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Abstract—This article gives a methodological approach to
accelerating an environment of a RADAR (RAdio Detecting And
Ranging) simulation, from a single-core CPU implementation to
a multi-core GPU implementation. We focus our attention on
the most common tools for GPU programming like CUDA [2],
but more specifically on OpenACC [6], a directive based parallel
programming language. One of its promises is, with minimal
modifications, to transform a CPU code to take advantage of
many-core architectures, CPUs or GPUs alike.

Radar systems rely on many layers of testing, one of them
being software validation. As technology moves forward, systems
become increasingly complex, thus increasing the required pro-
cessing power to simulate those systems. With CPU performance
stalling, it is imperative to switch to alternative architectures. Our
contribution is providing key steps for accelerating a software
simulation of a radar algorithm on a GPU, with a particular focus
on performance but also on the ease of programming. Maximum
achieved execution time speedup on GPU architecture for our
typical use case of radar processing is of 8.2 for CUDA and of
4.56 for OpenACC compared to the reference implementation on
CPU.

Index Terms—RADAR, GPU, Simulation, OpenACC, CUDA

I. INTRODUCTION

With the knowledge of our world constantly expanding,
physical and mathematical modelling are scaling, both in
precision and complexity. Those models require an ever-
growing processing power, and, due to the lack of expertise or
available resources, they are most of the time simplified, and
therefore less accurate.

Technological advances in computer science relies on new
specialized architectures, pushed by hot trends, like Artifi-
cial Intelligence [13], Self-driving Automobiles [12], or Data
Storage. Leaders of the semiconductor industry have been
pushing for years those new architectures, just like Apple in its
most recent mobile custom chip. For example, the Apple All
Bionic [1], which powers the iPhone 8, 8 Plus, and X, contains
a six-core Central Processing Unit (CPU), with two high-
performance cores, and four energy-efficient cores, as well as
a Graphic Processing Unit (GPU), a motion co-processor, an
image processor, and a neural engine. Such heterogeneity in a
single chip showcases the need for specialized architectures in
a single platform, to delegate specific processing to the most
efficient system.

The democratization of heterogeneous computing is cor-
related with the desire to find a new growth driver for
computer hardware, because Moore’s Law is coming to a
halt in 2021 [9]. Therefore, instead of increasing the raw
power of an architecture, more focus is given to algorithm
architecture adequacy to get a more efficient heterogeneous
system. This is achieved by building suitable processors for
different algorithms categories.

Radar processing is a computing intensive domain where
there is a real need for more processing power. In the airborne
field, both for civilian and military systems, radars are of
paramount importance, and to ensure the reliability of sensors,
it is mandatory to test them upstream. An essential validation
step is to simulate as accurately as possible the targets that
these sensors might encounter and need to spot in their final
environment. Thus, radar simulation, whether it concerns its
environment or its processing, is strategic to validate algo-
rithms before designing the embedded system.

In many testing scenarios, target emulation can be achieved
by connecting the emission and the reception of the radar
with a link, for example an optical fibre, which induces a
temporal delay proportional to the length of that fibre. While
it is possible to emulate moving targets, by adding Doppler
shifts, the emulation of several targets in parallel requires a
specific optical fibre length per target, making the emulation
even more complex. Therefore, important testing, with many
targets and specific trajectories can mostly take place during
radar simulation at the software level, or during real test flights,
that have the disadvantage of being costly and restrictive.

Having a reliable software radar simulation is crucial to
reduce costs and improve the reliability of the system, and
the use case presented in this paper is part of an industrial
simulation and validation radar processing tool. This simulator
includes many possible environment, like for example clouds,
motorways, seas or lakes, land, and moving targets (Air, Land,
Sea). This is one of the upstream stages in the development
of a radar, which consists of simulating both the environments
and the radar to test its algorithms and, to a certain extent, its
final analogue sensors.

As those radar processing algorithms gain in complexity,
there is a real need of software acceleration for radar simula-
tions.



As mentioned earlier, one solution is to evaluate the strength
of other architectures than CPU. Most of modern parallel
computing systems are heterogeneous, often including at least
a CPU and another accelerator, such as a GPU, a FPGA,
or a Manycore CPU. To program such systems, one can
use programming frameworks such as OpenMP [§8], OpenCL
[7], OpenACC or CUDA, that allow expressing the inherent
parallelism of each architecture and handle memory transfers.
Some of those frameworks are focused on portability from
one architecture to another, while also providing a good
level of performance, like OpenACC. It is a directive based
language that enables a CPU code to be adapted to GPU using
preprocessing directives. One of its main advantage is that this
ported program can still be compiled for both GPU and CPU.

In this paper our contribution consists in providing an
acceleration methodology for OpenACC on GPU applied to a
radar simulation environment and compare it to both the CPU
reference and to an optimized CUDA implementation. GPU
implementation of radar algorithms has been evaluated before
for software radar [14] and real radar processing execution
[10], and the results show an efficient speedup compared to a
standalone CPU implementation.

The reminder of this paper is organized as follows : in
Section II, we quickly present some radar concepts. Then,
we introduce in Section III the Radar Simulation tool and
the considered environment, as well as the tools and con-
cepts used for its acceleration. Section IV describes our
methodology for OpenACC acceleration, while showcasing
the taken optimization steps. Finally, Section V consists of
discussing obtained results, in raw performance as well as in
programming productivity.

II. RADAR : PRELIMINARY CONCEPTS

At the start of the 20th century, the development of the
radio and wireless communication paved the way for the radar.
Now used in a wide range of applications, from meteorology
to warfare and defence systems, it is nowadays a crucial
technology.

Basic Doppler radar uses the Doppler-Fizeau effect [3].
The microwave signal issued by the antenna has a precise
frequency, and the echo received from the reflection by a target
has another frequency. By correlating both frequencies, the
radial speed of the target can be calculated. In the case of a
Doppler radar, it is possible to construct an Ambiguous Range
Doppler (ARD) map as illustrated in Fig. 1. Its goal is to detect
the targets and accurately measure their range and speed.

This map is a two-dimensional graph, with the speed of
the target on the X axis, and its range on the Y axis. Each
rectangle on this map corresponds to a target detected by the
radar. Actual ARD maps also contain additional echoes from
the radar environment.

III. EXPERIMENTAL SETUP

A. Digital Echo Simulator

The Digital Echo Simulator (DES) is an industrial simu-
lation and validation tool in support to the development of
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Fig. 1. Ambiguous Range Doppler Map

innovative signal processing algorithms for airborne radars.
With the DES, radars are accurately modelled in order to
simulate in a very representative fashion the echoes received
from an environment that may include clouds, dense forests,
deserts, oceans, targets and jammers, as illustrated in Fig. 2.
While analogue components and filters are taken into account
in the simulation, the echoes produced by the DES are located
at the radar I/Q demodulated output. It thus provides a relevant
means to validate signal processing algorithms without the
need of costly flight tests.

Tested airborne

RADAR model

Fig. 2. Digital Echo Simulator

The variety and precision of those simulations are crucial
for the reliability of the overall system, and this approach
is mainly used to improve its robustness. Amongst the vast
library of configurable environment the DES contains, our
acceleration methodology focused on one in particular, a radar
jammer which we refer to as the Localized Noise Jammer
(LNJ).

B. Localized Noise Jammer

As explained in section II, one step of radar processing
alorithm is to construct from radar echoes an ARD map, that
reflects and characterizes in range and speed the targets spotted
by the radar. The goal of an LN]J is to jam the radar in a specific



way that it will mask a target, by saturating a localized zone
around this target on the map.

Fig. 3 illustrates this principle, and shows what incidence
an LNJ would have on the ARD map compared to Fig. 1.

The goal of the Localized Noise Jammer environment is to
blur a rectangle zone on the final ARD map with specific
ranging, to prevent the radar from accurately detecting a
possible target inside. To achieve that, it must calculate what
echoes the radar is supposed to receive for its radar processing
to generate such a map. This jamming algorithm was already
implemented on CPU in the DES, and our objective was to
speed it up on GPU, while evaluating OpenACC programming.

C. GPU parallelism

For a GPU developer, the co-processing platform usually
consists of one host, usually a CPU and one or more GPUs.
In modern applications, some calculations can easily be par-
allelled. Applications that handle large amounts of data can
take a lot of time to execute and this time could be reduced by
parallelling operations: physical phenomena can be calculated
independently of each other, images to be analysed can be
cut in portions and a video stream can be cut image by
image. The parallelization of the data refers to the capability
of a program to handle in parallel and independently these
arithmetic instructions. For example, a multiplication of two
square matrices of one thousand rows and columns needs
one million elementary multiplication, independent from one
another, which can therefore be easily parallelled.

When it comes to OpenACC implementation, Listing 1
illustrates some directives to port a CPU code to a GPU
architecture. The main advantage of this framework is to
allow backward compatibility of the transformed code. For
example, when compiling the program for a CPU execution,
all #pragma directives will be ignored. Line 4 illustrates the
mechanism to create, from a host pointer, a corresponding
memory object in the GPU address space. This prevents,
contrary to CUDA for example, the need to add more lines
to create another memory object specific to the device. Line
5 allow the OpenACC compiler to understand that the func-
tion3_par will be launched by the host on the GPU, using v/
and v2 as data on the GPU. Finally, Line 16 underlines some
parallelism directive to tune the granularity of the following
loop parallelization.

However, this transition to a more abstract description
prevents more complex memory optimizations.

D. CPU-GPU Platform

Our co-processing platform consists of an Intel Xeon ES5-
2667 CPU [4] and a Nvidia GTX 1080Ti GPU [5]. The CUDA
toolkit version is 8.0, OpenACC version is 15.10. The profiling
tools used in this article are the nvce visual profiler and the
ones included in the PGI OpenACC compiler. Specifications
are shown at Table I.

IV. METHODOLOGY

This section showcases the different implementations on
the GPU plaform with OpenACC. The methodology is split

Listing 1: OpenACC directives for GPU execution

1 void main() {
2 float2 v1[S1], v2[S2];

3 ... some processing ...
/+ Device creation and copy from host
pointer %/

4 #pragma acc enter data copyin(v1[S1], V2[S2])
/* Launching GPU execution and
linking memory */

#pragma acc host_data use_device(vl, v2)
function3_par(vl, v2) ;

}

/* Sequential function on GPU */

8 #ipragma acc routine seq

9 inline float2 functionl_seq(float2 a, float s) {

10 float2 c;

11 cX =58 *ax;

12 cy=s*ay;

13 return c;

4}

N S wn

/* Parallel function on GPU */
15 void function3_par(float2 * restrict a, float s) {
/* Tuned loop parallelism */

16 #pragma acc parallel loop deviceptr(a)
17 num_gangs(GANGS) vector_length(SIZE)
18 num_workers(NB_WORKER) independent

19 for (int i =057 < size; i ++ ) {
20 functionl_seq(float2 ali], s);
21 ... Some processing ...

TABLE I
HARDWARE SPECIFICATION

Specifications CPU GeForce GPU
Type Intel Xeon E5-2667 GTX 1080Ti
Core Frequency 2.9 GHz 1.48 GHz
Physical Cores 6 3584
Global Memory 96 GB 11 GB
Memory Bandwith 51.2 GB/s 484.4 GB/s
FP32 Performance 500 GFLOPS 11.34 TFLOPS

in three main categories, Algorithm analysis, Memory con-
siderations, and Parallelism expression, and each OpenACC
optimization is explained in the corresponding category. The
achieved execution time speedup compared to the reference
execution time on CPU is detailed in Fig. 4.

Our platform includes an Nvidia GPU, and, to give an
exhaustive comparison of GPU acceleration, we implemented
an optimized CUDA version, also included in Fig. 4.

For all versions, the achieved optimization speedup include
memory transfer time.

A. Algorithm analysis

Code analysis
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Fig. 3. Localized Noise Jammer and the DES Simulator

The first step, which conditions the rest of our acceleration
methodology, is to analyze the intrinsic properties of our algo-
rithms. Therefore, it consists of verifying that the algorithms
performed on the reference architecture can be implemented
on the target architecture. This includes, for example, look-
ing for specifics such as recursiveness. Generally, recursive
functions cannot be effectively paralleled on GPU. Thus, they
should be avoided as much as possible.

When such processing is essential, and can only happen
recursively, it can be faster to stop the calculations on the
GPU, transfer the needed data back to the CPU, and perform
the recursive processing on the CPU instead. Afterwards, new
data can be copied to the GPU, and following processing can
resume. Time lost in transferring data can still be not too much
compared to the possible execution slowness on the GPU.

Algorithm conversion

The second step consists in adapting unsuitable processing
on the target architecture, while making sure the precision of
both versions remains comparable, for example that the output
data are identical, or in accordance with the specifications.

The LNJ environment uses Fast Fourier Transforms, and the
CPU algorithm is from the recursive kissFFT library. Accord-
ing to previous remarks, there were two possible options. The
first one was to do all the data-parallel friendly computation
on the GPU, and execute the original kissFFT algorithm on the
CPU, while switching contexts between the two architectures.
The second option was to find another FFT algorithm, this time
optimized for GPU execution. In our case it was the cuFFT
Nvidia algorithm.

Considering the FFT computation alone, we opted for the

second option, the first one being slower (even without the
data transfer) than the computation with cuFFT. Because
we modified the original algorithm, we had to make sure
we did not interfere with the specifications. The measured
absolute error difference between the kissFFT and the cuFFT
in our algorithm were lesser than 0.01%, and well below the
specification threshold (Optimization 1).

CPU/GPU Code partition

The point here is to partition the code according to pre-
vious remarks. Co-processing has the disadvantage of adding
transfer time between architectures, but latency can be hidden
by executing concurrently calculations and memory transfers,
to take advantage of the strength of the different architectures.
Usually, one can rely on profiling tools, like the ones included
in the PGI Compiler for OpenACC. By analysing the memory
access in the loops of a program, it will give information on
possible parallelization of some portion of the source code.
Of course, automatic tools can not be used exclusively, and
the programmer must push the analysis deeper to spot more
intricate execution patterns.

B. Memory considerations

The common difficulty in co-processing is the handling of
memory objects. Because GPUs need to hide the latency by
having memory transfer and compute units working simulta-
neously, it is crucial to take time for memory optimization.

Data Structure

Data distribution will greatly impact performance, because
the layout of a memory object will dictate its coalescence [11].
For example, Array of Structures are the most conventional



layout (Listing 2) and the most used in traditional computing.
Data for different fields are intertwined. This is often more
intuitive and supported directly by most programming lan-
guages, but with poor performances in parallel programming.
On the other hand, Structure of Arrays is a layout where data
are gathered per element (Listing 3). Access is faster for data
parallel programs (Opftimization 2).

Listing 2: AoS Listing 3: SoA

1 typedef struct Point { 1 typedef struct Point {
2 int X; 2 int x[N];

3 inty; 3 int y[NJ;

4 } tPoint; 4 } tPoint;

5 tPoint AoS[N]; 5 tPoint SOA;

Data locality

Another optimization can be achieved by delimiting mem-
ory regions, thanks to the directives enter data and exit data,
and, with the clauses copyin and copyout to choose the data
to be transferred to the GPU. Other directive like update will
refresh the CPU data from the GPU (Optimization 3).

Non-intersecting data

For optimal parallelism, the programmer can specify to the
compiler two keywords, const and restrict. The first one is to
indicate that the data is read-only, while the restrict indicates
that the corresponding pointer is the only one pointing in
its memory zone during the instance of our application. This
limits aliasing effects, thus allowing the compiler to implement
deeper optimizations (Optimization 4).

C. Parallelism expression

Vectorisation

OpenACC defines three levels of parallelism, the finest
scale being vector parallelism. It works like SIMD parallelism,
and operations are carried out for all indexes of a vector
simultaneously. For example, using int8 types (i.e. a vector of
8 integer values) for vector addition will reduce execution time
by a factor of 8. Depending on the problem, the programmer
must choose the granularity to achieve best performance.

Loop unrolling

Loop parallelization is at the centre of parallel program-
ming. The first step is to make sure there is no loop-carried
dependency between each iteration, otherwise the compiler
will not be able to fully extract its parallelism. It is possible,
using reduction and atomic clauses to fix data dependency
through a loop (Optimization 5).

V. RESULTS AND DISCUSSIONS

Execution time
As illustrated in Fig. 4, we compare the execution time
speedup to the reference CPU mono-core execution. For all
GPU optimizations, OpenACC and CUDA alike, measured
time includes all data transfers between the CPU and the GPU.
The first optimization (OpenACC Optl) achieved to be
slower than the reference CPU version. This is due to the
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fact that there was at this point no memory optimization, and
the goal of this step was to have a first functional code running
on the GPU.

OpenACC Opt4 shows that handling memory objects is
crucial to achieve substantial performance, with a speedup
of 3.7 compared to the reference execution. Finally, the best
achieved OpenACC speedup (OpenACC Opt5) still falls short
compared to a fully optimized CUDA implementation. This
is mostly due to the fact that OpenACC still does not handle
optimally some memory transfer. According to Nvidia, this
point is going to be improved in a later iteration of the tool.

Programming time

Considering programming productivity, Fig. 4 shows the
time needed to implement each version, cumulatively.

The slow implementation of the first optimization effort
(OpenACC Optl) is independent of the chosen language.
However, it depends on the target architecture. This comes
from the fact that this step relies on the analysis of the existing
code, and in its adaptation to this new architecture.

The three next implementations (OpenACC Opt2 to Ope-
nACC Opt4) are achieved rather quickly, and consist in tuning
memory transfers between the host and the accelerator.

OpenACC Opt5, on the other hand, is more tedious, as it is
the last step, clustering all the other optimization parameters.

Because GPU programming concept is similar whatever tool
is used to express it, transition from OpenACC code to CUDA
code is fairly easy, and the CUDA optimized was written
from the most optimized OpenACC version (OpenACC Opt5).
If a programmer were to use only CUDA, its optimization
methodology (and the time needed for implementation) would
have followed a similar pattern as the one described in Fig. 4.

Code modification

Table II shows the parallelization effort of our reference ap-
plication as the percentage of code lines written in OpenACC
and CUDA. From the reference code, the host code refers to
the part that executes on the CPU, including setting up the
co-processing platform, whereas the kernel code refers to the
portion of the code that executes on the GPU.



TABLE II
CODE MODIFICATION

Version | Host Code [%] | Kernel Code [%]
OpenACC Optl 105 274
OpenACC Opt2 147 30.5
OpenACC OpQ3 16.9 30.5
OpenACC Opt4 202 30.5
OpenACC Opt5 257 358

CUDA Optimized 35.7 59.7

We may observe that both host code and kernel code are
significantly modified for both the latest OpenACC and CUDA
versions. Considering the Host Code modifications, in order
to manage the co-processing calculations, a certain number
of impressible lines of code must be written, explaining the
10.5% overhead for the OpenACC Optl. The further we tune
our memory handling, the more lines are needed in host code.
Even then, OpenACC Opt5 still needs fewer rewriting than the
CUDA optimized version.

Kernel code modifications for OpenACC show, even for the
first version, a substantial rewriting of the original source code.
This is mainly due to the inadequacy of the original algorithm
for data-parallel architecture. Using the cuFFT library is one
of the main reasons why the OpenACC Optl has a 27.4 %
code modification. On the other hand, kernel code differences
between OpenACC Optl and OpenACC Opt5 is low, consist-
ing only on modifying some directives for different parallel
execution methods.

Based on the collected data, using OpenACC still reduces
the programming effort compared to CUDA, both for host
and kernel code. But, code modification remains significant,
mainly because the original code needed substantial rewriting
to be adapted for data parallel architecture.

CUDA or OpenACC : why not both?

From the results highlighted in this section, one must ask
himself what is the best tool to use between OpenACC and
CUDA. In this particular use-case, because the parallelism
needed significant rewriting of the code, both versions are
substantially different from the CPU reference code. However,
OpenACC programs are easier to read than CUDA ones.

Superimposing Speed of Implementation and Execution
Time show that the most efficient OpenACC version is Ope-
nACC Opt4. Afterwards, optimization efforts take much time
to achieve a small speedup. At this point, it is best to transition
to CUDA for a fully optimized version.

VI. CONCLUSION

In this paper, we presented how some optimization steps
impacted performance of a radar processing algorithm, from
a CPU mono-core architecture to a many-core GPU. The
maximum achieved speedup with OpenACC was of 4.56,
and with CUDA of 8.2. OpenACC is easy to use and has
a good readability for a CPU programmer. Its promise to only
slightly interfere with the CPU code was, in this use-case, not
really achieved, because the initial algorithm was not fully
data-parallel friendly. However, OpenACC still needs lesser

code modifications than CUDA, and, on use-cases adapted
for data-parallelism, it can still run on the CPU, the compiler
ignoring the OpenACC directives. Overall, this programming
model can be viewed as a good solution for GPU prototyping,
but to harness the best performance on GPU architecture,
programmers should eventually switch to CUDA.

Because OpenACC and CUDA share most of the same
conceptual view of the GPU architecture, one can transition
to one to another fairly quickly, easily switching one directive
for another. This can be reassuring for programmers as they do
not have to commit solely to OpenACC or CUDA. Recently,
Nvidia acquired one of the key OpenACC compilers, PGI
Accelerator™, and communicated on the next improvements
of the OpenACC framework, promising to address memory
slowness and converging with CUDA in terms of performance.

Future works are focused on porting this code on OpenCL
for FPGA implementation, as well as trying a new algorithmic
approach to avoid using FFT in the image space, and use
convolutions instead.
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