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Materials and Methods

Materials

The polymers used to fabricate the fibrous membranes are Poly(vinylidene fluoride-co-
hexafluoropropylene) (PVDF-HFP, Solvay), Polyacrylonitrile (PAN, M.W. 150,000, Sigma
Aldrich), Polycaprolactone (PCL, M.W. 80,000, Sigma Aldrich) and Polyvinylpyrrolidone
(PVP, M.W. 1,300,000, Acros Organic). The solvents are n,n-dimethylformamide (DMF,
Carlo Erba Reagents) and ethanol (absolute, Sigma Aldrich). The concentration of poly-
mer of each polymer/solvent solution is 10% weight. The liquids used to wick the fi-
brous membranes are deionized water, glycerol (Sigma Aldrich), ethanol (absolute, Sigma
Aldrich) and silicone oils (Sigma Aldrich). A summary of the constituents is provided
in Table S1. Surface tensions of liquids are characterized using a Krüss K6 manual ten-
siometer (hanging ring). Erioglaucine disodium salt (Sigma Aldrich) is used to dye the
fibrous membrane (dissolution of the coloring agent in the polymer/solvent solution prior
to electrospinning) and deionized water for colorimetry purposes. 1 mm-wide gold strips
are obtained by manually cutting 100 nm-thick edible gold leaves (purchased from Alice
Delice) using a surgical blade.

Fibrous membrane preparation

The fibrous membranes are obtained using an electrospinning apparatus ES-1A (Electro-
spinz Ltd.) following these steps:

1. A polymer is dissolved in a solvent (the polymers and corresponding solvents that
are used in this work are presented in Table S1).

2. The solution is injected through an electrically charged blunt needle (diameter of the
needle: 1 mm, injection rate: 0.02 ml/min, applied voltage: between 10 and 15 kV).
The outgoing droplet is destabilized through the formation of a Taylor cone which is
ejected as a liquid rod towards an electrically earthed plane target (distance between
the tip of the needle and the target: 17cm). As it travels towards the target, the
solvent evaporates from the liquid rod which therefore quickly undergoes a swirling
instability which randomly deviates it.

3. The resulting fibrous mat (made of the addition of solid fibers continuously spun) is
recovered from the target, which was previously covered with anti-adhesive cooking
paper (purchased from Monoprix S.A.) to avoid sticking.

Once the membrane is attached to the mobile supports (Thorlabs translational elements
or laser cut PMMA assembly of eight translational supports), it is wicked by a wetting
liquid (see Table S1) using a Terumo 10-ml syringe or a spray. Upon compression, the
surface reservoirs are formed through the wrinkling and folding of the membrane under
the capillary forces.

2



Thickness characterization of the wicking liquid film

For the study the wrinkling wavelength � as a function of the liquid thickness h, a col-
orimetry tool is used to characterize the liquid film thickness. The membrane is wicked
by a dyed liquid (water, dyed blue) and a photograph of the wicked membrane is taken
next to a calibration wedge containing the same dyed liquid with a D810 Nikon camera.
Comparing the photograph’s local gray value on the membrane and the thickness versus
the gray value curve (see figure S1), we locally estimate the thickness of the liquid film.
Image analysis is performed using the image processing package ImageJ (distribution:
Fiji).

Wavelength measurement

The wrinkling wavelength � is measured when the wicked membrane is slightly com-
pressed. The membrane is illuminated from the side in order to enhance the wrinkles’
contrast and a photograph is taken with a D810 Nikon Camera. For each liquid film
thickness (di↵erent amount of wicked liquid), a set of four wavelength measurements is
performed. The coloring agent (erioglaucine disodium salt) does not change the water
surface tension significantly. A typical photograph allowing the wavelength measurement
is presented in figure S2.

Force measurement and fatigue characterization

The force-versus-displacement curve of the planar wicked membrane is performed us-
ing a cantilever beam method on a silicone oil-wicked PVDF-HFP fibrous membrane.
The cantilever beam’s mechanical response was calibrated using weights (weighed with a
Mettler-Toledo MS 0.01 mg precision scale). The membrane is supported by two floating
rafts on a water bath to ensure frictionless translational supports. The presented exten-
sion/compression force measurement cycles are performed at around 1 mm/s but show
little sensitivity to displacement velocity (the same force-versus-displacement curve was
obtained for a twice-as-fast displacement speed).
The fatigue test was performed on a silicone oil wicked PVDF-HFP fibrous membrane
mounted on a crank rod system (presented in Figure S3) and the wicked membrane un-
derwent 3 extension-compression cycles per second. The compression/extension cycle
corresponds to an end to end distance X varying from X

min

= 2 mm to X
max

= 3.7 cm.
The membrane was re-wicked with silicone-oil every 20,000 cycles to avoid drying. Small
circular holes (hundreds of microns in diameter) appeared at around 60,000 cycles, slowly
growing up to 150,000 cycles. At this last point, the holes had a significant impact on
the mechanical behavior of the wicked membrane (see fig S4) and the membrane tore o↵
shortly after.
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Catenoid neck radius measurement

To study the equilibrium forms adopted by a wicked membrane in a cylindrical configu-
ration, a PAN membrane is attached on the edge of two laser cut PMMA rings (diameter
2R = 4 cm) with 3M double face tape. The membrane is wicked with deionized water
and the distance between the two rings is controlled using a Thorlabs 25 mm manual
translation stage. Throughout the compression/extension cycle, the shape adopted by
the wicked membrane is filmed with a Nikon D810 camera and image post-processing
(Python version 2.7.10) allows to measure the neck radii of the resulting catenoid for the
visited ring distances. Figure S5 shows a sequence of such compression/extension cycle
and makes it clear that the shape adjustments of the wicked membrane are mediated by
folds within the liquid film that act as surface reservoirs.

Wicked membrane bubble pressure measurement

To measure the pressure inside an inflated spherical wicked membrane (PAN fibrous mem-
brane wicked with deionized water), visualization of an adjacent ethanol filled tube is used.
The bubble is inflated with air using a PHD Ultra Syringe Pumps (Harvard apparatus) at
a rate of 6 ml/min. The air-entrance tube is connected to a U-shaped tube partially filled
with dyed ethanol with a T-junction. One end of the U-shaped tube is therefore pneumat-
ically linked to the bubble, while the other end is open (at atmospheric pressure). The
di↵erence in height �h of the two ethanol interfaces inside the U-shaped tube indicates
the pressure P inside the bubble, knowing its density ⇢ = 789 kg/m3 and earth acceler-
ation g = 9.81 m/s2 (P = ⇢g�h). The pressure P is normalized by P

max

= 4�/R
tube

,
which is the theoretical maximum pressure for a spherical bubble of surface tension �,
inflated out of cylindrical tube of radius R

tube

(R
tube

= 4.5 mm in our experiment). It is
to be mentioned that in contact with the PAN membrane, the surface tension of deionized
water drops from 72 to 53 mN/m.

Design of a basic stretchable electronic circuit on a wicked membrane

The resistance of the 1 mm-wide, 100 nm-thick gold strip was characterized directly
on a silicone oil-wicked PVDF-HFP membrane for di↵erent compression states of the
membrane. The setup and the resistance-measurements are presented in Figure S7. End-
to-end resistance of this path shows to slightly depend on the compression state of the
membrane as it decreases when the straight edges of the membrane are brought closer.
This behavior is probably due to self-contact of the gold strip when it folds within the
membrane reservoirs, thus shortening the e↵ective length of the gold strip, leading to a
resistance drop.
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Wrinkling wavelength theory

Here, we study the buckling of an elastic beam of total length L confined inside a liquid film
of thickness h. The potential energy of the system comprises two terms: the deformation
energy of the beam and the surface energy of the liquid/air interface. We impose an end-
shortening �L on the end-to-end distance of the system. The beam tries to accommodate
this imposed constraint by developing a shape with a long axial wavelength, the end-
shortening generating a transverse deflection of the beam. This deflection then induces
an important deformation of the liquid/air interface and hence raises the surface energy
of the interface. A trade-o↵ has to be found between elastic and surface energies, where
the total potential energy is minimum.

The present analysis is one dimensional and the energies presented here are considered
per unit of depth (in the z direction). As the thickness of the liquid film h is very small
compared to the total contour length L of the beam, boundary conditions at the ends of
the beam are not considered. The elastic deformation energy of the beam is written as

E
e

=
1

2
B

Z L��L

0

2(x) dx with (x) =
y00(x)

[1 + y02(x)]3/2
(1)

where B is the bending sti↵ness of the beam, y(x) is the elastic beam shape, and (x) is
the curvature of the beam, see figure S8. The surface energy of the liquid/air interface is
given by

E� = 2�

Z L��L

0

q
1 + y� 0

2(x) dx (2)

where y�(x) represents the lower liquid/air interface. The factor 2 in Eq. (2) arises from
the top/down symmetry, the upper and lower interfaces having the same lengths. The
total energy E

e

+E� of the system has to be minimized under the two following constraints.
First the total liquid volume V is conserved. Per unit depth we have V = hL, with

2

Z L��L

0

⇥
y(x)� y�(x)

⇤
dx = V (3)

where we only consider the liquid confined between the lower interface and the beam, the
factor 2 accounting for the upper half of the liquid. Second, as the beam is considered
inextensible, its total contour-length remains unchanged in the deformed configuration:

Z L��L

0

q
1 + y02(x) dx = L (4)

Finally the beam has to stay between the upper and lower liquid/air interfaces. As the
upper and lower interfaces are symmetric, we focus on the lower interface y�(x) and write
the inequality constraint

y(x) � y�(x) for all x 2 (0;L��L) (5)
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The periodic wave ansatz

The present problem resembles a buckling-on-elastic-foundation problem. In such prob-
lems the buckling shape is x-periodic. Here the ‘foundation’ is the liquid/air interface
and we conjecture that the shapes of the beam and of the interface are periodic also; we
call � is period. The integrals in Eqs. (1)-(4) are then rewritten as

Z L��L

0

· · · dx = N

Z �

0

· · · dx (6)

where the number of waves is N = (L ��L)/�. We therefore focus on one wave length
and position the origin in x at a maximum in y(x), see Fig. S9.

Non-dimensionalization

Using L
ec

=
p

B/� as unit length and B/L
ec

as unit energy, we introduce the following
dimensionless quantities:

x
new

=
x
old

L
ec

; y
new

=
y
old

L
ec

; y�
new

=
y�

old

L
ec

; L
new

=
L
old

L
ec

; �
new

=
�
old

L
ec

; (7a)

h
new

=
h
old

L
ec

; 
new

= 
old

L
ec

; Ee
new

=
Ee

old

L
ec

B
; E�

new

=
E�

old

L
ec

B
; (7b)

and work from now on with the new variables without using the ‘new’ subscript.

Interface y�(x)

We focus on the lower liquid/air interface. As in shown figure S9, along one wave-length
x 2 (��/2;�/2) the interface and the beam merge for |x| > x� and are separated other-
wise. The inequality constraint (5) is then replaced by

y(x) = y�(x) for |x| � x� (8)

y(x) > y�(x) for |x| < x� (9)

The liquid is therefore confined in |x| < x� and volume conservation (3) reads

h� 2
1��

�

Z x�

�x�

⇥
y(x)� y�(x)

⇤
dx = 0 (10)

As h is small compared to the gravito-capillary length
p

�/(⇢g), the pressure is nearly
uniform inside the liquid film. The interface y�(x) is then a circular arc of radius R and
center (0; yc), yielding the implicit equation x2 + (y� � yc)2 = R2. The two unknowns R
and yc are found with the following two conditions. First, the arc touches the beam at
x = ±x�

y�(x�) = y(x�) (11)
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Second, as the liquid wets the beam perfectly, the beam and interface tangents have to
coincide at x = ±x�

y0�(x�) = y0(x�) (12)

These two conditions are used to express R and yc as

y
c

= y(x�) +
x�

y0(x�)
and R = x�

s

1 +
1

y02(x�)
(13)

and we finally write the liquid/air interface equation as

y�(x) =

s

x2

� +
x2

�

y02(x�)
� x2 + y(x�) +

x�

y0(x�)
(14)

Summary

In conclusion, the minimization of the potential energy under the constraints of conserved
volume and conserved contour length is treated by introducing the Lagrangian

L = L(y(x), y0(s), y�(x), y0�(x),�, x�)

=
1��

�

Z �/2

0

2(x) dx+ 4
1��

�

Z x�

0

q
1 + y02� (x) dx+ 4

1��

�

Z �/2

x�

p
1 + y02(x) dx+

µ
1

✓
h� 4

1��

�

Z x�

0

⇥
y(x)� y�(x)

⇤
dx

◆
� µ

2

 
1� 2

1��

�

Z �/2

0

p
1 + y02(x) dx

!
(15)

where we have used N = (L��L)/� and divided by the constant L. We also have used
the x ! �x symmetry and focused on the positive x part of the system. Equilibrium
of the system is found by considering the conditions for which the first variation of this
Lagrangian vanishes. The Lagrange multiplier µ

1

associated with volume constraint is
interpreted as the pressure inside the liquid (per unit depth, per unit length). The La-
grange multiplier µ

2

associated with inextensibility constraint is related to the tension
inside the beam.

Energy minimization for a sinusoidal buckling pattern

In order to simplify the problem, we restrict ourselves to sinusoidal buckling patterns of
wavelength � for the elastic beam, i.e. y(x) = A cos

�
2⇡
�
x
�
. The liquid/air interface (14)

then writes

y�(x) =

vuutx2

� +

 
�x�

2⇡A sin
�
2⇡
�
x�

�
!

2

� x2 + A cos

✓
2⇡

�
x�

◆
� �x�

2⇡A sin
�
2⇡
�
x�

� (16)

and the Lagrangian (15) is now a simple function L = L(A,�, x�). Minimization is
performed numerically and results are presented in figure (S10).
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Considering a non-zero thickness of a porous beam

Experimentally, the wrinkling wicked membrane has a non-zero thickness. In the model,
the thickness of the beam is taken into account by considering a vertical shift of the liquid
interface. The vertical position (13) of the center of the circular arc described by the
liquid/air interface is then shifted and we now have

y
c

= A cos
�
kx�

�
� x�

Ak sin(kx�)
� t

2
(17)

where t is the thickness of the beam. Additionally the membrane is porous and entirely
wicked by the liquid. Volume conservation is then rewritten as

h� t = 4
1��

�

Z x�

0


y(x)� t

2
� y�(x)

�
dx (18)

Please note that (17) and (18) are only valid for small deflections |y0(x)| ⌧ 1, i.e. small
end-shortening �. In this study, we consider the membrane to grow as the liquid film
gets thicker, i.e. the membrane thickness t is proportional to the liquid film thickness h
wicking it (we use t = 0.8h). However, we do not consider the bending sti↵ness per unit
depth B to change during this growth.

Graphical results and discussion

Figure S10 presents the dimensionless wavelength � versus the dimensionless liquid thick-
ness h for PAN fibrous membranes of di↵erent thicknesses wicked by di↵erent liquids.
Both � and h are normlized by the elastocapillary length L

ec

=
p
B/�. The surface

tension � was measured with the Krüss K6 manual tensiometer (deionized water showed
a drop in surface tension when previously put in contact with a PAN membrane, from
72 mN/m to 53 mN/m). To test the dependence of the wavelength on surface tension,
the experience was performed with deionized water and a water/soap solution (of mea-
sured surface tension � = 30 mN/m). The membrane bending rigidity per unit depth
B being low, it could not be measured experimentally. Therefore, it was roughly esti-
mated as B = ↵ t0

a
Ea3 where t

0

is the membrane dry thickness, a the typical radius of
the fiber composing the membrane (a = 250 µm) and E is the PAN Young’s modulus
(E ' 30 GPa). Finally, ↵ is a dimensionless parameter to account for the membrane
porosity (here adjusted to the experiments using ↵ = 2 · 10�4).
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Planar wicked membrane theory

We consider a rectangular fibrous membrane of initial length L and width W , attached
to two parallel supports. The supports are initially separated by a distance X = L, see
Figure S11. The membrane is wicked by a liquid and the distance X is decreased. During
this compression, the membrane remains under tension due to the liquid surface tension
and stores the excess membrane inside wrinkles and folds. These ’surface reservoirs’ are
afterwards recruited when the wicked membrane is put in extension. The reaction F from
the supports is here analyzed, depending on X, W , L, and the surface tension �.

We consider the potential energy of the wicked membrane and minimize it to find its
equilibrium. As before we consider the surface energy of the liquid/air interface which
is here identified with the surface of the membrane itself. The bending energy of the
membrane is neglected and its extensional energy is replaced with a inextensibility con-
straint, thereby considering the extensional energy being much larger than the surface
energy. The membrane can then easily wrinkle and fold but cannot be stretched, and
surface tension tends to minimize the surface of the system. Only two of the membrane
edges are attached to the supports, the other two edges remaining free, see Figure S11.
In such a geometry, the free edges experience a normal force acting toward minimization
of the surface of the system. Each edge therefore adopts the shape of a circular arc (24)
and inextensibility impose their length to be L.

Early compression: 2

⇡
L < X < L

The distanceX is decreased fromX = L, and in this section we treat the case 2

⇡
L < X < L.

As explained above we assume the free edges to describe circular arcs of length L and we
introduce two variables R and �, respectively the radius and angle span of the circular
arcs, see figure S11. R and � are related to L and X through two equations:

L = 2R� (19)

X = 2R sin � (20)

The surface area of the liquid infused membrane then writes:

S = WX � 2(R2� �RX cos �) (21)

where the term R2� corresponds to the surface area of an angular region (angle �) of a
disc of radius R. The term RX cos � refers to the surface area of two right-angle triangles
of hypotenuse R and side length R cos �.

The reaction force F from the support is given by the derivative of the energy 2�S
with respect to X. We introduce the normalized force f = F/2�W

f =
1

2�W

@(2�S)

@X
(22)

which we computed numerically.
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Advanced compression: 0 < X < 2

⇡
L

As X is decreased from X = L, � increases from � = 0. When X reaches 2L/⇡, � reaches
⇡/2 and for smaller values of X, the angle � no longer varies and the geometry of the
system changes, see figure S12. The radius R of the circular arc remains of interest and
a new variable � is considered, it represents the length on which the membrane adheres
to the support. R and � are given by the 2 relations:

L = 2�+ ⇡R (23)

X = 2R (24)

The surface of the wicked membrane is now given by

S = WX � 2X�� ⇡R2 (25)

Injecting the three previous relations in the force equation, Equation (22), we find an
explicit expression for the force

f = 1� L

W

✓
1� ⇡x

2

◆
(26)

where x = X/L. The theoretical dimensionless force vs. displacement curves are given in
figure S13 for four di↵erent values of the ratio L/W .
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Cylindrical wicked membrane theory

Here, we consider a cylindrical geometry, reminiscent of the archetypal liquid soap catenoid.
A dry membrane is folded into cylindrical shape with radius RH and height 2L. The mem-
brane is then attached to two rigid parallel rings of radius RH and then infused with a
liquid. The potential energy of the system comprises bending, stretching, and surface en-
ergies, and as in the previous section the bending energy is neglected and the stretching
energy is replaced by an inextensibility constraint. The surface energy of the liquid/air
interface is 2�S where � is the liquid-vapor surface tension of the liquid, and S the sur-
face area of the wicked membrane. As surface tension does not vary, the system seeks to
minimize its surface area S given by

S(R(Y ), R0(Y ), H) =

Z H

�H

2⇡R
p
1 +R(Y )02 dY (27)

Moreover, as the fibers of the membrane are inextensible (they can wrinkle inside the
liquid film, but cannot be stretched) we introduce a inequality constraint that imposes
that the length of the curve R = R(Y ) is smaller than or equal to L:

g(R,R0, H) = 2L�
Z H

�H

p
1 +R02 dY � 0 (28)

We therefore introduce a Kuhn-Tucker multiplier 2⇡µ and work with the Lagrangian L

S�2⇡µ g(R,R0, H) = �4⇡µL+

Z H

�H

2⇡(R+µ)
p
1 +R02 dY = �4⇡µL+2⇡

Z H

�H

L(R,R0) dY

(29)
Kuhn-Tucker conditions for minimization imposes that µ � 0, g � 0, µ g = 0 and

✓
@L
@R0

◆0

=
@L
@R

) RR00 = 1�R02 (30)

The solution of which is

R(Y ) = c cosh

✓
Y � b

c

◆
� µ (31)

where b and c are two integration constants. The symmetry condition R0(0) = 0 yields
b = 0, and c is found with the boundary condition R(H) = RH :

c cosh

✓
H

c

◆
� µ = RH (32)

Finally we deal with two cases: (i) the inequality constraint is active, g = 0, and µ is
found with injecting (31) in (28):

c sinh

✓
H

c

◆
= 2L (33)
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or (ii) the inequality constraint is inactive, g > 0, and µ = 0. In any cases (32) and (33)
are solved numerically.
Please note that when the inequality constraint is inactive, we are back with the usual
liquid catenoid, only the surface area given in eq. (27) is in fact minimized.
We analyze the solutions by plotting the neck radii R(Y = 0) as a function of the distance
2H between the two rings for di↵erent fixed rest lengths 2L, see Figure S15. In this Figure,
the usual liquid catenoid solution (µ = 0) is plotted in blue and solutions with g = 0 are
plotted in green. Along a green curve the part plotted with a continuous line is such that
µ > 0 and the part plotted with a dashed line is such that µ < 0 (and are thus unstable).
We see in Figure S15 that for some L values, a wicked membrane can display two stable
catenoid shapes for the same height H. For example, the curve corresponding to l = 1.4
shows that for a given height h slightly below 1.0, the neck radius can be that of a
pure liquid catenoid (blue curve), or that of a membrane catenoid (green curve). This
bistability yields possible hysteresis behaviour for the system. Indeed, when the l = 1.4
membrane catenoid comes from h > 1 while decreasing h, it follows the green curve. As
it crosses the unstable liquid catenoid solution (dotted blue line), µ changes sign and
becomes negative, making the system unstable. The membrane catenoid then jumps to
the stable liquid catenoid solution (solid blue curve). On its way back (increasing h) it
follows the blue curve until it crosses h = 1 where the liquid catenoid looses stability. The
system then jumps back on the membrane catenoid solution (green curve).
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Orientation of the wrinkling pattern

In this Section, we experimentally observe the orientation of the wavy pattern patterns
(i.e. the directions followed by the wrinkles all over the membrane) of a wicked membrane
in three di↵erent configurations. In order to gain a deeper physical understanding of these
patterns, we then turn to an analogous elastic plate problem under compression and solve
it using a Finite Element Method. Determining the inner stress state of this plate for
a similar geometry and under similar boundary conditions provides a glance into the
wrinkling directionality of the wicked membrane.

Experimental observation

We focus on the wrinkling pattern displayed by a compressed planar wicked membrane
and therefore study three cases. The first one corresponds to a wicked membrane in
the absence of gravity. The second one is influenced by gravity and is set in a vertical
position, its compression axis is perpendicular to the gravity field’s direction. The third
one corresponds to a rotated version (90�) of the previous one and has a compression axis
parallel to gravity.

Absence of gravity

In the first case, since the visualization setup constrains a vertical position of the mem-
brane, we turn to a thin PAN membrane (electrospun for 2 minutes) wicked with a little
amount of water in order to limit the influence of gravity to a minimum. The precise
quantity of wicking water is not defined in the experiment. However, by letting the in-
fused water drain downwards for a few minutes, and then sponge it with a cloth, it is
reduced to a small quantity. A typical visualization of this experiment is provided in Fig-
ure S16. The wrinkling pattern displays a satisfying top-down symmetry. The wrinkles
show an angle at the top and bottom part of the membrane (see respective close-ups on
these areas), and follow the direction of the circular arcs described by the top and bottom
free edges. The wrinkles direction is vertical in the middle of the membrane.

Gravity perpendicular to compression axis

Now, a thicker membrane (electrospun for 4 minutes) is wicked with a larger amount of
water and is again slightly compressed (about 5% compression). The observations are
provided in Figure S17 where we see that gravity plays an important role in the wrinkling
pattern as it now displays a top-down asymmetry. The wrinkles show an angle (they
exhibit a ‘V’ shape) over the whole membrane except at the bottom where they describe
a ⇤ shape. In both the bottom and top area, the wrinkle pattern adjusts to follow the
circular arc described by the free edges.
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Gravity parallel to global compression axis

The last experiment is performed on a thick membrane (electrospun for 4 minutes) wicked
with a large amount of water. Unlike the previous experiment, the compression axis of the
membrane is now parallel to the gravity field and the resulting wrinkling pattern again
exhibits an obvious top-down asymmetry as presented in FIgure S18. Once again, the
wrinkling pattern seems to adjust near the free edges to follow their circular shape.

Major compression axis criterion: Comparison with an elastic plate under
compression

The orientation of the wavy pattern is likely dictated by the early stress state of the
membrane just before wrinkling occurs. It is reasonable to assume that, being flexible,
the membrane can not withstand compression and that it buckles instantaneously when
compression occurs. When a wrinkle appears, it therefore likely takes the perpendicular
direction to local compression axis in the membrane. In order to the approximate the
stress state of the membrane at early compression, we turn to an elastic Finite Element
Method (FEM) and compute the stress state of an analogous rectangular planar plate
of width W and length L. As for the planar wicked membrane, the right and left edges
of the plate are straight and brought closer by a length �L. In order to reproduce the
geometry adopted the planar wicked membrane, a displacement is imposed at the top and
bottom edges of the plate in order to reproduce circular arcs of fixed length L. The key
ingredients of the numerical simulations are presented in the next sections.

Plate equations: plane stress condition

The deformation field " of the plate is related to its displacement field u and is given by:

" =
1

2

⇣
ru+rTu

⌘
(34)

or:

"xx =
@ux

@x
and "yy =

@uy

@y
; "xy = "yx =

1

2

✓
@ux

@y
+

@uy

@x

◆
(35)

where no out of plane deformation is taken into account. Moreover, for a thin plate, the
internal stress state shows no components on the z-axis (i.e. �zz = �xz = �yz = 0) and
the stresses are therefore written (25):

�xx =
E

1� ⌫2

("xx � ⌫"yy); �yy =
E

1� ⌫2

("yy � ⌫"xx) and �xy =
E

1 + ⌫
"xy. (36)

The total elastic energy of the system writes:

V
el

=

ZZ
1

2
T � : " dS (37)
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where T refers to the thickness of the plate. The gravitational energy of the system, is

V
grav

= �
ZZ

⇢T g ·u dS. (38)

Boundary conditions

The straight edges (right and left) are brought closer in a linear way along the x-axis at
a relative compression �L/L.

u
right

=
⇥
�(L��L)/2, 0

⇤
(39)

u
left

=
⇥
(L��L)/2, 0

⇤
(40)

whereas the top and down free edges adopt circular shapes, while conserving their arc
length L as described in Section ‘Planar wicked membrane’ (the variables R and � are
found in that section).
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u
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where X
top

and X
bot

respectively correspond to the X-coordinates of the nodes of the top
and bottom free edges.

Numerical solution with FEniCS

FEniCS is an open-source computing platform for solving partial di↵erential equations
using a Finite Element Method (26) and we will here use it to numerically solve the
problem exposed above by minimizing the total energy V = V

el

+ V
grav

of the system.
The calculations are performed for L = 2, W = 6, �L/L = 0.05, T = 0.001, E = 1,
⇢g = 0 (or 0.2 for the study of the influence of gravity, chosen arbitrarily) and the number
of nodes meshing the plate is N = 20⇥ 20.

Major compression criterion

Once the problem is solved numerically, we study the planar stress tensor � at each
node of the elastic plate. We compute its eigenvalues �

1,2 and eigenvectors (V
1,2) which

reveal the principal stress directions throughout the plate. A positive eigenvalue �i (i =
1, 2) corresponds to tension state in the Vi direction whereas a negative one denotes
compression. Therefore, finding the lowest eigenvalue �i and ensuring it is negative gives
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access to the major compression axis, i.e the axis along which compression is the strongest.
Transposed to the wicked membrane, this information is valuable. Indeed, since the
membrane has a low bending rigidity, it cannot withstand any compression and it locally
buckles inside the liquid film as soon as compression is present. If the membrane is
subjected to two orthogonal compressions, it seems reasonable to assume that it will
buckle first along the highest compression axis. The wrinkling lines would therefore
appear perpendicularly to the major compression axis. A set of results for the three
di↵erent cases discussed in the previous section is presented in Figure S19, where the
elastic plate’s stress field was computed using the parameters provided in Section . The
lines correspond to the perpendicular directions of the eigenvector Vi (i = 1, 2) where �i

is the lowest of the eigenvalues of �, and is negative.

Discussion

The numerical calculation of the orientation of the major compression axis in an elas-
tic plate, presented in Figure S19, is in good qualitative agreement agreement with the
experimental observations of Figures S16, S17 and S18. The stress state of the wicked
membrane just before it starts wrinkling gives rise to the well defined wrinkling pattern;
any local small compression will result in wrinkling of the membrane. Since the compres-
sive stresses inside the membrane remain relatively low, a small exterior perturbation can
significantly modify the wrinkling orientation. For example, Figure S20 shows a planar
wicked PAN membrane in a slightly compressed state. Bubbles are present at its surface
and the capillary forces they exert on the membrane are su�cient to locally distort the
orientation of the wrinkling pattern. Indeed, the tension applied by the liquid meniscus
seems to rotate the major compression axis of the membrane which therefore displays
wrinkles perpendicular to the bubble periphery.
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Polymer Solvent Wicking liquid
PAN DMF water - glycerol - ethanol - silicone oil

PVDF-HFP DMF ethanol - silicone oil
PCL DMF ethanol - silicone oil
PVP ethanol silicone oil

Table S1: Polymers used to fabricate fibrous membranes with their respective solvents
and wicking liquids that are used to form surface reservoirs.
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Figure S1: Measurement the liquid film thickness of the infused membrane with a col-
orimetry method. A scale wedge (two slightly non parallel glass slides) is used to calibrate
the gray level as a function of colored liquid thickness on a photograph. In this case, we
show an area on the membrane where the gray level is 0.50, corresponding to a liquid film
thickness of around 100 µm.
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Figure S2: Visualization of the wrinkles on a slightly compressed membrane PAN mem-
brane wicked with dyed water.
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Motor

Crank

Wicked membrane

Rod

Figure S3: Fatigue test setup. In order to test their resistance to fatigue, the membranes
are mounted on a motor-crank-rod setup, allowing to impose end displacement of one of
the membrane edges from X

min

= 2 mm to X
max

= 3.7 cm (e↵ective elongation of factor
18). The high cycling rate (here 3 cycles per second) allows to test a membrane in only
a few days.
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Figure S4: Force vs. displacement of the planar PVDF-HFP membrane during one
compression-extension cycle after imposing N cycles to it. PVDF-HFP membrane wicked
with v10 silicone oil (� = 21 mN/m), L/W = 0.37.
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Figure S5: Cylindrical wicked membrane attached to two rings (diameter of the rings:
2R = 4 cm) throughout a compression/extension cycle. Note that the this catenoid-
shape jumps from a thin to wide state between image C and D. This sudden change
in shape is due to an instability related to inextensibiliy of the membrane. Note the
hysteresis of the system which does not follow the same paths during compression and
extension.
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Figure S6: Bubble-like wicked membrane inflated with air. The tubes filled with blue dyed
ethanol allow to characterize the pressure inside the wicked membrane bubble throughout
its inflating. The external diameter of the bubble supporting tube is 9 mm.
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Figure S7: A thin gold path is a�xed on a planar silicone oil-wicked PVDF-HFP mem-
brane. When the straight edges of the wicked membrane are brought closer, the gold path
is folded with the membrane reservoirs and conducts electricity throughout an 8-fold ex-
tension. End-to-end resistance of this conductive path depends on compression, likely due
to self-contacts of the gold strip upon folding within the membrane reservoirs.24
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Figure S8: Wrinkling of a beam of length L under compression (�L) in a liquid film
of volume per unit depth V = hL. The liquid/air interface (drawn blue) covers the
beam near the max and min amplitude points along the beam. The beam has a bending
resistance B and the buckling presents a periodicity of wavelength �.
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Figure S9: Local problem on one wavelength between x = ��/2 and �/2. The lower
liquid interface (here blue), defined by y�(x), describes and arc of circle (center C, radius
R) between �x� and x�. For |x| > x�, the liquid interface follows the beam profile.
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Figure S10: Dimensionless wavelength �/L
ec

versus dimensionless liquid thickness h/L
ec

.
The elasto-capillary length L

ec

is defined as
p
B/� with B the bending sti↵ness per unit

depth of the membrane and � the surface tension of the wicking liquid. Note that the bend-
ing sti↵ness B per unit depth of the membrane depends on its native (dry) thickness t

0

.
The points show experimental results for di↵erent PAN-membrane dry ticknesses t

0

and
di↵erent wicking liquids. The gray solid lines are results of the here presented model for
� = ✏ = 0.01, 0.02, 0.05. It is considered that the membrane grows as it is infused with
liquid. To capture this growth, we choose the membrane thickness t to be proportional
to the liquid thickness h, with t = 0.8h. The gray dotted lines represent the same results
for a zero-thickness beam.

27



Figure S11: Planar wicked membrane during early compression. The surface minimization
with isoperimetric constraint on the free edges of the wicked membrane is responsible for
the circular shape adopted by these free edges.
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Figure S12: Schematic representation of a planar wicked membrane in a large compression
state.
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Figure S13: Theoretical normalized force versus displacement curve of the planar wicked
membrane for di↵erent initial length to width ratios L/W ranging from 0.01 to 1. Note
that when L/W approaches 0 (i.e. the length of the free edges is very small compared to
the width of the membrane), the force vs. displacement curve approaches that of liquid
film on a frame (f = 1) up until x = 1 where the inextensibilty of the membrane makes
the force diverge.
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Figure S14: Schematic representation of the catenoid-like shape adopted by a cylindrical
wicked membrane attached to two parallel rings.
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Figure S15: Dimensionless neck radius r versus dimensionless distance between
the two rings h for di↵erent length constraints l. The length Rh/1.5090 is commonly
used to normalize lengths in catenoid-related problems. Note that inextensibibilty of the
membrane allows for equilibrium solutions to exist in the region h > 1, where purely
liquid catenoids do not exist. Solid green lines represent solutions where the inequality
constraint (28) is active, g = 0, and µ > 0. The are drawn for di↵erent values of the
membrane initial height 2L. Dotted green lines represent solutions with g = 0 but µ < 0
and are thus unstable. The solid and dotted blue line respectively represent the stable
and unstable purely liquid catenoid, with µ = 0.
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2 cm

Figure S16: Thin PAN membrane wicked with a small quantity of water. The resulting
wrinkling pattern follows a well defined structure and has a satisfying top-down symmetry.
A previous compression may have concentrated the liquid at the right side, therefore
generating the left-right asymmetry that is observed.
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2 cm

Figure S17: Thick PAN membrane wicked with a large amount of water. Here, gravity
plays an important role in the pattern adopted by the wrinkles. It displays a ‘V’ structure
on the whole membrane, except at the bottom of it, where the ‘V’ is inverted and the
wrinkles direction follow the circular arc described by the free edge.

34



1 cm

Figure S18: Thick PAN membrane wicked with a large amount of water. Unlike the case
presented in Figure S17, gravity now is oriented in the same direction as the compression
axis of the membrane. This results in a wrinkling pattern where again, the preferred
directions follow the circular arcs of the free edges. It should be noted that the inhomo-
geneities in the membrane’s color density correspond di↵erences in thickness, but they do
not a↵ect the wrinkling pattern significantly.
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Figure S19: An elastic planar plate under compression to read the major local
compression axes. Calculations performed with FEniCS. There is no gravity in A while
B and C respectively correspond to calculations with gravity pointing perpendicular
and parallel to the plate’s global compression axis. The straight black lines show the
orthogonal directions to the local major compression axes and thus show the direction
along which wrinkles are generated in the wicked membrane case. Qualitatively, we find
a good match between the patterns predicted by the elastic planar plate model and the
experimental wicked membrane wrinkling patterns (resp. presented in Figures S16, S17
and S18). All the calculations are performed with L = 2, W = 6, T = 0.001, E = 1,
⌫ = 0, N = 20⇥ 20, �L/L = 0.05 and ⇢g = 0.2 (⇢g was arbitrarily chosen) for B and C.
The color scale refers to the displacement field.
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2 cm 5 mm

Figure S20: PAN membrane wicked with a water-surfactant solution. A bubble is present
at the surface and the capillary forces it applies are su�cient to significantly distort the
wrinkling orientation which locally points perpendicularly to the bubbles’ periphery.
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Captions for Movies S1 to S10

Movie S1: Ultra stretchable wicked membrane
Successive photographs. Diameter of the membrane at its extended state: 7 cm. A
PVDF-HFP fibrous membrane is attached to eight translational supports. When wicked
with silicone oil, it immediately tightens up, even when compressed. Excess membrane is
stored in surface-reservoirs through the formation of wrinkles and folds within the liquid
film.

Movie S2: Wrinkling and packing of the wicked membrane
Real time. Width of the image: 1.3 cm. Planar PAN fibrous membrane wicked with
deionized water. When the two straight edges of the membrane are brought closer, the
wicked membrane exhibits a first wavy pattern and rapidly displays a second stacked
accordion-like phase where the membrane is closely packed inside the liquid film.

Movie S3: Planar wicked membrane
Real time. Width of the membrane at its extended state: 3.7 cm. PVDF-HFP fibrous
membrane wicked with silicone v100 oil. When the straight supports are brought closer,
the membrane remains globally flat and taut; excess membrane is stored in membrane
reservoirs, generated in the form of wrinkles and folds within the liquid film.

Movie S4: Catenoid equilibrium shape of a wicked membrane
Real time. Diameter of the upper and lower rings: 4 cm. PAN fibrous membrane wicked
with deionized water in a cylindrical configuration. As the two supporting rings are
brought closer, the shape adopted by the cylindrical wicked membrane tends to minimize
global surface area. Between the 20th and the 27th second of the movie, the neck of this
catenoid-like shape widens up significantly. This strong shape change is due to the asym-
metry of the inextensibility constraint of the membrane. At first, when the rings are far
away, the minimum-energy state of the wicked membrane sets its fibers in tension in the
axial direction due to the inextensibility constraint. When the rings are brought closer,
near the 20th second of the movie, the minimum-energy state now leads to a shortening
of the side length of the membrane. As the membrane can shrink by folding within the
liquid film, a new, wider, configuration is selected. The morphology of the cylindrical
wicked membrane is studied in detail in the Supplementary Material: Cylindrical wicked
membrane theory.

Movie S5: Inflating a wicked membrane bubble
Real time. Diameter of the tube supporting the bubble: 9 mm. PAN fibrous membrane
wicked with deionized water. The blue dyed ethanol semi-filled tubes allow for pressure
measurement of the bubble throughout its inflating.
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Movie S6: Zircon bead dipped in dyed deionized water
Real time. Diameter of the bead: 1.5 cm. A zircon bead is dipped in a dyed deionized-
water bath and subsequently pulled out. Water partially wets zircon and the experiment
leads to drops sitting at the bead surface.

Movie S7: Hydrophilic PAN membrane applied on a zircon bead dipped in
dyed deionized water
Real time. Diameter of the bead: 1.5 cm. A zircon bead is covered with a thin dry
fibrous PAN membrane (electrospun for 2 minutes) and dipped in a dyed deionized-
water bath and subsequently pulled out. Since PAN is hydrophilic, capillarity makes the
membrane fold and adapt to the bead shape within the liquid film. After dipping the
PAN-membrane-covered bead around 10 times, it is pulled out with a fairly homogeneous
dyed-water coating; although the membrane is folded inside the liquid film, the latter
displays a smooth interface with air.

Movie S8: Silicon-oil wicked PVDF-HFP membrane applied a zircon bead
dipped in dyed deionized water
Real time. Diameter of the bead: 1.5 cm. A zircon bead is covered with a thin fibrous
PVDF-HFP membrane (electrospun for 2 minutes) and wicked with v3 silicone oil. The
bead is then dipped in a dyed deionized water bath and subsequently pulled out. The
silicone-oil wicked PVDF-HFP membrane acts as a water repellent coating as no water is
drawn by the bead as it is pulled out of the bath.

Movie S9: Silicone oil-wicked PVDF-HFP membrane applied on a spherical
glass surface provides a water reppellent treatment.
Slowed 125 times. Width of the image: 5 cm. A fibrous PVDF-HFP membrane is applied
on a spherical glass substrate and wicked with silicone oil. The wicked membrane adapts
to the curvature of the glass substrate by folding membrane within the liquid silicone-
oil film. The resulting membrane reservoirs allow the storing of folds within the liquid
film, thus keeping a relatively smooth transparent surface with water-repellent properties.

Movie S10: Stretchable electronics with the wicked membrane
Successive photographs. Width of the membrane at its extended state: 3.8 cm. A PVDF-
HFP fibrous membrane is wicked by silicone oil and two thin gold strips are attached to it
through capillary adhesion, and connected to a 1.5V LED. When voltage is supplied, the
LED remains illuminated even during a compression/extension cycle (e↵ective extension
from compressed state: 800%).
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Description of Experimental Data files

Data S1: Experimental wrinkling wavelength
Experimental wrinkling wavelength � for a slightly compressed wicked PAN-membrane
for di↵erent dry-membrane thicknesses t

0

, wicking liquid surface tension � and liquid
thickness h. These results are presented in figure 2D and figure S10.

Data S2: Planar configuration force vs. displacement at the 1st cycle
Experimental data: normalized force vs. normalized displacement in the planar configu-
ration at the first loading cycle. These results are presented in figure 3C and figure S4.

Data S3: Planar configuration force vs. displacement after 30,000 cycles
Experimental data: normalized force vs. normalized displacement in the planar configu-
ration after 30,000 loading cycles. These results are presented in figure S4.

Data S4: Planar configuration force vs. displacement after 70,000 cycles
Experimental data: normalized force vs. normalized displacement in the planar configu-
ration after 70,000 loading cylcls. These results are presented in figure S4.

Data S5: Planar configuration force vs. displacement after 100,000 cycles
Experimental data: normalized force vs. normalized displacement in the planar config-
uration after 100,000 loading cycles. These results are presented figure 3C and in figure S4.

Data S6: Planar configuration force vs. displacement after 150,000 cycles
Experimental data: normalized force vs. normalized displacement in the planar configu-
ration after 150,000 loading cycles. These results are presented in figure S4.

Data S7: Cylindrical configuration neck radius vs. ring distance
Experimental data corresponding to the cylindrical configuration presented in figure 3F.
r and h respectively correspond to the normalized neck radius and normalized distance
between the supporting rings.

Data S8: Spherical configuration radius vs. pressure
Experimental data corresponding to the spherical configuration presented in figure 3I. r
and p respectively correspond to the normalized bubble radius and the normalized pres-
sure inside the bubble.

Data S9: Electrical resistance vs. end-to-end distance
Experimental data corresponding to the electrical resistance vs. end-to-end distance for
a gold path on a silicone-oil wicked PVDF-HFP membrane. The results are presented in
figure S7.
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