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Abstract 19 

1. Climate change should lead to massive loss of biodiversity in most taxa but the detailed 20 

physiological mechanisms underlying population extinction remain largely elusive so far. 21 

In vertebrates, baseline levels of hormones such as glucocorticoids (GCs) may be 22 

indicators of population state since their secretion to chronic stress can impair survival 23 

and reproduction. However, the relationship between GC secretion, climate change and 24 

population extinction risk remains unclear. 25 

2. In this study we investigated whether levels of baseline corticosterone (the main GCs in 26 

reptiles) correlate with environmental conditions and associated extinction risk across 27 

wild populations of the common lizard Zootoca vivipara. 28 

3. First, we performed a cross-sectional comparison of baseline corticosterone levels along 29 

an altitudinal gradient among 14 populations. Then, we used a longitudinal study in 8 30 

populations to examine the changes in corticosterone levels following the exposure to a 31 

heat wave period. 32 

4. Unexpectedly, baseline corticosterone decreased with increasing thermal conditions at 33 

rest in females, and was not correlated with extinction risk. In addition, baseline 34 

corticosterone levels decreased after exposure to an extreme heat wave period. This 35 

seasonal corticosterone decrease was more pronounced in populations without access to 36 

standing water.  37 

5. We suggest that low basal secretion of corticosterone may entail down-regulating activity 38 

levels and limit exposure to adverse climatic conditions, especially to reduce water loss. 39 

These new insights suggest that rapid population decline might be preceded by a down-40 

regulation of the corticosterone secretion. 41 

Keywords. Altitude, corticosterone, ectotherm, population decline, temperature, water 42 

availability.  43 

Page 2 of 46

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



3 

Introduction 44 

An increasing number of living organisms are on the verge of extinction, mostly due to 45 

human-related factors such as land use, exploitation or climate change (Pereira et al., 2010; 46 

Thomas et al., 2004). For instance, nearly half of all plant and animal species have already 47 

faced population extinctions over the last 50 years (Wiens, 2016), and the pace of extinction is 48 

greater than expected in vertebrates (Ceballos, Ehrlich, & Dirzo, 2017). This Earth "sixth 49 

mass extinction crisis" has led to an intense effort to understand the liabilities of global 50 

change on biodiversity loss, and the search of reliable physiological mechanisms underlying 51 

population declines and of physiological determinants of extinction risk (Cooke et al., 2013; 52 

Wikelski & Cooke, 2006). Indeed, physiological studies are useful because they could unravel 53 

individual-level mechanisms underlying population declines and the identification of relevant 54 

biomarkers of the extinction risk could ease conservation status assessment and prioritization 55 

of management actions. 56 

In vertebrates, hormones such as glucocorticoids (GCs) modulate daily and seasonal 57 

routines, such as reproductive cycles, as well as behavioural and life history responses to cope 58 

with both predictable and unpredictable events (Angelier & Wingfield, 2013; Landys, 59 

Ramenofsky, & Wingfield, 2006; Wingfield et al., 1998). The baseline secretion of GCs by 60 

the hypothalamic–pituitary–adrenal axis help individuals to mobilise energy associated with 61 

the demands of specific homeostatic states, where homeostasis refers to the tendency of the 62 

individual organism to maintain a state of physiological equilibrium on the long run (Landys 63 

et al., 2006; Romero, Dickens, & Cyr, 2009). However, individuals chronically exposed to 64 

stressors may show increased levels of baseline GCs, changes in the magnitude of the GCs 65 

response to an acute stress, and/or a reduction in the capacity to recover from perturbations, 66 

all of which may impair survival and/or reproduction on the long term (Angelier, Wingfield, 67 

Weimerskirch, & Chastel, 2010; Breuner, Patterson, & Hahn, 2008; Meylan, Miles, & 68 
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Clobert, 2012; Romero & Wikelski, 2010; Wingfield, 2013). Therefore, the regulation of GCs 69 

secretion may trigger adaptive responses to environmental changes, although empirical 70 

studies have shown that the fitness outcomes of the stress response are often complex and 71 

species-specific (Angelier et al., 2010; Bonier, Martin, Moore, & Wingfield, 2009; Bonier, 72 

Moore, & Robertson, 2011). 73 

In wild populations, a range of chronic stressors from anthropogenic disturbance, 74 

including exposure of animals to unregulated ecotourism (Ellenberg, Setiawan, Cree, 75 

Houston, & Seddon, 2007; French, DeNardo, Greives, Strand, & Demas, 2010), habitat 76 

pollution (Crino, Klassen Van Oorschot, Johnson, Malisch, & Breuner, 2011; Meillère et al., 77 

2016; Wikelski, Romero, & Snell, 2001), or landscape fragmentation (Janin, Léna, & Joly, 78 

2011; Martínez-Mota, Valdespino, Sánchez-Ramos, & Serio-Silva, 2007) may result in 79 

chronic elevation of baseline GC level, population declines and increased risks of rapid 80 

population extinction. There is also some direct evidence that lower corticosterone level may 81 

improve fitness of individuals exposed to desiccation and thermal stress in terrestrial 82 

ectotherms (Jessop, Letnic, Webb, & Dempster, 2013). And yet, a demonstration that 83 

secretion of GCs consistently correlate with the status and future fate of populations exposed 84 

to climate warming has not emerged yet, because of a wide variation in the sensitivity of GCs 85 

to anthropogenic disturbances across individuals and variable pathways between patterns of 86 

GCs secretion and individual fitness (Dantzer, Fletcher, Boonstra, & Sheriff, 2014; Dickens & 87 

Romero, 2013). These results thus question the GCs as a pertinent bio-marker of population 88 

extinction status. 89 

Climate change represents an ubiquitous environmental challenge for living organisms 90 

that may interact with other environmental stressors and accelerate population declines 91 

(Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012; Cahill et al., 2012; Flesch, 92 

Rosen, & Holm, 2017). Ectothermic vertebrates are expected to be particularly vulnerable due 93 
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to their behavioural and physiological sensitivity to environmental temperature (Deutsch et 94 

al., 2008; Frishkoff, Hadly, & Daily, 2015; Kingsolver, Diamond, & Buckley, 2013; Le 95 

Galliard, Massot, Baron, & Clobert, 2012; Telemeco et al., 2017). In these species, flexible 96 

secretion GCs may therefore determine the ability of individuals and populations to cope with 97 

acute or chronic changes in thermal conditions (Jessop et al., 2016). For instance, the baseline 98 

secretion of GCs may be up-regulated to help individuals adjust their physiology (e.g., 99 

metabolic rate) and/or behaviour (e.g., flight response, behavioural thermoregulation) when 100 

they are exposed to non-optimal environmental temperatures (Dupoué, Brischoux, Lourdais, 101 

& Angelier, 2013; Telemeco & Addis, 2014). Still, although body and environmental 102 

temperatures generally correlate with secretion of GCs across and within species in 103 

ectothermic vertebrates (Jessop et al., 2016), the relationships between baseline levels of GCs, 104 

climate change and extinction risk in wild populations have not been investigated. 105 

In this study, we examined the variation of baseline plasma corticosterone (the 106 

primary GCs in birds and reptiles) across 14 populations of the European common lizard 107 

(Zootoca vivipara) distributed across an altitudinal gradient. Our study populations occupy 108 

habitats that differ in thermal microclimates and access to free standing water (Dupoué, 109 

Rutschmann, Le Galliard, Miles, et al., 2017; Rutschmann et al., 2016), and are distributed 110 

along an extinction risk gradient including rapidly declining populations at the lowest 111 

altitudes and steady populations at mountaintops (Chamaillé-Jammes, Massot, Aragon, & 112 

Clobert, 2006; Sinervo et al., 2010). So far, population extinction has been directly related to 113 

warmer conditions in lowland populations although the proximate mechanisms remain 114 

unknown (Bestion, Teyssier, Richard, Clobert, & Cote, 2015). It is noteworthy that natural 115 

populations also differ in other parameters including  vegetation cover (Lorenzon, Clobert, 116 

Oppliger, & John-Alder, 1999; Rutschmann et al., 2016), or slope orientation and local wind 117 

speed conditions (pers. obs.), which may influence corticosterone levels. However, we 118 
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focused here on the environmental covariates that are associated with population decline 119 

(Dupoué, Rutschmann, Le Galliard, Clobert, et al., 2017). In each population, we sampled the 120 

representative demographic structure by capturing females and males from two age classes, 121 

including reproductive adults and non-reproductive yearlings. In Summer 2015, we combined 122 

two complementary studies to compare and clarify the factors responsible for variation in 123 

baseline corticosterone levels along the altitudinal gradient. First, we designed a cross-124 

sectional study in which we compared baseline corticosterone levels across the 14 populations 125 

at a single time point in the early summer, which corresponds to the mid-gestation period in 126 

females. We then used a longitudinal study on lizards from 8 out of these 14 populations to 127 

investigate seasonal changes in corticosterone after three weeks in the middle of summer. 128 

During this specific time period, all populations experienced an extreme heat wave which 129 

ranked 6
th

 in severity of European heat waves since 1950 according to meteorological reports 130 

(Russo, Sillmann, & Fischer, 2015). Our general hypothesis is that baseline corticosterone 131 

levels should be higher in populations where lizards are chronically exposed to extreme 132 

environmental conditions, such as consistently higher temperatures at the lower altitudes or 133 

extended periods of high temperatures (e.g., heat waves), ultimately leading to population 134 

collapse. 135 

Material and methods 136 

Studied species and populations 137 

The European common lizard, Zootoca vivipara, is a small (adult size ~ 50 - 75 mm), 138 

widespread species (Family: Lacertidae) that inhabits peat bogs and heathlands across 139 

northern Eurasia. In 2015, we studied 14 populations found in the Massif Central Mountains 140 

in south-central France, which corresponds to the southern range limits for the viviparous 141 

form of the species in France (Rutschmann et al., 2016). In our focal populations, males 142 

emerge in mid-April while females emerge in early May. Males copulate with females shortly 143 
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after their emergence with fertilization occurring in mid to late May (Bleu et al., 2013). 144 

Gestation has a duration of 2 to 3 months, with parturition occurring between late-June and 145 

early August. 146 

In each population, we characterized local environmental conditions, including 147 

altitude, permanent or periodic access to free standing water, and thermal microclimate (Table 148 

S1) (Dupoué, Rutschmann, Le Galliard, Miles, et al., 2017). We also calculated the relative 149 

changes in lizard abundance observed during the past decade and the extinction status 150 

according to IUCN indexes (IUCN, 2017). We distinguished the populations with permanent 151 

access to water in peat bogs or humid meadow habitats from those with periodic access in dry 152 

meadows with no water during summer except precipitations and morning dew. This 153 

objective score correlates with physiological regulation of the water balance in these 154 

populations such that lizards from populations without permanent access to water down-155 

regulate their water loss rates to remain normosmotic (Dupoué, Rutschmann, Le Galliard, 156 

Miles, et al., 2017). We used two to three temperature data loggers (iButtons, Maxim 157 

Integrated Products, Sunnyvale, CA, USA, ± 0.0625°C) per population. Loggers were placed 158 

within vegetation in the shade and protected in a polyvinyl cylinder pipe (diameter=5 cm, 159 

length=15 cm) to measure microclimatic temperature every hour from 29 June to 17 July 160 

between our two sampling sessions. This three weeks sampling period was chosen to reflect 161 

accurately the differences in microclimatic conditions during the active season among 162 

populations. We extracted the mean daily minimum and mean daily maximum temperatures 163 

(Tmin, and Tmax, respectively) to assess the thermal microclimate of each population. 164 

Population indices calculated with this method were correlated between years (2015-2017) 165 

either for Tmin (Pearson’s r = 0.75) or Tmax (r = 0.42). 166 

These populations have been monitored since 2005, so we could estimate relative 167 

changes in lizard abundance over a decade. Lizards are captured during days in active seasons 168 
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when the weather conditions and external temperature are optimal. During the searches, 169 

people randomly scan the populations to find lizards that are then captured by hand. Lizard 170 

abundance was calculated in summers 2005, 2015 and 2017 based on the number of lizards 171 

captured divided by the total time spent searching, the number of people capturing and the 172 

area of the study site (Dupoué, Rutschmann, Le Galliard, Clobert, et al., 2017). We used the 173 

relative changes in abundance to determine the IUCN status of each population, and we 174 

identified two populations extremely at risk, one population at risk and 11 non-threatened 175 

populations (Table S1). This classification is consistent with the predictive model of climate 176 

change effect on population trends derived from a previous field experiment (Bestion et al., 177 

2015). We managed to sample 135 individuals from those populations in a critical state, and it 178 

is worth noting that studies including as much individuals and replicates of collapsing 179 

populations are rare and urgently needed. Besides, many populations from this Mountain 180 

range have been extirpated during the 2-3 last decades following higher exposure to warm 181 

spells and summer droughts (Sinervo et al., under review) suggesting that population decline 182 

precedes inevitable extinction. 183 

Sampling procedures 184 

Cross-sectional study 185 

Between the 19
 
and 26 of June 2015 (early summer session), we caught a total of 312 adult 186 

pregnant females (mean ± SE, body mass (BM) = 4.77 ± 0.07 g, snout-vent length (SVL) = 187 

61.24 ± 0.25 mm), 132 adult males (BM = 3.54 ± 0.06 g, SVL = 54.75 ± 0.30 mm), 87 188 

yearling females (BM = 1.85 ± 0.06 g, SVL = 47.02 ± 0.49 mm), and 131 yearling males (BM 189 

= 2.01 ± 0.05 g, SVL = 46.10 ± 0.32 mm) from the 14 populations. Within 5 min of capture, 190 

we bled all individuals using a standard protocol (Meylan, Dufty, & Clobert, 2003). Blood 191 

samples (40-60 µl whole blood) were collected from the post-orbital sinus using 2-3 20 µl 192 

microcapillary tubes. Samples were kept fresh in a cooler on ice and brought back to a field 193 
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laboratory the same day. In the laboratory, blood samples were centrifuged for 5 min at 194 

11,000 rpm, plasma and blood cells were separated and kept frozen in airtight tubes until 195 

subsequent analyses. 196 

Adult females and males were transferred to the laboratory and housed in individual 197 

terraria (18 x 12 x 12 cm) with sterilized soil, a shelter, and basking opportunities to record 198 

parturition date and measurement of reproductive effort (litter size and mass) (Rutschmann et 199 

al., 2016). We calculated the reproductive timing (i.e., the embryonic stage at the sampling) as 200 

the difference between parturition and sampling dates. Each lizard was provided a 20-30°C 201 

thermal gradient for 6 hours per day (09:00-12:00 and 14:00-17:00) using a 25 W 202 

incandescent light bulb placed over one end of each terrarium. We also provided water 3 203 

times per day and fed lizards with 2 crickets (Acheta domesticus) every two days. In 2017, we 204 

measured the critical maximal temperature limits (CTmax) in a subsample of 57 individuals 205 

from the monitored populations, using a standard protocol (Gilbert & Miles, 2017). 206 

Individuals were continuously heated (~1°C per minute) under a 60 W incandescent light 207 

bulb, and flipped on the back every minute. Once they stop responding to this stimuli by 208 

righting themselves within 5s, we measured their cloacal temperature with a digital 209 

thermometer, considering as the individual CTmax. We released each male and female 210 

together with its offspring at its exact capture location within three days after parturition. 211 

Longitudinal study 212 

In 8 out of the 14 populations, we repeated the sampling procedures as described above 213 

between 19 and 23 July (mid-summer session). We focused on yearlings to avoid 214 

confounding effects of seasonal changes in reproductive state with those of seasonal changes 215 

in environmental conditions during a heat wave period. We sampled 76 yearling females (BM 216 

= 2.50 ± 0.06 g, SVL = 53.36 ± 0.42 mm) and 77 males (BM = 2.81 ± 0.06 g, SVL = 51.29 ± 217 

0.30 mm). Although we repeated sampling from the same populations than the cross-sectional 218 
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study, the probability to recapture the very same individuals was pretty low relative to the 219 

sample size (Meylan, Clobert, & Sinervo, 2007), so all measurements were considered as 220 

independent. 221 

Plasma corticosterone levels 222 

Plasma corticosterone assays were performed with a competitive enzyme-immunoassay 223 

method (IDS Corticosterone EIA kit, ref AC-14F1, Immunodiagnostic Systems Ltd, France) 224 

after 1:10 dilution of all samples. This method quantifies total plasmatic corticosterone using 225 

a polyclonal corticosterone antibody and is based on a highly repeatable colorimetric assay of 226 

absorbance at 450 nm. The reported sensitivity of the kit is 0.55 ng mL
-1

, and our estimates of 227 

corticosterone levels were indeed highly repeatable [12 plates with 4 repeats of a standard per 228 

plate: intra-plate repeatability: r = 0.98, F1,34 = 168.7, p < 0.001; inter-plate repeatability: r = 229 

0.81, F11,34 = 9.6, p < 0.001 (Lessells & Boag, 1987)]. Such repeatability, the coefficient of 230 

variation we obtained (intra-plate: 14%; inter-plate: 23%) and the similar levels of 231 

corticosterone assessed either by ELISA or by RIA methods (Meylan et al., 2003) suggest 232 

reliable results of corticosterone assays. 233 

Statistical analyses 234 

Plasma corticosterone were log10 transformed to achieve normal distribution and analysed 235 

with linear models in the R software (R Development Core Team, version 3.2.0, http://cran.r-236 

project.org/). In the cross-sectional study, the initial model included the quadratic effect of 237 

time of day to test for non-linear daily variation in corticosterone (Dauphin-Villemant & 238 

Xavier, 1987), and the fixed effects of population, sex, age class, and first- and second order 239 

interaction terms. In the longitudinal study, the initial model included the quadratic effect of 240 

time of day, fixed effects of population, sex, and sampling session, and first- and second order 241 

interaction terms. In the studied populations, lizard morphology strongly varies among and 242 

between populations, sex and age class as previously demonstrated (e.g., Chamaillé-Jammes 243 
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et al., 2006; Dupoué, Rutschmann, Le Galliard, Clobert, et al., 2017; Massot, Clobert, Pilorge, 244 

Lecomte, & Barbault, 1992). Therefore to avoid multicollinearity, lizard morphological 245 

indexes were not included in the model selection since we aimed to specifically test the 246 

influence of environmental conditions on baseline corticosterone levels independently from 247 

variation in morphology. We compared all models to a null model including the intercept only 248 

(cross-sectional study: Table S2; longitudinal study: Table S3).  249 

We found significant variation in corticosterone levels among populations in the final 250 

model of each study, and therefore tested the influence of environmental covariates on 251 

corticosterone levels in a second step. To do so, we used an approach using the Akaike 252 

information criterion corrected for small sample size (AICc, package AICcmodavg, Mazerolle 253 

2016). We compared mixed-effect linear models [package nlme, (Pinheiro, Bates, DebRoy, 254 

Sarkar, & R, 2016)] in which population identity was included as a random factor to account 255 

for non-independence within the same population. In all selected models, the random effects 256 

of populations had significant contribution to explain variation in baseline corticosterone (all 257 

p < 0.001). Environmental covariates were treated one by one. Water access was treated as a 258 

categorical factor while the relative changes in abundance, temperature metrics (i.e., Tmin and 259 

Tmax), and altitude, were treated as linear covariates. Given that several variables were highly 260 

correlated and related to population collapse, we computed the relative changes in abundance, 261 

Tmin and the altitude together in a principal component analysis [package ade4, (Dray & 262 

Dufour, 2007)]. We used the first axis (PC1) as a composite score of extinction risk since it 263 

was mainly determined by the relative changes in lizard abundance (Table S4), since this 264 

integrative score of population decline has been demonstrated to correlate with molecular 265 

markers of physiological stress (Dupoué, Rutschmann, Le Galliard, Clobert, et al., 2017). We 266 

compared all models, including additive effects of each environmental covariate or the PC1 267 

score (6 variables), as well as two-way interactions with age and sex (cross-sectional study, 268 
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Table S5) and two-way interactions with sex and sampling session (longitudinal study, Table 269 

S6).  270 

In adult pregnant females, we also investigated the relationships between baseline 271 

corticosterone levels and reproduction. We compared mixed effects models (population as 272 

random factor), with reproductive timing and reproductive effort as linear covariates and 273 

compared to a null model with the intercept only (Table S7). It is indeed predicted that GC 274 

secretion may increase during gestation and be higher in females with a higher reproductive 275 

effort (Dauphin-Villemant & Xavier, 1986; Lorioux, Angelier, & Lourdais, 2016). For all 276 

model comparisons, the best model was then chosen as the one with the lowest AICc and 277 

models that have a difference of AICc lower than 2 comparably support the data (see Tables 278 

S2, S3, S5, S6 & S7 for model comparisons).  279 

Results 280 

Cross-sectional study 281 

Baseline corticosterone levels differed across the 14 populations (F13,619 = 3.86, p < 0.001), 282 

between sexes (F1,619 = 38.42, p < 0.001), but did not show daily variation (time of day: F13,617 283 

= 1.48, p = 0.225, time of day
2
: F13,617 = 0.92, p = 0.338). Baseline corticosterone levels were 284 

significantly impacted by the two-way interactions between age and sex (F1,619 = 31.46, p < 285 

0.001), so that corticosterone levels differed between age classes in females but not in males 286 

(mean ± SE; pregnant females: 36.35 ± 1.34 ng.ml
-1

, yearling females: 23.44 ± 1.83 ng.ml
-1

, 287 

adult males: 17.07 ± 1.33 ng.ml
-1

, and yearling males: 17.26 ± 1.18 ng.ml
-1

).  288 

Baseline corticosterone levels were also significantly impacted by the two-way 289 

interactions between age and population (F13,619 = 2.33, p = 0.005) and between sex and 290 

population (F13,619 = 3.53, p < 0.001). According to our model selection procedure, most of 291 

the inter-population variation in baseline corticosterone levels was explained by Tmin and the 292 

two-way interactions between Tmin and age class and between Tmin and sex (model likelihood 293 
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wi = 0.74, see Table S5). Specifically, baseline corticosterone levels decreased with Tmin in 294 

females (adults: t1,12 = -2.31, p = 0.039, Fig. 1a; yearlings: t1,12 = -4.01, p = 0.002, Fig. 1b) but 295 

not in males (adults: t1,12 = 0.98, p = 0.347, Fig. 1c; yearlings: t1,12 = -1.33, p = 0.209, Fig. 1d). 296 

Other models had very low relative statistical support (wi ≤ 0.09) indicating that the 297 

relationships with other covariates were negligible (Table S5).In addition, in adult pregnant 298 

females, we did not find any significant relationship between baseline corticosterone and 299 

reproductive timing or reproductive effort (Table S7). 300 

Longitudinal study 301 

During the heat wave period in 2015, temperatures were higher and overpassed the lizard 302 

CTmax 42.5% of time during normal activity period (10:00 to 19:00), while remaining lower 303 

and non-constraining (0% of CTmax overpassing) in 2017 (Fig. 2). Overall, baseline 304 

corticosterone levels were lower after the heat wave period than before (early summer 305 

session: 20.29 ± 1.40 ng.ml
-1

, mid-summer session: 13.68 ± 0.83 ng.ml
-1

; F1,244 = 9.82, p = 306 

0.002), and this seasonal variation between sampling sessions differed among populations 307 

(population x sampling session: F7,244 = 3.45, p = 0.002). In addition, corticosterone levels 308 

showed non-linear daily variation (time of day: F1,244 = 4.51, p = 0.035, time of day
2
: F1,244 = 309 

4.09, p = 0.044, Fig. 3a), and were overall higher in yearling females compared to males 310 

(F1,244 = 7.66, p = 0.006). 311 

Differences among populations in their seasonal changes in baseline corticosterone 312 

levels were best explained by the access to free standing water since the two best models for 313 

baseline corticosterone levels included a two-way interaction between this covariate and the 314 

measurement session (combined likelihood wi = 0.35, see Table S6). Specifically, according 315 

to the top ranking model, baseline corticosterone levels decreased during the heat wave in 316 

yearlings from populations characterized by periodic access to water (t1,257 = -4.05, p < 0.001, 317 

Fig. 3b), while corticosterone levels remained similar in populations with permanent access to 318 

Page 13 of 46

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



14 

water (t1,257 = -0.81, p = 0.417, Fig. 3b). Other models had lower degree of relative support (wi 319 

≤ 0.08) suggesting that the relationships with other covariates were not important (Table S6). 320 

Discussion 321 

We designed two complementary field studies to examine geographic variation in baseline 322 

corticosterone levels among wild populations of lizards across a gradient of environmental 323 

conditions and extinction risk. We found strong geographic variation in baseline 324 

corticosterone levels, interactively or additively with lizard sex and age class. Contrary to our 325 

expectations, these differences were poorly related with extinction risks as indicated by an 326 

integrative score (Dupoué, Rutschmann, Le Galliard, Clobert, et al., 2017) and IUCN 327 

conservation status. Instead, baseline corticosterone levels of females were lower in local 328 

populations with higher minimum daily temperature, and decreased on average in yearlings 329 

after a heat wave, suggesting that chronic heat stress was correlated with a lower 330 

corticosterone secretion. Importantly, our results also revealed that access to free standing 331 

water in each population may determine the sensitivity of corticosterone secretion during the 332 

exposure to an intense heat wave.  333 

In this study, we found greater plasma corticosterone levels in adult females compared 334 

to males or yearling which is consistent with previous findings showing temporal increase in 335 

corticosterone over pregnancy in squamate reptiles (Dauphin-Villemant & Xavier, 1987; 336 

Lorioux et al., 2016; Taylor, DeNardo, & Jennings, 2004). Surprisingly in pregnant females, 337 

the higher baseline corticosterone levels was not correlated with any index of reproductive 338 

performance, thus questioning the proximate causes of variations in hormonal profile during 339 

gestation. Besides these predictable variations in baseline corticosterone across life stages, we 340 

found sex-specific relationships between baseline corticosterone levels and local thermal 341 

conditions during the night (i.e., minimum daily temperatures), which describe local climate 342 

conditions when individuals are at rest. Baseline corticosterone levels decreased with Tmin in 343 

Page 14 of 46

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



15 

females but not in males. This sex-specific pattern may result from a differential sensitivity to 344 

temperature, which is likely related to sex-specific life history strategies in this species 345 

(Massot et al., 1992). In support of this, it is noteworthy that baseline corticosterone 346 

concentration strongly depends on body temperature in ectotherms (Dupoué et al., 2013; 347 

Jessop et al., 2016). Further studies would help to clarify if thermoregulation differs within 348 

(sex and age specific response) and between populations, and whether differences across 349 

populations are a direct consequence of changes in body temperature or due to functional 350 

plasticity or local adaptations.  351 

These relationships could mirror the negative correlation between baseline GCs and 352 

environmental temperatures observed across species in reptiles (Jessop et al., 2016). One 353 

explanation for the higher baseline corticosterone levels in reptile species inhabiting colder 354 

habitats is that a high baseline GCs level helps in supporting the faster energy demand and 355 

mobilisation needed during activity periods when thermoregulatory opportunities are fewer 356 

(Dupoué et al., 2013; Jessop et al., 2016; Telemeco & Addis, 2014). If this hypothesis holds 357 

true, we would expect a stronger correlation between baseline GCs levels and thermal 358 

conditions during the activity period of the day than during the resting period. However, we 359 

did not find any influence of daily maximal temperature (Tmax), suggesting that geographic 360 

differences in thermoregulation opportunities during the day did not explain the changes in 361 

corticosterone levels. Alternatively, lower minimum temperatures may trigger higher level of 362 

circulating corticosterone to compensate and/or maintain a level of physiological 363 

performances that are classical decreased at lower body temperature (Angilletta, 2009; Qualls 364 

& Andrews, 1999). Experiments where lizards are exposed to separate changes in nocturnal 365 

and daily minimum and maximum environmental temperatures are needed to test if low 366 

minimum daily temperatures can indeed induce higher GC secretion and therefore represent 367 

"more stressful" conditions than high temperatures. 368 
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We suggest instead that individuals responded to abnormally high thermal conditions at 369 

rest (i.e., during night-time) because lowering plasma corticosterone may help down regulate 370 

maintenance costs at rest and energy expenditure during activity (e.g., locomotion or the 371 

proportion of time basking). Low secretion of GC in the warmest populations may thus be an 372 

adaptive physiological response in order to save energy and water (Cote, Clobert, Meylan, & 373 

Fitze, 2006; Cote, Clobert, Poloni, Haussy, & Meylan, 2010; Preest & Cree, 2008). Indeed, 374 

high metabolism at rest and strong behavioural activity in warmer environments could induce 375 

diverse physiological costs such as higher energy expenditure, higher risk of dehydration, and 376 

eventually negative impacts on survival and reproduction (Bestion et al., 2015; Dillon, Wang, 377 

& Huey, 2010; Huey et al., 2012; Kearney, Shine, & Porter, 2009; McKechnie & Wolf, 378 

2010). Alternatively, the studied populations can associate micro-adaptations (e.g., significant 379 

genetic differentiation among populations), different trajectory in life history strategies 380 

(Chamaillé-Jammes et al., 2006; Dupoué, Rutschmann, Le Galliard, Clobert, et al., 2017; 381 

Rutschmann et al., 2016), which might explain some variations in corticosterone levels 382 

between populations. Besides, we must acknowledge that baseline corticosterone alone may 383 

not always correlate with individual stress and animal welfare (Otovic & Hutchinson, 2015). 384 

Instead, the acute GC response to a stressor following a standard capture-restrain process or 385 

the capacity to recover from such stress response represent complementary indicators of GC 386 

secretion that might better predict reproduction and/or survival rate than baseline levels (Blas, 387 

Bortolotti, Tella, Baos, & Marchant, 2007; Romero & Wikelski, 2010). However, analyses of 388 

the GC secretion in response to acute stressors would require repeated blood sampling, which 389 

could not be done for ethical reasons and logistic in this large scale study with small bodied 390 

lizards (adult body mass ~3 - 5g) involving many populations. Other physiological indicators 391 

of stress could also provide crucial insights on the responses to abnormally high temperatures 392 

and desiccation. For instance, the heat shock proteins represent particularly promising 393 
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components of the stress response that are likely impacted by global warming and should 394 

correlate with population extinction status (Sørensen, 2010). Besides, we recently documented 395 

in these populations that telomere length, another integrative indicator of aging and thermal 396 

stresses has been recently shown to non-linearly shorten in populations facing high risk of 397 

extinction when compared to non-threatened ones (Dupoué, Rutschmann, Le Galliard, 398 

Clobert, et al., 2017). Therefore, further comparative studies are required to depict the specific 399 

causes of variation in baseline GC level, GC stress response, GC recovery, or other pertinent 400 

physiological indexes of stress and the further effects on individual fitness. 401 

Following a similar tendency, we found that baseline corticosterone decreases 402 

seasonally during an intense heat wave period, especially in the driest (i.e., with no access to 403 

free standing water) populations. The heat wave was particularly pronounced in 2015 since it 404 

ranked 6th in severity in Europe since 1950 (Russo et al., 2015) with abnormally high 405 

temperatures and no precipitation (Dong, Sutton, Shaffrey, & Wilcox, 2016). Instead, 406 

according to our initial hypothesis, a seasonal increase in baseline corticosterone was 407 

expected as individuals were most likely exposed to chronic heat stress and summer droughts, 408 

especially in the populations without access to water (Wingfield, 2013). Seasonal differences 409 

in mean corticosterone levels could come from intra-individual changes (i.e., physiological 410 

flexibility) but also from inter-individual viability selection (i.e., selective removal of 411 

individuals with different initial baseline levels) or from a combination of both processes. We 412 

cannot exclude that individuals with higher corticosterone levels at the beginning of the 413 

summer were selected against through lower survival rate during the heat wave period, which 414 

could have been determined with a repeating sampling all over the exposure to the heat 415 

waves. However, this hypothesis would involve a strong selection and a high repeatability of 416 

corticosterone levels over time, which is very unlikely according to current estimates of inter-417 

individual repeatability of GC levels (Holtmann, Lagisz, & Nakagawa, 2017). Our results thus 418 
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alternatively suggest that individual down regulated corticosterone secretion and decreased 419 

their resting metabolism and behavioural activity to limit the costs associated with warm and 420 

dry environments (see above). Since this seasonal decrease was restricted to populations 421 

without access to free standing water, regulation of the water balance may be an important 422 

target in the behavioural regulation of activity level in wild lizards (Lorenzon et al., 1999). 423 

Water balance is the sum of water entrance (i.e., drinking behaviour) and water exit (i.e., 424 

faeces, evaporative water losses through ventilation and transpiration). The rate of evaporative 425 

water loss and eventually the rate of dehydration will depend on temperature, humidity and 426 

activity levels. When facing extreme heat waves, the behavioural regulation of the water 427 

balance through lower corticosterone secretion could represent an adaptive response to avoid 428 

overheating, dehydration and premature death (Jessop et al., 2013). Further investigations 429 

should now clarify the role of corticosterone in sheltering, microhabitat selection, and the 430 

following outcomes on the regulation of water balance, and on individual fitness and general 431 

demographic trends in the context of climate change.  432 

Heat wave frequency, intensity and duration will considerably increase in the next 433 

decades (Easterling et al., 2000; Meehl & Tebaldi, 2004). Although the responses to extreme 434 

temperatures are complex and various among taxa (Buckley & Huey, 2016), the exposure to 435 

such climatic events is predicted to lead to massive changes in demographic trends 436 

(McKechnie & Wolf, 2010). Within individuals, the allostasis concept posits that hormones 437 

such as corticosterone constitute the crucial interfaces between the energy demands associated 438 

with predictable life-history stages and unpredictable environmental changes, such as heat 439 

waves and dry episodes (McEwen & Wingfield, 2010; Romero et al., 2009). To avoid the 440 

exposure to abnormally high temperature and water deprivation, lowering activity and 441 

sheltering may thus be crucial to ensure immediate survival in many ectothermic species, and 442 

our results suggest that baseline corticosterone may contribute to mediate this adaptive 443 
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response in the common lizard. Yet, even if baseline corticosterone might be essential to 444 

mitigate the immediate costs of being active in harmful conditions, it was uncorrelated with 445 

population decline, thus questioning the pertinence of using high baseline corticosterone as a 446 

relevant biomarker of population extinction risk. In the long run, lower activity may even alter 447 

foraging or reproductive opportunities and eventually lead to population extinction in our 448 

study populations (Dupoué, Rutschmann, Le Galliard, Clobert, et al., 2017; Sinervo et al., 449 

2010). Together, our results therefore suggest that climate change is associated with a down-450 

regulation of corticosterone GC secretion preceding the population decline. 451 
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Figure captions 721 

Figure 1. Relationships between baseline corticosterone levels and minimal daily ambient 722 

temperature (Tmin) across 14 populations of common lizards. Baseline corticosterone 723 

decreases slightly with Tmin in a) adult females (n = 312), b) yearling females (n = 87), but not 724 

in c) adult males (n = 132), and d) yearling males (n = 131). For significant relationships, the 725 

predictions of the best model from Table S3 were fitted on the data (solid line) together with 726 

the 95% confidence interval (dashed lines). Note the logarithmic scale of corticosterone levels 727 

and wide range of variation within each population. 728 

 729 

Figure 2. Thermal profile of the 8 populations from the longitudinal study during the heat 730 

waves (2015) and during the same period of a year with normal climatic conditions (2017). 731 

During the heat wave period, air temperatures measured in shade within vegetation 732 

approached or overpassed the maximal critical thermal limit (CTmax) ranging from 37.7 to 733 

42.6°C, thus highlighting a strong constraint for activity to avoid overheat (Sinervo et al., 734 

2010). 735 

 736 

Figure 3. Daily and seasonal variation in baseline corticosterone during a summer heat wave 737 

in yearling common lizards inside eight populations with periodic (closed circles) or 738 

permanent (filled circles) access to water. Baseline corticosterone levels a) non-linearly 739 

decreased within the day (time of day: F1,244 = 4.51, p = 0.035, time of day
2
: F1,244 = 4.09, p = 740 

0.044) and b) decreased during the heat wave in yearlings from populations with periodic 741 

access to water (t1,257 = -4.05, p < 0.001), while remaining similar in populations with 742 

permanent access to water (t1,257 = -0.81, p = 0.417). 743 
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Figure 1. Relationships between baseline corticosterone levels and minimal daily ambient temperature 
(Tmin) across 14 populations of common lizards. Baseline corticosterone decreases slightly with Tmin in a) 
adult females (n = 312), b) yearling females (n = 87), but not in c) adult males (n = 132), and d) yearling 

males (n = 131). For significant relationships, the predictions of the best model from Table S3 were fitted on 
the data (solid line) together with the 95% confidence interval (dashed lines). Note the logarithmic scale of 

corticosterone levels and wide range of variation within each population.  
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Figure 2. Thermal profile of the 8 populations from the longitudinal study during the heat waves (2015) and 
during the same period of a year with normal climatic conditions (2017). During the heat wave period, air 
temperatures measured in shade within vegetation approached or overpassed the maximal critical thermal 

limit (CTmax) ranging from 37.7 to 42.6°C, thus highlighting a strong constraint for activity to avoid 
overheat (Sinervo et al., 2010).  
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Figure 3. Daily and seasonal variation in baseline corticosterone during a summer heat wave in yearling 
common lizards inside eight populations with periodic (closed circles) or permanent (filled circles) access to 
water. Baseline corticosterone levels a) non-linearly decreased within the day (time of day: F1,244 = 4.51, 

p = 0.035, time of day2: F1,244 = 4.09, p = 0.044) and b) decreased during the heat wave in yearlings 
from populations with periodic access to water (t1,257 = -4.05, p < 0.001), while remaining similar in 

populations with permanent access to water (t1,257 = -0.81, p = 0.417).  
 

279x361mm (300 x 300 DPI)  

 

 

Page 34 of 46

Journal of Animal Ecology: Confidential Review copy

Journal of Animal Ecology: Confidential Review copy



Table S1. Localisation (GPS coordinates), elevation, climatic conditions and water access in the focal populations of the common lizard (Z. 

vivipara). Values of environmental temperature (minimal: Tmin and maximal: Tmax) are the mean ± SE, which were recorded between June 29 and 

July 17, 2015. We used the relative change in abundance (r) to assess the index of IUCN conservation status of each population [r = 

(Abundance
2015

 – Abundance
2005

) / Abundance
2005

] 
1
. See text for details. 
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1 
IUCN Red List Categories and Criteria and Guidelines for Using the IUCN Red List Categories and Criteria. Scenario A2. Endangered (EN): very high risk of extinction in 

the wild; Vulnerable (VU): high risk of extinction in the wild; Least Concern (LC): non-threatened populations.  

 

Population Coordinates Altitude (m) Tmin (°C) Tmax (°C) 
Water 

access 
Abundance

2005
 Abundance

2015
 r 

IUCN 

status 

Barnesac (BAS) 
44°25'59.48"N 

3°45'20.07"E 
1515 9.04 ± 0.62 38.50 ± 0.62 Permanent 1,30 2,53 1,0 LC 

Belair (BEL) 
44°40'20.79"N 

4° 1'29.84"E 
1418 8.80 ± 0.56 33.96 ± 0.49 Periodic 1,09 1,55 0,4 LC 

M
t
 Caroux (CAR) 

43°36'08.75"N 

2°58'54.25"E 
1047 11.39 ± 0.43 27.31 ± 0.50 Permanent 0,17 0,06 -0,6 EN 

Carmantran (CARM) 
45°09'22.05"N 

2°50'16.30"E 
1267 9.68 ± 0.92 32.97 ± 0.79 Permanent 3,13 3,18 0,0 LC 

Chalet du M
t
 

Lozère 
(CHA) 

44°26'56.72"N 

3°44'51.79"E 
1429 10.49 ± 0.77 35.63 ± 0.68 Periodic 0,38 0,39 0,0 LC 

Col du cheval 

mort 
(COM) 

44°40'1.29"N 

3°31'57.98"E 
1405 10.20 ± 0.61 29.93 ± 0.68 Permanent 0,42 0,41 0,0 LC 

Col du pendu (COP) 
44°39'18.38"N 

4°01'49.79"E 
1421 7.16 ± 0.43 44.74 ± 0.77 Permanent 0,53 0,75 0,4 LC 

Source de la Loire (JOC) 
44°50'6.66"N 

4°12'39.65"E 
1296 8.77 ± 0.53 35.78 ± 0.61 Permanent 0,68 1,81 1,6 LC 

Gerbier de jonc (JON) 
44°50'30.31"N 

4°12'54.30"E 
1398 10.06 ± 0.43 33.73 ± 0.68 Periodic 0,60 0,74 0,2 LC 

Lajo (LAJ) 
44°50'41.10"N 

3°25'51.01"E 
1330 8.79 ± 0.46 39.04 ± 0.66 Periodic 1,55 1,64 0,1 LC 

Montselgues (MON) 
44°30'40.26"N 

4°00'29.36"E 
1049 11.42 ± 0.42 33.13 ± 0.32 Permanent 0,27 0,09 -0,7 EN 

Pejouzou (PEJ) 
45°09'52.24"N 

2°50'37.52"E 
1254 8.00 ± 0.95 39.19 ± 1.04 Permanent 0,92 1,02 0,1 LC 

Puy Mary (PUY) 
45°6'25.77"N 

2°41'6.10"E 
1434 12.63 ± 0.60 32.55 ± 0.84 Permanent 0,07 0,05 -0,3 VU 

Viala (VIA) 
44°20'17.43"N 

3°46'04.76"E 
1191 8.53 ± 0.52 35.45 ± 0.58 Permanent 0,50 0,66 0,3 LC 
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Table S2. Initial AICc based model selection comparing the effect of age, sex, population and 

their interactions on the plasma corticosterone levels in common lizards (n = 662). Models are 

compared to a null model (model 12) including the intercept only.  

 

Model 

number 
Specification of fixed effects k AICc ∆AICc wi 

Log 

likelihood 
r

2
m 

1 
Age + Sex + Population + Age : Sex + 

Age : Population + Sex : Population 
44 168.01 0.00 0.93 -36.80 39.48 

2 

Age + Sex + Population + Age : Sex + 

Age : Population + Sex : Population + 

Age : Sex : Population 

57 173.18 5.17 0.07 -24.12 41.15 

3 Age + Sex + Population + Age : Sex 18 184.23 16.22 0.00 -73.58 33.58 

4 
Age + Sex + Population + Sex : 

Population 
30 203.93 35.92 0.00 -70.49 33.77 

5 Age + Sex + Age : Sex 5 212.40 44.38 0.00 -101.15 28.31 

6 
Sex + Age + Population + Age : 

Population 
30 214.57 46.56 0.00 -75.81 32.72 

7 Sex + Population + Sex : Population 29 220.19 52.17 0.00 -79.72 31.98 

8 Sex 3 257.85 89.84 0.00 -125.91 22.82 

9 Age + Population + Age : Population 29 357.43 189.41 0.00 -148.34 16.85 

10 Age 3 373.01 204.99 0.00 -183.49 8.18 

11 Population 15 398.98 230.97 0.00 -184.12 7.87 

12 Null 2 427.54 259.53 0.00 -211.76 0.00 

 

k : number of parameters, ∆AICc: difference with AICc of the best model, wi: model likelihood, 

r
2

m : marginal R-squared 
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Table S3. Initial AICc based model selection comparing the effects of sampling session, sex, 

population and their interaction in yearling common lizards (n = 371). Models are compared 

to a null model (model 12) including the intercept only.  

 

k : number of parameters, ∆AICc: difference with AICc of the best model, wi: model 

likelihood, r
2

m : marginal R-squared 

 

Model 

number 
Specification of fixed effects k AICc ∆AICc wi 

Log 

likelihood 
r

2
m 

1 Sex + Session + Session:Population 20 106.62 0.00 0.70 -31.63 25.80 

2 
Session + Sex + Population + Session:Sex 

+ Session:Population + Sex:Population 
28 108.40 1.78 0.29 -22.85 29.56 

3 
Session + Sex + Population + 

Sex:Population 
20 115.46 8.84 0.01 -36.05 23.46 

4 
Session + Population + 

Session:Population 
19 116.08 9.46 0.01 -37.53 22.74 

5 

Session + Sex + Population + Session:Sex 

+ Session:Population + Sex:Population + 

Session:Sex:Population 

35 119.52 12.90 0.00 -19.40 30.59 

6 Session + Sex + Population + Session:Sex 14 119.63 13.01 0.00 -44.99 18.88 

7 Sex + Population + Sex:Population 19 123.95 17.33 0.00 -41.46 20.57 

8 Session + Sex + Session:Sex 7 128.09 21.47 0.00 -56.83 12.05 

9 Session 5 132.09 25.47 0.00 -60.93 9.45 

10 Population 11 132.76 26.15 0.00 -54.87 13.11 

11 Sex 5 134.54 27.92 0.00 -62.16 8.64 

12 Null 4 139.02 32.40 0.00 -65.43 6.45 
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Table S4. Principal component analysis (PCA) including the main determinants of 

population collapse. Variables included in the PCA are the relative change in abundance 

(∆abundance), the minimal temperatures (Tmin), and the altitude. Table shows the eigenvalue 

of the 3 axes (PC1 to PC3), percentage of variance explained, and the inertia of each variables 

on the first two axes. 

 

 

 

 

 

 

  PCA Axes 

  PC1 PC2 PC3 

Eigenvalue  1.89   0.78   0.33   

Variance  63.01      25.94   11.04 

Inertia ∆abundance 4273 54 - 

 Tmin 3219 3733 - 

 Altitude 2508 6213 - 
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Table S5. AICc based model selection comparing the effect of environmental conditions in early 

summer session on the plasma corticosterone levels in adult or yearling and female or male 

common lizards (n = 662). Each environmental covariate was treated one by one (5 models per 

covariate). Environmental covariates were also computed in a principal component analysis to 

extract an integrative index of population extinction risk (PC1 – first axis of a principal 

component analysis including relative change in abundance, Tmin, and altitude, see Table S2). 

Population was treated as a random factor to account for non-independence. 

 

Model 

number 
Specification of fixed effects k AICc ∆AICc wi 

Log 

likelihood 
r

2
m r

2
c 

1 
Age + Sex + Tmin + Age : Sex + Age : 

Tmin + Sex : Tmin 
9 180.87 0.00 0.74 -81.30 30.79 33.77 

2 
Age + Sex + PC1 + Age : Sex + Age : 

PC1 + Sex : PC1 
9 185.02 4.16 0.09 -83.37 29.29 33.30 

3 
Age + Sex + Tmin + Age : Sex + Sex : 

Tmin 
8 185.14 4.27 0.09 -84.46 30.10 33.20 

4 

Age + Sex + water access + Age : Sex 

+ Age : water access + Sex : water 

access 

9 188.13 7.26 0.02 -84.93 28.68 33.01 

5 
Age + Sex + water access + Age : Sex 

+ Age : water access 
8 188.18 7.31 0.02 -85.98 28.44 32.83 

6 
Age + Sex + Tmin + Age : Sex + Age : 

Tmin 
8 189.72 8.85 0.01 -86.75 29.76 32.54 

7 Age + Sex + Tmin + Age : Sex 7 190.73 9.86 0.01 -88.28 29.39 32.28 

8 
Age + Sex + PC1 + Age : Sex + Age : 

PC1 
8 191.24 10.37 0.00 -87.51 28.43 32.42 

9 

Age + Sex + ∆abundance + Age : Sex 

+ Age : ∆abundance + Sex : 

∆abundance 

9 191.94 11.07 0.00 -86.83 28.35 32.42 

10 
Age + Sex + Tmax + Age : Sex + Age : 

Tmax + Sex : Tmax 
9 191.94 11.08 0.00 -86.83 28.82 32.61 

11 Age + Sex + Age : Sex 6 192.84 11.97 0.00 -90.35 27.53 31.90 

12 
Age + Sex + ∆abundance + Age : Sex 

+ Age : ∆abundance 
8 192.95 12.08 0.00 -88.37 28.05 32.06 

13 
Age + Sex + altitude + Age : Sex + 

Age : altitude 
8 193.02 12.15 0.00 -88.40 28.04 32.06 

14 
Age + Sex + Tmax + Age : Sex + Sex : 

Tmax 
8 193.11 12.25 0.00 -88.45 28.49 32.26 
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15 
Age + Sex + PC1 + Age : Sex + Sex : 

PC1 
8 193.19 12.33 0.00 -88.49 28.13 32.47 

16 
Age + Sex + Tmax + Age : Sex + Age : 

Tmax 
8 193.21 12.35 0.00 -88.50 28.50 32.25 

17 Age + Sex + Tmax + Age : Sex 7 193.28 12.41 0.00 -89.55 28.27 32.02 

18 
Age + Sex + altitude + Age : Sex + 

Age : altitude + Sex : altitude 
9 193.37 12.50 0.00 -87.55 28.24 32.21 

19 Age + Sex + PC1 + Age : Sex 7 194.55 13.69 0.00 -90.19 27.79 32.04 

20 Age + Sex + altitude + Age : Sex 7 194.80 13.93 0.00 -90.31 27.53 31.85 

21 Age + Sex + ∆abundance + Age : Sex 7 194.83 13.96 0.00 -90.33 27.51 31.84 

22 Age + Sex + water access + Age : Sex 7 194.87 14.00 0.00 -90.35 27.52 32.88 

23 
Age + Sex + ∆abundance + Age : Sex 

+ Sex : ∆abundance 
8 196.01 15.14 0.00 -89.90 27.57 32.00 

24 
Age + Sex + altitude + Age : Sex + 

Sex : altitude 
8 196.59 15.73 0.00 -90.19 27.56 31.88 

25 
Age + Sex + water access + Age : Sex 

+ Sex : water access 
8 196.60 15.74 0.00 -90.19 27.56 31.90 

26 Age + Sex 5 221.76 40.89 0.00 -105.83 24.36 28.59 

27 Sex 4 238.51 57.65 0.00 -115.23 22.08 26.74 

28 Age 4 357.56 176.70 0.00 -174.75 7.46 12.38 

29 Tmin 4 405.79 224.92 0.00 -198.86 2.19 6.17 

30 Null 3 408.20 227.33 0.00 -201.08 0.00 6.18 

31 Tmax 4 408.41 227.54 0.00 -200.17 0.87 6.07 

32 PC1 4 409.35 228.48 0.00 -200.64 0.47 6.18 

33 ∆abundance 4 410.17 229.30 0.00 -201.05 0.03 6.19 

34 water access 4 410.17 229.31 0.00 -201.06 0.03 6.18 
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35 altitude 4 410.22 229.35 0.00 -201.08 0.00 6.18 

 

k : number of parameters, ∆AICc: difference with AICc of the best model, wi: model likelihood, 

r
2

m : marginal R-squared, r
2

c : conditional R-squared  
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Table S6. AICc based model selection comparing the effects of environmental conditions 

during the heat wave period on plasma corticosterone levels in yearling common lizards (n = 

371). Each environmental covariate was treated one by one (5 models per covariate). 

Environmental covariates were also computed in a principal component analysis to extract an 

integrative index of population extinction risk (PC1 – first axis of a principal component 

analysis including relative change in abundance, Tmin, and altitude, see Table S2). Population 

was treated as a random factor to account for non-independence. 

Model 

number 
Specification of fixed effects k AICc ∆AICc wi 

Log 

likelihood 
r

2
m r

2
c 

1 

Session + Sex + water access + 

Session : water access + Sex : water 

access 

10 117.95 0.00 0.24 -48.55 16.43 21.82 

2 
Session + Sex + water access + 

Session : water access 
9 119.55 1.61 0.11 -50.43 15.31 20.57 

3 Session + Sex + Tmin 
8 120.26 2.31 0.08 -51.85 15.94 17.89 

4 
Session + Sex + ∆abundance + Sex : 

∆abundance 
9 120.45 2.50 0.07 -50.88 15.62 19.68 

5 Session + Sex + PC1+ Sex : PC1 
9 120.91 2.96 0.06 -51.11 15.71 18.82 

6 
Session + Sex + ∆abundance + Session 

: ∆abundance + Sex : ∆abundance 
10 121.03 3.08 0.05 -50.09 15.86 19.90 

7 
Session + Sex + PC1 + Session : PC1 + 

Sex : PC1 
10 121.07 3.12 0.05 -50.11 16.12 19.19 

8 Session + Sex + Tmin + Sex : Tmin 
9 121.47 3.52 0.04 -51.39 16.20 18.13 

9 Session + Sex + Tmin + Session : Tmin 
9 121.65 3.70 0.04 -51.48 16.07 17.96 

10 Session + Sex + PC1+ Session : PC1 
9 121.97 4.02 0.03 -51.64 15.18 18.41 

11 Session + Sex + PC1 
8 122.17 4.22 0.03 -52.81 14.69 17.98 

12 Session + Sex + Tmax 
8 122.27 4.32 0.03 -52.86 14.74 18.05 

13 Session + Sex 7 122.29 4.34 0.03 -53.93 13.55 18.68 

14 
Session + Sex + water access + Sex : 

water access 
9 122.51 4.56 0.02 -51.91 14.82 20.08 

15 
Session + Sex + Tmin + Session : Tmin + 

Sex : Tmin 
10 122.66 4.71 0.02 -50.90 16.39 18.26 

16 
Session + Sex + ∆abundance + Session 

: ∆abundance 
9 123.14 5.19 0.02 -52.22 14.52 18.72 
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k : number of parameters, ∆AICc: difference with AICc of the best model, wi: model 

likelihood, r
2

m : marginal R-squared, r
2

c : conditional R-squared 

  

17 Session + Sex + ∆abundance 8 123.36 5.42 0.02 -53.41 14.08 18.32 

18 Session + Sex + altitude 8 123.70 5.75 0.01 -53.57 14.44 18.74 

19 Session + Sex + Tmax + Session : Tmax 
9 124.35 6.40 0.01 -52.83 14.79 18.12 

20 Session + Sex + water access 8 124.39 6.44 0.01 -53.92 13.58 18.70 

21 Session + Sex + Tmax + Sex : Tmax 
9 124.41 6.46 0.01 -52.86 14.74 18.05 

22 
Session + Sex + altitude + Sex : 

altitude 
9 124.63 6.68 0.01 -52.97 14.81 19.12 

23 
Session + Sex + altitude + Session : 

altitude 
9 125.75 7.80 0.00 -53.53 14.39 18.57 

24 
Session + Sex + Tmax + Session : Tmax + 

Sex : Tmax 
10 126.50 8.56 0.00 -52.83 14.79 18.11 

25 
Session + Sex + altitude + Session : 

altitude + Sex : altitude 
10 126.77 8.83 0.00 -52.96 14.79 19.04 

26 Session 6 129.21 11.26 0.00 -58.45 10.46 14.91 

27 Sex 6 130.54 12.59 0.00 -59.11 11.09 16.32 

28 Tmin 
6 135.22 17.27 0.00 -61.45 10.00 11.85 

29 Null 
5 136.48 18.53 0.00 -63.13 8.06 12.51 

30 PC1 
6 136.75 18.80 0.00 -62.22 9.02 12.04 

31 Tmax 
6 136.91 18.97 0.00 -62.30 9.05 12.12 

32 ∆abundance 6 137.79 19.84 0.00 -62.74 8.52 12.34 

33 altitude 6 138.12 20.18 0.00 -62.90 8.74 12.63 

34 water access 6 138.57 20.62 0.00 -63.12 8.04 12.48 
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