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According to conventional wisdom, increasing ellipticity reduces high harmonic generation by
several orders because the recollision probability decreases. This is the obvious conclusion drawn
from the motion of an electron in a laser field without an envelope. In contrast, we report on a
recollision channel with large return energy and a substantial probability, regardless the ellipticity,
in which the laser envelope plays a dominant role in the energy gained by the electron, and in the
conditions for the electron to come back to the core.

High harmonic generation (HHG) in atomic or molec-
ular gases subjected to intense infra-red laser fields her-
alded a new era in science and technology due to its
ability to unravel the electron dynamics on its own spa-
tial and temporal scales [1–3] and its role in realizing
table-top ultrashort light sources [4–6]. Controlling HHG
from the parameters of the driving laser represents a
formidable challenge both on the experimental [7] and
theoretical [8] sides, with considerable amount of research
efforts for the past decades. For instance, changing the
ellipticity of the driving laser, which acts as a simple
control knob, highlights very different phenomena origi-
nating from electron dynamics [9].

The physics of HHG is built on the so-called rec-
ollisions [10, 11]. The conventional semiclassical sce-
nario [10–12] is split in three distinct steps: (i) The elec-
tron tunnel-ionizes through the potential barrier induced
by the laser field, (ii) travels in the laser field, and (iii)
recombines with the portion of the wavepacket that re-
mained bounded. This recollision picture is understood
in absence of a pulse envelope. For an elliptically polar-
ized (EP) laser field E(t) = E0[x̂ cos(ωt) + ξŷ sin(ωt)],
given an ionization time ti, the position of the electron
after ionization in the strong field approximation (SFA)
is given by

r(t) = r(ti) + [p(ti) −A(ti)] (t− t0) + [E(t) −E(ti)]/ω
2.

(1)
The amplitude of the laser is E0, its ellipticity is ξ and its
frequency is ω. The position and the momentum of the
electron are r and p, respectively. The vector potential
is A(t) such that E(t) = −∂A(t)/∂t. At ionization, the
electron exits the potential barrier with p(ti) = 0. For
ξ = 0, the electron leaves the ionic core with a drift mo-
mentum −A(ti) = x̂(E0/ω) sin(ωti), and returns close to
the core at time tr, i.e., r(tr) ≈ r(ti), due to the laser
oscillations E(t)/ω2. For ξ > 0, strictly speaking the
electron never comes back to the core, i.e., there is no
times ti and tr such that r(tr) = r(ti) in Eq. (1) because
of the non vanishing drift momentum −A(ti) in the di-
rection transverse to the electric field, which pushes the
electron away from the core [10]. In this framework, the
electron can only recollide when the laser field is linearly
polarized (LP).

The recollision picture can, however, be extended to
near LP-fields by taking into account that after ioniza-

tion, the electron is near the potential barrier. The ini-
tial momentum along the transverse direction to the laser
field p⊥ is distributed [13, 14] as ∝ exp(−p2

⊥

√

2Ip/E0),
with Ip the ionization potential of the recolliding elec-
tron. The initial transverse momentum compensates
the initial drift momentum of the electron after ioniza-
tion and recollisions become possible [15, 16]. At the

threshold ellipticity ξth ≈ ωI
−1/4
p /

√
E0 (see Ref. [15],

which is ξth ≈ 0.2 for the parameters we use here with
Ip = 5.7 eV), the HHG intensity drops by a factor 10
compared to its value for ξ = 0. For ellipticities ξ > ξth,
the initial momentum p⊥ ≈ ξE0/ω necessary to com-
pensate the drift momentum is poorly weighted and the
probability that the electron returns to the core drops
off. Moreover, if the electron returns to the core, we find
that the energy it gains during the recollision is

∆E = κUp(1 − ξ2), (2)

with Up = E2
0
/4ω2 the ponderomotive energy and 0 ≤

κ . 3.17. Hence, the recolliding electrons, if any, do
not bring back enough energy from the laser field at high
ellipticities to trigger high harmonic radiation. Conse-
quently, the three-step model predicts that the high fre-
quency part of the HHG spectra is suppressed with ellip-
tically polarized lights.

All the analysis above is done in absence of pulse en-
velope. We find that the presence of an envelope drasti-
cally affects these conclusions. In this Letter, we identify
a highly probable recollision channel with large return
energy by accounting for the effects of the pulse envelope
f(t), which is particularly effective for nearly circular po-
larizations. We show that it is the competition between
the Coulomb force and the laser field that makes this
recollision channel highly probable by creating a chan-
nel of ionization early after the laser field is turned on.
After ionization, the amplitude of the vector potential is
small, and therefore the sideways drift of the electron can
be compensated by its momentum after ionization. Fur-
thermore, we show that this recollision channel and the
return of the electron can be understood using the SFA,
in opposition with the conventional three-step model for
which the laser envelope is constant.

We first demonstrate the existence of this recollision
channel for the least favorable case in the conventional
recollision scenario, namely the circularly polarized (CP)
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FIG. 1: Typical recollision with a high return energy: From the ground state to the return for a 2-4-2 laser envelope. Left
panel: Trajectory in the rotating frame (x̃, ỹ). The white and red circles are the position of the electron at the ionization and
recombination time, respectively. The color shows the value of the zero-velocity surface during the plateau. Right panels: The
trajectory projected along the position and energy of Hamiltonian (3) at time ti ≈ 0.3T , τ = 2T and tr ≈ 2.6T (from left to

right). The grey surface is the classical forbidden region for ỹ = 0 [H̃(r̃, p̃, t) < Z(r̃, t)]. The light blue curve is the zero-velocity
surface at time t = 0 for y = 0. The saddle point is the local maximum of the zero-velocity surface for negative x̃. Distances
and energies are in a.u.

case (ξ = 1). We describe the electron dynamics in a
rotating frame (RF) of basis vectors (x̂, ŷ, ẑ). In the RF,
the CP field is unidirectional, the position and the mo-
mentum of the electron are r̃ = R(t)r and p̃ = R(t)p,
with R(t) the rotation matrix of angle ωt. The classical
single-active electron Hamiltonian, in the dipole approx-
imation, reads

H(r̃, p̃, t) =
|p̃|2

2
− ωp̃ · ẑ× r̃ + V (r̃) + x̃E0f(t), (3)

where the term −ωp̃ · ẑ × r̃ is the Coriolis potential.
Atomic units are used unless stated otherwise. We use
a laser wavelength of 780 nm (corresponding to ω =
0.0584 a.u.), a laser intensity of 8 × 1014 W · cm−2 (cor-
responding to E0 = 0.151 a.u.), and the soft Coulomb
potential [17] V (r) = −(|r|2 + a2)−1/2 with a = 0.262.
At each time, the energy of the system is above the
so-called zero-velocity surface H(r̃, p̃, t) ≥ Z(r̃, t), with
Z(r̃, t) = −ω2|r̃|2/2+V (r̃)+ x̃E0f(t). The surface where
H(r̃, p̃, t) = Z(r̃, t) is depicted in the left panel of Fig. 1
and is called the zero-velocity surface, i.e., the surface
in phase space such that dr̃/dt = 0 and corresponds to
the condition p̃ = ωẑ × r̃. In the adiabatic approxima-
tion, there exists three fixed points of the dynamics: At
the top of the zero-velocity surface and mainly due to
the laser interaction [r̃ ≈ x̂f(t)E0/ω

2], around the origin
and mainly due to the soft Coulomb potential (r̃ ≈ 0),
and at the saddle point r̃⋆ = x̂x̃⋆ with x̃⋆ solution of the
equation ω2x̃ − ∂V/∂x̃|ỹ=0 = f(t)E0 that is due to the
competition between the Coulomb potential, the laser in-
teraction and the Coriolis potential. At time t, the energy
of the saddle point is denoted Z⋆(t) = Z(r̃⋆, t).

First, we consider a constant laser envelope with f = 1.
Hamiltonian (3) is conserved in time, and its value is
the Jacobi constant K = H(r̃, p̃). We apply the rec-
ollision picture in which the electron ionizes at time ti

and returns at time tr such that r̃(ti) ≈ r̃(tr) ≈ 0 close
to the core. Between the time ti and tr, the electron
is in the continuum. Because of the Jacobi constant,
H(r̃(ti), p̃(ti)) = H(r̃(tr), p̃(tr)) and the return energy
of the electron is |p̃(tr)|2/2 ≈ |p̃(ti)|2/2. Hence, the
electron does not gain energy during its excursion in the
continuum when it is driven by circularly polarized light
even in the presence of the Coulomb potential, in agree-
ment with Eq. (2).

When the laser envelope is taken into account, how-
ever, Hamiltonian (3) is no longer conserved and the en-
ergy of the recolliding electron can vary during its ex-
cursion. We consider f(t) to be a 2-4-2 trapezoidal en-
velope. In Fig. 1, we show a typical recollision in CP
fields seen in the rotating frame of an electron initialized
with an energy H(r̃, p̃, 0) = −Ip. The classically forbid-
den region (below the zero-velocity surface) is depicted
in grey for ỹ = 0. When the laser is turned off (f = 0),
the electron motion is bounded. For hard-Coulomb
potential, the maximum of the zero-velocity surface is
Z⋆(0) ≈ −(3/2)ω2/3, i.e., the Coulomb barrier is de-
creased in the RF since this framework naturally includes
the nonadiabatic effects. In a zeroth-order approxima-
tion, we consider two situations: If Ip < (3/2)ω2/3, as it
is the case for the ionization potential used here, the elec-
tron is initially above the classical forbidden region, and a
low laser intensity is sufficient to tear the electron off the
core almost instantaneously, so ti ≈ 0. If Ip > (3/2)ω2/3,
the electron is initially topologically bounded by the zero-
velocity surface. The ionization is not instantaneous, so
ti > 0. For t < ti, the time-dependent term x̃E0f(t) in
Hamiltonian (3) is very small, and therefore the energy is
almost conserved H(r̃, p̃, t) ≈ −Ip. For increasing time,
the envelope increases and the energy of the saddle point
decreases as Z⋆(t) ≈ Z⋆(0) − f(t)E0ω

−2/3 for f(t) ≪ 1.
The ionization channel is opened when the energy of the
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saddle point is the same as the ionization potential of
the electron Z⋆(ti) = −Ip. Quantum mechanically, ear-
lier ionization times can be accessible through tunneling.
In any case, the electron ionizes close to the zero-velocity
surface, and the electron initial kinetic energy Ei is small
compared to the ponderomotive energy Up.

After ionization, at time t > ti, the electron is out-
side the bounded region and the time-dependent term
x̃E0f(t) in Hamiltonian (3) starts varying significantly
compared to Up. If ti is relatively small [f(ti) ≪ 1],
the effective transverse potential vector f(ti)E0/ω is also
small, and it can be compensated by the electron initial
momentum, preventing the electron to drift away from
the core after ionization in contrast to the case for which
the ionization occurs when f(ti) ∼ 1. During its excur-
sion, the electron spins around the zero-velocity surface.
As we show later, the energy of the recolliding electron
increases by a quantity of order Up during the ramp-up.
Therefore, the electron can populate high energy states.
In particular, regions of phase space where periodic or-
bits can bring back this electron to the ionic core [18].
During the plateau, the electron dynamics evolves on a
constant energy surface given by the Jacobi constant. At
recollision time tr, the electron is in the vicinity of the
core, its energy is Er = Ei + ∆E ≈ ∆E , and a photon of
frequency Ω = Er + Ip can be emitted.

The ionization time ti is instrumental for the elec-
tron to come back. If ti is too large, the initial veloc-
ity necessary to compensate the potential vector is too
large to be reached by the electron after ionization, and
it goes away without recolliding. Two parameters in-
fluence considerably the ionization time ti: The ioniza-
tion potential Ip and the laser frequency ω. Numeri-
cally, with the classical approach, we find that the elec-
tron potentially comes back to the core only if Ip < Ic,

where Ic (eV) ≈ 50 ω (a.u.)2/3 is the critical ioniza-
tion potential. This expression is derived using a reduced
model [19] (see Supplemental Material [20] for details).
For ω = 0.0584 a.u., the critical ionization potential is
Ic ≈ 7.4eV. If Ip > Ic, the ionization time ti is too large
and the electron drifts away from the core. We notice
that Ic/Z(0) ≈ −1.2, which shows that the critical ion-
ization potential is right below the saddle point energy.
Conversely, for a given ionization potential, the laser fre-
quency can be tuned for allowing recollisions with higher
ionization potential in CP fields, as observed in Ref. [21].
Quantum mechanically, the wavepacket can tunnel ionize
before their classical counterparts, and therefore increas-
ing the critical ionization potential. Recollisions for CP
are not always possible and more delicate than for low
ellipticities.

In the RF with ξ 6= 1, the recollision picture is not so
clear since the saddle moves in time even with fixed laser
envelope. The scenario, however, works the same way.
The electron initiated with a sufficiently small ionization
potential ionizes early after that the laser field is turned
on. After ionization, the initial momentum of the elec-
tron is relatively small and compensates the initial vector

FIG. 2: HHG intensity spectrum for ξ = 0, 0.25, 0.5, 0.75 and
1. The vertical lines correspond to the radiated frequencies
2.3Up + Ip (left) and 3.17Up + Ip (right). (See text).

potential in Eq. (1), such that p(ti) − A(ti) ≈ 0. The
electron does not quickly drift away from the core. Then,
the electron travels in the continuum. During its excur-
sion in the continuum, the energy gained by the electron
for slowly varying envelope is

∆E ≈ 2Up

[

f(tr)2 − f(ti)
2
]

+ 2Up(1 − ξ2)g(ti, tr), (4)

where g(ti, tr) is explicitely derived from the SFA [20].
Therefore, at high ellipticities, the electron mostly gains
energy through the laser envelope [first term of the right
hand-side of Eq. (4)]. In contrast, at low ellipticities,
the electron mostly gains energy through the sub-cycle
oscillations of the laser [second term of the right hand-
side of Eq. (4)].

We use this classical recollision picture for the quantum
calculations of HHG spectra. Figure 2 is the power inten-
sity spectrum of the dipole acceleration [20]. The dipole
acceleration is computed in the laboratory frame (LF)
as a function of time a(t) = −

∫

d2r |Ψ(r, t)|2∂V (r)/∂r
where Ψ(r, t) is the wavefunction at time t solution of the
two-dimensional time-dependent Schrödinger equation

i
∂

∂t
Ψ(r, t) =

[

−∆

2
+ V (r) + r ·E(t)

]

Ψ(r, t). (5)

The electric field in the LF is E(t) = E0f(t)[x̂ cos(ωt) +
ŷξ sin(ωt)]. We take the initial wavefunction in a super-
position of states computed using imaginary time propa-
gation and Gram-Schmidt orthonormalization such that
Ψ(r, 0) = [ψ0(r)+ψ1(r)]/

√
2. The states ψ0(r) and ψ1(r)

are the ground state and the first excited state of ioniza-
tion potential I0 ≈ 24.6 eV and Ip ≈ 5.7 eV, respectively
(close to He). The superposition of state allows us to
avoid the lack of HHG in CP fields due to the symme-
tries and the selection rules, and to avoid the emptiness
of the ground state at the return of the electron originat-
ing from the excited state [22, 23]. In Fig. 2, we observe
a cutoff at the 100th harmonic which corresponds to the
electrons with return energy about 3.17Up for ξ = 0,
0.25 and 0.5. For larger ellipticities, the strength of the
80−160th harmonics decreases significantly, and a second
cutoff appears at the 80th harmonic corresponding to a
return energy about 2.3Up. We notice that this second
cutoff is also observed at low ellipticity.
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FIG. 3: Time-frequency analysis of the dipole acceleration
a(t) at high ellipticities for a trapezoidal envelope 2-4-2. The
solid and dashed curves overlap and correspond to the return
energy and energy difference of the electron ionizing at time
ti = 0 and returning at time tr in the SFA.

Figure 3 shows the time-frequency analysis of a(t) used
for computing the HHG spectra of Fig. 2. We depict the
return energy (solid grey curves) and the energy differ-
ence (dashed grey curves) of an electron ionizing at time
ti = 0 as a function of the return time computed in the
SFA. We tested numerically that the depicted curves are
robust with respect to the ionization time and no qualita-
tive difference is observed on the dashed and solid curves
for ti . 0.6T . There is an excellent agreement between
the grey curve and the maximum of the distribution of
the time-frequency analysis. For ξ = 0.5, we observe a
major contribution of the recollision channel described
in this Letter and a minor contribution of the conven-
tional recollision channel in which the electrons ionize
and return during the plateau [24] with a maximum re-
turn energy around 3Up. For increasing ellipticity, the
conventional recollision channel disappears [15] because
of the large drift momentum of the electron at ioniza-
tion [10]. Only the recollision channel described here
persists. Also, the solid and dashed grey curves overlap
almost completely for all return time and for all elliptic-
ities, implying that the electron energy at ionization is
very small.

The importance of the small electron energy at ioniza-
tion (or small initial velocity) is demonstrated in Fig. 4
which shows the HHG spectrum as a function of the har-
monic number and the ramp-up duration τ . The en-
velope is trapezoidal, the ramp-up is at t ∈ [0, τ ], the
plateau at t ∈ [τ, 6T ] and the ramp-down at t ∈ [6T, 8T ].
The solid and dashed red curves are the maximum re-
turn energy and the maximum energy difference in CP
in the SFA, respectively, of the electron ionizing at time
ti = 0. For LP, the conventional recollision scenario is
dominant. The spectrum follows the well known cutoff
law Ω ≈ 3.17Up + Ip for all ramp-up duration τ . For

CP, we observe that the HHG spectrum is very low for
τ . T . At the same time, we observe that Ei = E − ∆E

FIG. 4: HHG intensity spectrum (in arb. u.) as a function of
the ramp-up duration τ/T in logarithmic scale for CP. The
laser envelope is trapezoidal of ramp-up duration τ , plateau
duration 6T − τ , and ramp-down duration 2T . The dashed
and solid red lines are the SFA prediction of the energy dif-
ference and return energy, respectively. All quantities are in
a.u.

is large, and therefore the initial drift momentum of the
electron pushes the electron away from the core with-
out recolliding. The recollision channel described here is
dominant, which depends drastically on the laser enve-
lope, and we observe that the HHG cutoff oscillates as a
function of the ramp-up duration for τ > T . We observe
a good agreement between the SFA prediction and the
HHG cutoff.

In summary, we have demonstrated the conditions un-
der which a large portion of electrons are both ionized
and later return to their parent ion regardless the ellip-
ticity of the laser field. For recollision, the electron needs
to ionize early in during the ramp-up of the laser to ben-
efit of the boost from the CP field and not to drift away
from the core. For ionization early in the field, the ioniza-
tion potential must be relatively small. We have shown
that both the efficient ionization and recollisions are ob-
tained for Ip (eV) . 50 ω (a.u.)2/3. During its excursion
in the continuum, the electron gains energy dominantly
from the envelope of the driving laser, and can exceed
2Up allowing for a return energy Er = Ei + ∆E in excess
of 2Up. Also, we observe a good agreement with the SFA
if the the envelope is taken into account. This scenario
is consistent with the enhanced experimental recollisions
for high ellipticity in Ref. [25] for recollisions which occur
in intensity range for which the ionization is over-the-
barrier.
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