J1107 cyan; J1509 purple, indicated by an arrow as outside of plot range) have both the highest α's and inclinations among our nine galaxy-absorber pairs. The values of the plotted points are listed in Table C4 of the Supplementary Appendix.

Disk with angular and radial motion -Cold accretion disks

While the comparison between galaxy and halo gas absorption velocities for our sample strongly ( § 6.1) indicates that the halo gas probed by the low ionization lines shares at least approximately the direction of the galaxy's angular momentum vector, the previous section showed that the data is in most cases not consistent with the hypothesis that the gas is on stable circular orbits in a perfect extension of the galaxy disks.

Here, we try to gain further insight by extending our thin-disk toy model with a non-zero radial velocity component vr. The velocity vector of the gas, vgas, at a certain position in the disk can then be described by:

vgas(φ, R) = v φ (R) φ(φ) + vr(R)r(R), (9) 
while the observed line-of-sight velocity v los follows (using Eq. ( 7)):

v los = v φ cos α sin i + vr sin α tan i 1 + sin 2 α tan 2 i . ( 10 
)
Unfortunately, removing the constraint of perfect circular orbits and adding the possibility of inflow means that it is no longer possible to infer the velocity vector of the gas from the measured v los , as there are in this scenario two unknowns for one measurement.

However, as discussed in §6.2 for the case of pure circular rotation, we can estimate the range of values for the tangential and radial terms in Eq. ( 10) imposed by our geometrical selection ( §4.3). For the tangential term, the conclusion is similar as in §6.2, i.e. the numerical value ranges from 0.5-0.9 v φ for azimuthal angles α 30 • and inclinations from 40 to 70 • . For the radial term, the absolute value of the numerical factor ranges for this α and i range from 0.0-0.8. Unless the radial velocity |vr| is larger than the tangential component |v φ |, the tangential component will typically dominate the line-of-sight velocity v los , regardless of geometrical factors, except when both i and α are large. C4 of the Supplementary Appendix.

In order to break the degeneracy between radial and circular velocity, it is necessary to impose some additional information to reduce the dimensionality. Motivated by results from simulations one justifiable assumption is a constant vr (e.g. Rosdahl & Blaizot 2012;Goerdt & Ceverino 2015). By measuring vr directly from different simulations with different codes as a function of radius, redshift, and halo mass, Goerdt & Ceverino (2015) find that typical inflow velocities are approximately constant with radius at vr ≈ -0.6 vvir for redshift z ≈ 1.

We now test the impact of the assumption of vr = -0.6 vvir and the possible signatures that this would have on our data. Such a radial component means that the magnitude of the radial term in Eq. ( 10) is thus at most |vr| < 0.6 vvir, while the tangential component is ≈ 0.5-0.9 vvir, for inclinations less than 70 • and α < 30 • . This implies that disks with such a radial flow allow a wide range of line-ofsight velocities v los , from ≈ 0-1.1 vvir in most general situations, i.e. except for the most extreme inclinations i > 70 • , and thus can better reproduce the range of velocities observed in Fig. 8. Now, we use the v los observations of our individual cases to put constraints on the tangential velocity with the assumption of a radial flow at vr = -0.6vvir. Given that we do not know whether the line-of-sight is crossing the disk on the near or far side, this means the radial contribution to the line-of-sight velocity v los in Eq. ( 10) can have a sign opposite to the tangential component v φ . Consequently, two solutions can be found depending on the sign of the inclination, i.e. 

where the +(-) sign corresponds to whether the quasar intercepts the gaseous disk on the far or near side. Given that we impose corotation between the gas and host galaxy, i.e. sign(v φ ) is given by sign(vrot), no solution can be obtained, if the v los has the opposite sign as the assumed sign for v φ , and the absolute value of v los is larger than the absolute value of the line-of-sight component from the radial velocity. With Eq. ( 11), it is possible to have either one, two or no solutions, depending on v los .

In Figure 10, we use Eq. ( 11) to put constraints on v φ for the galaxies in our sample with our assumption of vr = -0.6vvir. The resulting solutions for v φ normalized by vvir are shown as a function of R/rvir. Solutions where the v los contribution from vr shares the sign with the contribution from v φ , are indicated as crosses, while solutions where they have the opposite sign are shown as diamonds. A case where the measured value does not give a co-rotating solution, but a co-rotating solution is possible within the uncertainties, is indicated by the small pink diamond at 0.36 for J2152.

A first important conclusion from Figure 10 is that, under the assumption of this infall velocity, there is for each absorber at least one solution consistent with 0 < v φ /vvir < 1 in the co-rotating direction, even for the two cases which would in the absence of infall be interpreted to have a counter-rotating circular velocity.

Consequences for the angular momentum

Using the constraints on the tangential velocity v φ from the previous section, we now analyse the implications for the gas and galaxy angular momentum. Indeed, a crucial aspect for any theory of galaxy evolution is to understand the amount of angular momentum which the accreted gas carries with it. A useful quantity, which expresses the specific angular momentum of the gas, j = v φ R, in a form independent of the virial parameters, is through the dimensionless spin-parameter, λ. We use the definition of λ from Bullock et al. (2001):

λ = 1 √ 2 j rvirvvir = 1 √ 2 R rvir v φ vvir (12) 
Pure N-body simulations have shown that λ of the dark matter component integrated over the halo is approximately distributed with a log-normal distribution with |λ| = 0.035 and σ = 0.5, almost independent from redshift and halo mass (e.g. Bullock et al. 2001;Bett et al. 2007). Some hydrodynamical simulations predict that the cold accreting gas should have a higher λ on its way to the galaxy than the dark matter (e.g. Stewart et al. 2011b;Teklu et al. 2015;Danovich et al. 2015). E.g. Danovich et al. (2015), using a similar simulation as Goerdt & Ceverino (2015), predict that the spin parameter λ for the cold gas, which we presumably probe with our data, scales with (R/rvir) 0.5 , and has approximately a λ = 0.06 at R/rvir = 0.1 and λ = 0.2 at R/rvir = 1.0.

We indicate in Fig. 10 the curves of constant λ = 0.03 (blue dotted line) and λ = 0.2 (orange dashed line). In addition, we show the curve λ = 0.2(R/rvir) 0.5 (green solid line). All galaxy-absorber pairs except J2152 have within the uncertainties at least one solution within 0.03 < λ < 0.2. For most of the absorber pairs a solution with λ = 0.2(R/rvir) 0.5 seems plausible, but also a solution with constant λ ≈ 0.03 is consistent with several of the absorbers. 

Amount of accretion compared to star formation

Galaxies need to accrete gas from their halo. A plausible reservoir might be the extended cold gas disks probed by our sample. In section 6.3 we have shown that the v los measured for this gas are indeed consistent with infall rates and angular momentum predicted by simulations. Motivated by this, we can estimate the mass accretion rates from the Mg ii equivalent widths and the assumed infall velocities (vr = -0.6vvir).

For this estimate, first the Mg ii λ2796 equivalent widths need to be converted to approximate H i column densities using the relation from Ménard & Chelouche (2009):

NHi = (2.45 ± 0.38) × 10 19 cm -2 EW λ2796 0 Å 2.08±0.24 (13) 
The EW λ2796 0 -NHI relation is not a tight relation. We assume in the following an approximate statistical uncertainty of 0.5 dex on the NHI estimates. However, significantly stronger outliers are not unlikely.

Then, the accretion rate, Ṁin(R) through a cylinder at the galacto-centric radius R can be calculated as in Bouché et al. (2013):

Ṁin(R) ≈ 2π R vr mp µ cos(i) NHI (14) 
Here the assumption is made that the disk is thin enough so that the column density perpendicular to disk can be estimated from the column density along the inclined view through cos(i) NHI. Further, mp is the proton mass, and µ is the mean molecular weight, assumed to be 1.6. A further assumption is that all v φ , vr, and the perpendicular column density do at fixed galacto-centric radius not depend on the disk azimuthal angle. The resulting Ṁin are listed in Table 8.

In Fig. 11, we compare the estimated Ṁin to the SFRs computed using the [O ii] luminosities with the extinction estimated from the M -extinction relation of Garn & Best (2010) as described in §5.3. The dashed line shows the 1:1 relation, and the dotted lines are deviations from the 1:1 relation by a factor five. This figure shows that the estimated amount of Ṁin seems sufficient to balance the SFRs. Given that our estimate from Eq. ( 14) only takes account for the neutral component, the total Ṁin could be sufficiently higher if an ionised or molecular component would contribute to the inflow.

This result seems consistent with the expectation of selfregulation model (as in Bouché et al. 2010;Lilly et al. 2013) where

SFR = in fB Ṁh 1 -R + η ≈ Ṁin 1 -R + η ( 15 
)
where in is the accretion efficiency, fB the baryon fraction, Ṁh the halo accretion rate at rvir, R the 'recycling fraction' which massive stars return to the ISM, and η the outflow loading factor, η ≡ Ṁout/SFR. In the mass range for the galaxies in our sample η is measured to be small 1 (Martin et al. 2012;Schroetter et al. 2015Schroetter et al. , 2016) ) and R is around 0.3-0.5 depending on the IMF (e.g. Madau & Dickinson 2014).

SUMMARY & CONCLUSIONS

Using our ongoing MEGAFLOW survey (Schroetter et al. 2016, Bouché et al. (in prep.), Schroetter et al. (in prep.)), which targets galaxies around 79 strong Mg ii absorbers (with EW λ2796 0 0.3 Å) at z ≈ 1 with the VLT/MUSE spectrograph, we have investigated the distribution and kinematic properties of this low-ionization gas. Remarkably, the distribution of the azimuthal angle α for the galaxyabsorbers pairs within 100 kpc shows a clear bi-modality (Fig. 2, top panel), which is highly suggestive of a CGM geometry with biconical outflows and extended gas disks. Our result confirms previous ones by Bouché et al. (2012); Kacprzak et al. (2012) and Bordoloi et al. (2011).

In light of this bimodal distribution, we have selected for this study the nine galaxy-absorber pairs which have the right orientation for the purpose of studying extended gaseous disks at galactocentric distances of 20-100kpc. This is the first statistical sample with both galaxy and absorber kinematics at z ≈ 1 specifically selected to study the cold gas disks.

Through a comparison of absorber and galaxy kinematics, we derived the following main conclusions:

• There is little gas with v los > vvir sin(i), which suggests that the gas in the disk is gravitationally bound to the halo. ( §6.1; Figs. 7 and8)

• For seven out of the nine pairs the absorption velocity shares the velocity sign with the extrapolation of the galaxy rotation curve to the position of the quasar. This is the case for all four absorbers at b/rvir < 0.2 ( §6.1; Fig. 7);

• The inferred rotation velocity using the peak absorption velocity is in many cases smaller than vvir. This indicates that the gas is not on purely circular orbits. There seems to be a tendency for the discrepancy to be larger at larger impact parameters, with two cases at b/rvir > 0.25 even having counter-rotating velocities ( §6.2; Fig. 9);

• We investigated a scenario where the disk gas has a radial inflow (accretion component) in addition to the circular component, as predicted by simulations and required by indirect evidence. We showed that the data are consistent with inflow rates (vr ≈ -0.6vvir) and angular momentum distributions ( §6.3 & §6.4; Fig. 10) from simulations;

• The inferred accretion rates are consistent with the expectation from the gas-regulator (Bouché et al. 2010;Lilly et al. 2013;Davé et al. 2012) ( §6.5; Fig. 11) and from hydrodynamical calculations (e.g. Faucher-Giguère et al. 2011;Nelson et al. 2015;Correa et al. 2018).

For some of the conclusions listed above we needed to make relatively strong assumptions. E.g. we assumed that the gas is in a perfect extension of the galaxy disk and the angular momentum vector of the gas is perfectly aligned with the galaxy. This is not exactly what simulations predict for the cold streams falling into the halo, and only to some extent the case for the cold-accretion disks into which the streams supposedly settle in the inner-halo. In addition, extended gas disks might be warped. While the gas needs to finally align with the galaxy disk, how this alignment happens and out to where it persists is far from a solved question. In simulations it seems to depend on the code and the feedback implementations (e.g. Stewart et al. 2017). However, reassuringly our α histogram shows that the gas that we probe with Mg ii needs to be at least in a disky structure.

The finding of gravitationally bound co-rotating gas is consistent with a range of quasar-absorption studies for individual objects with the right geometry ranging up to z ≈ 2 (e.g. Barcons et al. 1995;[START_REF] Steidel | [END_REF]Bouché et al. 2013Bouché et al. , 2016;;Bowen et al. 2016;Rahmani et al. 2018). The only other study that systematically selected a statistical sample with the right geometry for the purpose of studying extended cold gas disks was recently performed by Ho et al. (2017). Importantly, their work is targeting galaxies at significantly lower redshift, z ≈ 0.2, and hence can be considered complementary to our study. Qualitatively they find at this lower redshift a similar result as we do: The majority of the Mg ii absorption profiles matches the sign of the galaxy rotation (8 out of their 12 robust galaxy-absorber identifications). Similarly to us, they also find that the majority of the gas has v φ < vcirc. Combining this with the fact that for some systems part of the absorption counter-rotates, they conclude also -for z ≈ 0.2 -that the gas likely has a radial infall component. Table C4. Geometrical and kinematical constraints for the absorbing gas inferred under the assumption of an extended gas disk. ( 2 11)). Depending on the disk's unknown sign of inclination the signs of the projected components of v φ and vr can be the same or the opposite, leading to the two solutions 6) and 7) for v φ , respectively. Due to the requirement of co-rotation with the galaxy disk, it is possible that no solution can be found (indicated by "-"). Error intervals that are consistent with zero indicate that only part of the uncertainty interval is consistent with co-rotation; ( 8 ) is removed from the plot through the choice of y-axis, which normalises all SFR's to z = 0.55.

Figure 1 .

 1 Figure 1. Assumed geometry of the cold CGM. Left: CGM geometry as observed on the sky-plane, where x sky is without loss of generality aligned with the disk's projected major axis. The impact parameter b and the azimuthal angle α are the polar coordinates of the background quasar (orange) on the sky-plane. Right: Same geometry as seen from the side, where z sky is along the line-of-sight. i is the inclination of the disk on the sky.

Figure 2 .

 2 Figure 2. Distribution of the MEGAFLOW primary Mg ii host galaxies (see §4.2). In the upper part the α histogram is shown for the points in the α -i plane below. The colour-scale indicates the [O ii] flux of the galaxies. The nine points circled in green within the cyan boundaries are suitable (as in §4.3) candidates for this study. One galaxy in the selection region is excluded as it is an AGN (red cross). Two of the 45 primary galaxies are omitted in the α histogram, as we could not obtain robust α for those. Four further primary galaxies are not included in the lower panel, as we could not obtain robust inclinations.

Figure 3 .

 3 Figure 3. Same galaxies as in Fig. 2, but here shown in the impact parameter vs α diagram. The grey-scale indicates here the inclination. The two objects at b ≈ 50kpc are overlapping. For an explanation of the red cross see Fig. 2.

  (1) ID. The first number in the ID indicates the absorber redshift, the second the impact parameter in arcsec, and the third the position angle between quasar and galaxy in degrees. (2) Right ascension and Declination of galaxy (hh:mm:ss dd:mm:ss; J2000); (3) Impact parameter [kpc]; (4) Velocity offset between absorber redshift, z abs , and redshift of galaxy, z gal [km s -1 ]; (5) [O ii] flux in units of 10 -17 erg s -1 cm -2 as obtained from the 1D line flux (fluxes are measured in large SExtractor MAG AUTO apertures, but not aperture corrected). Note. a) blend w. foreground galaxy; b) passive HK; c) aligned with minor axis to quasar; d) At this redshift Ca H&K falls outside of the MUSE wavelength range and our automatic detection would miss quiescent galaxies without any residual [O ii] line emission. As an alternative, we checked here for stellar Mg ii λ2796, 2803 absorption, but did not find any additional candidates.

Figure 4 .

 4 Figure 4. Column 1 (left): Shown is an [O ii] NB image covering ±300km s -1 around the redshift of the absorber J0145p1056 0554. More precisely, three slightly different [O ii] NB images were used for each of the three channels of an RGB image. In such an image, emission lines blue-shifted with respect to the absorber redshift appear bluer, while those redshifted will appear redder. The position of the quasar is indicated as a white cross and circles indicate impact parameters corresponding to 50 kpc and 100 kpc. A white box indicates an emission line galaxy associated with the absorber, meaning that the [O ii] emission is in the filter. In the shown example there is only the primary galaxy. The remaining NB excess sources are either due to other emission lines than [O ii] in the NB filter, which means that they are at other redshifts, or residuals from bright objects. Column 2: Top: Simple NB image of the primary galaxy optimised for redshift and width of the [O ii] emission. Overlaid is a contour of this image. Below a colour image is displayed, where pseudo V, R, I broadband images constitute blue, green, and red channels, respectively. The same contour as in the NB image is overlaid. Column 3: Flux (top) and line-of-sight velocity (bottom) maps obtained from direct fitting with CAMEL to the [O ii] cube. More details are given in the text. The filled black circle in the lower left corner indicates the FWHM of the Moffat PSF at the observed wavelength of [O ii]. Column 4: Similar as in column 3, but here the best-fit model flux and velocity maps as obtained from fitting with GalP ak 3D are shown. The zero velocity in the velocity maps is taken from the GalP ak 3D redshift.

Figure 5 .

 5 Figure 5. Spectral information of the galaxy gal J0145p1056 0554 3 52. Upper left: [O ii] NB image. The image is identical to that shown in Fig. 4. Upper right: 1D (bottom) and 2D spectra (top) for both the [O ii] doublet and the [O iii] λ5007 line.The yellow shaded area in the 1D figures is the extracted aperture spectrum, the green line is the best-fit 1D spectrum, and the red line is the 1σ noise spectrum. Zero velocity is set to the systemic redshift of the galaxy. Dotted vertical and horizontal lines indicate zero velocity and zero flux, respectively. The 2D spectra are pseudo 2D spectra with the virtual slit aligned along the major axis. Over-plotted is the arctan rotation curve as determined from the GalP ak 3D fit (seeing de-convolved). Lower: The red error bars show the flux-densities measured with GALFIT in the 13 boxcar medium-band filters. The horizontal width of the bars indicates the width of the filter. The blue curve is the best-fit SED obtained from fitting to these filters and the black crosses indicate the filter-averaged flux-densities of this SED. The 1D spectrum extracted from apertures is shown as a grey line, with its vertical width indicating the 1σ uncertainty. For this plot, this spectrum was binned into bins with the same S/N using weighted re-binning (not flux conserving). In addition, it was corrected to total fluxes using the ratios between the GALFIT fluxes. More precisely, we used a straight line fit through the measured ratios for all 13 filters in order to estimate a linear wavelength dependence of the aperture loss.

  The simultaneous fit also allows us to robustly determine the [O ii] doublet ratio, but we keep the [O iii]λ5007/[O iii]λ4959 fixed to 2.98 (as expected theoretically: Storey & Zeippen 2000). The fit results for [O ii] and the second brightest line in the MUSE wavelength range other than [O ii] are shown in Fig. 5 and Figs. B1 to B8 of the Supplementary Appendix.

  [O ii] due to the wavelength coverage of MUSE. Therefore, we need to rely on the observed [O ii] luminosity, L [O ii];o , as our main SFR indicator. The main problem with having only L [O ii];o as SFR indicator is the lack of knowledge about the extinction.

  5. (3) Sign of the galaxy rotation field at the position of the quasar sight-line. (4-6) EW 0 for Mg ii λ2796, Mg i λ2853, Fe ii λ2600, respectively [ Å].

Figure 6 .

 6 Figure 6. Comparison of galaxy and absorber kinematics at the example of J0145. Identical plots for all nine galaxyabsorber pairs are available in Fig. D2 of the Supplementary Appendix. The right panel shows the 1D galaxy rotation curve (blue points) obtained from the 2D PVD diagram (shown as background image) on the [O ii] doublet (see §6.1). The red points are obtained by reproducing this measurement procedure on the seeing convolved best-fit GalP ak 3D model. The solid red line represents the intrinsic GalP ak 3D rotation curve along the galaxy major-axis. The dashed red line represents the modeled rotation curve along the line connecting the galaxy and quasar positions on the sky. The lower x-axis represents the distance b from the quasar along this connecting line. The upper x-axis shows the galacto-centric distance along the galaxy's major axis. In the left panel the Mg ii λ2796 and Mg i λ2852 absorption profiles are shown on the same velocity scale as the galaxy rotation curve. The solid red line in this panel indicates vmax at the observed inclination, which is a continuation of the red curve in the right panel. Similarly, the red dashed line is the continuation of the rotation curve along the galaxy-quasar axis. Further, the black dotted line shows vmax at incl = 90 • and the green line is the systemic redshift as obtained from GalP ak 3D (v = 0 km s -1 ).

Figure 7 .

 7 Figure 7. Mg ii λ2796 absorption compared to galaxy rotation for each of the nine galaxies-absorber pairs of this study. Galaxy-absorber pairs can be identified by matching colours (as in Table 4). The grey vertical bars represent the Mg ii λ2796 profile where the darker regions indicate more absorption, and shifted in the x-direction when they would overlap. The stars indicate the peak of the Mg i profile (see §5.5). The solid lines represent the rotation curves (at the observed inclination), as obtained from the GalPaK 3D [O ii] fits, and measured along the galaxy major axis. The top panel shows the kinematics as a function of impact parameter b, not galacto-centric distance. The bottom panel shows the same as in the upper panel, but here b and v los have been normalized by r vir and v vir sin i, respectively. The coloured bold vertical bars indicate the impact of the uncertainties for v vir sin i on the normalized peak absorption velocity. The coloured horizontal bars indicate the velocity expected from extrapolating the rotating galaxy disk out to the galacto-centric radius of the quasar sight-line assuming a thin disk and rotation with v vir .

  Figure9. Tangential velocity v φ inferred from v los under the assumption that the gas is on pure circular orbits in the disk plane. For gas on stable circular orbits the expectation is that v φ ≈ v vir . The two cases at the extreme ends of the v φ /v vir distribution (J1107 cyan; J1509 purple, indicated by an arrow as outside of plot range) have both the highest α's and inclinations among our nine galaxy-absorber pairs. The values of the plotted points are listed in TableC4of the Supplementary Appendix.

Figure 10 .

 10 Figure10. Rotation velocities, v φ , inferred from measured v los under the assumption of a radial velocity component with vr = -0.6v vir and co-rotation with the galaxy for each of the nine absorbers. There can be up to two solutions per absorber. The projected LOS components of vr and v φ have the same sign for solutions indicated by stars, while they have opposite signs for solutions indicate by diamonds. The lines indicate different spin parameters (λ, see Eq. (12)), with their values indicated in the legend. The values of the plotted points are listed in TableC4of the Supplementary Appendix.

  v los = sign(vrot)|v φ | cos α sin |i| ± vr sin α tan |i| 1 + sin 2 α tan 2 i ,

Figure 11 .

 11 Figure 11. Mass inflow rate estimated from Mg ii equivalent width plotted against SFR estimate obtained from [O ii] flux corrected for reddening using the E(B -V ) estimate based on the Garn & Best (2010) M * -extinction relation. The dashed line represents a 1:1 relation. The dotted lines represent deviations from the 1:1 correspondence by a factor five.

Figure B1 .

 B1 Figure B1. Same as in Figs.4 and 5, but here for the main galaxy associated to the absorber abs J0103p1332 0788.

Figure B2 .

 B2 Figure B2. Same as in Figs.4 and 5, but here for the main galaxy associated with the absorber abs J0800p1849 0608. A pure absorption line galaxy is indicated as a white triangle. Here the grey line (aperture spectrum) is not visible, as the contamination from an unrelated foreground source is large.

Figure B3 .

 B3 Figure B3. Same as in Figs.4 and 5, but here for the main galaxy associated with the absorber abs J1039p0714 0949.

Figure B4 .

 B4 Figure B4. Same as in Figs.4 and 5, but here for the main galaxy associated with the absorber abs J1107p1021 1048.

Figure B5 .

 B5 Figure B5. Same as in Figs.4 and 5, but here for the main galaxy associated with the absorber abs J1236p0725 0912. Here the grey line (aperture spectrum) is not visible, as the contamination from an unrelated foreground source is large.

Figure B6 .

 B6 Figure B6. Same as in Figs.4 and 5, but here for the main galaxy associated with the absorber abs J1358p1145 1418.

Figure B7 .

 B7 Figure B7. Same as in Figs.4 and 5, but here for the main galaxy associated with the absorber abs J1509p1506 1046.

Figure B8 .

 B8 Figure B8. Same as in Figs.4 and 5, but here for the main galaxy associated with the absorber abs J2152p0625 1053.

Figure D2 .

 D2 Figure D2. Comparison of galaxy and absorber kinematics for each of the nine galaxy-absorber pairs. The right panel shows the 1D galaxy rotation curve (blue points) obtained from the 2D PVD diagram (shown as background image) on the [O ii] doublet (see §6.1). Among the blue points are a few obvious outliers where the automatic doublet fitting algorithm failed. The red points are obtained by reproducing this measurement procedure on the seeing convolved best-fit GalP ak 3D model. The solid red line represents the intrinsic GalP ak 3D rotation curve along the galaxy major-axis. The dashed red line represents the modeled rotation curve along the line connecting the galaxy and quasar positions on the sky. The lower x-axis represents the distance b from the quasar along this connecting line. The upper x-axis shows the galacto-centric distance along the galaxy's major axis. In the left panel the Mg ii λ2796 and Mg i λ2852 absorption profiles are shown on the same velocity scale as the galaxy rotation curve. The solid red line in this panel indicates Vmax at the observed inclination, which is a continuation of the red curve in the right panel. Similarly, the red dashed line is the continuation of the rotation curve along the galaxy-quasar axis. Further, the black dotted line shows vmax at incl = 90 • and the green line is the systemic redshift as obtained from GalP ak 3D (v = 0 km s -1 ).

  ) Position angle of quasar sight-line in disk plane as defined in Eq. (4) [deg]; (3) Galacto-centric radius of quasar sight-line as defined in Eq. (5) [kpc]; (4) R normalised by r vir ; (5) Tangential velocity (normalised by v vir ) as shown in Fig. 9 estimated under the assumption of vr = 0 (see Eq. (8)); (6 & 7) Tangential velocity (normalised by v vir ) as shown in Fig. 10 estimated under the assumption of vr = -0.6v vir (see Eq.(

  ) H i column density perpendicular to disk (based on Mg ii equivalent width) [cm -2 ]; (9) Mass accretion rate [M yr -1 ].

FigureFigure D3 .

 D3 Figure D2 -continued

Table 2 .

 2 Details of UVES observations for the 22 MEGAFLOW Quasars. The full table with all 22 quasars is in Table C2 of the

					MUSE Observations			
	Quasar	R.A.	Dec.	Texp	Seeing (G.) Seeing (M.)		Date-Obs	Prog. IDs	Refs
	(1)	(2)	(3)	(4)	(5)		(6)		(7)	(8)	(9)
	J0145p1056 01:45:13.1 +10:56:27	6.0	1.03		0.85	2015-11-12,	096.A-0164(A),	This work
								2016-08-29	097.A-0138(A)
	Table 1. Details of MUSE observations for the 22 MEGAFLOW quasar fields as used in this study. The full table with all 22 fields
	is in Table C1 of the Supplementary Appendix. (1) Quasar/Field identifier; (2) Right ascension of the QSO [hh:mm:ss; J2000];
	(3) Declination of the QSO [dd:mm:ss; J2000]; (4) Total MUSE exposure time [ks]; (5) Seeing FWHM measured at 7050 Å by fitting a
	Gaussian [arcsec]; (6) Seeing FWHM measured at 7050 Å by fitting a Moffat profile with β = 2.5 [arcsec]; (7) Date of Observations; (8)
	ESO Program IDs; (9) Reference.								
				UVES Observations				
	Quasar	R.A.	Dec.	zem	Texp	Seeing	Date-Obs		Setting	Prog. IDs	Refs
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)	(10)
	J0145p1056 01:45:13.1 +10:56:27 0.94 12020	0.6	2015-11-11,	390 & 564 096.A-0609,	This work
							2016-09-03,		097.A-0144,
							2016-10-28		098.A-0310
	Supplementary Appendix. (1) Quasar identifier; (2) Right ascension of QSO [hh:mm:ss; J2000]; (3) Declination of QSO [dd:mm:ss;

J2000]; (4) Emission redshift of the QSO; (5) Total UVES exposure time split into settings [s]; (6) Seeing FWHM measured by DIMM split into settings [arcsec] ; (7) Date of Observations; (8) UVES settings (Central wavelengths of gratings in [nm]); (9) ESO Program IDs;

Table 3 .

 3 Absorber-galaxy identification. Primary galaxies are indicated in bold.

	Fiekd and absorber	Galaxy ID	Coordinate	b	∆v	f [O ii]	Note
		(1)	(2)	(3)	(4)	(5)	
	Field: J0103p1332 z abs = 0.788 gal 0788 3 25	01:03:32.37 +13:32:36.1	20	61	7.2 ± 0.1	
	Field: J0145p1056 z abs = 0.554 gal 0554 3 52	01:45:13.28 +10:56:28.8	22	-97	3.2 ± 0.1	
	Field: J0800p1849 z abs = 0.608 gal 0608 10 108 08:00:05.20 +18:49:32.6	65	-12	26.0 ± 1.0	a
		gal 608 19 140	08:00:05.41 +18:49:20.5 129 -419	-	b
		gal 608 23 163	08:00:05.03 +18:49:13.1 155 -278 1.06 ± 0.04	
		gal 608 27 322	08:00:03.37 +18:49:56.6 184	-60	0.5 ± 0.1	
		gal 608 30 144	08:00:05.79 +18:49:10.9 201	6	0.7 ± 0.1	
	Field: J1039p0714 z abs = 0.949 gal 0949 6 324	10:39:36.42 +07:14:32.4	49	141	9.5 ± 0.1	
		gal 0949 9 344	10:39:36.48 +07:14:36.1	72	111	3.1 ± 0.1	c
	Field: J1107p1021 z abs = 1.048 gal 1048 5 359	11:07:42.71 +10:21:31.4	41	-45	3.8 ± 0.1	
	Field: J1236p0725 z abs = 0.912 gal 0912 2 246	12:36:24.25 +07:25:50.8	17	34	8.7 ± 0.6	
	Field: J1358p1145 z abs = 1.418 gal 1418 3 291	13:58:09.26 +11:45:59.2	30	-60	14.8 ± 0.1	d
		gal 1418 5 238	13:58:09.22 +11:45:55.1	40 -186	1.4 ± 0.1	
	Field: J1509p1506 z abs = 1.046 gal 1046 2 351	15:09:00.10 +15:06:36.5	13	68	5.4 ± 0.2	
	Field: J2152p0625 z abs = 1.053 gal 1053 6 57	21:52:00.36 +06:25:19.7	49	-68	11.4 ± 0.3	
		gal 1053 23 341	21:51:59.54 +06:25:38.4 187	6	5.7 ± 0.2	

Table 4 .

 4 Kinematical and morphological measurements as obtained from fitting to the [O ii] λλ3727, 3729 doublet with GalP ak 3D .

	(8)	(9)	(10)	(11)

• ];

(7) 

half-light radius [kpc]; (8) Turnover radius [kpc]; for the two galaxies without error bar rturn was fixed to ≈ r half /2.7; (9) Intrinsic maximum rotation velocity vmax [km s -1 ]; (10) Velocity dispersion from turbulence σ 0 [km s -1 ]; (11) Integrated [O ii] flux from the GalP ak 3D model [10 -17 erg s -1 cm -2 ].

Table 5 .

 5 Physical parameters of the galaxies as obtained from the [OII] emission line fluxes and SED fitting.

	+1.5 -0.0	0.8 +26.7 -0.0	9.8 +0.0 -0.4	0.18 +0.52 -0.11	55±6 -19.6

rest-frame B absolute magnitude calculated from best fit-SED model

[mag]

.

Table 6 .

 6 (cf. alsoReyes et al. 2012;Cattaneo et al. 2014) we calculate the virial mass of the halos Properties

	ID	v vir	M vir	M vir;abund.	r vir	rs
	(1)	(2)	(3)	(4)	(5)	(6)
	J0103 121 +17 -18 J0145 149 +66 -48 J0800 98 +38 -23 J1039 143 +56 -34 J1107 172 +67 -41 J1236 211 +82 -50 J1358 152 +29 -21 J1509 121 +48 -30 J2152 161 +63 -38	11.1±0.4 12.0±0.5 11.4±0.4 11.8±0.4 12.0±0.4 12.3±0.4 10.9 +0.4 -0.3 11.6±0.4 11.9±0.4	11.6±0.2 128 +18 -19 11.7 +0.2 -0.1 189 +84 -60 11.5 +0.2 -0.1 119 +46 -28 11.6 +0.2 -0.1 136 +53 -32 11.8±0.2 153 +60 -37 12.2 +0.4 -0.2 205 +80 -49 11.8±0.2 108 +20 -15 11.4±0.1 108 +43 -27 12.0 +0.3 -0.2 142 +55 -34	20±4 27 +17 -11 15 +8 -5 23 +12 -7 29 +15 -9 39 +20 -12 23 +5 -4 19 +10 -6 27 +14 -8

of the host halos (2) Virial velocity [km s -1 ]; For all galaxies except J0103 and J1358 identical to vmax/1.1; For the latter galaxies derived from 4); (3) Viral mass [log 10 (M )] from eq. 3 using 2); for J0103 and J1358 using v vir estimate based on

Burkert et al. (2010) 

correction for pressure support; (4) Halo mass [log 10 (M )] estimated using the stellar-halo mass relation

(Behroozi et al. 2010)

; The uncertainties include both the uncertainties on the stellar mass and the scatter in the stellar-halo mass relation;

(5) 

virial radius [kpc] (cf. §5.4); (6) NFW scale radius [kpc] (cf. §5.4.)

Table 7 .

 7 Absorber properties. (2) Velocity at peak absorption with respect to systemic redshift [km s -1 ]. For details see §5.

	ID	v peak	v sign EW 0;Mg ii	EW 0;Mg i	EW 0;Fe ii
	(1)	(2)	(3)	(4)	(5)	(6)
	J0103	-52	-1	1.1	0.2	0.5
	J0145	112	1	0.5	0.1	0.1
	J0800	23	1	0.8	0.1	0.3
	J1039	-144	-1	0.8	0.2	0.4
	J1107	60	-1	0.4	0.1	0.2
	J1236	-41	-1	2.1	0.7	1.6
	J1358	62	1	2.6	0.5	1.9
	J1509	-116	-1	1.5	0.3	1.0
	J2152	63	-1	0.6	0.1	0.2

Table 8 .

 8 Accretion measurements (see §6.5) (2) Galacto-centric radius (see Eq. (5)) normalised by virial radius, r vir ; (3) H i column density perpendicular to disk (based on Mg ii equivalent width) [cm -2 ] ; (4) Mass accretion rate [M yr-1 ].

	ID	R/r vir	log 10 (cos(i)N HI )	Ṁin (R)
	(1)	(2)	(3)	(4)
	J0103 0.16 +0.10 -0.03 J0145 0.12 +0.06 -0.04 J0800 0.59 +0.37 -0.19 J1039 0.36 +0.14 -0.10 J1107 0.66 +1.27 -0.35 J1236 0.10 +0.05 -0.03 J1358 0.30 +0.09 -0.06 J1509 0.52 +1.52 -0.33 J2152 0.36 +0.26 -0.11	18.9±0.5 18.6±0.5 18.7±0.5 18.9±0.5 17.9±0.5 19.8±0.5 19.9±0.5 17.7 +38.4 0.9 +2.0 -0.6 0.7 +1.5 -0.5 1.8 +4.0 -1.3 2.7 +6.0 -2.0 0.7 +1.8 -0.6 12.5 +27.5 -9.1 -12.3 18.8±0.5 2.2 +6.5 -1.9 18.4±0.5 1.0 +2.1 -0.7

MNRAS 000, 1-23 (2018)

This was the period of data used for our first full analysis of the data, which is the basis for this paper and a companion paper discussing outflows(Schroetter et al. in prep). Observations were completed in November 2018.MNRAS 000, 1-23(2018) 

Starting with version v2.4 of the MUSE DRS, which was not available at the time when we reduced the data for this work, the self-calibration is directly implemented. The steps described in this paragraph would no longer be necessary when using DRS v2.4 or later.

Available at https://git-cral.univ-lyon1.fr/MUSE/mpdaf.

A 'pixtable positioned' is a pixtable where the spatial position information for each pixel is given in absolute R.A. and Dec.

Available at https://github.com/musevlt/zap.

Available at http://www.mpe.mpg.de/~ott/QFitsView/.

The width of the [O ii] NB filters was extended by the width of the separation of the [O ii] doublet. MNRAS 000, 1-23 (2018)

This galaxy shows clear AGN signatures, e.g. a strong [Ne v]λλ3346, 3426 detection(Mignoli et al. 2013). While this doublet is not detected in any of the nine remaining galaxies, we cannot rule out AGN contribution with certainty for the sample based on the available data.

Redshift of the quiescent galaxy was determined with pPXF(Cappellari & Emsellem 2004;Cappellari 2017).

Available at https://bitbucket.org/bepinat/camel.git.

We use a fixed line ratio of 0.8:1.0 per default, except when the observed [O ii] doublet ratio deviates strongly from 0.8.

We converted theAmorisco & Bertin (2010) relation between the exponential disk scale-length and the radius where the rotation curve reaches 2/3 of vmax to a r half and rturn ratio for an arctan rotation curve.MNRAS 000, 1-23(2018) 

Alternatively, one could correct the z = 0 Kewley et al. (2004) L [O ii];i -E(B -V ) relation by taking into account the MS redshift evolution (SFR ∝ (1 + z) α ; with α ≈ 2 -3).MNRAS 000, 1-23(2018) 

The product vmax sin(i) ≈ v vir sin(i) can be accurately measured even if the inclination itself cannot be well constrained.MNRAS 000, 1-23(2018) 
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APPENDIX A: UNCERTAINTIES OF INCLINATION AND AZIMUTHAL ANGLE ESTIMATES

In this appendix, we review the uncertainties (statistical and systematics) on the three key parameters necessary for this paper, namely the galaxies' inclinations, i, position angles, α (or P A), and maximum rotation velocities, vmax.

The statistical error estimates obtained from GalP ak 3D are the Bayesian uncertainties under the assumption of the model. From a comparison with the dispersion of the differences between input and measured values in a matched sample of simulated galaxies taken from Bouché et al. (2015) (GalP ak 3D reference paper), we inferred that the statistical uncertainties stated by GalP ak 3D are mainly accurate, but potentially underestimated by about 20%. Therefore, we conservatively increased the Bayesian uncertainties by 20%.

The systematic errors can be caused by mismatches between the parameterised model and the data (especially at high SNR) and/or a slightly imperfect characterisation of the PSF. We have estimated the level of systematic error for the morphological parameters (P A and i) in two different ways. First, we compare two independent methods ( GalP ak 3D and GALFIT ) on our seeing limited data, and second, we compare the seeing-limited GalP ak 3D morphological parameters on a separate sample with ancillary HST morphology.

The first method compares the GalP ak 3D (see §5.1.1) and the GALFIT (2D) (see §5.2) morphological measurements (P A, i) for our sample galaxies. We also used two different measurements of the PSF parameters, as described in §3.1.2, namely the MPDAF based estimates of the Moffat profile for the GalP ak 3D measurements, and the Pampelmuse based estimates of the PSF for the GALFIT measurements. Thus, by comparing measurements from the two estimates we capture uncertainties all due to the fitting code, the way we extract the PSF, and differences due to using continuum light and line emission.

The result of this comparison is shown both for i and P A in Fig. A1. In general, the agreement between the two estimates is good, importantly without any strong outliers. The rms difference between the GALFIT and GalP ak 3D is ∼ 9 deg for both i and P A. Assuming that the GALFIT and GalP ak 3D measurements contribute about equally, we attribute a 7 deg systematic uncertainty to the GalP ak 3D measurements (for α and i). Note this is always larger than the GalP ak 3D statistical uncertainties, and thus can be safely used to cover both statistical and systematic uncertainties.

For the second method, we compared the morphological parameters (i in particular) obtained with GalP ak 3D for a larger sample of about 60 [O ii] emitters (Bouché et al. in prep.) in seeing-limited MUSE observations in the UDF (Bacon et al. 2017) againt the i measurements from the HST H-band from van der Wel et al. (2012). This second method gives a scatter of about 7 deg between the two estimates, confirming our error budget estimate.

We end this section with a quantitative assessment of the systematic uncertainties for the vmax parameter. Using the same UDF [O ii] emitter sample, we compared vmax measurements from GalP ak 3D measurements to vmax determined with the CAMEL code (Epinat et in Contini et al. (in prep.) and found a relative systematic error of about 10%. Thus, to the vmax error budget stated in Table 4 of the main manuscript, we added this 10% relative error to the statistical errors in quadrature.

APPENDIX B: FIELD, SPECTRAL, AND KINEMATIC PLOTS FOR EACH OF THE ABSORBERS

The same information as available in Fig. 4 and Fig. 5 for J0145, meaning an [O ii] NB FoV image around the absorber redshift, kinematics of the primary galaxies, and the spectral SED, is shown in Fig. B1 to B8 for the eight other galaxyabsorber pairs of our sample. Comparison between halo mass estimates (M vir ) from two different methods plotted against each other. M vir (from stars) was obtained from the stellar mass -halo mass relationship, while M vir (dyn) was determined based on the dynamics of the galaxies. For two of the galaxies, J0103 (red) and J1358 (light blue), the latter is plotted based on two different estimates of the virial velocity, once taking account for the pressure support in the galaxy dynamics (little cross) and once not taking this into account (full circle; for J1358 the circle is outside of the plotted range.). 

APPENDIX C: SUPPLEMENTARY TABLES APPENDIX D: SUPPLEMENTARY FIGURES