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Abstract
Building upon recent advances in entropy-
regularized optimal transport, and upon Fenchel
duality between measures and continuous func-
tions, we propose a generalization of the lo-
gistic loss that incorporates a metric or cost
between classes. Unlike previous attempts to
use optimal transport distances for learning, our
loss results in unconstrained convex objective
functions, supports infinite (or very large) class
spaces, and naturally defines a geometric gener-
alization of the softmax operator. The geometric
properties of this loss make it suitable for predict-
ing sparse and singular distributions, for instance
supported on curves or hyper-surfaces. We study
the theoretical properties of our loss and show-
case its effectiveness on two applications: ordi-
nal regression and drawing generation.

1. Introduction
For probabilistic classification, the most popular loss is ar-
guably the (multinomial) logistic loss. It is smooth, en-
abling fast convergence rates, and the softmax operator pro-
vides a consistent mapping to probability distributions. In
many applications, different costs are associated to mis-
classification errors between classes. While a cost-aware
generalization of the logistic loss exists (Gimpel & Smith,
2010), it does not provide a cost-aware counterpart of the
softmax. The softmax is pointwise by nature: it is oblivious
to misclassification costs or to the geometry of classes.

Optimal transport (Wasserstein) losses have recently
gained popularity in machine learning, for their ability to
compare probability distributions in a geometrically faith-
ful manner, with applications such as classification (Kusner
et al., 2015), clustering (Cuturi & Doucet, 2014), domain
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adaptation (Courty et al., 2017), dictionary learning (Ro-
let et al., 2016) and generative models training (Montavon
et al., 2016; Arjovsky et al., 2017). For probabilistic clas-
sification, Frogner et al. (2015) proposes to use entropy-
regularized optimal transport (Cuturi, 2013) in the multi-
label setting. Although this approach successfully lever-
ages a cost between classes, it results in a non-convex
loss, when combined with a softmax. A similar regular-
ized Wasserstein loss is used by Luise et al. (2018) in con-
junction with a kernel ridge regression procedure (Ciliberto
et al., 2016) in order to obtain a consistency result.

The relation between the logistic loss and the maximum en-
tropy principle is well-known. Building upon a generaliza-
tion of the Shannon entropy originating from entropy reg-
ularized optimal transport (Feydy et al., 2019) and Fenchel
duality between measures and continuous functions, we
propose a generalization of the logistic loss that takes into
account a metric or cost between classes. Unlike previous
attempts to use optimal transport distances for learning, our
loss is convex, and naturally defines a geometric general-
ization of the softmax operator. Besides providing novel
insights in the logistic loss, our loss is theoretically sound,
even when learning and predicting continuous probability
distributions over a potentially infinite number of classes.
To sum up, our contributions are as follows.

Organization and contributions.

• We introduce the distribution learning setting, review
existings losses leveraging a cost between classes and
point out their shortcomings (§2).
• Building upon entropy-regularized optimal transport,

we present a novel cost-sensitive distributional learning
loss and its corresponding softmax operator. Our pro-
posal is theoretically sound even in continuous measure
spaces (§3).
• We study the theoretical properties of our loss, such as

its Fisher consistency (§4). We derive tractable methods
to compute and minimize it in the discrete distribution
setting. We propose an abstract Frank-Wolfe scheme
for computations in the continuous setting.
• Finally, we demonstrate its effectiveness on two dis-

crete prediction tasks involving a geometric cost: ordi-
nal regression and drawing generation using VAEs (§5).
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Notation. We denote X a finite or infinite input space,
and Y a compact potentially infinite output space. When Y
is a finite set of d classes, we write Y = [d] , {1, . . . , d}.
We denote C(Y), M(Y), M+(Y) and M+

1 (Y) the sets
of continuous (bounded) functions, Radon (positive) mea-
sures and probability measures on Y . Note that in finite
dimensions, M+

1 ([d]) = 4d is the probability simplex
and C([d]) = Rd. We write vectors in Rd and continu-
ous functions in C(Y) with small normal letters, e.g., f, g.
In the finite setting, where Y = {y1, . . . , yd}, we define
fi , f(yi). We write elements of 4d and measures in
M(Y) with greek letters α, β. We write matrices and op-
erators with capital letters, e.g., C. We denote by ⊗ and ⊕
the tensor product and sum, and 〈·, ·〉 the scalar product.

2. Background
In this section, after introducing distributional learning in a
discrete setting, we review two lines of work for taking into
account a cost C between classes: cost-augmented losses,
and geometric losses based on Wasserstein and energy dis-
tances. Their shortcomings motivate the introduction of a
new geometric loss in §3.

2.1. Discrete distribution prediction and learning

We consider a general predictive setting in which an input
vector x ∈ X is fed to a parametrized model gθ : X → Rd

(e.g., a neural network), that predicts a score vector f =
gθ(x) ∈ Rd. At test time, that vector is used to predict the
most likely class ŷ = argmaxy∈[d] fy . In order to predict
a probability distribution α ∈ 4d, it is common to com-
pose gθ with a link function ψ(f), where ψ : Rd → 4d. A
typical example of link function is the softmax.

To learn the model parameters θ, it is necessary to de-
fine a loss `(α, f) between a ground-truth α ∈ 4d and
the score vector f ∈ Rd. Composite losses (Reid &
Williamson, 2010; Williamson et al., 2016) decompose that
loss into a loss `4(α, β), where `4 : 4d × 4d → R and
ψ: `(α, f) , `4(α,ψ(f)). Note that depending on `4 and
ψ, ` is not necessarily convex in f . More recently, Blon-
del et al. (2018; 2019) introduced Fenchel-Young losses, a
generic way to directly construct a loss ` and a correspond-
ing link ψ. We will revisit and generalize that framework
to the continuous output setting in the sequel of this paper.
Given a loss ` and a training set of input-distribution pairs,
(xi, αi), where xi ∈ X and αi ∈ 4d, we then minimize∑
i `(αi, gθ(xi)), potentially with regularization on θ.

2.2. Cost-augmented losses

Before introducing a new geometric cost-sensitive loss in
§3, let us now review classical existing cost-sensitive loss
functions. Let C be a d × d matrix, such that cy,y′ ≥ 0 is

the cost of misclassifying class y ∈ [d] as class y′ ∈ [d].
We assume cy,y = 0 for all y ∈ [d]. To take into account
the cost C, in the single label setting, it is natural to define
a loss L : [d]× Rd → R as follows

L(y, f) = cy,y′ where y′ ∈ argmax
i∈[d]

fi. (1)

To obtain a loss ` : 4d × Rd → R, we simply define
`(δy, f) , L(y, f), where δy is the one-hot representation
of y ∈ [d]. Note that choosing cy,y′ = 1 when y 6= y′ and
cy,y′ = 0 otherwise (i.e., C = 1 − Id×d) reduces to the
zero-one loss. To obtain a convex upper-bound, (1) is typi-
cally replaced with a cost-augmented hinge loss (Crammer
& Singer, 2001; Tsochantaridis et al., 2005):

L(y, f) = max
i∈[d]

cy,i + fi − fy.

Replacing the max above with a log-sum-exp leads to a
cost-augmented version of the logistic (or conditional ran-
dom field) loss (Gimpel & Smith, 2010). Another convex
relaxation is the cost-sensitive pairwise hinge loss (Weston
& Watkins, 1999; Duchi et al., 2018). Remarkably, all these
losses use only one row of C, the one corresponding to the
ground truth y. Because of this dependency on y, it is not
clear how to define a probabilistic mapping at test time. In
this paper, we propose a loss which comes with a geometric
generalization of the softmax operator. That operator uses
the entire cost matrix C.

2.3. Wasserstein and energy distance losses

Wasserstein or optimal transport distances recently gained
popularity as a loss in machine learning for their ability to
compare probability distributions in a geometrically faith-
ful manner. As a representative application, Frogner et al.
(2015) proposed to use entropy-regularized optimal trans-
port (Cuturi, 2013) for cost-sensitive multi-label classifica-
tion. Effectively, optimal transport lifts a distance or cost
C : Y × Y → R+ to a distance between probability dis-
tributions over Y . Following Genevay et al. (2016), given
a ground-truth probability distribution α ∈ 4d and a pre-
dicted probability distribution β ∈ 4d, we define

OTC,ε(α, β) , min
π∈U(α,β)

〈π,C〉+ εKL(π|α⊗ β), (2)

where U is the transportation polytope, a subset of 4d×d
whose elements π have constrained marginals: π1 = α
and π>1 = β. KL is the Kullback–Leibler divergence
(a.k.a. relative entropy). Because β needs to be a valid
probability distribution, Frogner et al. (2015) propose to
use β = ψ(f) = softmax(f), where f ∈ Rd is a vector of
prediction scores. Unfortunately, the resulting composite
loss, `(α, f) = OTC,ε(α, softmax(f)), is not convex w.r.t.
f . Another class of divergences between measures α and β
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stems from energy distances (Székely & Rizzo, 2013) and
maximum mean discrepancies. However, composing these
divergences with a softmax again breaks convexity in f . In
contrast, our proposal is convex in f and defines a natural
geometric softmax.

3. Continuous and cost-sensitive
distributional learning and prediction

In this section, we construct a loss between probability
measures and score functions, canonically associated with
a link function. Our construction takes into account a cost
function C : Y × Y → R between classes. Unlike ex-
isting methods reviewed in §2.2, our loss is well defined
and convex on compact, possibly infinite spaces Y . We
start by extending the setting of §2.1 to predicting arbitrary
probabilities, for instance having continuous densities with
respect to the Lebesgue measure or singular distributions
supported on curves or surfaces.

3.1. Continuous probabilities and score functions

We consider a compact metric space of outputs Y , endowed
with a symmetric cost function C : Y × Y → R. We wish
to predict probabilities over Y , that is, learn to predict dis-
tributions α ∈ M+

1 (Y). The space of probability mea-
sures forms a closed subset of the space of Radon measures
M(Y), i.e.,M+

1 (Y) ⊆ M(Y). From the Riesz represen-
tation theorem,M(Y) is the topological dual of the space
of continuous measures C(Y), endowed with the uniform
convergence norm ‖ · ‖∞. The topological duality between
the primalM(Y) and the dual C(Y) defines a pairing, sim-
ilar to a “scalar product”, between these spaces:

〈α, f〉 ,
∫

Y
f(y)dα(y) = E[f(Y )],

for all α ∈ M(Y) and f ∈ C(Y), where Y is a ran-
dom variable with law α. This pairing also defines the
natural topology to compare measures and to differentiate
functionals depending on measures. This is the so-called
weak? topology, which corresponds to the convergence in
law of random variables. A sequence αn is said to converge
weak? to some α if for all functions f ∈ C(Y), 〈αn, f〉 →
〈α, f〉. Note that when endowing M(Y) with this weak?

topology, the dual of M(Y) is C(Y), which is the key to
be able to use duality (and in particular Legendre-Fenchel
transform) from convex optimization. Using this topology
is fundamental to define geometric losses that can cope
with arbitrary, possibly highly localized or even singular
distributions (for instance sparse sums of Diracs or mea-
sures concentrated on thin sets such as 2-D curves or 3-D
surfaces).

Similarly to the discrete setting reviewed in §2.1, in the
continuous setting, we now wish to predict a distribution

α ∈ M+
1 (Y) by setting α = ψ(f), where f = gθ(x) ∈

C(Y), gθ : X → C(Y) (i.e., gθ is unconstrained), and
ψ : C(Y) → M+

1 (Y) is a link function. We propose to
use maps between the primal M+

1 (Y) and the dual score
space C(Y) as link functions. As we shall see, such mir-
ror maps are naturally defined by continuous convex func-
tion on the primal space, through Fenchel-Legendre dual-
ity. Our framework recovers the discrete case Y = [d] as a
particular case, with4d corresponding toM+

1 ([d]) and Rd

to C([d]), though the isomorphisms α → ∑d
i=1 αiδi and

for all i ∈ [d], f(i) = fi.

Regularization of optimal transport is our key tool to con-
struct entropy functions which are continuous with respect
to the weak? topology, and that can be conjugated to define
a C(Y) →M+

1 (Y) link function. It allows us to naturally
leverage a cost C : Y × Y → R between classes.

3.2. An entropy function for continuous probabilities

The regularized optimal transport cost (2) remains well de-
fined when α and β belong to a continuous measure space
M+

1 (Y), with U now being a subset ofM+
1 (Y × Y) with

marginal constraints. It induces the self-transport func-
tional (Feydy et al., 2019), that we reuse for our purpose:

ΩC(α) ,

{
− 1

2 OTC,ε=2(α, α) for α∈M+
1 (Y)

+∞ otherwise. (3)

We will omit the dependency of Ω on C when clear from
context. It is shown by Feydy et al. (2019) that Ω is
continuous and convex on M(Y), and strictly convex on
M+

1 (Y), where continuity is taken w.r.t. the weak? topol-
ogy. We call Ω, the Sinkhorn negentropy. As a negative
entropy function, it can be used to measure the uncertainty
in a probability distribution (lower is more uncertain), as
illustrated in Figure 2. It will prove crucial in our loss con-
struction. In the above, we have set w.l.o.g. ε = 2 to re-
cover simple asymptotical behavior of Ω, as will be clear
in Prop. 1.

We first recall some known results from Feydy et al.
(2019). Using Fenchel-Rockafellar duality theorem (Rock-
afellar, 1966), the function Ω rewrites as the solution to
a Kantorovich-type dual problem (see e.g., Villani, 2008).
For all α ∈M+

1 (Y), we have that

−ΩC(α) = max
f∈C(Y)

〈α, f〉 − log〈α⊗ α, e f⊕f−C
2 〉, (4)

where we use the homogeneous dual (i.e. with a log in the
maximization), as explained in Cuturi & Peyré (2018).

Gradient and extrapolation. Ω is differentiable in the
sense of measures (Santambrogio, 2015), meaning that
there exists a continuous function ∇Ω(α) such that, for all
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ξ1, ξ2 ∈M+
1 (Y), t > 0,

Ω(α+t(ξ2−ξ1)) = Ω(α)+t〈ξ2−ξ1,∇Ω(α)〉+o(t). (5)

As shown in Feydy et al. (2019), this function f = ∇Ω(α),
that we call the symmetric Sinkhorn potential, is a partic-
ular solution of the dual problem. It is the only function
in C(Y) such that −f = T (−f, α), where the soft C-
transform operator (Cuturi & Peyré, 2018) is defined as

T (f, α)(y) , −2 log〈α, e f−C(y,·)
2 〉.

This operator can be understood as the log-convolution
of the measure αe

f
2 with the Sinkhorn kernel e−

C
2 . The

Sinkhorn potential f has the remarkable property of be-
ing defined on all Y , even though the support of α may be
smaller. Given any dual solution g to (4), which is defined
α-almost everywhere, we have f = −T (−g, α), i.e. f ex-
trapolates the values of g on the support of α, using the
Sinkhorn kernel.

Special cases. The following proposition, which is an
original contribution, shows that the Sinkhorn negentropy
asymptotically recovers the negative Shannon entropy and
Gini index (Gini, 1912) when rescaling the cost. The
Sinkhorn negentropy therefore defines a parametric family
of negentropies, recovering these important special cases.
Note however that on continuous spaces Y , the Shannon
entropy is not weak? continuous and thus cannot be used to
define geometric loss and link functions, the softmax link
function being geometry-oblivious. Similarly, the Gini in-
dex is not defined on M+

1 (Y), as it involves the squared
values of α in a discrete setting.

Proposition 1 (Asymptotics of Sinkhorn negentropies).
For Y compact, the rescaled Sinkhorn negentropy con-
verges to a kernel norm for high regularization ε. Namely,
for all α ∈M+

1 (Y), we have

εΩC/ε(α)
ε→+∞−→ 1

2
〈α⊗ α,−C〉.

Let Y = [d] be discrete and choose C = 1 − Id×d. The
Sinkhorn negentropy converges to the Shannon negentropy
for low-regularization, and into the negative Gini index for
high regularization:

ΩC/ε(α)
ε→0−→ 〈α, logα〉, εΩC/ε(α)

ε→+∞−→ 1

2
(‖α‖22 − 1).

Proof is provided in §A.1. The first part of the proposition
shows that the Sinkhorn negentropies converge to a kernel
norm (see e.g., Sriperumbudur et al., 2011). This is sim-
ilar to the regularized Sinkhorn divergences converging to
an Energy Distance (Székely & Rizzo, 2013) for ε → ∞
(Genevay et al., 2018; Feydy et al., 2019).

Figure 1. The symmetric Sinkhorn potentials form a distance field
to a weighted measure. The link function ψ = ∇Ω?(f) allows to
go back from this field in C(Y) to a measure α ∈M+

1 (Y).

From probabilities to potentials. The symmetric
Sinkhorn potential f = ∇Ω(α) is a continuous function,
or a vector in the discrete setting. It can be interpreted as a
distance field to the distribution α. We visualize this field
on a 2D space in Figure 1, where Y is the set of h × w
pixels of an image, and we wish to predict a 2-dimensional
probability distribution inM+

1 (Y) = 4h×w. Predicting a
distance field f ∈ C(Y) to a measure is more convenient
than predicting a distribution directly, as it has uncon-
strained values and is therefore easier to optimize against.
For this reason, we propose to learn parametric models that
predict a “distance field” f = gθ(x) given an input x ∈ X .
In the following section, we construct a link function
ψ : C(Y) → M+

1 (Y), for general probability measure
and function spaces M+

1 (Y) and C(Y), so to obtain a
distributional estimator αθ = ψ ◦ gθ : X →M+

1 (Y).

3.3. Fenchel-Young losses in continuous setting

To that end, we generalize in this section the recently-
proposed Fenchel-Young (FY) loss framework (Blondel
et al., 2018; 2019), originally limited to discrete cost-
oblivious measure spaces, to infinite measure spaces. In-
spired by that line of work, we use Legendre-Fenchel dual-
ity to define loss and link functions from Sinkhorn negative
entropies, in a principled manner. We define the Legendre-
Fenchel conjugate Ω? : C(Y)→ R of Ω as

Ω?(f) , max
α∈M+

1 (Y)
〈α, f〉 − Ω(α).

Rigorously, Ω?(f) is a pre-conjugate, as Ω is defined on
M(Y), the topological dual of continuous functions C(Y).
For a comprehensive and rigorous treatment of the theory
of conjugation in infinite spaces, and in particular Banach
spaces as is the case of C(Y), see Mitter (2008).

As Ω is strictly convex, Ω? is differentiable everywhere and
we have, from a Danskin theorem (Danskin, 1966) with
left Banach space and right compact space (Bernhard &
Rapaport, 1995, Theorem C.1):

∇Ω?(f) , argmax
α∈M+

1 (Y)

〈α, f〉 − Ω(α) ∈ C(Y).

That gradient can be used as a link ψ from f ∈ C(Y) to
α ∈ M+

1 (Y). It can also be interpreted as a regularized
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prediction function (Blondel et al., 2018; Mensch & Blon-
del, 2018). Following the FY loss framework, we define
the loss associated with∇Ω? by

`Ω(α, f) , Ω?(f) + Ω(α)− 〈α, f〉. (6)

In the discrete single-label setting, that loss is also re-
lated to the construction of Duchi et al. (2018, Proposition
3). From the Fenchel-Young theorem (Rockafellar, 1970),
`Ω(α, f) ≥ 0, with equality if and only if α = ∇Ω?(f).
The loss `Ω is thus positive, convex and differentiable in
its second argument, and minimizing it amounts to find the
pre-image f? of the target distribution α with respect to the
link (mapping)∇Ω?.

Our construction is a generalization of the Fenchel-Young
loss framework (Blondel et al., 2018; 2019), in the sense
that it relies on topological duality between C(Y) and
M+

1 (Y), instead of the Hilbertian structure of Rd and 4d,
to construct the loss `Ω and link function ∇Ω?. We now
instantiate the Fenchel-Young loss (6) with Sinkhorn ne-
gentropies in order to obtain a novel cost-sensitive loss.

3.4. A new geometrical loss and softmax

The key ingredients to derive a Fenchel-Young loss `Ω and
a link∇Ω? are the conjugate Ω? and its gradient. Remark-
ably, they enjoy a simple form with Sinkhorn negentropies,
as shown in the following proposition.

Proposition 2 (Conjugate of the Sinkhorn negentropy).
For all f ∈ C(Y), the Legendre-Fenchel conjugate Ω? of
Ω defined in (3) and its gradient read

g-LSE(f) , Ω?(f) = − log min
α∈M+

1 (Y)
Φ(α, f)

g-softmax(f) , ∇Ω?(f) = argmin
α∈M+

1 (Y)

Φ(α, f)

where Φ(α, f) , 〈α⊗ α, exp(−f ⊕ f + C

2
)〉

and where g stands for geometric and LSE for log-sum-exp.

The proof can be found in §A.2. ∇Ω?(f) is the usual
Fréchet derivative of Ω?, that lies a priori in the topolog-
ical dual space of C(Y), i.e. M(Y). From a Danskin theo-
rem (Bernhard & Rapaport, 1995), it is in fact a probability
measure. The probability distribution α = ∇Ω?(f) is typ-
ically sparse, as the minimizer of a quadratic on a convex
subspace of M(Y). We call the loss `Ω generated by the
Sinkhorn negentropy g-logistic loss.

Special cases. Let Y = [d] and C = 1 − Id×d (0-1 cost
matrix). From Prop. 1, Ω asymptotically recovers the nega-
tive Shannon entropy when Ω = ΩC

ε
as ε→ 0 and the neg-

ative Gini index when Ω = εΩC
ε

, as ε → ∞. ∇Ω∗ is then

equal to softmax(f) , exp f∑
i exp fi

, and to sparsemax(f) ,

argminα∈4d ‖α − f‖2 (Martins & Astudillo, 2016), re-
spectively. Likewise, `Ω recovers the logistic and sparse-
max losses. When ε → 0, because (Cε )y,y′ = ∞ if y 6= y′

and 0 otherwise, we see that the logistic loss infinitely pe-
nalizes inter-class errors. That is, to obtain zero logistic
loss, the model must assign probability 1 to the correct
class. The limit case ε → 0 is the only case for which g-
softmax always outputs completely dense distributions. In
the continuous case, εΩ?C/ε(f/ε) degenerates into a posi-
tive deconvolution objective with simplex constraint:

max
α∈M+

1 (Y)
〈α, f〉 − 1

2
〈α⊗ α,−C〉.

Fig. 1 shows that∇Ω? has indeed a deconvolutional effect.

3.5. Computation

Before studying the g-logistic loss `Ω and link function
∇Ω?(f), we now describe practical algorithms for com-
puting ∇Ω?(f) and Ω?(f) in the discrete and continuous
cases. The key element in using the g-LSE as a layer in
an arbitrary complex model is to minimize the quadratic
function Φf , Φ(·, f), onM+

1 (Y). We can then use the
minimum value in the forward pass, and the minimizer in
the backward pass, during e.g. SGD training.

Continuous optimisation. In the general case whereY is
compact, we cannot represent α ∈ M+

1 (Y) using a finite
vector. Yet, we can use a Frank-Wolfe scheme to progres-
sively add spikes, i.e. Diracs to an iterate sequence αt. For
this, we need to compute, at each iteration, the gradient of
Φf in the sense of measure (5), i.e. the function in C(Y)

∇Φf (α) = exp(−f + T (−f, α)

2
),

that simply requires to compute the C-transform of −f on
the measure α, similarly to regularized optimal transport.
The simplest Frank-Wolfe scheme then updates

yt ∈ argmin
Y
∇Φf (αt−1), αt = αt−1+

2

t+ 2
(δyt−αt−1).

Indeed, for h ∈ C(Y), the minimizer of 〈h, ·〉 onM+
1 (Y)

is the Dirac δy where y ∈ Y minimizes h. This optimiza-
tion scheme may be refined to ensure a geometric conver-
gence of Φf (αt). It can be used to identify Diracs from a
continuous distance field f , similar to super-resolution ap-
proaches proposed in Bredies & Pikkarainen (2013); Boyd
et al. (2017). It requires to work with computer-friendly
representation of f , so that we can obtain an approxima-
tion of yt efficiently, using e.g. non-convex optimization.
Another approach is to rely on a deep parametrization of
a particle swarm, as proposed by Boyd et al. (2018). We
leave such an application for future work, and focus on an
efficient discrete solver for the g-LSE and g-softmax.
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Figure 2. Left: Geometric softmax and Sinkhorn entropy, for symmetric cost matrices, in the binary case. Predictions from the g-softmax
are sparse, as the minimizer of a convex quadratic on the simplex. Right: Level sets of the geometric conjugate. Introducing a cost matrix
induces a deformation 42, the level-set of the log-sum-exp operator, onto the set of symmetric Sinkhorn potentials F . The geometric
conjugate defines an extrapolation operator f → fE that replaces the score function onto the cylinder F + R1.

Discrete optimisation. In the discrete case, we can
parametrize log Φ(f, ·) in logarithmic space, by setting
α = exp(l)− LSE(l), with l ∈ Rd. Ω?(f) then reads

max
l∈Rd
− log

d∑

i,j=1

eli+lj−
fi+fj+ci,j

2 + 2LSE(l). (7)

This objective is non-convex on Rd but invariant with trans-
lation and convex on {h ∈ Rd,LSE(l) = 0}. It thus admits
a unique solution, that we can find using an unconstrained
quasi-Newton solver like L-BFGS (Liu & Nocedal, 1989),
that we stop when the iterates are sufficiently stable. For
l that maximizes (7), the gradient ∇Ω?(f) = softmax(l)
is used for backpropagation and at test time. As ∇Ω?(f)
is sparse, we expect some coordinates li to go to −∞. In
practice, αi then underflows to 0 after a few iterations.

Two-dimensional convolution. In the discrete case,
when dealing with two-dimensional potentials and mea-
sures, the objective function (7) can be written with a
convolution operator, as − log〈el− f

2 , e−
C
2 ? el−

f
2 〉 where

C ∈ R(h×w)2 . It is therefore efficiently computable and
differentiable on GPUs, especially when the kernel C is
separable in height and width, e.g. for the `22 norm, in
which case we perform 2 successive one-dimensional con-
volutions. We use this computational trick in our varia-
tional auto-encoder experiments (§5).

4. Geometric and statistical properties
We start by studying the mirror map∇Ω?, that we expect to
invert the mapping α→ ∇Ω(α). This study is necessary as
we cannot rely on typical conjugate inversion results (e.g.,
Rockafellar, 1970, Theorem 26.5), that would stipulate that
∇Ω? = (∇Ω)−1 on the domain of Ω?. Indeed, this result
is stated in finite dimension, and requires that Ω and Ω?

be Legendre, i.e. be strictly convex and differentiable on
their domain of definition, and have diverging derivative
on the boundaries of these domains (see also Wainwright
& Jordan, 2008). This is not the case of the Sinkhorn ne-

gentropy, which requires novel adjustements. With these
at hands, we show that parametric models involving a final
g-softmax layer can be trained to minimize a certain well-
behaved Bregman divergence on the space of probability
measures. Proofs are reported in §A.3 and §A.4

4.1. Geometry of the link function

We have constructed the link function ∇Ω? in hope that
it would allow to go from a symmetric Sinkhorn potential
f = ∇Ω(α) back to the original measure α. The following
lemma states that this is indeed the case, and derives two
consequences on the space of symmetric Sinkhorn poten-
tials, defined as F , {f ∈ C(Y), f = ∇Ω(α)}.
Lemma 1 (Inversion of the Sinkhorn potentials).

∀α ∈M+
1 (Y), ∇Ω? ◦ ∇Ω(α) = α.

∀ f ∈ F , ∇Ω ◦ ∇Ω?(f) = f, Ω?(f) = 0.

The computation of the Sinkhorn potential thus inverts the
g-LSE operator on the space F , which is included in the
0-level set of Ω?. This is similar to the set FShannon =
{logα, α ∈ 4d} being the 0 level set of the log-sum-exp
function when using the Shannon negentropy as Ω.

This corollary is not sufficient for our purpose, as we want
to characterize the action of ∇Ω? on all continuous func-
tions f ∈ C(Y). For this, note that the g-LSE operator Ω?

has the same behavior as the log-sum-exp when composed
with the addition of a constant c ∈ R:

Ω?(f + c) = Ω?(f) + c, ∇Ω?(f + c) = ∇Ω?(f). (8)

Therefore, for all f ∈ C(Y), Ω?(f − Ω?(f)) = 0, which
almost makes f−Ω?(f) a part of the space of potentialsF .
Yet, in contrast with the Shannon entropy case, the inclu-
sion of (Ω?)−1(0) in F is strict. Indeed, following §3.2
f ∈ F implies that there exists α ∈ M+

1 (Y) such that
f = −T (−f, α) is the image of the C-transform opera-
tor. The operator∇Ω◦∇Ω? has therefore an extrapolation
effect, as it replaces f − Ω?(f) onto the set of Sinhorn po-
tentials. This is made clear by the following proposition.
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Proposition 3 (Extrapolation effect of∇Ω◦∇Ω?). For all
f ∈ C(Y), we define the extrapolation of f to be

fE , −T
(
− (f − Ω?(f)),∇Ω?(f)

)
+ Ω?(f).

Then, for all f ∈ C(Y),∇Ω ◦ ∇Ω?(f) = fE − Ω?(f).

The extrapolation operator translates f to (Ω?)−1(0), ex-
trapolates f − Ω?(f) so that it becomes a Sinkhorn po-
tential, then translates back the result so that Ω?(fE) =
Ω?(f). Its effects clearly appears on Figure 2 (right), where
we see that fE is a projection of f onto the cylinder F+R.

4.2. Relation to Hausdorff divergence

Recall that the Bregman divergence (Bregman, 1967) gen-
erated by a strictly convex Ω is defined as

DΩ(α, β) , Ω(α)− Ω(β)− 〈∇Ω(f), α− β).

When Ω is the classical negative Shannon entropy Ω(α) =
〈α, logα〉, it is well-known that DΩ equals the Kullback-
Leibler divergence and it is easy to check that

`Ω(α, f) = DΩ(α,∇Ω?(f)) = KL(α, softmax(f)).

The equivalence between Fenchel-Young loss `Ω(α, f) and
composite Bregman divergenceDΩ(α,∇Ω?(f)), however,
no longer holds true when Ω is the Sinkhorn negentropy de-
fined in (3). In that case,DΩ can be interpreted as an asym-
metric Hausdorff divergence (Aspert et al., 2002; Feydy
et al., 2019). It forms a geometric divergence akin to OT
distances, and estimates the distance between distribution
supports. As we now show, `Ω provides an upper-bound on
the composition of that divergence with∇Ω?.
Proposition 4 (`Ω upper-bounds Hausdorff divergence).

DΩ(α,∇Ω?(f)) = `Ω(α, fE)

= `Ω(α, f)− 〈α, fE − f〉 ≤ `Ω(α, f)

with equality if supp∇Ω?(f) = suppα.

In contrast with the KL divergence, the asymmetric Haus-
dorff divergence is finite even when suppα 6= suppβ, a
geometrical property that it shares with optimal transport
divergences. We now use Prop. 4 to derive a new con-
sistency result justifying our loss. Let us assume that in-
put features and output distributions follow a distribution
D ∈ M+

1 (X ×M+
1 (Y)). We define the Hausdorff diver-

gence risk and the Fenchel-Young loss risk as

E(β) , E[DΩ(α, β(x))] and R(g) , E[`Ω(α, g(x))],

where the expectation is taken w.r.t. (x, α) ∼ D. We define
their associated Bayes estimators as

β? , argmin
β : X→M+

1 (Y)

E(β) and g? , argmin
g : X→C(Y)

R(g).

The next proposition guarantees calibration of `Ω with re-
spect to the asymmetric Hausdorff divergence DΩ.

Proposition 5 (Calibration of the g-logistic loss). The g-
logistic loss `Ω where Ω is defined in (3) is Fisher consistent
with the Hausdorff divergence DΩ for the same Ω. That is,

E(β?) = R(g?), with g? = ∇Ω ◦ β?.

The excess of risk in the Hausdorff divergence is controlled
by the excess of risk in the g-logistic loss. For all g : X →
C(Y), we have

E(∇Ω? ◦ g)− E(β?) ≤ R(g)−R(g?).

This result, that follows the terminology of Tewari &
Bartlett (2005), shows that `Ω is suitable for learning pre-
dictors that minimize DΩ.

5. Applications
We present two experiments that demonstrate the validity
and usability of the geometric softmax in practical use-
cases. We provide a PyTorch package for reusing the dis-
crete geometric softmax layer1.

5.1. Ordinal regression

We first demonstrate the g-softmax for ordinal regression.
In this setting, we wish to predict an ordered category
among d categories, and we assume that the cost of pre-
dicting ŷ instead of y is symmetric and depends on the
difference between ŷ and y. For instance, when predict-
ing ratings, we may have three categories bad ≺ aver-
age ≺ good. This is typically modeled by a cost-function
C(ŷ, y) = φ(|ŷ − y|), where φ is the `22 or `1 cost. We use
the real-world ordinal datasets provided by Gutierrez et al.
(2016), using their predefined 30 cross-validation folds.

Experiment and results. We study the performance of
the geometric softmax in this discrete setting, where the
score function is assumed to be a linear function of the in-
put features x ∈ Rk, i.e, gW,b(x) = Wx + b, with b ∈ Rd,
x ∈ Rk and W ∈ Rd×k. We compare its performance
to multinomial regression, and to immediate threshold and
all-threshold logistic regression (Rennie & Srebro, 2005),
using a reference implementation provided by Pedregosa
et al. (2017). We use a cross-validated `2 penalty term on
the linear score model gθ. To compute the Hausdorff diver-
gence at test time and the geometric loss during training,
we set C(ŷ, y) = (ŷ − y)2/2.

The results, aggregated over datasets and cross-validation
folds, are reported in Table 1. We observe that the g-logistic
regression performs better than the others for the Haus-
dorff divergence on average. It performs slightly worse
than a simple logistic regression in term of accuracy, but

1github.com/arthurmensch/g-softmax

github.com/arthurmensch/g-softmax
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Table 1. Performance of geometric loss as a drop-in replacement
in linear models for ordinal regression. Our method performs bet-
ter w.r.t. its natural metric, the Hausdorff divergence.

LR LR(AT) LR(IT) g-logistic

Haus. div. .46±.12 .47±.14 .59±.16 .44±.08
MAE .44±.09 .42±.06 .44±.08 .45±.09
Acc. .66±.07 .65±.06 .65±.06 .65±.07

slightly better in term of mean absolute error (MAE, the
reference metric in ordinal regression). It thus provides
a viable alternative to thresholding techniques, that per-
forms worse in accuracy but better in MAE. It has the fur-
ther advantage of naturally providing a distribution of out-
put given an input x. We simply have, for all y ∈ [d],
p(Y = y|X = x) = (g-softmax(gW,b(x)))y .

Calibration of the geometric loss. We validate Prop. 5
experimentally on the ordinal regression dataset car. Dur-
ing training, we measure the geometric cross-entropy loss
and the Hausdorff divergence on the train and validation
set. Figure 3 shows that `Ω is indeed an upper bound of
DΩ, and that the difference between both terms reduces to
almost 0 on the train set. Prop. 5 ensures this finding pro-
vided that the set of scoring function is large enough, which
appears to be approximately the case here.

Figure 3. Training curves for
ordinal regression on dataset
car. The difference between
the g-logistic loss and the
Hausdorff divergence van-
ishes on the train set.

5.2. Drawing generation with variational auto-encoders

The proposed geometric loss and softmax are suitable to
estimate distributions from inputs. As a proof-of-concept
experiment, we therefore focus on a setting in which distri-
butional output is natural: generation of hand-drawn doo-
dles and digits, using the Google QuickDraw (Ha & Eck,
2018) and MNIST dataset. We train variational autoen-
coders on these datasets using, as output layers, (1) the KL
divergence with normalized output and (2) our geometric
loss with normalized output. These approaches output an
image prediction using a softmax/g-softmax over all pixels,
which is justified when we seek to output a concentrated
distributional output. This is the case for doodles and dig-
its, which can be seen as 1D distributions in a 2D space. It
differs from the more common approach that uses a binary
cross-entropy loss for every pixel and enables to capture in-
teractions between pixels at the feature extraction level. We
use standard KL penalty on the latent space distribution.

Using the g-softmax takes into account a cost between pix-
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Figure 4. The g-softmax layer permits to generate and reconstruct
drawing in a more concentrated manner. For a same level of
variational penalty, the g-softmax better and faster minimizes the
asymmetric Hausdorff divergence. See also Figure 6.

els (i, j) and (k, l), that we set to be the Euclidean cost
C/σ, where C is the `22 cost and σ is the typical distance
of interaction—we choose σ = 2 in our experiments. We
therefore made the hypothesis that it would help in re-
constructing the input distributions, forming a non-linear
layer that captures interaction between inputs in a non-
parametric way.

Results. We fit a simple MLP VAE on 28x28 images
from the QuickDraw Cat dataset. Experimental details are
reported in Appendix B (see Figure 6). We also present an
experiment with 64x64 images and a DCGAN architecture,
as well as visualization of a VAE fitted on MNIST. In Fig-
ure 4, we compare the reconstruction and the samples after
training our model with the g-softmax and simple softmax
loss. Using the g-softmax, which has a deconvolutional
effect, yields images that are concentrated near the edges
we want to reconstruct. We compare the training curves
for both the softmax and g-softmax version: using the g-
softmax link function and its associated loss better mini-
mizes the asymmetric Hausdorff divergence. The cost of
computation is again increased by a factor 10.

6. Conclusion
We introduced a principled way of learning distributional
predictors in potentially continuous output spaces, taking
into account a cost function in between inputs. We con-
structed a geometric softmax layer, that we derived from
Fenchel conjugation theory in Banach spaces. The key to
our construction is an entropy function derived from regu-
larized optimal transport, convex and weak? continuous on
probability measures. Beyond the experiments in discrete
measure spaces that we presented, our framework opens
the doors for new applications that are intrinsically off-the-
grid, such as super-resolution.
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Appendix

A. Proofs
We prove propositions by order of appearance in the main text.

A.1. Asymptotics of the Sinkhorn negentropy—Proof of Prop. 1

Proof. We start by showing the Shannon entropy limit of the Sinkhorn entropy, in the discrete case. In this
case, we use the standard Kantorovich dual (Cuturi, 2013). Let ε > 0, α ∈ 4d, and

Ω(α) , ΩC/ε(α) = −max
f∈Rd
〈α, f〉 − 〈α⊗ α, exp(

f ⊕ f − C
2

)〉+ 1. (9)

For all f ∈ Rd

Ψα(f) , 〈α, f〉 − 〈α⊗α, exp(
f ⊕ f − C/ε

2
) + 1〉 =

d∑

i=1

fiαi −
d∑

i,j=1

αiαj exp(
fi + fj − ci,j/ε

2
) + 1.

For f optimal in (9), letting ε→ 0, we have, using element-wise multiplication ∗,

∇Ψα(f) = α− α2 ∗ ef = 0 i.e. efi =
1

αi
for all i ∈ [d].

Replacing in (9), we obtain

Ω(α) = 〈α, logα〉+

d∑

i=1

αi − 1 = 〈α, logα〉.

Let us now consider the limit for ε→∞ of ΩC/ε(α), for an arbitrary symmetric cost matrix C. We rewrite

ΩC/ε(α) = max
f∈C(Y)

2〈α, f
2
〉 − ε〈α⊗ α, e

f⊕f
2
−C

ε 〉 = OTε(α, α).

The asymptotic behavior of εΩC/ε(α), namely

εΩC/ε(α)
ε→+∞−→ 1

2
〈α⊗ α,−C〉,

is then a simple consequence of the asymptotics of Sinkhorn OT distances (Genevay et al., 2018), that we
apply in the symmetric case. In the discrete setting, the result for ε→∞ becomes, if C = 1− Id×d,

1

2
〈α⊗ α, Id×d − 1〉 =

1

2

d∑

i=1

α2
i − 1,

as 〈α⊗ α, 1〉 = 1, which concludes the proof.
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A.2. Construction of the geometric softmax—Proof of Prop. 2

Proof. We can rewrite the self transport with the change of variable µ = αe
f
2 ∈ M+(Y), due to Feydy &

Trouvé (2019). We then have f
2 = − log dα

dµ , and

Ω(α) , −1

2
OT2(α, α) = − max

f∈C(Y)
〈α, f〉 − log〈α⊗ α, exp(f ⊕ f − C)

2
〉

= − max
µ∈M+(Y)

−2〈α, log
dα
dµ
〉 − log ‖µ‖2k2 ,

where ‖µ‖k2 ,
∫

X

∫

X
exp(

−C(x, y)

2
)dµ(x)dµ(y)

is the kernel norm defined with kernel k2 , e−
C
2 . Then, the conjugate of Ω(α) reads, for all f ∈ C(Y),

Ω?(f) = max
α∈M+

1 (Y)
〈α, f〉 − Ω(α)

= max
α∈M+

1 (Y)

µ∈M+(Y)

〈α, f〉 − 2〈α, log
dα
dµ
〉 − log ‖µ‖2k2

= max
µ∈M+(Y)

log

∫∫
X 2 exp (f(x)+f(y)

2 )dµ(x)dµ(y)
∫∫
X 2 exp(−C(x,y)

2 )dµ(x)dµ(y)
,

where we have used the conjugation of the relative entropy over the space of probability measureM+
1 (Y):

max
α∈M+

1 (Y)
〈α, f〉 − 2〈α, log

dα
dµ
〉 = 2 log

∫

X
exp(

f(x)

2
)dµ(x).

We now revert the first change of variable, setting β = µe
f
2 ∈M+(Y), and α = β∫

X dν ∈M
+
1 (Y). We have

Ω?(f) = max
α∈M+

1 (Y)
− log

∫∫

X 2

exp(−f(x) + f(y) + C(x, y)

2
)dα(x)dα(y),

and the first part of the proposition follows:

g-LSE(f) = Ω?(f) = − min
α∈M+

1 (Y)
〈α⊗ α, exp(−f ⊕ f + C

2
)〉.

We have assumed that exp(−C2 ) is positive definite, which ensures that the bivariate function

Φ(f, α) , 〈α⊗ α, exp(−f ⊕ f + C

2
)〉 (10)

is strictly convex in α and in f . Let α? , argminα∈M+
1 (Y) Φ(f, α). The gradient of Φ with respect to f is

a measure that reads

∇fΦ(f, α) = −α exp(−f − TC(−f, α)) ∈M(Y), where we recall

TC(f, α) , −2 log〈α, exp(
f − C

2
)〉.

From a generalized version of the Danskin theorem (Bernhard & Rapaport, 1995), the function

f → argmin
α∈M+

1 (Y)

〈α⊗ α, exp(−f ⊕ f + C

2
)〉
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is differentiable everywhere and has for gradient∇fΦ(f, α?). Composing with the log, we obtain

∇Ω?(f) ∈M+
1 (Y), and ∇Ω?(f) ∝ α? exp(−f − TC(−f, α?)),

where∝ indicates proportionality. To conclude, we use Lemma 2, that describes the minimizers of (10), and
that we prove in the next section. It ensures that −f − TC(−f, α?) = 0 on the support of α?. Therefore

∇Ω?(f) = α? ∈M+
1 (Y),

and the proposition follows.

A.3. Geometry of the link function—Proofs of Lemma 1 and Prop. 3

We first state and proof Lemma 2 on optimality condition in the minimization of α → Φ(α, f). We then
prove Lemma 1, establish some basic properties of the extrapolation operator and prove Prop. 3.

A.3.1. NECESSARY AND SUFFICIENT CONDITION OF OPTIMALITY IN ∇Ω?(f)

Finding the minimizer α of α → Φ(α, f) amounts to finding the distribution for which −f and its C-
transform T (−f, α) are the less distant, as it appears in the following lemma.

Lemma 2 (∇Ω? from first order optimality condition). ∇Ω?(f) is the only distribution α ∈ M+
1 (Y) such

that there exists a constant A ∈ R such that

f(y) + T (−f, α)(y)

2
= A ∀ y ∈ suppα

f(y) + T (−f, α)(y)

2
≤ A ∀ y ∈ Y/ suppα,

(11)

We then have A = 2Ω?(f). (11) form sufficient optimality conditions for finding∇Ω?(f) = α.

Proof. We use an infinite version of the KKT condition (Luenberger, 1997, Section 9) to solve the optimality
of φ, as defined in (10). We fix f ∈ C(Y). The Lagrangian associated to the minimization of α → φ(f, α)
over the space of probability measureM(X ) reads

L(α, µ, ν) , Φ(f, α) + 〈α, µ〉+ ν(〈α, 1〉 − 1).

A necessary and sufficient condition for α? to be optimal is the existence of a function µ ∈ C(Y) and a real
ν ∈ R such that,

α? ∈M+
1 (Y) (primal feasibility),

∀ y ∈ Y, −∇αΦ(f, α?)(y) = µ(y) + ν (stationarity),
∀ y ∈ Y, µ(y) ≤ 0 (dual feasibility),

∀ y ∈ supp(α?), µ(y) = 0 (complementary slackness),

where the derivative∇αΦ(f, α?) is the displacement derivative (5), computed as

∇αΦ(f, α?)(y) = 2 exp(−f + T (−f, α)

2
).

Therefore

f + T (−f, α?)
2

= − log(−ν
2

) on the support of α?, and

f + T (−f, α?)
2

= − log(−µ(y) + ν

2
) ≤ − log(−ν

2
) otherwise. (12)

Replacing in the definition Ω?(f) = − log Φ(f, α?), and using the equality

Φ(f, α) = 〈α, exp(−f + T (−f, α)

2
)〉
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we obtain
− log(−ν

2
) = Ω?(f),

and the first part of the lemma follows. Then, note that T (f + c, α) = T (f, α)− c for all c ∈ R, f ∈ C(Y),
α ∈M+

1 (Y). Removing Ω?(f) from both side of inequality (12), we obtain

f − Ω?(f) + T
(
− (f − Ω?(f)),∇Ω?(f)

)
≤ 0,

with equality on the support of∇Ω?(f), which brings the second part of the lemma.

A.3.2. PROOF OF LEMMA 1

Proof. Let α ∈M+
1 (Y) and f , ∇Ω(α). From the optimality condition of Sinkhorn dual minimization (4),

T (−f, α) = −f,

hence, α meets the sufficient conditions for optimality in Lemma 2. Therefore ∇Ω?(f) = α, Ω?(f) = 0,
and the first part of the lemma follows. To demonstrate the second part, we consider f ∈ F . There exists
α ∈M+

1 (Y) such that f = ∇Ω(α), and thus

∇Ω ◦ ∇Ω?(f) = ∇Ω ◦ ∇Ω? ◦ Ω(α) = ∇Ω(α) = f.

The lemma follows.

A.3.3. EXTRAPOLATION EFFECT OF ∇Ω?—PROOF OF PROP. 3

We start by establishing some basic properties of the extrapolation operator.

Lemma 3 (Properties of fE). The following properties hold, for all f ∈ C(Y),

i. The extrapolated potential fE verifies

f ≤ fE , f| supp∇Ω?(f) = fE| supp∇Ω?(f).

ii. The extrapolation operator maintain the following values:

fEE = fE , Ω?(fE) = Ω?(f), ∇Ω?(fE) = ∇Ω?(f).

Proof. We demonstrate (i), then (ii).

i. Note that T (f + c, α) = T (f, α)− c for all c ∈ R, f ∈ C(Y), α ∈ M+
1 (Y). Removing Ω?(f) from both

side of inequality (12), we obtain

f − Ω?(f) + T
(
− (f − Ω?(f)),∇Ω?(f)

)
≤ 0,

with equality on the support of∇Ω?(f).

ii. We set α = ∇Ω?(f). According to Lemma 2, for all y ∈ suppα, fE(y) = f(y) and

fE(y) + T (−fE , α)(y)

2
= 2Ω?(f).

Furthermore, for all y ∈ Y , −fE(y) ≤ −f(y), and therefore, as the soft C-transform operator is non-
increasing with respect to f ,

2Ω?(f)− fE = T (−f,∇Ω?(f)) ≤ T (−fE ,∇Ω?(f)),

where the left equality stems from the definition of fE . Therefore

fE(y) + T (−fE , η)(y)

2
≤ 2Ω?(f),
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on all Y , and we meet the sufficient condition of Lemma 2 for the optimality of η in

min
α∈M+

1 (Y)
Φ(fE , α).

We thus have Ω?(fE) = Ω?(f),∇Ω?(f) = ∇Ω?(fE). Therefore

fEE = −T (−fE ,∇Ω?(fE)) + 2Ω?(fE)

= −T (−fE ,∇Ω?(f)) + 2Ω?(f)

= −T (−f,∇Ω?(f)) + 2Ω?(f) = fE ,

where we have used on the third line the fact that the value of T (f, α) depends only on the values of f on the
support of α. In our case, we have fE| supp∇Ω?(f) = f| supp∇Ω?(f), from Lemma 2. The lemma follows.

With Lemma 1 and Lemma 3 at hand, we are now ready to prove Prop. 3.

Proof. We consider a function f ∈ C(Y). By construction of the extrapolation fE ,

g = fE −∇Ω?(f)

is a negative symmetric Sinkhorn potentials, as T (−g,∇Ω?(f)) = −g. Therefore, from Lemma 1,

∇Ω ◦ ∇Ω?(g) = g

∇Ω ◦ ∇Ω?(fE) = fE −∇Ω?(f)

∇Ω ◦ ∇Ω?(f) = fE −∇Ω?(f),

where the third equality stems from Lemma 3, property (ii), and the second from (8).

A.4. Relation to Hausdorff divergence—Proofs of Prop. 4 and Prop. 5

We now turn to proving Prop. 4 and Prop. 5, that justifies the validity of the geometric logistic loss for a
certain Bregman divergence, dubbed the asymmetric Hausdorff divergence.

A.4.1. PROOF OF PROP. 4

Proof. Let α ∈ M+
1 (Y) and f ∈ C(Y). By definition, the Hausdorff divergence H = DΩ between α and

∇Ω?(f) rewrites

DΩ(α|∇Ω?(f)) = Ω(α)− Ω(∇Ω?(f))− 〈∇Ω ◦ ∇Ω?(f), α− Ω?(fE)〉
= Ω(α) + 〈f,∇Ω?(f)〉 − Ω(∇Ω?(f))− 〈f, α〉+ 〈f −∇Ω ◦ ∇Ω?(f), α−∇Ω?(f)〉
= `Ω(α, f) + 〈f −∇Ω ◦ ∇Ω?(f), α−∇Ω?(f)〉.

This decomposition is a generic way of decomposing a Bregman divergence into a Fenchel-Young loss plus a
perturbation term that depends on the “projection”∇Ω ◦∇Ω?(f). In our case, thanks to Lemma 3, property
(iv), this term rewrites

〈f −∇Ω ◦ ∇Ω?(f), α−∇Ω?(f)〉 = 〈f − fE , α〉+ 〈f − fE ,∇Ω?(f)〉+ Ω?(f)〈1, α−∇Ω?(f)〉.

The second term is null as a consequence of Lemma 3, while the third is null because α and ∇Ω?(f) are
both probability measures. The first one is null in case supp∇Ω?(f) ∈ suppα, in accordance to Lemma 3,
property (i). The proposition follows from the fact that fE ≥ f on the space Y , according to the same
property.
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A.4.2. PROOF OF PROP. 5

Proof. As a consequence of Prop. 4, for any true and estimated distribution α, α̂ ∈M+
1 (Y), we have

DΩ(α|α̂) = DΩ(α|∇Ω?(∇Ω(α))) = `Ω(α,∇Ω(α))− 〈α, (∇Ω(α))
E −∇Ω(α)〉,

where the last term is null as T (−∇Ω(α), α) = −∇Ω(α) and Ω?(∇Ω(α)) = 0 from Lemma 1. Therefore

DΩ(α|α̂) = `Ω(α,∇Ω(α)).

The equality of risks and the connection between minimizers immediately follows. To establish the Fisher
consistency of the g-FY loss with respect to the Hausdorff divergence, note that, from Prop. 4, we have, for
all f̂ : X → C(Y), for all x ∈ X , α ∈M+

1 (Y),

DΩ(α|∇Ω?(f̂(x)) ≤ `Ω(α, f̂(x)).

Taking the expectation with respect to the data distribution D, we obtain

E(∇Ω? ◦ f̂) ≤ R(f̂),

and the proposition follows.

B. Further experiments and details
B.1. Variational auto-encoders

High definition experiment. As a complementary experiment, we generate a dataset of cat doodles from
the Google QuickDraw dataset, with a line width of one pixel. We test the g-softmax link function and the
geometric Fenchel-Young loss functions to train a VAE with a DC-GAN architecure (Radford et al., 2016).
We reuse the architecture of the authors, using the discriminator as an encoder, with a final layer with a
size of output twice the size of the latent dimension, to model the mean and variance of the latent encoding,
and the generator as a decoder. Similarly to the experiment in the main text, we observe that the generated
samples and the reconstructions are more concentrated on thin measures.

MNIST. We display a visualization of generates images and reconstruction of test image in Figure 5. The
output distributions are well concentrated, despite the low resolution of the dataset.

Architecture Our multi-layer perceptron is simple: encoder and decoder are two layer MLP with 400
hidden units and ReLU activation.

Hyperparameters. We use a latent size of 100 in the experiment on QuickDraw 28x28, and 256 for the
high resolution experiment. We set the KL weight to 1, and rescale the KL loss with a factor h×w, to make
its gradient of the same order as the one computed with separated binary cross entropy. We use σ = 2 as the
scaling parameter of the Euclidean cost function.
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Figure 5. Examples of generated images and reconstruction of test images with an MLP VAE on MNIST dataset.

softmax g-softmax

Reconstruction

Generation

Figure 6. Examples of generated images and reconstruction of test images with a VAE-DC-GAN and a geometric soft-
max last layer. The generated images are sharper than when using a standard softmax layer and a KL divergence training.


