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Abstract—Supervised deep learning has achieved remarkable
success in various applications. Such advances were mainly
attributed to the rise of computational powers and the amounts
of training data made available. Therefore, accurate large-scale
data collection services are often needed. Once representative
data is retrieved, it becomes possible to train the supervised
machine learning predictor. However, a model trained on
existing data, that generally comes from multiple datasets,
might generalize poorly on the unseen target data. This
problem is referred to as domain shift. In this paper, we
explore the suitability of data selection to tackle the domain
shift challenge in the context of domain generalization. We
perform our experimental study on the use case of building
energy consumption prediction. Experimental results suggest
that minimal building description is capable of improving
cross-building generalization performances when used to select
data.

Keywords-Data selection; domain generalization; knowledge
transfer; data-driven modeling; energy consumption modeling;

I. INTRODUCTION

Machine learning is dramatically improving a wide range
of fields, from image and natural language processing, to
genomics and robotics. However, machine learning mod-
els performance depends heavily on the representation of
data they are provided. This makes feature engineering the
key determining factor and the most challenging step in
the machine learning pipeline. Deep learning [1] alleviates
this central challenge by automatically learning meaningful
representations out of multiple simpler representations. The
recent success of deep learning is mainly attributed to the
rise of computational powers and the massive amount of
available data used for training.

A powerful machine learning model should rely on in-
sightful utilization of relevant data. Hence, scalable and
accurate data collection techniques are considered as key
success factors. Data collection for machine learning [2]
generally consists in acquiring new relevant datasets [3],
labeling acquired data samples, improving the quality of
existing data or the training of an existing model. A classic
data collection workflow as described in [2] would start
by checking if there is enough training data. Otherwise,

we must either acquire relevant datasets, or generate an
appropriate dataset. Once data is collected, we can choose
to either label individual data samples within these datasets,
to improve the quality of existing labels that may be noisy
and biased, or to select an existing model and improve it
using transfer learning techniques.

We seek to explore a main challenge of using existing
data, the domain shift problem. Domain shift [4] causes
models trained on one source domain to generalize poorly
when applied to a target domain with mismatching data dis-
tribution. Consequently, learning scenarios in which we do
not have enough and exactly representative training data of
the intended testing context are heavily penalized. Proposed
approaches addressing this challenge are mainly classified
into domain adaptation and domain generalization. Domain
adaptation [5][6] utilizes labeled source data and unlabeled
or sparsely labeled target data to obtain a well-performing
model on the target domain. However, in several cases, the
target data are not available. Domain Generalization (DG)
[7][8] addresses such cases by utilizing multiple source do-
mains. This paper considers the domain generalization area
of research, which aims to train accurate models that perform
well on unseen target domains, by leveraging knowledge
from different but related source domains. For this purpose,
we propose to explore the suitability of data selection in the
context of domain generalization. This approach consists in
selecting representative data from domains that are similar
to the target domain on which we do not dispose of enough
data. This similarity is based on available minimal domains
descriptions.

Particularly, we consider the problem of data-driven build-
ing energy modeling, which aims to accurately predict
future energy use from specific measures. Energy demand
prediction plays an integral part in the efficient planning and
operation of power systems. Prior studies in this framework
require labeled data of the building in question, such as
historical data, physical parameters of the building, me-
teorological conditions, or information about the building
occupancy, in order to train a reliable building energy
consumption model. Our approach goes beyond state-of-
the-art methods and proposes to transfer knowledge across
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multiple sources buildings while using minimal information
about the target building, such as in the case of renovated
or newly-built buildings. Our challenge is to build a model
that accurately predicts the future energy consumption of
a previously unseen building, given one or many training
datasets.

To tackle these challenges, we investigate the suitabil-
ity of data selection mechanism for cross-building domain
generalization. To the best of our knowledge, our work is
a first attempt to model a target building with incomplete
or minimal information about it, and thus tackling the
data unavailability problem by transferring knowledge from
auxiliary buildings. Reported energy prediction approaches
[9][10] usually rely on detailed information about the target
building, e.g. historical consumption data, meteorological
data, occupancy information, etc.

The remainder of this paper is structured as follows.
Section II presents a classification of related works on
domain generalization. Section III provides an overview on
our proposed approach and the architecture of the model we
utilize. Section IV depicts the experimental setup and sum-
marizes results. Section V discusses experimental findings,
and finally in Section VI, we draw conclusions and present
an outlook and suggestions for future research.

II. APPROACHES TO DOMAIN GENERALIZATION

Proposed domain generalization approaches generally rely
on the assumption that source domains and unseen target
domains share common features that can be extracted.
Hence, they seek to learn a domain agnostic representation
or model. Domain generalization approaches proposed in
literature may be roughly classified into four categories; (1)
Data representation based techniques [8][11] that seek to
learn domain agnostic representation that captures similar-
ities across domains and where the domain discrepancy is
minimized, (2) Model selection techniques [12] that aim to
select the most relevant domain to a target sample and use its
corresponding model, (3) Model based techniques [13][14]
that aim to find a model architecture and algorithm that
generalizes well on unseen target domains, and (4) Meta-
learning based technique [15] that relies on a model agnostic
training procedure that trains any given model so that it
mitigates domain shift between domains.

Muandet et al. [8] propose to learn new domain invari-
ant feature representations by minimizing the dissimilarity
across domains via domain-invariant component analysis
and a kernel-based optimization algorithm. Ghifary et al.
[11] propose a Multi-Task Auto-Encoder (MTAE) that ex-
tends auto-encoders into a model that jointly learns to per-
form self-domain data reconstruction and between-domain
data reconstruction. Xu et al. [12] use learned low-rank
exemplar-SVMs, which can be defined as a linear Support
Vector Machine (SVM) classifier trained on a single positive
training instance and all negative training instances, for both

domain adaptation and domain generalization. For domain
generalization, the authors propose to either equally fuse all
exemplar classifiers, or use the exemplar classifiers in the
latent domain which the target data more likely belongs to.
Given multiple source datasets/domains, Khosla et al.[13]
propose an SVM based approach, in which the learned
weight vectors are common to all datasets. Li et al. [14]
proposed a low-rank parameterized convolutional neural
network model for end-to-end DG learning. Li et al. [15]
propose a Meta-Learning Domain Generalization (MLDG)
approach. It consists in a model agnostic training procedure
that can improve the domain generality of a base learner.
This procedure is based on synthesizing virtual training and
virtual testing domains within each mini-batch. The meta-
optimization objective consists in minimizing the loss in
the training domains, while simultaneously improving the
virtual testing loss.

Our work is more related to the model selection tech-
niques. We borrow the per-domain model building idea
described in [12]. However, we select domains rather than
models and combine their respective data to form a repre-
sentative training set. We assume in our case that we dispose
of a minimal description of the target domain that will allow
us to define our data selection criteria, such as building
typology, and year of construction.

III. THE PROPOSED SYSTEM

We present an overview of our methodology pipeline in
Figure 1. We propose a cloud-based system for relevant
existing data collection and reuse in predictive modeling
tasks. Our system main objective is to train a building
energy model for an unseen target building based on its
description. The training data is obtained through a data
selection service-oriented workflow.

Figure 1. Data selection approach for domain generalization.

Our approach consists in training a model that simul-
taneously minimizes the prediction error and the domain
discrepancy between the collected source domains and the
unseen target domain. The data selection service is respon-
sible for preparing a training dataset that is relevant against
the target domain description. In our special case, target
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domain description concerns high-level information about
the target building we seek to model, e.g. typology, year
of construction, location, etc. Once data is selected, the
final training dataset is prepared and provided to the model
training component. In this study, we attempt to explore the
suitability of similar data selection in the context of building
energy consumption modeling. The detailed description of
the data selection workflow is beyond the scope of this paper.

A. Cross-building Knowledge Transfer

We explore the suitability of data selection for cross-
building knowledge transfer. We start by training a model
that captures energy use dynamics for each building, and
then test its generalization performance across other un-
seen buildings. Our objective is to study the possibility
to select representative buildings data based on available
target building metadata. For this purpose, we start by
identifying similar buildings based solely on their respective
descriptions. We then perform cross-building knowledge
transfer; we build one model for each building and study
its transfer-ability across other unseen buildings. Our aim
is to investigate whether cross-building performances are
correlated with buildings’ descriptions.

Our model learns to predict future building-level ag-
gregate energy consumption based on energy consumption
history and both past and future climate data. In reality,
a wide range of factors may impact the energy use in
buildings, such as occupants behavior, building typology,
construction materials, etc. In this work, we focus on the
meteorological data factor by feeding our model with past
and future climate data along with the aggregate past energy
consumption. The motivation behind utilizing both future
and past climate data is to attempt to capture the relationship
between climatic changes and building’s energy load profile
fluctuations.

B. Model Architecture

Figure 2 shows the architecture of our learning model.
We consider a unidirectional Long-Short Term Memory
Recurrent Neural Network (LSTM-RNN) as our supervised
predictor. RNNs [16] are a powerful class of supervised
machine learning models that are capable of modeling
sequential data. LSTM [17] is a RNN architecture that helps
to prevent the effect of vanishing and exploding gradients
[18] often encountered in recurrent networks. LSTM offers
the ability to selectively pass information across sequence
steps while processing sequential data one element at a time.

Our model is trained to predict daily energy consumption
of subsequent week. As input, we provide our model with
daily energy consumption of the previous week and climate
time series of the subsequent week.

Our training set X = {(x(1), y(1)), (x(2), x(2)), ...} is
structured into time-based sequences of fixed length. In-
put sequences are denoted by (x(1), x(2), ..., x(T )) where

Figure 2. Architecture of the LSTM-RNN model used to predict daily
energy consumption of a whole week.

T denotes the sequence length, and each feature vector
x(t) ∈ Rn ∀t = 1..T is of size n. Feature vectors are
composed of current week’s aggregate energy consumption,
air temperature, average horizontal solar irradiance, wind
speed, and the same weather features as aforementioned for
subsequent week. Similarly, target sequences are denoted by
(y(1), y(2), ..., y(T )), where y(t) ∈ R is a real vector denoting
the energy consumption at future time steps. The goal of the
model is to predict future energy consumption y(t) from the
input feature vector x(t).

The architecture of the network is composed of several
hidden layers. It consists of one or more LSTM layers
followed by one or more fully-connected layers. The output
layer is a fully-connected layer with a linear activation
function. The model is trained using the Root Mean Squared
Error (RMSE). We also use the batch normalization mecha-
nism [19] to address the internal covariate shift problem usu-
ally encountered in deep neural networks training. Training
phase were conducted using Backpropagation Through Time
(BPTT) optimization algorithm in the context of LSTM
networks.

During our experimental study, we explore variants of this
architecture to fine-tune its hyperparameters, e.g. number of
fully-connected layers, number of LSTM layers, etc. We
retain the architecture variant that yields the best cross-
domain and in-domain generalization results.

IV. EXPERIMENTAL SETUP

We perform our experimental studies on the use case of
building energy consumption prediction. Our system trans-
fers knowledge from several buildings, to one target building
on which we assume we are facing a data unavailability
problem.

A. Dataset

The proposed solution is experimentally evaluated using
REFIT Electrical Load Measurements dataset [20]. The
dataset contains cleaned electrical consumption measure-
ments for 20 UK households on aggregate and appliance
level. For each household, the whole house aggregate loads
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and nine individual appliance measurements at 8-second
intervals were collected continuously over a period of ap-
proximately two years. During monitoring, the occupants
were conducting their usual routines.

In addition, climate data was also collected from a nearby
weather station. Figure 3 highlights the differences of energy
load profiles across a subset of four buildings in the REFIT
dataset. Descriptions about each building comprised infor-
mation related to occupancy (number, ages, sex, etc.), size,
construction year, typology, and total number of appliances
owned.

Figure 3. Monthly energy load profiles across buildings.

In Figure 4, we illustrate the REFIT dataset description
with a heatmap. We consider five descriptive features for
each building; the number of occupants, the construction
year, the number of appliances, the building type, and the
size. The number of occupants in the REFIT dataset varies
from one to four occupants. The construction years of build-
ings are grouped into eight classes based on year intervals
spanning from 1850 to post 2002. Three house types are
present in the REFIT dataset; detached, semi-detached, and
mid-terrace. Building sizes are computed based on number
of bedrooms.

Figure 4. Heatmap of the REFIT dataset description after pre-processing;
Missing data in one column were replaced with the most frequent value in
that column, categorical features (type) were label encoded, ordinal features
(construction year class) were converted to ordinal integers, resulted values
were scaled between 0 and 1.

To depict similarities between buildings, we start by
hierarchically clustering them based on the provided de-
scription vectors. Categorical data was one-hot encoded
as a further pre-processing step. We use the Euclidean

distance to compute pair-wise similarities. Clustering results
are illustrated in Figure 5 by a dendrogram. The figure
identifies a cluster of fourteen similar buildings, which is
composed of the subset of the following buildings {1, 3, 4,
7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20}. Buildings 17 and
8 are identified as the most similar buildings in the dataset.
Looking at their descriptions, they share the same number
of occupants, building type, and construction year class.
Building 17 also has only one more bedroom compared to
building 8. Building pairs {9, 11}, and {16, 20} are also
respectively identified as mutually similar.

B. Evaluation metrics

Our goal is to achieve a good generalization performance
by accurately predicting short-term energy consumption of
unseen buildings. Therefore, we assess our proposed model
using the Root Mean Squared Error (RMSE). RMSE is
defined as the square root of the average squared distance
between prediction and ground truth, using the formula:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 ,

where yi and ŷi respectively denote the true value and the
predicted value of the i-th data sample, and N denotes the
size of the dataset.

C. Model Training

For each building, we use data between April 2014 and
May 2015 for training. For cross-building evaluations, we
use data between April 22nd, 2014 and June 1st, 2014. The
whole dataset was scaled so all values will be between 0 and
1, using min-max normalization algorithm. The input and the
output sequences are of length 7. The input corresponds to
a 7-dimensional feature vector. Our network is composed
of two hidden layers; one LSTM layer of size 256, and
one fully-connected layer of size 128. The Rectified Linear
Unit (ReLU) is used as the non-linear activation function for
hidden layers. The output layer consists of a fully-connected
layer with linear activation function. The fine-tuning of
weights is done using Gradient Descent algorithm with
an exponentially decaying learning rate ranging between
10−3 and 10−5. Weights initialization follows a normal
distribution with zero mean and standard deviation σ = 1,
whereas biases are initialized to zeroes. The gradients are
back-propagated through timestep batches of length 80. For
the training epochs number, we have fixed 1000 as the
maximum number of epochs. To avoid over-fitting, we have
implemented an early stopping mechanism which breaks the
training loop when training cost does not improve on the
training set after 20 epochs.
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Figure 5. Dendrogram of the hierarchical clustering of REFIT households based on their descriptions. Clusters within which distance is below 70% of
the maximal cluster-wise distance Categorical are colored in green. Features in the buildings feature vectors were one-hot encoded. The distance used was
the Euclidean distance.

D. Experimental Results

We trained 19 models for each building following the
same process. One building (number 12) was not considered
due to insufficient training data. Each model was tested on
the remaining unseen buildings in order to study its cross-
building transfer-ability. Figure 6 depicts the predictions
errors of cross-building model transfers as a heatmap. We
can visually identify two clusters within each of them
generalization performances are high. These clusters are
respectively composed of the following subsets of buildings
{2, 3, 18, 19} and {5, 6, 7}. We also notice that buildings
13 and 14 are mutually similar and that models trained on
buildings 10 and 17 generalize well when applied to them
during inference mode. Furthermore, we can visually con-
clude that all trained models perform poorly when applied
to building 15. Model trained on building 15 also has poor
generalization performances when applied to the remaining
unseen buildings.

We now seek to examine similar buildings based on these
results; our assumption is that similar buildings models
are transferable among each other. Hence, a model that is
trained on a building i will generalize well when applied
to a building j if buildings i and j are similar. We start
by processing the experimental results matrix (Figure 6)
to transform it to a distance matrix. For this purpose, we
simply compute pairwise averages between each element
at row i and column j and its corresponding element at
row j and column i. Drawn clusters from this distance
matrix are illustrated in Figure 7 using a dendrogram. We
use the Euclidean distance to compute pair-wise similarities.
Figure 7 identifies two main clusters, which are respectively
composed of the following subsets of buildings {5, 6, 7, 8,
10, 13, 14, 16, 17, 20, 16} and {1, 2, 3, 4, 9, 11, 15, 18,
19}.

Figure 6. Heatmap of the experimental test errors; we trained 19 models,
each of them on one single building. Each model was tested on each
building. Th y-axis represents buildings on which each model was trained,
the x-axis represents the buildings on which each model was tested. The
evaluation metric was RMSE. Final results were scaled between 0 and 1.
House number 12 was not considered due to insufficient training data.

V. DISCUSSION

From Figure 5 and Figure 7, we can notice that buildings
8 and 17 which were the most similar based on their de-
scriptions are clustered under the same cluster based on their
cross-domain generalization errors. This means that models
trained on building 8 will generalize well when applied to
building 17 during inference mode, and vice versa. Similarly,
the two sets of buildings {9, 11}, and {16, 20} are identified
as similar in both clustering schemes; based on descriptions
and cross-domain generalization errors. Furthermore, poor
cross-domain generalization performances of building 15
(Figure 6) is explainable by its dissimilarity with the rest
of buildings (Figure 5).

We may therefore suggest that buildings, that are judged
similar based solely on their descriptions, do yield to good
prediction results when performing cross-building knowl-
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Figure 7. Dendrogram of the hierarchical clustering of REFIT households based on experimental cross-building prediction results. Clusters within which
distance is below 70% of the maximal cluster-wise distance Categorical are colored in green and red. The distance used was the Euclidean distance.

edge transfer.
In the context of this study, we have leveraged a very

restricted set of building descriptions, i.e. number of oc-
cupants, typology, size, etc. Therefore, we believe that
richer and broader building description would help to select
similar data more accurately and more reliably. Further-
more, and due to the large variety of building typologies
and design, and uncertainties surrounding its environment
and occupancy patterns, we consider that data selection
approaches based on similarity metrics are important in order
to perform large-scale and accurate cross-domain domain
generalization.

VI. CONCLUSION AND PERSPECTIVES

This paper discusses the suitability of the data selection
approach for cross-building knowledge transfer. Evaluation
work was conducted on the case study of building energy
consumption modeling. For this purpose, we have trained
per-building models and studied their transfer-ability across
other unseen buildings. Experimental results show that min-
imal building descriptions are capable of guiding domain
generalization applications in the context of energy model-
ing, by identifying similar buildings. Overall, we believe our
results confirm the suitability of data selection mechanisms
that are based on similarities of building minimal descrip-
tions.

As future work, we will investigate large-scale data selec-
tion service approaches for domain generalization. We also
intend to extend our system by automating the data selection
algorithm based on user queries. User queries will contain
the description of the target building to which we want to
transfer knowledge.
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