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Abstract: Configuration design requires designers to develop a configuration by selecting and 

assembling from a subset of configurable modules according to customer requirements and 

engineering or physical constraints. In return, this does provide designers with a rapid and cost-

efficient method to develop new products. However, unlike other applications, the number of 

alternative configurations from which designers can select the most suitable configuration is 

overly large owing to the vast number of multidisciplinary modules involved in industrial 

mechatronic systems.  

The paper proposes a configuration design method for mechatronic systems in the context of 

industrial manufacturing. For the large and complex mechatronic systems for manufacturing 

applications, with the support of the interface compatibility rules and the elimination algorithm 

in the configuration design method, the number of alternative combinations from which 

designers select the most suitable combination can be significantly reduced. The effectiveness 

and applicability of the proposed configuration design method is demonstrated with a robotic 

welding system. 
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1. Introduction 

Continuously growing demand in globally competitive markets, such as the increased 

complexity of products and processes, reduced development lead time, and development cost 

have led to the growth of configuration design [1]. In configuration design, configurable 

modules are selected and integrated to satisfy customer requirements and engineering or 

physical constraints [2]. It is considered as a strategic decision adopted by many companies to 

develop new systems [3].  

In the context of ambitious industrial strategies (e.g. Horizon 2020, Industry 4.0), current 

manufacturing companies are focusing increasingly on industrial mechatronic systems [4]. 

Mechatronics are typically characterised by an integration of mechanical, electrical/electronic, 

and software engineering [5]. Today, to satisfy the higher demand in harsh industrial 

environments, other disciplines including optics, robotics, and pneumatics have been involved 

in mechatronic systems for industrial manufacturing applications [6]. To design such complex 

mechatronic systems, a systematic configuration design method must consider the context of 

industrial manufacturing, which can then solve the following design problems:  

First, configuration design requires designers to select the most suitable combination among 

different alternatives. However, unlike other applications, the number of alternative 

combinations from which designers can select the most suitable combination is overly large 

owing to the considerable number of modules involved in industrial mechatronic systems. In 

summary, more attention must be given to the elimination of certain alternative combinations, 

decreasing the number of combinations available to the designers, and thus reducing the 

development lead time. 

Secondly, owing to the inherent complexity of mechatronic systems, the multidisciplinary 

integration cannot be achieved if the involved engineering disciplines are not considered 

simultaneously. Therefore, the designers of different engineering fields must also consider the 

interactions of the different modules during the configuration design process.  

The paper focuses on the aforementioned design problems in the context of industrial 

manufacturing and proposes a novel configuration design method based on the Interface model. 

The term “interface” used in configuration design is considered as the logical or physical 

relationship that integrates different modules (i.e. components) in mechatronic systems. Based 

on the Interface model, the proposed configuration design method not only considers the 

interaction of the modules designed by different disciplines but also allows designers to 

significantly decrease the number of combinations from which the most suitable combination 

can be selected. 

The organisation of the paper is as follows: Section 2 reviews the current configuration design 

methods for the design of complex products or systems. Section 3 presents the details of the 



 

proposed configuration design method, including the Interface model, interface compatibility 

rules, and elimination algorithm. In Section 4, a robotic welding system is chosen as the case 

study to demonstrate the application of the configuration design method. Detailed discussions 

of the proposed configuration design method are provided in Section 5. Finally, conclusions 

are drawn in Section 6. 

2. Related work 

As adopted in industrial manufacturing, the inherent complexity of mechatronic systems lies in 

the integration of a considerable number of multidisciplinary modules. Because an industrial 

mechatronic system is developed to achieve exact requirements in a specific industrial context, 

it is frequently produced in a limited quantity. Therefore, industrial manufacturers have 

increasingly shifted their attention from the design of individual products towards the 

combination of configurable modules [7]. Bi et al. proposed a definition of configuration design 

for industrial manufacturing that has been widely accepted by both industry and academia. 

According to Bi et al., configuration design is “to develop a configuration by selecting and 

assembling from a subset of configurable modules with the given values of their adjustable 

parameters according to customer requirements and engineering or physical constraints” [8]. 

The above definition indicates that three main tasks must be accomplished when applying 

configuration design: 

 Modularisation: a module, also called a modular component, is the basic building block in 

configuration design, thus systems must be modularised to build configurable modules 

during the process of configuration design [9,10].  

 Representation: the same function can be achieved by different modules, whereas similar 

or even identical modules can realise different functions in different design contexts. 

Therefore, a common representation for modules is required such that a large and complex 

system can be configured from modules by designers from different disciplines [11,12].  

 Evaluation: given a set of customer requirements, and engineering or physical constraints, 

designers typically propose several alternative modules to satisfy these requirements and 

constraints in the preliminary design. When there is more than one module available, the 

“best” option should be selected to allow the engineers to perform a detailed design [13].  

The following part of this section presents a non-exhaustive list of current approaches to support 

the above three main tasks: 

 Modularisation: the concept of “module” was first introduced by Gauthier and Pont for 

the design of system programs in the software domain [14]. In their proposition, a module 

is defined as a part of a software system that fulfils a separate and distinct task. In recent 

years, the application of modularisation has been expended to complex systems in other 

domains. Lameche et al. [15] offered that modularisation is a design approach that 

decomposes a system into smaller parts known as modules that can be used for the design 

of different systems. Sanchez et al. [16] mentioned that for the design of complex products, 



 

modularisation is a special form of design that intentionally creates a high degree of 

independence of loose coupling between modules by standardising the module interface 

specification. The above definitions of system modularisation indicate that modularisation 

can effectively support the design of complex systems. An industrial mechatronic system 

can be considered as a complex system where a considerable number of multidisciplinary 

modules are involved; hence, the previous works on modularisation can be extended and 

applied to industrial mechatronic systems.  

Different system decomposition methods have been discussed in previous studies on 

systems engineering for the modularisation of complex systems. INCOSE and NASA both 

define a hierarchical structure of systems that contain constituent elements at two or more 

levels [17,18]. Other researchers believe that the entire system should be decomposed until 

the “atomic” components have been identified; however, a method to achieve such atomic 

components is not detailed in their propositions [19–21].  

In the opinion of several researchers, the above methods allow designers to achieve system 

decomposition; however, system modularisation entails more than this. Modules are 

realised after clustering the decomposed components where the interactions of the 

components are maximised [11]. Different clustering methods have been proposed. The 

Design Structure Matrix (DSM) was first proposed for system architecture in the 1960s 

[22], and its use has significantly expanded since then. Pimmler and Eppinger [23] 

developed a DSM-based approach to realise the modularisation of complex systems. 

Huang and Kusiak [24] used DSM to solve the modularisation problem in mechanical, 

electrical, and mixed process products. However, Martin and Kosuke [25] emphasised that 

designers should focus on not only the modules but also the “couplings” among the 

modules. They believed that by focusing on the “couplings” among the modules, designers 

could develop a decoupled architecture requiring less design effort for new products.  

Representation: configurable modules are proposed after applying system modularisation 

to reduce the design complexity; however, confusion could be created if designers 

represent such multidisciplinary modules and the interfaces between them in different 

forms. Hence, a common representation of modules and interfaces is required to allow 

designers to rapidly and easily configure products by combining the proposed modules 

through the interfaces according to the customer requirements and engineering or physical 

constraints.  

To provide designers with a common representation, the first task is to clarify which kinds 

of information should be represented for modelling the modules and interfaces. The 

representation of modules in the mechatronic systems has long been studied and different 

representation approaches have been proven to be effective for representing the necessary 

information related to the modules. For example, Du et al. [26] proposed that each module 

can be described by attributes, and each attribute assumes certain values. Jiao and Tseng 

[27] used design parameters to represent module functional and structural aspects. Pahng 

et al. [9] integrated data and mathematical models to represent modules. However, less 

attention has been given to the information representation for interfaces. Pahl et al. 

mentioned that the information transferred through the interfaces between modules can be 



 

classified into energy, materials, and signals [28]. Liang et al. further decomposed the 

energy into electrical energy, mechanical energy, hydraulic energy, and other forms based 

on the proposition of Pahl et al. [29]. However, the geometric information transferred 

through the interfaces was not considered in the above two approaches. Therefore, in 

addition to energy, materials and signals, Tsai and Wang [30] considered geometric 

constraint as the fourth type of information transferred through interfaces. Li et al. [31] 

refined the geometric constraint into interface size and interface location. Several 

researchers believe that the types of information transferred by interfaces should be more 

than that proposed in the aforementioned modelling methods. Sosa et al. [32] proposed 

five types of interfaces by adding the structural information of the interfaces. Bettigand 

and Gershenson [33] underlined the importance of field interface and environmental 

interface for the design of mechatronic system, thus proposing seven types of interfaces. 

However, the information representation approaches proposed in [32] and [33] can create 

designer confusion because an excessive number of types of information have been 

proposed in these methods, which could lead to the overlapping of information among 

different types of interfaces. For example, a change of electric field always occurs during 

the process of electrical energy transfer; hence, the border between the electrical energy 

and filed interfaces is difficult to explicitly determine. The above studies focus on the 

information that should be expressed by modules and interfaces; however, a unified form 

where the information is structured should be also be proposed to facilitate understanding 

for designers from different disciplines.  

The IDEF0 methodology was developed originally by the US Air Force Materials 

Laboratory in the 1980s as a part of its Integrated Computer-Aided Manufacturing (ICAM) 

initiative [34], which provides a unified form to present the information related to modules 

and interfaces. The two basic parts of IDEF0 are a box and an arrow. The box represents 

a module’s function; the arrow represents input, output, control, and mechanism elements 

separately. Several extensions have been developed based on the IDEF0 methodology for 

configuration design of complex systems. Wang et al. [35] proposed an improved IDEF0 

method and added a formalised description, identifiers, and key path explanations to avoid 

the potential confusion of occurrence order. Hanafy and ElMaraghy [36] proposed a 

modular product multiplatform model based on IDEF0 for the development of product 

family, where the input to the interface is further decomposed into costs, components, and 

variant quantities. Lamech et al. proposed a new modularity method for the design of 

reconfigurable manufacturing systems based on IDEF0, and according to their proposition, 

the interface between the modules can be classified into data, energy, material, and other 

flows [15].  

In addition to the IDEF0 methodology and its extensions, product models provide another 

kind of structured and unified form to represent the information related to the product 

throughout the entire product lifecycle [37,38]. Therefore, they can be considered as a 

potential solution for the problem of representation of modules and interfaces. The 

majority of current product models have already provided unified representations for 

modules or components. However, a common representation of the interfaces that integrate 

modules has not been fully developed. STandard for the Exchange of Product model data 



 

(STEP) is a series of standards that is also known as ISO 10303 [39]. Different parts of 

STEP, called APs (Application Protocols), have been proposed to define the different 

application scope of STEP. STEP AP 203 defines the geometry, topology, and 

configuration management data of solid models for mechanical parts and assemblies [40]. 

However, it only focuses on the mechanical discipline. That is, the interface model in 

AP203 is used to describe the mechanical constraints between different parts. To broaden 

the application areas of STEP, different APs have been included in STEP parts to address 

additional engineering fields. STEP AP233 provides an appropriate approach targeted to 

support the data exchange for systems engineering. In AP233, the term “interface 

connector” is proposed to describe the part of a system by which it interacts with other 

parts of the system [41]. Pandikow et al. extended AP233 to provide detailed interface 

information [42]. They adopt the Unified Modelling Language1 (UML) to represent their 

product model; however, their product model only focuses on software engineering. Core 

Product Model (CPM), developed at National Institute of Standards and Technology 

(NIST), is a base-level product model to support a full range of PLM (Product Lifecycle 

Management) information [43]. However, CPM does not provide a formal representation 

for the interfaces. An extension of CPM, called Embedded System Model (ESM), was 

developed by Zha et al., where “Port” is defined to describe the connection point of an 

interface [44]. ESM describes the interface between the electronic components and 

software parts; however, the interaction with mechanical components has not been 

discussed in depth. The IPPOP (Integration of Product - Process - Organisation for 

engineering Performance improvement) project, a research project labelled and supported 

by the French government, proposes the Product-Process-Organisation (PPO) model to 

address the integration of product, process, and organisation dimensions of the products 

[45]. An interface class is defined in PPO to represent the interaction among components; 

however, the interface is simply classified into Common, Alternative, and View Interfaces, 

and the details related to each type of interface have not been provided.  

 Evaluation: the different candidates of a module can be obtained by instantiating the 

module model. Then, designers can select their preferred options from the list of possible 

choices. This is essentially a multi-attribute decision-making (MADM) problem. To solve 

a MADM problem in configuration design, there typically exists three types of approach: 

(1) CBR (Case-Based Reasoning)-based approach; (2) ranking method; and (3) 

mathematical optimisation methods [46]. 

To achieve the configuration of a new product, design knowledge can be retrieved by an 

expert system that structures the design rules or the case families; the one with best degree 

of similarity is then recommended by the expert system. Based on this principle, CBR-

based approaches have been used in the literature to solve the product configuration 

problem [47–49]. The limitation of CBR-based approaches is that it is difficult to capture 

and represent the previous design cases and rules in logic form [50]. 
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Ranking methods require designers to score each attribute in a quantitative or qualitative 

manner and assign decision weights for them by considering their application 

requirements. Different models or methods such as the multi-attribute utility analysis 

(MAMU) [51,52], fuzzy methods [53,54], and analytic hierarchy process (AHP) [55,56] 

have been proposed and applied to evaluate the scored attributes and then order the 

alternatives from best to worst.  

The last class of solutions to solve the MADM problem are the mathematical optimisation 

methods. The objective function for the configuration design considers the profit 

maximisation, customer satisfaction, development leading-time, and other factors [57]. 

According to the objective functions, different factors or attributes, and their 

interrelationships, can be represented. Researchers aim to determine a set of ideal optimal 

solutions among the infinite solution space in theory. The main limitation of mathematical 

optimisation methods is how to choose and construct suitable objective functions, because 

the attributes and interrelations among them can be difficult to express accurately by 

mathematical models [46]. 

Fig. 1 displays the approaches previously reviewed for configuration design. The three main 

tasks of configuration design mentioned in Section 2 (i.e. modularisation, representation, and 

evaluation), are represented as the three main sequential design phases in Fig. 1. For 

modularisation, different approaches have been proposed to address the issues related to system 

hierarchy [17,18], system decomposition [19–21], and component clustering [23–25]. Certain 

studies address the representation task by focusing on the information that should be expressed 

[9,26–33] and its unified form, which can facilitate the understanding by designers from 

different disciplines [15,35,36,40–45]. After the representation task, three classes of solutions, 

i.e. CBR-based approach [47–49], ranking method [51–56], and mathematical optimisation 

methods [57], are proposed to address the MADM problem in the evaluation task. 

 

Fig. 1 Related design approaches placed in design phases of product configuration 

process 



 

However, a review of the current approaches for configuration design also reveals that there 

remains a gap between the representation and evaluation tasks. The interactions of modules 

designed by designers of different disciplines must be considered during the design process of 

industrial mechatronic systems. Therefore, it is necessary to propose a common representation 

for multidisciplinary interfaces among them. Conversely, complex industrial mechatronic 

systems typically involve hundreds or thousands of configurable modules. Thus, the number of 

alternative combinations that designers must evaluate and from which suitable selections can 

be made can be excessively large. To bridge the gap between the representation task and 

evaluation task, this paper proposes a common representation of interfaces among configurable 

components or modules that eliminates the impossible combinations, significantly reducing the 

number of combinations that must be evaluated. The next section presents the proposed 

configuration design method in detail. 

3. Interface model-based configuration method 

The three main aspects of the proposed configuration method, i.e. interface model, 

compatibility rules, and elimination step, are presented in detail in this section. First, the 

proposed Interface model provides a common representation for the interfaces defined by 

designers from different disciplines. Then, the interface compatibility rules based on the 

common representation of the multidisciplinary interfaces defined in the interface model are 

used by the designers to verify if the different modules can be integrated correctly. Finally, 

based on the verification results, an algorithm for combination elimination is adopted to 

decrease the number of alternative combinations during the elimination step.  

3.1 Interface model 

The authors propose an Interface model to allow designers to develop an integrated design for 

mechatronic systems [58]. Compared with previous research works on the interface modelling 

methods reviewed in Section 2, the novelties of the proposed Interface model are presented as 

follows. 

The literature review suggests the limitations of the previous research works on interface 

modelling methods. Certain existing methods focus only on the interface models for specific 

disciplines. For example, the interface model defined in STEP AP 203 [40] is used to describe 

the mechanical constraints between different parts. The extension of AP 233 [42] focuses on 

the interface in software engineering. CPM ESM [44] describes the interface between the 

electronic components and software parts; however, the interaction with mechanical 

components has not been discussed in depth. The IDEF0 methodology [34] and its extended 

methods [15,35,36] use arrows to represent the flows transferred in interfaces; however, the 

geometric information related to the mechanical disciplines have not been considered. 

Conversely, even though existing methods do address the disciplines for the design of 

mechatronic systems, they are overly generic to represent the details of the interfaces. For 

example, STEP AP 233 defines the interface connector to describe the interaction between 



 

systems or between one system and its environment [59]; however, no additional details for 

this interface connector are provided by AP233. The PPO model simply classifies the interface 

into Common, Alternative, and View Interfaces, and the details related to each type of the 

interface are not provided.  

Considering the limitations of the existing interface modelling methods, the authors adopt UML 

to provide designers with a common representation for the interfaces in mechatronic systems 

(Fig. 2). UML is a general-purpose modelling language for the design of systems. A class 

diagram is considered as one of the most important parts of UML; this models the information 

of the domain of interest in terms of the objects organised in classes and the relationships among 

them [60]. The UML-based representation of the proposed Interface model is introduced in the 

following.  

 

Fig. 2 UML class diagram of Interface model [58] 

3.1.1 Classes in Interface model 

In UML, a class is graphically represented by boxes that contain three compartments. The top 

compartment contains the class name, the middle compartment contains the class attributes, 

each denoted by a name and an associated type, and the bottom compartment contains the 

operations of the class. The classes Interface and Port, considered as the key parts of the 

Interface model, are chosen as examples to explain the details of the Interface model. Type, 

configuration, and desired are defined as three main attributes of the class Interface. The 

attribute type represents the transfer information that can occur through the interface. One 



 

enumeration type is created to detail the attribute type, where four different types of transfers, 

i.e. geometric, energy, control, and data, are presented. The attribute configuration describes 

what elements are linked by the interface. The attribute desired/undesired uses a Boolean data 

type to express whether the interface creates positive effects or unintended side effects. One 

operation, compatibility(), is defined in the class Interface to represent the compatibility rules. 

The compatibility rules are detailed in Section 3.2. 

The class Port is also defined in the Interface model. The term “port” is considered as the 

location where one element of a system interacts with the other elements. The attribute 

direction represents the direction of the transfers through this port; the attribute visibility 

describes how the port can be accessed.  

3.1.2 Relationships in interface model 

Three kinds of relationships, i.e. association, aggregation, and composition exist between the 

classes in the proposed Interface model. In UML, an association is simply used to represent the 

relationship between two classes. For example, the class Document is used to store the 

documents describing the port; therefore, an association is adopted to represent the relationship 

between the classes Document and Port. Aggregation is a variant of the “has a” association 

relationship, which is graphically represented as a hollow diamond shape in UML. For 

example, a component can be further decomposed into several sub-components linked by 

interfaces; hence, the class Component can be an aggregation of Interface and itself. 

Composition is another variant of an association relationship meaning the whole/part 

relationship, which is graphically rendered as a filled diamond shape in UML. For example, 

the relationship between the classes Interface and Port can be represented as a composition 

relationship because the port is considered as a part of the interface through which one element 

interacts with the others. For more details of the proposed Interface model, interested readers 

are referred to [58]. 

Based on the proposed Interface model, interface compatibility rules are developed to allow 

designers to determine if the alternatives of different modules can be integrated correctly and 

thus, eliminate the impossible alternative combinations. For large and complex industrial 

manufacturing systems, the number of combinations can be decreased, and the development 

lead time can be significantly reduced. The interface compatibility rules are presented in the 

following subsection. 

3.2 Interface compatibility rules 

Interface compatibility rules are initially proposed to ensure that the different subsystems 

integrate correctly [58]. In this paper, the authors use the proposed compatibility rules to allow 

designers to eliminate the combinations of alternative modules that prove to be incompatible 

with each other. As presented in the previous subsection, the operation compatibility() 

contained in the Interface model represents the interface compatibility rules. The basic principle 

of the interface compatibility rules is illustrated here through the use of the following example. 



 

Two modules (Module 1 and Module 2) are connected by one interface (Interface) through 

ports (P1 and P2). The proposed compatibility rules can be presented as follows: 

Rule 1:  

P1. Parameters1. value = P2. Parameters2. value  

P1. Parameters1. unit = P2. Parameters2. unit  

Rule 2:  

P1. Parameter1. value < P2. Parameters2. maxValue  

P1. Parameter1. value > P2. Parameters2. minValue  

P1. Parameter1. unit = P2. Parameters2. unit 

 

P1.Parameter1 represents the parameter of port P1, which is stored in the class Parameter; 

P2.Parameter2 is the parameter of port P2. According to compatibility Rule 1, both the value 

and unit of parameters of P1 and P2 must be equal to ensure that the two modules can be 

connected with each other correctly. Compatibility Rule 2 presents the case where the design 

parameter is specified by an interval [minValue, maxValue]. In this case, parameter P1 must 

satisfy P1.Parameter1.value∈  [P2.Parameters2.minValue, P2.Parameters2.maxValue].  

It is possible that designers cannot accurately determine the port parameter during the 

preliminary design phase and must approximate the information related to the port. The class 

Document is proposed to store such descriptions. In this case, the designers cannot adopt the 

above compatibility rules based on the parameter. They must analyse the description of the two 

ports to determine if the two modules are compatible, which requires design knowledge and 

designer experience.  

The authors developed a demonstrator based on the 3DEXPERIENCE platform2 to implement 

the proposed interface model and compatibility rules. The parameter of one port stored in the 

class Parameter can be represented in a set of parameters defined in the demonstrator. The 

compatibility rules are implemented with the support of the Knowledge-Based Engineering 

(KBE) solution provided by the 3DEXPERIENCE platform. Fig. 3 presents the implementation 

of the proposed interface model and compatibility rules in the demonstrator.  

The Interface model and interface compatibility rules are proposed to manage the information 

of interfaces between the modules. However, neither can directly organise the design activities 

nor provide designers with a general guide during the design process of industrial 

manufacturing systems. That is, the Interface model and interface compatibility rules must be 

combined with the design methods when it comes to the management of the design process. In 

this paper, the authors propose a new configuration design method. Integrated with the Interface 

model and interface compatibility rules, the proposed configuration design method allows 

designers to eliminate the impossible alternative combinations for large and complex industrial 

manufacturing systems, decreasing the number of alternative combinations. The elimination 

step of the proposed configuration design method is presented in detail in next subsection. 

                                                           
2 http://www.3ds.com/about-3ds/3dexperience-platform/. 



 

 

Fig. 3 Part of proposed Interface model and compatibility rules, and their implementation  

3.3 Elimination step 

If one industrial manufacturing system can be decomposed into S modules (S = 1, 2, 3,…), and 

the ith module, Mi (i = 1, 2, 3,…, S), can have ni alternatives (ni = 1, 2, 3,…), then the jth 

alternative of the ith module can be denoted as 𝑀𝑖(𝑗) (j = 1, 2, 3,…, ni). If all the combinations 

of alternatives for each module are considered, designers would have ∏ 𝑛𝑖
𝑆
𝑖=1  different types 

of combinations, where ni is the number of ith module’s alternatives. It would require an 

enormous amount of work to evaluate each combination and select the most suitable 

combination. Therefore, an elimination step is proposed to eliminate the incompatible 

combinations of certain alternatives, which can significantly decrease the number of 

combinations, especially for large and complex industrial manufacturing systems. During the 

elimination step, the proposed interface compatibility rules must be considered. 

Interface compatibility rules allow designers to eliminate the incompatible combinations of 

certain alternatives. Two modules are considered to be incompatible with each other if they 

cannot be linked together directly or they cannot be chosen at the same time (examples 

regarding the incompatibility of different components can be found in Section 4).  

The authors propose an indicator, Cp, with a value of “1” or “0” to denote that two modules are 

compatible or incompatible with each other, respectively. Clearly, for a given combination of 

certain alternatives, if a pair of incompatible modules exists, such a combination is invalid. 

During the elimination step, a compatibility matrix is proposed as a compatibility verification 

reference to allow designers to eliminate the invalid combinations. The matrix is generated 

from a pairwise comparison. For an industrial manufacturing system with M modules, the 

corresponding compatibility matrix is presented in Table 1. 



 

Table 1 Compatibility matrix 

 𝑀1(1) 𝑀1(2) … 𝑀1(𝑛1) 𝑀2(1) … 𝑀2(𝑛2) … 𝑀𝑖(𝑝) … 𝑀𝑆(𝑛𝑠) 

𝑀1(1) 𝐶𝑝𝑀1(1)𝑀1(1)
 𝐶𝑝𝑀1(1)𝑀1(2)

 … … … … … … … … … 

𝑀1(2) 𝐶𝑝𝑀1(2)𝑀1(1)
 𝐶𝑝𝑀1(2)𝑀1(2)

 … … … … … … … … … 

… … … … … … … … … … … … 

𝑀1(𝑛1) … … … … 𝐶𝑝𝑀1(𝑛1)𝑀2(1)
 … … … … … … 

𝑀2(1) … … … … … … … … … … … 

… … … … … … … … … … … … 

𝑀2(𝑛2) … … … … … … … … … … … 

… … … … … … … … … … … … 

𝑀𝑗(𝑞) … … … … … … … … 𝐶𝑝𝑀𝑖(𝑝)𝑀𝑗(𝑞)
 … … 

… … … … … … … … … … … … 

𝑀𝑆(𝑛𝑠) … … … … … … … … … … 𝐶𝑝𝑀𝑆(𝑛𝑠)𝑀𝑠(𝑛𝑠)
 

 

As indicated in the matrix, all the alternatives of all modules are involved in the pairwise 

verification. For the pairs formed from the alternatives of the same modules, the compatibility 

values are “0” because there is no interface to connect them: 

𝐶𝑝𝑀𝑖(𝑝)𝑀𝑖(𝑞)
= 0                                                       (1) 

where i = 1, 2,…, S; p,q = 1, 2,…,ni 

For the pair formed by the alternatives of two different modules, the compatibility rules 

presented in the previous section allow the designers to determine if two modules are 

compatibility with each other such that the compatibility value can be then obtained.  

To verify if a combination with M alternatives is valid, an algorithm is presented with the 

following pseudo-code: 

Require: Return a value, V, by which designers can select the valid combinations and eliminate 

invalid combinations  

function comSelect () 

{  

V=1; 

for every value of 𝐶𝑝𝑀𝑖(𝑝)𝑀𝑗(𝑞)
, i, j = 1, 2, 3,…, S; p = 1, 2, 3,…ni; q = 1, 2, 3,…nj, between 

the alternatives of the modules selected by the designers  

do 

𝑉 = 𝑉 ∗ 𝐶𝑝𝑀𝑖(𝑝)𝑀𝑗(𝑞)
 

end for 

return V 

}  

 

Hence, any given combination can be verified by the returned value V.  



 

𝑉 = {
1 … 𝑡ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑

    0 … 𝑡ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛𝑣𝑎𝑙𝑖𝑑
                (2) 

For a system with small or medium size alternative combinations, all valid alternatives can be 

verified. With a large number of alternative combinations, this verification method can be 

embedded into an optimisation process to exclude the invalid or “sub-optimal” alternatives, e.g. 

embedded into the “generate-and-select” optimisation process [61]. 

By integrating the elimination step into the configuration design process, the gap between the 

representation and evaluation tasks can be bridged, and the number of combinations that must 

be evaluated in the evaluation task can be significantly decreased. The authors adopt the UML 

activity diagram to represent the proposed configuration design process (Fig. 4). The three main 

tasks of configuration design, i.e. modularisation task, representation task, and evaluation task, 

are represented as the three main design activities of the activity diagram. The initial state of 

the activity diagram indicates the beginning of the configuration design process. After 

modularising the industrial mechatronic system, the modules and interfaces among them can 

be realised. Then, designers can define the alternative modules and interfaces with a common 

representation by instantiating the module model and proposed interface model. Once the 

model of all interfaces has been instantiated, the designers must apply the compatibility rules 

to verify if the interface between two alternative modules can be integrated. If modules prove 

to be incompatible with each other, the combinations containing these modules is eliminated. 

Therefore, before entering the combination evaluation phase, the number of combinations that 

must be evaluated in the evaluation task can be decreased. 

 
Fig. 4 UML activity diagram for configuration design based on Interface model 

 



 

In this section, the authors presented the details regarding the proposed configuration design 

method that allows designers from different disciplines to define the interfaces of mechatronic 

systems with a common representation, verify the compatibility of interfaces, and eliminate 

impossible alternative combinations, such that the gap between the representation and 

evaluation tasks can be bridged. The applicability of the proposed configuration design method 

is demonstrated by a robotic welding system in the following section. 

4. Case study 

The case study chosen to demonstrate the interface model-based configuration design method 

in this section is a robotic welding system. A robotic welding system is a typical mechatronic 

system involving highly complex and sophisticated technology for industrial manufacturing.  

Today, a considerable amount of work is performed by robotising welding tasks. However, the 

problems encountered during the manufacturing process, such as small batch sizes, complex 

product shapes, large groove variations, and product tolerances, continue to create major 

challenges for robotic welding systems.  

The authors provide several solutions for robotising welding tasks by considering the above 

challenges. First, robot programs can be generated automatically according to the different 

welding seams of different complex products. Secondly, the robotic welding system can 

provide more than six degrees of freedom to fulfil different welding tasks required by the 

different geometries of complex workpieces. Thirdly, the workpiece tolerance must be 

considered and the welding seam tracking function realised by the robotic welding system to 

ensure that the generated robot trajectories can be compensated. Finally, automatic collision 

avoidance techniques must be integrated into the robotic welding system, and a collision 

between two robots, robots with workpieces, or robots with the environment can be detected. 

Fig. 5 displays the main modules (blue boxes) and interfaces (purple boxes) among them for 

the robotic welding system. The working principle of the robotic welding system is presented 

as follows: an offline program subsystem (M1) generates a collision-free trajectory by analysing 

the welding seams of the workpiece’s CAD model. Executing the offline program, the robot 

control module (M6) and displacement control module (M8) enable two robots (M3 and M4) and 

the robot displacement module (M5) to move the welding torch (M11) to the starting point of the 

welding seam detected by the position detection module (M2). Using the welding seam tracking 

module (M12), the robot trajectories generated by the offline program subsystem can be 

compensated such that the welding torch can move along the welding seams precisely.  

 

 

 



 

 

Fig. 5 Modularisation for robotic welding system 

 

After the modularisation task for the configuration design, the robotic welding system is 

decomposed into the modules. However, different choices of standard components or design 

solutions, which are considered as different module candidates, can be suggested by discipline-

specific design teams. Table 2 displays the candidates of the standard components or design 

solutions for each module of the robotic welding system.  

 

Table 2 Modules and their candidates 

Module Candidate 

M1 
M1(1):Online program 

M1(2):Offline program 

M2 
M2(1): Light source & Camera 

M2(2):Fringe pattern & Camera 

M3 
M3(1):Six-axis robot 

M3(2): Cartesian coordinate robot 

M4 
M4(1): Six-axis robot 

M4(2): Cartesian coordinate robot 

M5 
M5(1): Gantry 

M5(2):AGV(Automated Guided Vehicle) 

M6 

M6(1):PLC(Programmable Logic Controller) 

M6(2): Six-axis robot control 

M6(3): Cartesian coordinate robot control 

M7 
M7(1):Shape reconstruction of pattern image 

M7(2):linear fitting of workpiece’s edge 



 

M8 
M8(1):Gantry control 

M8(2):AGV control 

M9 
M9(1):Contact signal processing 

M9(2):Image processing 

M10 

M10(1):Plasma welding torch control 

M10(2):Tandem welding torch control 

M10(3):Metal inert-gas welding control 

M11 

M11(1):Plasma welding torch 

M11(2):Tandem welding torch 

M11(3):Metal inert-gas welding 

M12 
M12(1):Contact welding seam tracker 

M12(2):Laser welding seam tracker 

M13 M13(1):Power supply sub-system 

 

If all combinations of candidates for each module are considered, the designers would have 

13,824 different types of combinations. The number of alternative combinations from which 

designers must select the most suitable combination is, therefore, overly large. 

The information related to the interfaces of the robotic welding system can be managed by the 

proposed Interface model. By instantiating the Interface model with the design parameters 

related to the proposed candidates, designers can easily verify the interface compatibility using 

the compatibility rules, which allow them to eliminate the impossible combinations, thus 

decreasing the number of combinations. 

Fig. 6 displays an example of the instantiation and implementation of the proposed Interface 

model. In this example, the six-axis robot (M3(1)) has a mechanism to provide six degrees of 

freedom for the robotic welding system. However, the controller, which is specially designed 

for the Cartesian coordinate robot (M6(3)), can only be used to control a robot with three axis. 

The UML object diagram in Fig. 6(b) displays the instance of the Interface model created using 

the above example. Fig. 6(c) depicts the implementation of the example in the demonstrator. 

The compatibility verification result indicates that the interface (I2) between the six-axis robot 

(M3(1)) and Cartesian coordinate robot controller (M6(3)) is incompatible. Therefore, the 

compatibility value of the interface between M3(1) and M6(3) is “0”, which means that the 

combinations including M3(1) and M6(3) are invalid.  

As presented in Section 3.2, it is possible that designers cannot accurately determine the port 

parameters of components when selecting the most suitable modules among different 

alternatives during the preliminary design phase. In this case, a brief description in the class 

Document can be used to define a port. The documents of the two ports linked by the interface 

are then analysed by designers to determine if the interface is compatible. For example, when 

designers attempt to determine which method should be selected to detect the starting point of 

the welding seam, the design parameters related to each method can hardly be predicted. 

Therefore, the working principle of each method can be described and stored in the class 

Document. After analysing the working principle of each method stored in the class Document, 

the designers could find that when choosing the method based on the camera and fringe pattern 

(M2(2)) to detect the starting point of the welding seam, the shape reconstruction method based 

on the comparison between the projected fringe pattern and reflected deformed pattern (M7(1)) 



 

should be adopted, whereas it is unlikely to achieve any benefits from the method based on the 

linear fitting of the workpiece’s edges (M7(2)). Thus the interface between the two candidates 

M2(2) and M7(1) is compatible (i.e. 𝐶𝑝𝑀2(2)𝑀7(1)
= 1 ), and candidates M2(2) and M7(2)

 are 

incompatible with each other (i.e. 𝐶𝑝𝑀2(2)𝑀7(2)
= 0).  

 

Fig. 6 Instantiation and implementation of Interface model 

 

By analysing the compatibility between the proposed candidates, the values of the compatibility 

matrix can be obtained as indicated in Table 5. According to the algorithm for combination 

elimination presented in Section 3.3, the combinations with a “0” for the value of V are 

identified as invalid solutions because they include incompatible components. After eliminating 

such invalid combinations, the number of possible combinations is reduced to 384. Therefore, 

the number of combinations that must be evaluated during the evaluation task has been 

significantly reduced. 

Finally, considering the performance, cost, efficiency, robustness, and other factors as criteria, 

the designers evaluate the proposed alternative combination and select the preferred option 

from the list of alternatives by solving the attribute decision-making (MADM) problem. Fig. 7 

displays the robotic welding system and its final module candidate selections.  

 



 

 

Fig. 7 Robotic welding system and final module candidate selections 

 

In this section, a robotic welding system is used as a case study to demonstrate the proposed 

interface model-based configuration design method. The candidates of each module are 

proposed and designers from different disciplines can define the interfaces between the modules 

with a common representation by instantiating the proposed interface model. Then, applying 

the compatibility rules and algorithm for combination elimination, the number of combinations 

that must be evaluated during the evaluation task is significantly reduced.  



 

 

Table 5 Compatibility matrix for lunar roving vehicle 

 M1(1) M1(2) M2(1) M2(2) M3(1) M3(2) M4(1) M4(2) M5(1) M5(2) M6(1) M6(2) M6(3) M7(1) M7(2) M8(1) M8(2) M9(1) M9(2) M10(1) M10(2) M10(3) M11(1) M11(2) M11(3) M12(1) M12(2) M13(1) 

M1(1) 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M1(2)  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M2(1)   0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M2(2)    0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

M3(1)     0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M3(2)      0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M4(1)       0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M4(2)        0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M5(1)         0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

M5(2)          0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

M6(1)           0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M6(2)            0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M6(3)             0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M7(1)              0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

M7(2)               0 1 1 1 1 1 1 1 1 1 1 1 1 1 

M8(1)                0 0 1 1 1 1 1 1 1 1 1 1 1 

M8(2)                 0 1 1 1 1 1 1 1 1 1 1 1 

M9(1)                  0 0 1 1 1 1 1 1 1 0 1 

M9(2)                   0 1 1 1 1 1 1 0 1 1 

M10(1)                    0 0 0 1 0 0 1 1 1 

M10(2)                     0 0 0 1 0 1 1 1 

M10(3)                      0 0 0 1 1 1 1 

M11(1)                       0 0 0 1 1 1 

M11(2)                        0 0 1 1 1 

M11(3)                         0 1 1 1 



 

M12(1)                          0 0 1 

M12(2)                           0 1 

M13(1)                            0 



 

5. Discussion 

The authors introduced a novel design method to solve the two design problems of 

configuration design for complex industrial mechatronic systems identified in Section 1, i.e. 

how to achieve high-level multidisciplinary integration during the representation task process 

and how to decrease the number of alternative combinations among the alternatives during the 

evaluation task process. The proposed configuration design method demonstrates the following 

advantages: 

 For the representation task, different representations for the configurable modules are 

proposed based on existing studies on configuration design. Because inadequate attention 

has been given to the standardisation of the interactions between the modules, this paper 

proposes an Interface model to describe the interactions of modules, which provides a 

common representation for the interfaces among the different modules. Therefore, the 

compatibility of modules designed by different teams can be verified by compatibility 

rules to ensure that the modules can be integrated correctly, thus achieving 

multidisciplinary integration during the representation task process.  

 For the evaluation task, even though different evaluation approaches have been proposed 

to solve the multi-attribute decision-making problem, the number of alternative 

combinations from which designers evaluate and select the most suitable combination is 

overly large owing to the intrinsic complexity of industrial mechatronic systems. Adopting 

interface compatibility rules and an elimination algorithm, the proposed configuration 

design method bridges the gap between the representation task and evaluation task. It 

allows designers to decrease the number of possible combinations, thus significantly 

reducing the development lead time. 

Even though the effectiveness and applicability of the proposed configuration design method 

was demonstrated using a robotic welding system, further studies on the configuration design 

method are required. 

 Current research has demonstrated the effectiveness of configuration design in developing 

new systems that satisfy different customer requirements. Requirements have a major role 

in configuration design because they specify the problems that the designers must solve. 

When specifying the design requirements, designers must consider not only what the 

customer requires but also the requirements related to the entire lifecycle of the product. 

An architecture with configurable functional modules of a system is proposed according 

to the requirements related to the functionality (i.e. functional requirements); however, the 

criteria by which designers evaluate the alternative combinations of candidates for each 

module are proposed based on the requirements related to performance, cost, efficiency, 

robustness, and other factors (i.e. non-functional requirements). If these requirements are 

well specified before entering the configuration design process, design errors due to 

insufficient familiarity of the requirements related to the following processes can be 



 

avoided. Therefore, the specification of requirements for the configuration design must 

receive added attention in the future. 

 Today, dematerialisation has become a novel development trend for industrial 

manufacturing systems. Companies are placing more focus on providing customers with 

additional value through the use of services rather than products, because it is believed that 

services can bring added value with less environmental impact and without compromising 

the customer’s requirements. Therefore, the concept of Industrial Product Service Systems 

(IPSS) has been suggested. The proposed design method in this paper can be used to 

support the configuration design of complex industrial manufacturing systems effectively 

from the perspective of physical features. However, a nonphysical module, called the 

service module, must also be considered. Further, the common representation of interfaces 

between the physical and service modules must be studied in the future.  

6. Conclusions 

This paper proposed a novel configuration design method for industrial mechatronic systems 

with the objective of bridging the gap between the representation and evaluation tasks of 

configuration design. On the one hand, the compatibility of modules designed by different 

teams can be verified by the compatibility verification method defined in the Interface model, 

allowing the realisation of multidisciplinary integration during the representation task process. 

On the other hand, based on the elimination algorithm, the number of alternative combinations 

from which designers must select the most suitable combination can be significantly reduced. 

The effectiveness and applicability of the proposed configuration design method was 

demonstrated using a case study corresponding to a robotic welding system. 
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