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Soft stretchable materials are key for arising technologies such as

stretchable electronics, smart textiles or soft biomedical devices.

However the design of a resistant, cost-e↵ective or biologically com-

patible version of such a material remains challenging. Here, we re-

port a universal strategy to design highly stretchable, self-assembling

and fatigue-resistant synthetic fabrics. Our approach finds its inspi-

ration in the mechanics of living animal cells that routinely cope

with extreme deformations, by exploiting preformed membrane re-

serves available in the form of microvilli or membrane folds. We

synthetically mimick this behavior by creating nanofibrous liquid-
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infused tissues spontaneously forming surface reserves whose unfold-

ing fuels any imposed, possibly extreme (e.g. 50-fold area expan-

sion), shape changes. We take advantage of this mechanics to de-

velop proof-of-concept activable capillary muscles, adaptable water-

repellent surfaces and stretchable basic printed electronic circuits.

Geometry and elasticity of thin objects are intimately linked, so that metallic wires with

identical diameter but with di↵erent shapes (e.g. straight or curly as a spring) will

contrast markedly in their mechanical response. Nature abounds in such examples where

mechanical behavior is entangled with geometry. Leaf geometrical curvature, for example,

is critical for some carnivorous plants’ prey-trapping ability. For example, the particular

shape adopted by the Venus flytrap’s leaf brings it on the verge of an elastic instability,

requiring from an insect only a minute stroke to snap and rush the vegetal jaws – thereby

providing the plant with one of the fastest non-muscular movements (1). Geometry is also

behind the curious mechanical behavior of the capture silk spun by ecribellate spiders:

whether stretched or compressed, this fibre remains straight while seemingly adjusting its

length, as if telescopic. Actually the pulling force of surface tension allows to coil, spool

and pack excess fibre within the glue droplets decorating the thread. These so formed fibre

reserves can then be recruited on demand – and confer the thread an apparent extreme

strechability of +10,000% (2). Another example can be found inside our own body with

cells which display a particular ability to cope with stretch. Macrophages extending their

surface area by a factor 5 to engulf large microbes or cellular debris (3) (see Fig. 1),

patrolling T-lymphocytes stretching by 40% to squeeze into the microvasculature (4),

hundreds of µm sized neuronal projections extruded from 10 µm wide neurons (5, 6) or

osmotic swelling of fibroblast leading to 70% increase in area (7) are a few out of many

examples of the extreme mechanical sollicitations encountered by living animal cells on a
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routine basis. This resilience is all the more spectacular that the lytic stretching level at

which the plasma membrane ruptures is about 4% (5, 8). Why do these cells then just

not burst under stress? Actually cells have evolved a strategy consisting in storing excess

membrane in the form of folds and microvilli (9,10) which can be recruited and deployed

on demand. Interestingly, these geometrical corrugations enabling stretching do not flu↵

the membrane. Cellular tension is indeed preserved thanks to the pulling action of the

underlying cortical actin layer (11). The considerable deformations biological materials

cope with are all the more appealing considering the current need for synthetic stretchable

material for a wealth of emerging technologies including stretchable electronics (12) or

batteries (13), smart textiles (14), biomedical devices, tissue engineering and soft robotics

(15,16).

Learning from these biological examples, we here transpose Nature’s blueprints by making

use of self-assembled membrane reserves to endow synthetic fabrics with high stretchabil-

ity. Figure 1 illustrates the key steps to design such an extensible tissue. We first man-

ufacture, with a conventional spinning technique, a light and free-standing non-woven

fabric. Without further treatment, the so-formed fibrous membrane would show early

signs of damage above a few percents of extension, and would definitely rupture at a

30% area extension. In order to mimic the pulling action of the cortical actin layer, we

infuse the polymeric mat with a wetting liquid so as to bestow the resulting wick with

surface tension. Instantaneously, the membrane self-tenses while seemingly adjusting its

surface, storing any excess membrane into folds: the membrane reserves. Once formed,

these geometrical ru✏es and furrows can be unfolded at will, fueling any imposed shape

change to the membrane, see Fig. 1. Remarkably, the process is entirely reversible as the

membrane reserves self-assemble instantaneously upon contraction.

To shed light over the mechanics of membrane reserve self-assembly, we now investigate
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the behavior of the wicked membrane at the microstructural level, i.e. at lengthscales of

the order of the liquid film thickness. Figure 2 reports typical global and close-up views

of a membrane undergoing compression. It is readily seen that whenever compression

starts, the initially flat membrane (Fig. 2A left and Fig. 2Ba) is rapidly textured with a

wrinkling pattern exhibiting a clear wavelength � (Fig. 2A right and Fig. 2Bb). Wrin-

kling is a trademark of thin elastic sheets, and develops spontaneously in a variety of

contexts: pinched skin, shriveling fruits (17), brain sulci (18), hanging curtains (19) or

more generally thin sheets under tension (20). This elastic instability occurs whenever a

compressed slender structure is bound to a substrate resisting deformation. The emerging

wavelength � of this particular form of buckling therefore results from a trade-o↵ between

the deformation of the membrane and that of the substrate in order to minimize global

energy. Here, the substrate role is played by the liquid film interfaces, which can be seen

as soft capillary walls restraining the deformation of the membrane. Interestingly, exper-

iments reveal that the wrinkles wavelength � is neither particularly sensitive to the value

of interfacial tension � nor the fibrous membrane thickness t
0

, but scales linearly with the

liquid film thickness h, here measured by means of colorimetry (see Fig. 2D and Materials

& Methods). In order to further grasp the physics of wrinkle formation, we develop a

simple model where a periodic sinusoidal membrane of bending sti↵ness per unit depth

B exhibiting a wavelength � interacts with a liquid film exposing two free surfaces of

surface tension �, see Fig. 2B. Under the constraint of constant liquid film volume and

imposed compression ✏, we minimize the total energy of the system, consisting of the

membrane elastic energy E
el

= 1

2

B
R
2ds and the surface energy E� = 2�S, with  and S

denoting respectively the local membrane curvature and the exposed surface of the liquid

film per unit depth (see details in Supplementary Material). The model reveals h/L
ec

as the relevant parameter governing the behavior of the system, with L
ec

= (B/�)1/2
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being the elastocapillary length (21). The limit h/L
ec

⌧ 1 typically corresponds to

the behavior of everyday life soaked fibrous membranes (e.g. wet paper or cloth), that

just sag or buckle globally when compressed, irrespective of any surface tension e↵ects

(see Fig. 2C). Conversely, our experiment is characterized by values of h/L
ec

� 1 for

which the microstructure di↵ers markedly from the previous one: interface energies can-

not longer be neglected and the membrane now buckles under the capillary confinement

of the interfaces (see Fig. 2C). Indeed, in this regime the ratio of the surface energy to

the elastic energy scales as E�/Eel

⇠ (h/L
ec

)2 � 1 , i.e. any deformation of the liquid

surface introduces a strong energetical penalty, making it clear that in-film wrinkling is

a low energy state configuration. This phenomenon is therefore reminiscent of buckling

under rigid confinement, for which wavelengths � also scale linearly with the confinement

gap h for a given compression ✏ (22), and this behavior is indeed nicely recovered by

our model (see inset of Fig. 2D). Somewhat surprisingly, the experimentally measured

wavelengths � prove to be insensitive to the compression. This behavior, not captured by

the model, coincides with the emergence of a second, tightly packed, accordion-like phase

(see Fig. 2B). This second phase, in mechanical equilibrium with the wrinkled phase, has

a high membrane storage capacity and actually corresponds to the membrane reserve.

The coexistence between these phases allows to continuously transfer material from one

phase to another, and warrants the e↵ectiveness of the wicked membrane as a stretchable

material. The local mechanics just described reflects into global geometries and force

response that we explore next in Figure 3. There we subject wicked membranes to three

di↵erent elementary solicitations, corresponding to stretching of planar-, cylindrically-,

and spherically-shaped membranes. Strikingly enough, the equilibrium shape adopted by

the wicked membrane in each configuration strongly resembles that of a liquid film under

the same conditions: planar film, catenoid and bubble. Once again, this behavior is made
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transparent by realizing that in the limit h/L
ec

� 1 the energy of the wicked membrane

is dominated by its capillary contribution; the equilibrium shapes therefore essentially

correspond to minimal surfaces. Although they di↵er strongly in longevity, ways of fab-

rication and internal structure, the wicked membranes and liquid films therefore present

interesting similarities. Upon closer inspection though, the shapes of the membranes ap-

pear to di↵er from their liquid counterparts in some respects. For example, a planar

membrane attached on only two straight edges adopts a stable shape (Fig. 3A), whilst a

liquid film in the same configuration would merely burst. To understand this stabilization

mechanism for membranes, we have to perceive that some regions of the membrane may

undergo stretching up to a point where the membrane reserves are fully exhausted. Pure

stretching deformations represent a far higher energetical cost as compared to bending

ones (23) and as a first approximation, this sharp energetical penalty can be seen as an

inextensibility constraint. And indeed, the shapes adopted by the planar configuration

can fully be captured with a surface area minimization under isoperimetric constraint

(see Supplementary Material). This mixed liquid-solid behavior allows to stabilize the

catenoid shape beyond its classic point of bursting to unveil new equilibria (Fig. 3B and

Supplementary Material), and is also responsible for significant deviations from Laplace’s

law in the bubble configuration (Fig. 3C). Such a hybrid mechanical behavior is again

reminiscent of the response of cellular membranes, and indeed, whether for lymphocytes,

fibroblasts (4, 7) or wicked membranes (Fig. 3), the mechanical response switches from

liquid-like to solid-like once all the membrane reserves have been flattened out.

The peculiar behavior of our wicked membrane stems from its compound nature: while

surface tension allows it to undergo ample shape changes, its solid underlying matrix

provides mechanical robustness. Geometrical reorganizations at the microstructural level

(reserve self-assembly or unfolding) are key in the mechanics of the wicked membrane,
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and allow in particular to prevent any significant stretching at the molecular level. This

results in a marked resilience of this material to fatigue, as illustrated by the unvarying

mechanical response of the membrane after more than 100,000 cycles of 10-fold stretching

and compression events (Fig. 3A3 and Supplementary Materials).

Moreover, it is worth emphasizing that the mechanical functionalization of a membrane

into a highly stretchable membrane only relies on a combination of elasticity, capillarity

and geometry. As such, the process is widely universal (see the list of tested polymers in

the Supplementary Material), and opens appealing prospects from an engineering point

of view. To illustrate but a few applications taking advantage of this mechanical func-

tion, we present some proofs of concepts in Figure 4. First we demonstrate that a�xing

submicronic thick golden paths to the membrane allows to e↵ortlessly obtain a ⇠10-fold

stretchable conductive material, presenting an unusual reversibility. Interestingly, due to

the formation of folds and membrane reserves, the e↵ective electrical resistance of the

material displays a dependence to its stretching state (Fig. 4A). Second, by controlling

the formation of the liquid film (via the surrounding humidity level, or with the instant

release of a liquid), on-demand contractility of the wicked membrane is instantaneously ob-

tained, making it straightforward to apply forces, possibly while distorting the membrane

(Fig. 4B). Finally we show that a wicked membrane infused with a lubricant becomes a

transparent slippery surface (24) that can provide an instant non-wetting functionaliza-

tion to curved, rough, warped and deformable surfaces thanks to its exceptional shape

adaptability (Fig. 4C).

The use of membrane reserves to fuel large shape changes is encountered in an ex-

tremely wide variety of animal cells, but this strategy has so far not been used to create

stretchable synthetic materials. The ease of manufacturing, self-assembly of membrane

reserves, universality of the process along with its robustness opens tremendous novel
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pathways for the design of synthetic stretchable devices (possibly biocompatible), elec-

tronics, batteries or actuators.
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Figure captions

Fig. 1. Designing ultra-stretchable membranes. A. A thin fibrous membrane (here:

electrospun PVDF-HFP membrane dyed blue with a coloring agent for visualization pur-

poses) and a scanning electron microscope micrograph of this membrane are presented

(scale bar: 50 µm). The typical diameter of the fibers composing this few microns thick

membrane is 500 nm. B. At its native (dry) state, the membrane is attached to 8 trans-

lational supports slowly separated from each other. As the membrane is not intrinsically

stretchable, it rapidly irreversibly tears o↵ at around 30% area extension. Scale bar: 3 cm.

C. SEM micrographs of a J774 macrophage (Courtesy of Prof. Heinrich, UC Davis (3)).

The first snapshot presents the macrophage at rest (cell size is not representative due to

shrinkage during fixation). The two following pictures show the macrophage engulfing

an antibody coated (FC�-opsonized) 30 µm diameter bead. Throughout this ambitious

engulfment, the initially corrugated cell membrane smooths out, thus recruiting mem-

brane surface, necessary for its up to 5-fold surface area expansion. Scale bar: 10 µm. D.

Based on this biological observation, our membrane is now attached to the 8 translational

supports (set in a wide position) and wicked by a wetting liquid (here: v100 silicone oil).

When the supports are brought closer, the membrane does not sag as one would expect;

it spontaneously folds inside the liquid veins due to the surface tension they develop.

Scale bar: 3 cm. E. Once the whole membrane is wicked by the liquid, its compressed

state spontaneously adopts a wrinkled and folded surface, similar to that of the resting

J774 membrane. Just like for the J774 macrophage, our self-corrugated wicked membrane

smooths out when stretched; wrinkles and folds act as membrane reserves that can fuel

up to a 50-fold surface area expansion. Moreover, as the process relies only on elasticity

and capillarity, it is reversible and repeatable (wrinkles and folds continue self-assembling
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upon subsequent compressions). Scale bar: 3 cm.

Fig. 2. Mechanics of the wicked membrane: capillary-driven wrinkling and

packing. A. Electro-spun PAN membrane wicked with water and attached to two rigid

mobile edges. The left and right photo respectively show the membrane at its extended

and slightly compressed state. Upon this small compression, the wicked membrane im-

mediately exhibits a clear wrinkling pattern (L=4 cm). B. Closer view of the membrane

(red and green rectangles in A.) throughout a complete uni-axial compression. At the

extended state, the wicked membrane is smooth (a). A small compression engender a

wrinkled surface (of wavelength �) which rapidly displays a two phase texture as com-

pression is pursued (b and c respectively). One phase corresponds to a wrinkled texture

(same wavelength �) and the other one a closely packed accordion-like state which grad-

ually expands throughout compression. The whole membrane is closely packed inside

the liquid film at the end of the compression (d). This accordion-like phase houses the

surface reserves which will be recruited upon a subsequent extension of the membrane.

(scale: 10�=3.1 mm) C. Physical interpretation of the early wrinkling of the membrane

inside the liquid film. Here, the membrane is described as an elastic beam of bending

sti↵ness per unit depth B inside a liquid film of initial thickness h and liquid-air interface

energy �. Considering the beam buckles in a sinusoidal shape and the liquid interface

adopts a circular shape, at a given compression ✏, three regimes emerge, depending on the

liquid film thickness. D. Experimental wavelength � of the wrinkles observed at early an

compression stage of the membrane as a function of the liquid film thickness h for di↵erent

membrane thicknesses t
0

and infusing liquids. The inset provides the data normalized by

the elasto-capillary length L
ec

. The solid gray lines correspond to an energy minimization

analysis for compressions of ✏ = 1, 2 and 5% (see Supplementary Material).

Fig. 3. Forms and forces for capillary-folded wicked membranes. A1. Soapy
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liquid film on a frame. A2. Wicked membrane attached to two mobile supports. The

membrane has a width W and its ends are separated by a distance X. A3. Force versus

displacement diagram. The green curve corresponds to the force measurements during

the first compression/extension cycle of the wicked membrane whereas the gray curve

was obtained after imposing 100,000 compression/extension cycles on the membrane.

The blue dotted line shows the force prediction on a soapy liquid film on a rigid frame

of width W and the black dotted line is obtained by considering a surface minimization

with iso-perimetric constraint on its free edges (see Supplementary Material). B1. Soapy

liquid catenoid between two parallel circular rings. B2. Two states of the catenoid

shape adopted by a wicked membrane attached to two parallel circular rings. B3. Neck

radius of the catenoid versus distance between the two rings. The green points represent

the experimental observation for a wicked membrane. The blue dotted line represents

the soapy liquid solution for the catenoid and the black dotted line shows the solution

for a catenoid with iso-perimetric constraint (see Supplementary Material). C1. Soapy

bubble. C2. Bubble generated by inflating a wicked membrane at two di↵erent inflating

stages. C3. Pressure versus radius diagram. Here, the radius of a bubble is defined as

R = ( 3

4⇡V )1/3. The blue dotted line represents the theoretical pressure for a soapy bubble

being inflated through a tube of radius R
tube

(Laplace’s law). The green points correspond

to the pressure measurements of the wicked membrane. At R = R
max

, the pressure

diverges due to the inextensibility of the membrane (the black dotted line illustrates this

prediction), making this configuration evocative of the hypotonic swelling of neurons (25).

Note the significant deviation from Laplace’s law resulting from the mixed solid-liquid

behavior of the membrane. Scale bars on all the photographs: 1 cm.

Fig. 4. Stretchable electronics, on-demand contractibilty and adaptable slip-

pery surfaces. A. A thin gold strip (100 nm thick) is apposed on the wicked membrane
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(here : PVDF-HFP membrane wicked by v100 silicone oil). Capillary adhesion guar-

antees the gold strip to remain secured to the membrane. Electricity runs through the

gold strip even when membrane reserves are spontaneously generated upon compression

of the membrane. Electric resistance versus membrane extension X is presented in the

graph and due to local short circuits, this resistance drops as the membrane is contracted.

Indeed, as shown on the right photograph (scale bar: 7 mm), a gold strip wrinkles and

folds when the membrane is compressed. The sequence shows the illumination of a 1.5V

LED through a basic electric circuit throughout an 8-fold extension of the supporting

wicked membrane. Scale bar: 3cm. B. Capillary contraction upon wetting. The dry

membrane is here attached to two mobile supports (rafts freely gliding on a water bath,

first photograph). When ethanol (dyed blue for visualization) is sprayed on the mem-

brane, membrane reserves are immediately generated through the capillary action; the

two mobile rafts are pulled towards one and other. Scale bar: 3cm. C. A PVDF-HFP

fibrous membrane is apposed to a non-flat surface and is wicked by silicone oil. Capillary

adhesion secures the wicked membrane onto the surface and the spontaneous generation

of surface reserves allow for a macroscopically smooth surface even on a warped surface

(folds are confined in the liquid film). The wicked membrane then acts as a slippery

surface treatment with water repellent properties. The chrono-photography (10 ms inter-

vals, scale bar: 7mm) shows a water droplet bouncing o↵ such a treated spherical glass

surface. The wicked membrane can adapt to any object such as glasses (scale bar: 1.5

cm, water droplets stick to the untreated surface but roll o↵ the treated glass) or cocktail

umbrellas (scale bar: 2cm, the water repelling property is conserved after consecutive

opening/closing of this toy umbrella).

12



References

1. Y. Forterre, J. M. Skotheim, J. Dumais, L. Mahadevan, Nature 433, 421 (2005).

2. H. Elettro, S. Neukirch, F. Vollrath, A. Antkowiak, Proceedings of the National

Academy of Sciences p. 201602451 (2016).

3. J. Lam, M. Herant, M. Dembo, V. Heinrich, Biophysical Journal 96, 248 (2009).

4. L. Guillou, et al., Molecular Biology of the Cell 27, 3574 (2016).

5. D. Raucher, M. P. Sheetz, Biophysical Journal 77, 1992 (1999).

6. J. Dai, M. Sheetz, Biophysical Journal 68, 988 (1995).

7. N. Groulx, F. Boudreault, S. N. Orlov, R. Grygorczyk, Journal of Membrane Biology

214, 43 (2006).

8. J. A. Nichol, O. F. Hutter, The Journal of Physiology 493, 187 (1996).

9. C. Erickson, J. Trinkaus, Experimental Cell Research 99, 375 (1976).

10. S. Majstoravich, et al., Blood 104, 1396 (2004).

11. G. Salbreux, G. Charras, E. Paluch, Trends in Cell Biology 22, 536 (2012).

12. J. A. Rogers, T. Someya, Y. Huang, Science 327, 1603 (2010).

13. W. Liu, M.-S. Song, B. Kong, Y. Cui, Advanced Materials 29, 1603436 (2016).

14. J. Hu, H. Meng, G. Li, S. I. Ibekwe, Smart Materials and Structures 21, 053001

(2012).

15. R. F. Shepherd, et al., Proc. Natl Acad. Sci. U.S.A. 108, 20400 (2011).

13



16. A. Lazarus, P. M. Reis, Advanced Engineering Materials 17, 815 (2015).

17. E. Cerda, L. Mahadevan, Physical Review Letters 90 (2003).

18. T. Tallinen, et al., Nat Phys 12, 588 (2016).

19. H. Vandeparre, et al., Physical Review Letters 106 (2011).

20. B. Davidovitch, R. D. Schroll, D. Vella, M. Adda-Bedia, E. A. Cerda, Proceedings of

the National Academy of Sciences 108, 18227 (2011).

21. B. Roman, J. Bico, J. Phys. Condens. Matter 22, 493101 (2010).

22. B. Roman, A. Pocheau, Europhysics Letters (EPL) 46, 602 (1999).

23. B. Audoly, Y. Pomeau, Elasticity and geometry: from hair curls to the nonlinear

response of shells (Oxford University Press, 2010).

24. I. Okada, S. Shiratori, ACS Applied Materials & Interfaces 6, 1502 (2014).

25. C. Morris, U. Homann, The Journal of Membrane Biology 179, 79 (2001).

14



A.

C.

D.

E.B.

NANO-FIBROUS FABRIC

with liquid droplets

Irreversible rupture of the membrane
NO STRETCHABILITY HIGH STRETCHABILITY

DRY MEMBRANE

REVERSIBLE
HIGH STRETCHABILITY

BIO-INSPIRED MEMBRANEBI0-OBSERVATION 

DRY MEMBRANE

LIQUID DROPLETS
INFUSION

Stretchability in macrophages 

Engulfment of huge ‘intruders’ 

Stretchability of the dry membrane? Wet pre-formed membrane

SURFACE 
RESERVES

BIO-INSPIRED
SURFACE 

RESERVES

SELF-ASSEMBLED 
SURFACE RESERVES

Figure 1: Designing ultra-stretchable membranes. A. A thin fibrous membrane (here: electrospun PVDF-
HFP membrane dyed blue with a coloring agent for visualization purposes) and a scanning electron microscope
micrograph of this membrane are presented (scale bar: 50 µm). The typical diameter of the fibers composing
this few microns thick membrane is 500 nm. B. At its native (dry) state, the membrane is attached to 8
translational supports slowly separated from each other. As the membrane is not intrinsically stretchable, it
rapidly irreversibly tears o↵ at around 30% area extension. Scale bar: 3 cm. C. SEM micrographs of a J774
macrophage (Courtesy of Prof. Heinrich, UC Davis [?]). The first snapshot presents the macrophage at rest (cell
size is not representative due to shrinkage during fixation). The two following pictures show the macrophage
engulfing an antibody coated (FC�-opsonized) 30 µm diameter bead. Throughout this ambitious engulfment,
the initially corrugated cell membrane smooths out, thus recruiting membrane surface, necessary for its up to
5-fold surface area expansion. Scale bar: 10 µm. D. Based on this biological observation, our membrane is
now attached to the 8 translational supports (set in a wide position) and wicked by a wetting liquid (here:
v100 silicone oil). When the supports are brought closer, the membrane does not sag as one would expect; it
spontaneously folds inside the liquid veins due to the surface tension they develop. Scale bar: 3 cm. E. Once
the whole membrane is wicked by the liquid, its compressed state spontaneously adopts a wrinkled and folded
surface, similar to that of the resting J774 membrane. Just like for the J774 macrophage, our self-corrugated
wicked membrane smooths out when stretched; wrinkles and folds act as membrane reserves that can fuel up to
a 50-fold surface area expansion. Moreover, as the process relies only on elasticity and capillarity, it is reversible
and repeatable (wrinkles and folds continue self-assembling upon subsequent compressions). Scale bar: 3 cm.
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Figure 2: Mechanics of the wicked membrane: capillary-driven wrinkling and packing. A. Electro-
spun PAN membrane wicked with water and attached to two rigid mobile edges. The left and right photo
respectively show the membrane at its extended and slightly compressed state. Upon this small compression,
the wicked membrane immediately exhibits a clear wrinkling pattern (L=4 cm). B. Closer view of the membrane
(red and green rectangles in A.) throughout a complete uni-axial compression. At the extended state, the wicked
membrane is smooth (a). A small compression engender a wrinkled surface (of wavelength �) which rapidly
displays a two phase texture as compression is pursued (b and c respectively). One phase corresponds to a
wrinkled texture (same wavelength �) and the other one a closely packed accordion-like state which gradually
expands throughout compression. The whole membrane is closely packed inside the liquid film at the end
of the compression (d). This accordion-like phase houses the surface reserves which will be recruited upon a
subsequent extension of the membrane. (scale: 10�=3.1 mm) C. Physical interpretation of the early wrinkling
of the membrane inside the liquid film. Here, the membrane is described as an elastic beam of bending sti↵ness
per unit depth B inside a liquid film of initial thickness h and liquid-air interface energy �. Considering the
beam buckles in a sinusoidal shape and the liquid interface adopts a circular shape, at a given compression ✏,
three regimes emerge, depending on the liquid film thickness. D. Experimental wavelength � of the wrinkles
observed at early an compression stage of the membrane as a function of the liquid film thickness h for di↵erent
membrane thicknesses t

0

and infusing liquids. The inset provides the data normalized by the elasto-capillary
length L

ec

. The solid gray lines correspond to an energy minimization analysis for compressions of ✏ = 1, 2 and
5% (see Supplementary Material).
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Figure 3: Forms and forces for capillary-folded wicked membranes. A1. Soapy liquid film on a frame.
A2. Wicked membrane attached to two mobile supports. The membrane has a width W and its ends are
separated by a distance X. A3. Force versus displacement diagram. The green curve corresponds to the force
measurements during the first compression/extension cycle of the wicked membrane whereas the gray curve was
obtained after imposing 100,000 compression/extension cycles on the membrane. The blue dotted line shows
the force prediction on a soapy liquid film on a rigid frame of width W and the black dotted line is obtained by
considering a surface minimization with iso-perimetric constraint on its free edges (see Supplementary Material).
B1. Soapy liquid catenoid between two parallel circular rings. B2. Two states of the catenoid shape adopted
by a wicked membrane attached to two parallel circular rings. B3. Neck radius of the catenoid versus distance
between the two rings. The green points represent the experimental observation for a wicked membrane. The
blue dotted line represents the soapy liquid solution for the catenoid and the black dotted line shows the
solution for a catenoid with iso-perimetric constraint (see Supplementary Material). C1. Soapy bubble. C2.

Bubble generated by inflating a wicked membrane at two di↵erent inflating stages. C3. Pressure versus radius
diagram. Here, the radius of a bubble is defined as R = ( 3

4⇡V )1/3. The blue dotted line represents the theoretical
pressure for a soapy bubble being inflated through a tube of radius R

tube

(Laplace’s law). The green points
correspond to the pressure measurements of the wicked membrane. At R = R

max

, the pressure diverges due to
the inextensibility of the membrane (the black dotted line illustrates this prediction), making this configuration
evocative of the hypotonic swelling of neurons [?]. Note the significant deviation from Laplace’s law resulting
from the mixed solid-liquid behavior of the membrane. Scale bars on all the photographs: 1 cm.
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Adaptable slippery surface treatment

Slippery 
membrane

C.
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Water dr     plet Treated surface
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Figure 4: Stretchable electronics, on-demand contractibilty and adaptable slippery surfaces. A. A
thin gold strip (100 nm thick) is apposed on the wicked membrane (here : PVDF-HFP membrane wicked by
v100 silicone oil). Capillary adhesion guarantees the gold strip to remain secured to the membrane. Electricity
runs through the gold strip even when membrane reserves are spontaneously generated upon compression of
the membrane. Electric resistance versus membrane extension X is presented in the graph and due to local
short circuits, this resistance drops as the membrane is contracted. Indeed, as shown on the right photograph
(scale bar: 7 mm), a gold strip wrinkles and folds when the membrane is compressed. The sequence shows the
illumination of a 1.5V LED through a basic electric circuit throughout an 8-fold extension of the supporting
wicked membrane. Scale bar: 3cm. B. Capillary contraction upon wetting. The dry membrane is here attached
to two mobile supports (rafts freely gliding on a water bath, first photograph). When ethanol (dyed blue for
visualization) is sprayed on the membrane, membrane reserves are immediately generated through the capillary
action; the two mobile rafts are pulled towards one and other. Scale bar: 3cm. C. A PVDF-HFP fibrous
membrane is apposed to a non-flat surface and is wicked by silicone oil. Capillary adhesion secures the wicked
membrane onto the surface and the spontaneous generation of surface reserves allow for a macroscopically
smooth surface even on a warped surface (folds are confined in the liquid film). The wicked membrane then acts
as a slippery surface treatment with water repellent properties. The chrono-photography (10 ms intervals, scale
bar: 7mm) shows a water droplet bouncing o↵ such a treated spherical glass surface. The wicked membrane
can adapt to any object such as glasses (scale bar: 1.5 cm, water droplets stick to the untreated surface but
roll o↵ the treated glass) or cocktail umbrellas (scale bar: 2cm, the water repelling property is conserved after
consecutive opening/closing of this toy umbrella).
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Materials

The polymers used to fabricate the fibrous membranes are Poly(vinylidene fluoride-co-hexafluoropropylene)
(PVDF-HFP, Solvay), Polyacrylonitrile (PAN, M.W. 150,000, Sigma Aldrich), Polycaprolactone (PCL, M.W.
80,000, Sigma Aldrich) and Polyvinylpyrrolidone (PVP, M.W. 1,300,000, Acros Organic). The solvents are n,n-
dimethylformamide (DMF, Carlo Erba Reagents) and ethanol (absolute, Sigma Aldrich). The liquids used to
infuse the fibrous membranes are deionized water, glycerol (Sigma Aldrich), ethanol (absolute, Sigma Aldrich)
and PDMS v100 oil (Sigma Aldrich). The concentration of polymer of each polymer/solvent solution is 10% wt.
A summary of the constituents is provided in Table S1. Surface tensions of the liquids are characterized using
a Krüss K6 manual tensiometer (hanging ring). Erioglaucine disodium salt (Sigma Aldrich) is used to dye the
fibrous membrane (dissolution of the coloring agent in the polymer/solvent solution prior to electrospinning)
and the infusing liquids. 1mm wide gold strips are obtained by manually cutting 100 nm thick edible gold leaves
(purchased from Alice Delice) using a surgical blade.

Polymer Solvent Wicking liquid

PAN DMF water - glycerol - ethanol - silicone oil
PVDF-HFP DMF ethanol - silicone oil

PCL DMF ethanol - silicone oil
PVP ethanol silicone oil

Table S1: Polymers used to fabricate fibrous membranes with their respective solvents and infusing liquids that
are used to generate self-assembled surface reserves.

Sample preparation

The fibrous membranes are obtained using an electrospinning technique using the electrospinning apparatus
ES-1A (Electrospinz Ltd.) following these key steps:

1. A polymer is dissolved in a solvent (the polymers and corresponding solvents that are used in this work
are presented in Table S1).

2. The solution is injected through an electrically charged blunt needle (diameter of the needle 1mm at a
rate of 0.02 ml/min, between 10 and 15kV). The outgoing droplet is instantaneously destabilized through
the formation of a Taylor cone which is ejected as a liquid rod towards an electrically neutral fixed plane
target (distance between the tip of the needle and the target: 17cm). As it travels towards the target, the
solvent evaporates from the liquid rod which therefore quickly undergoes a swirling instability randomly
deviating it.

3. The resulting fibrous mat (made of the addition of solid fibers continuously generated) is recovered from
the target, which was previously covered with anti-adhesive cooking paper (purchased from Monoprix
S.A.) to avoid sticking.

Once the membrane is attached to the mobile supports (Thorlabs translational elements or laser cut PMMA
assembly of 8 translational supports), it is wicked by a wetting liquid (see Table S1) using a Terumo 10ml
syringe or a spray. Upon compression, the surface reserves are instantaneously formed through the wrinkling
and folding of the membrane under the capillary forces.

Thickness characterization of the infusing liquid film

For the study the wrinkling wavelength � as a function of the liquid thickness h, a colorimetry tool is used
to characterize the liquid film thickness. The membrane is wicked by a dyed liquid (water dyed blue) and a
photograph of the infused membrane is taken next to a calibration wedge containing the same dyed liquid with
a D810 Nikon camera. Comparing the photograph’s local gray value on the membrane and the thickness versus
the gray value curve (see figure S1), we can locally estimate the thickness of the liquid film. Image analysis is
performed using the image processing package Fiji.

Wavelength measurement

The wrinkling wavelength � is measured when the wicked membrane is slightly compressed. The membrane is
illuminated from the side in order to enhance the wrinkles’ contrast and a photograph is taken with a D810 Nikon
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Camera. For each liquid film thickness (di↵erent amount of wicked liquid), a set of 4 wavelength measurements
is performed. The coloring agent (erioglaucine disodium salt) did not show to change the liquid surface tension
significantly. A typical wavelength measurement image is presented in figure S2.

Force measurement and fatigue characterization

The force versus displacement curve of the plane wicked membrane is performed using a cantilever beam method
on a silicone oil infused PVDF-HFP fibrous membrane. The cantilever beam’s mechanical response was cali-
brated using calibrated weights (weighed with a Mettler-Toledo MS 0.01 mg precision scale). The membrane
is supported by two floating rafts on a water bath to ensure frictionless translational supports. The presented
extension/compression force measurement cycles are performed at around 1mm/s but show little sensitivity to
displacement speed (the same force vs. displacement curve was obtained for a twice as fast displacement speed).
The fatigue test was performed on a silicone oil infused PVDF-HFP fibrous membrane mounted on a crank
rod system and the wicked membrane underwent 3 extension/compression cycles per second. The compres-
sion/extension cycle corresponds to an end to end distance X varying from X

min

= 2 mm to X
max

= 3.7 cm.
The membrane was re-infused by silicone-oil every 20,000 cycles to avoid drying. Small circular holes (hundreds
of microns in diameter) appeared at around 60,000 cycles, slowly growing up to 150,000 cycles. At this last
point, the holes had a significant impact on the mechanical behavior of the wicked membrane (see fig S3) and
the membrane tore o↵ shortly after.

Catenoid neck radius measurement

To study the equilibrium forms adopted by a wicked membrane in a cylindrical configuration, a PAN membrane
is attached on the edge of two laser cut PMMA discs (diameter 2R = 2.5 cm) with 3M double face tape.
The membrane is wicked with deionized water and the distance between the two discs is controlled using a
Thorlabs 25 mm manual translation stage. Throughout the compression/extension cycle, the shape adopted
by the wicked membrane is filmed with a Nikon D810 camera and image post-processing (Python) allows to
gather the neck radii of the resulting catenoid for the visited disc distances. Figure S4 shows a sequence of
such compression/extension cycle and makes it clear that the shape adjustments of the wicked membrane are
mediated by the self-assembled folds that act as surface reserves.

Wicked membrane bubble pressure measurement

To measure the pressure inside an inflated spherical wicked membrane (PAN fibrous membrane wicked with
deionized water), visualization of an adjacent ethanol filled tube is used. The bubble is inflated with air using a
PHD Ultra Syringe Pumps (Harvard apparatus) at a rate of 6 ml/min. The air-entrance tube is connected to a
U-shaped tube partially filled with dyed ethanol with a T-junction. One end of the U-shaped tube is therefore
pneumatically linked to the bubble, while the other end is open (at atmospheric pressure). The i↵erence in
height �h of the two ethanol interfaces inside the U-shaped tube indicates the pressure P inside the bubble,
knowing its density ⇢ = 789 kg/m3 and earth acceleration g = 9.81 m/s2 (P = ⇢g�h). The pressure P is
normalized by P

max

= 4�/R
tube

, which is the theoritical maximum pressure for a spherical bubble of surface
tension �, inflated out of cylindrical tube of radius R

tube

(R
tube

= 4.5 mm in our experiment). It is to be
mentioned that in contact with the PAN membrane, the surface tension of deionized water drops from 72 to 53
mN/m.
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Analytical calculation of the wrinkling wavelength �

Here, we study the buckling of an elastic beam confined inside a liquid film. Elastic energy minimization would
favor high wavelength but for flexible enough beams, capillary interface energy of the liquid film can become non-
negligible; the system will find a trade-o↵ wavelength, minimizing the sum of the elastic and capillary energies.
The solid beam is described by y(x) whereas the liquid/air + solid/air interface is given by y�(x). Indeed, since
the liquid/air and solid/air interface specific energies are considered to be the same, y�(x) corresponds to the
liquid/air interface where the beam is covered by liquid, but is given by the beam surface y(x) where no liquid
covers the beam.

Energies

Because the wavelength � is much smaller than the total beam length L, boundary conditions at the ends of
the beam are not considered. The elastic and interface energies respectively are given by E

e

and E� :

E
e

=
1

2
B

Z L��L

0

2(x) dx (1)

E� = 2�

Z L��L

0

q
1 + y� 0

2(x) dx (2)

where (x) represents the beam curvature and y�(x) represents the bottom liquid/air+solid/air interface. The
factor 2 in eq. (2) comes from top/down pseudo-symmetry (the bottom interface has the same length as the
top interface).

Volume conservation

Incompressibility of the liquid requires for the volume V = hL to be conserved:

2

Z L��L

0

⇥
y�(x)� y(x)

⇤
dx = V (3)

Inextensibility constraint

Inextensibility of the beam provides a constraint on its length:

Z L��L

0

q
1 + y02(x) dx = L (4)

Refocusing the problem on one wavelength �

l corresponds to the beam length in one wavelength, therefore, it satisfies

l

L
=

�

L(1� ✏)
(5)

with ✏ = �L
L , and equations 1 to 4 can be rewritten considering only the energies and shapes on one wavelength:

E
e

=
1

2
L
1� ✏

�
B

Z �

0

2(x) dx (6)

E� = 2L
1� ✏

�
�

Z �

0

q
1 + y02� (x) dx (7)

h = 2
1� ✏

�

Z �

0

⇥
y�(x)� y(x)

⇤
dx (8)

�

1� ✏
=

Z �

0

p
1 + y02(x) dx (9)
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Normalizing

Using L
ec

=
p
B/� as unit length and B/L

ec

as unit energy, we introduce the following dimensionless quantities:

x̃ =
x

L
ec

; ỹ =
y

L
ec

; ỹ� =
y�
L
ec

; (10a)

L̃ =
L

L
ec

; �̃ =
�

L
ec

; h̃ =
h

L
ec

; ̃ = L
ec

; (10b)

Ẽe =
EeLec

B
; Ẽ� =

E�Lec

B
; (10c)

Equations (6) to (14) can be rewritten as follows:

Ẽ
e

=
1

2
L̃
1� ✏

�̃

Z
˜�/2

�˜�/2

̃2(x̃) dx̃ (11)

Ẽ� = 2 L̃
1� ✏

�̃

Z
˜�/2

�˜�/2

q
1 + ỹ�

02(x̃) dx̃ (12)

h̃ = 2
1� ✏

�̃

Z
˜�/2

�˜�/2

⇥
ỹ�(x̃)� ỹ(x̃)

⇤
dx̃ (13)

�̃

1� ✏
=

Z
˜�/2

�˜�/2

p
1 + ỹ02(x̃) dx̃ (14)

Interface y�(x)

The liquid interface and the elastic beam merge at the x-coordinate x� (see figure S7). Because y�(x) =
y(x) where no liquid covers the beam, x� has to satisfy the adapted formulation of equation (13) (volume
conservation):

2
1� ✏

�

Z x�

�x�

⇥
y(x)� y�(x)

⇤
dx = h (15)

We abandoned the ”⇠” notation for clarity.
Since pressure has to be constant inside the liquid film, y�(x) is defined as a circular arc between �x� and x� (of
radius R). We assume continuity between the liquid interface and the beam at the triple point (no penetration
of the beam across the liquid interface) :

y�(x�) = y(x�) (16)

and a tangent connection between the liquid surface and the beam (the liquid wets the beam perfectly):

y0�(x�) = y0(x�) (17)

These two conditions provide an explicit formulation for y�(x) :

y�(x) =
p
R2 � x2 � y

c

(18)

where y
c

, the y-coordinate of the center of the circle describing the liquid interface, is given by:

y
c

= y(x�) +
x�

y0(x�)
(19)

and the radius of said circle is expressed as followed:

R = x�

s

1 +
1

y02(x�)
(20)

A schematic representation of the liquid surface y�(x) is presented in figure S7.
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Summary

The goal is to find the wavelength � which minimizes the total energy (elastic + capillary) given by :

E =

Z �/2

�/2

1

2
2(x) + 2

q
1 + y02� (x)dx (21)

where the constant factor L(1� ✏) of eqs. (11) and (12) is discarded because it does not a↵ect the minimization.

The inextensibility constraint on the beam reads:

Z �/2

��/2

p
1 + y02(x) dx =

�

1� ✏
(22)

and the volume conservation is given by:

2
1� ✏

�

Z x�

�x�

⇥
y(x)� y�(x)

⇤
dx = h (23)

The liquid surface y� is derived in section Interface y� .

The unknowns of the problem are y(x), � and x� .

Energy minimization for a sinusoidal buckling pattern

In order to simplify the problem, we restrict ourselves to sinusoidal buckling patterns of wavelength � for the
elastic beam, i.e. y(x) = A cos

�
2⇡
� x

�
. These are the energy minimization steps that were followed:

1. Choose a guess wavelength � (we define k = 2⇡
� ). The guess beam buckling pattern is given by y(x) =

A cos(kx).

2. The amplitude A of the sinusoid is constrained by the inextensibility constraint. It can be found by
numerically solving eq. (22) (✏ is known):

Z �/2

��/2

q
1 +A2k2 sin2 (kx) dx =

�

1� ✏
(24)

3. Next, we find x� that satisfies the volume conversation constraint given by eq. (23) (h is known). The
integration is performed using a guess value for x� and using eq. (18):

y�(x) =
p
R2 � x2 � y

c

(25)

where yc and R are given by eqs. (19) and (20) respectively:

y
c

= A cos
�
kx�

�� x�

Ak sin(kx�)
(26)

and the radius of said circle is expressed as followed:

R = x�

s
1 +

1

A2k2 sin2(kx�)
(27)

It is to be mentioned that y�(x) is described by the expression in eq. (25) for |x|  x� but as the beam
surface y(x) where x� < |x| < �/2.

4. We now have to compute the total energy E of the system using equation (21) where y�(x) is described

as explained in the previous step. The curvature  is defined as y00
(x)

(1+y02
(x))3/2

. Note that this energy E

only depends on the first guess value �.

5. Iterative steps are performed to find the wavelength � that minimizes the total energy of the system.
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Considering a non-zero thickness of a porous beam

Experimentally, the wrinkling wicked membrane has a non-zero thickness. The thickness of the beam can be
taken into account in our model by considering a vertical shift of half a thickness of the liquid interface. Since
the membrane is very porous and entirely wicked by the liquid, we consider the that the entire thickness of the
beam t adds up to the total liquid volume V . Step 3 of the previous section therefore has to be revisited. yc is
shifted as follows:

y
c

= A cos
�
kx�

�� x�

Ak sin(kx�)
� t

2
(28)

where t is the thickness of the porous beam. The volume constraint equation given in eq. (29) rewrites as:

2
1� ✏

�

Z x�

�x�


y(x)� t

2
� y�(x)

�
dx+ t = h (29)

It is to be noted that this formulation is only valid for small deformations (i.e. small compressions ✏). In
this study, we consider the membrane to grow as the liquid film gets thicker, i.e. the membrane thickness t
is proportional to the liquid film thickness h wicking it (we use t = 0.8h). However, we do not consider the
bending sti↵ness per unit depth B to change during this growth.

Graphical results and discussion

Figure S8 presents the dimensionless wavelength � versus the dimensionless liquid thickness h for PAN fibrous
membranes of di↵erent thicknesses wicked by di↵erent liquids. Both � and h are normlized by the elastocapillary
length L

ec

=
p
B/�. The surface tension � was measured with the Krüss K6 manual tensiometer (deionized

water showed a drop in surface tension when previously put in contact with a PAN membrane, from 72 mN/m
to 53 mN/m). To test the dependence of surface tension on the wavelength, the experience was performed
with deionized water and a water/soap solution (of measured surface tension � = 30 mN/m). The membrane
bending rigidity per unit depth B being low, it could not be measured experimentally. Therefore, it was roughly
estimated as B = ↵ t0

a Ea3 where t
0

is the membrane dry thickness, a the typical radius of the fiber composing
the membrane (a = 500 µm) and E is the PAN Young’s modulus (E ' 30 GPa). Finally, ↵ is a dimensionless
parameter to account for the membrane porosity (here adjusted to the experiments using ↵ = 2 · 10�4).

7



Plane wicked membrane

Here we consider a wicked fibrous membrane of width W attached to two parallel rigid straight supports at an
initial rest distance L from one and other. Upon compression (varying the distance X between the two supports)
the membrane remains under tension due to the liquid surface tension and stores the excess membrane inside
wrinkles and folds which can afterwards be recruited when extended. The force necessary to keep the two poles
at a distance X is here analyzed depending on W , L and the surface tension �.

Unlike a soapy liquid film on a rigid frame, our membrane is only attached on two edges and has two free
edges. It is to be mentioned that a soapy liquid film would break o↵ immediately if it was only “attached” on
two of its edges. In order to minimize its interface energy with air, the wicked membrane adapts its shape and
this minimization with isoperimetric constraint spontaneously leads to circular arcs of arc length L on its free
edges.Indeed, the the membrane can wrinkle and fold but cannot be stretched.

Early compression:

2
⇡L < X < L

At early compression, assuming the free edge describes a circular arc of length L and that the two supports are
at a distance X, we include two new variables R and �, respectively the radius and angle span of the circular
arc which are presented in figure S9. R and � are related to L and X through two equations:

L = 2R� (30)

X = 2R sin� (31)

The surface area of the liquid infused membrane then writes:

S = WX � 2R2� + 2RX cos� (32)

And the normalized force (f = F/2�W ) that an operator has to apply on the rigid edges to ensure a distance
X is given by the derivative of the energy with respect to X:

f =
1

2�W

@(2�S)

@X
(33)

which can be solved numerically.

Advanced compression: 0 < X <

2
⇡L

At a more advanced compression, when � reaches ⇡/2 (i.e. when X becomes smaller than 2L/⇡), the geometry
adopted by the liquid infused membrane changes and a sketch of it is presented in figure S10. The radius R of
the circular arc remains of interest and a new variable � is considered, it represents the length on which the
membrane is sticked to the support. R and � are given by the 2 relations:

L = 2�+ ⇡R (34)

X = 2R (35)

and again, the surface is calculated:
S = WX � 2X�� ⇡R2 (36)

Finally, injecting the three previous relations in the force equation, eq. (33), leads to an explicit expression for
the force:

f = 1� L

W

✓
1� ⇡x

2

◆
(37)

where x=X/L. The theoretical dimensionless force vs. displacement curves are given in figure S11 for 4 di↵erent
rest distance to width ratios L/W.
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Catenoid formed by the wicked membrane

Here, we consider a cylindrical geometry, reminiscent of the archetypical liquid soap catenoid : the wicked
membrane is attached to two rigid parallel rings of radius RH at an initial distance L. Since the membrane is
infused with a liquid, the output shape will minimize the total interfacial energy of the system, i.e. 2�S where
� is the liquid-vapor specific energy of the liquid, and S the surface area of the catenoid. As surface tension
does not vary, the system seeks to minimize its surface area S given by:

S =

Z H

�H

2⇡R
p
1 +R02 dY (38)

Moreover, since the fibers of the membrane are inextensible (they can wrinkle inside the liquid film, but cannot
be stretched) an inextensibility constraint is to be applied for the outer length of a given fiber from Y = �H
to Y = H, this length is given by : Z H

�H

p
1 +R02 dY  L (39)

where L is the rest length between the two rings (corresponding to the distance between the two rings when
the membrane is perfectly cylindrical). The energy of the system can then be re-written as :

V =

Z H

�H

2⇡(R� µ)
p

1 +R02 dY = 2⇡

Z H

�H

L(R,R0) dY (40)

Where 2⇡µ � 0 is the Lagrange multiplier corresponding to the constraint given in eq. (39). The inextensibibilty
constraint is not active when µ < 0. Since L(R,R0) does not depend explicitly on Y , minimizing V can be done
by solving :

H =
@L
@R0R

0 � L = c (41)

Where c is a constant to be determined. Deriving the equation leads to:

(R� µ)
p

1 +R02 �R0 (R� µ)R02
p
1 +R02

= c (42)

Which, after solving, leads to :

R(Y ) = c cosh

✓
Y

c

◆
� µ (43)

With two implicit equations for c and µ :

c sinh

✓
H

c

◆
= L (44)

c cosh

✓
H

c

◆
� µ = RH (45)

which have no explicit solutions but can be solved numerically.

When µ < 0 the inextensibility constraint becomes inactive and as for the usual liquid catenoid, only the
surface area given in eq. (38) has to be minimized.
The catenoids can be compared by analyzing their neck radii R(Y = 0) as a function of the distance between
the two rings for given rest lengths L between the rings (distance between the rings for which the membrane
is perfectly cylindrical). It is to be mentioned that a wicked membrane can display two stable catenoid shapes
for given parameters. For example, the curve corresponding to l = 1.4 shows that for a given height h slightly
below 1.0, the neck radius can be that of a pure soapy liquid catenoid (blue curve), or that of a catenoid with
isoperimetric constraint (l = 1.4) corresponding to the green curve. This bistability results in a strong path-
dependence for the adopted shape of the catenoid. Indeed, when this catenoid comes from h > 1, it follows
the green curve when bringing the two rings closer (i.e. µ > 0, the isoperimetric constraint is active). When
it crosses the unstable liquid catenoid solution (dotted blue line), µ changes sign and becomes negative, thus
making the isoperimetric constraint inactive. The catenoid then jumps to the stable liquid catenoid solution
(solid blue curve). On its way back (increasing h) it continues traveling only on the blue curve until it crosses
the h = 1 axis, in which case it will jump back to the isoperimetric constrained solution (green curve).
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Captions for Movies S1 to S8

Movie S1: The ultra stretchable wicked membrane

Successive photographs. Diameter of the membrane at its extended state : 7 cm. A PVDF-HFP fibrous mem-
brane is attached to 8 translational supports. When wicked with silicone oil, it immediately tightens up, even
when compressed. Excess membrane is stored in self-assembled surface-reserves through the formation of wrin-
kles and folds within the liquid film.

Movie S2 : Contractility through wicking the membrane

Real time. Width of the membrane at rest : 3.7cm. The dry PVDF-HFP fibrous membrane is attached to
two floating rafts to ensure frictionless support. When wicked by ethanol, the membrane contracts under the
pulling force of surface tension; membrane reserves are instantaneously stored inside the liquid film.

Movie S3 : Plane wicked membrane

Real time. Width of the membrane at its extended state : 3.7 cm. PVDF-HFP fibrous membrane wicked with
silicone v100 oil. When the supports are brought closer, the membrane remains straight and under tension;
membrane surface reserves are spontaneously generated in the form of wrinkles and folds inside the liquid film.

Movie S4: Wrinkling and packing of the wicked membrane

Real time. Width of the image : 1.3 cm. PAN fibrous membrane wicked with deionized water. When com-
pressed, it exhibits a wrinkling pattern and rapidly displays a second accordion-like phase where the membrane
is closely packed inside the liquid film: the membrane reserve.

Movie S5 : Inflating a wicked membrane bubble

Real time. Diameter of the tube supporting the bubble : 9mm. PAN fibrous membrane wicked by deion-
ized water. The blue dyed ethanol semi- filled tubes allow for precise pressure measurement inside the bubble
throughout its inflating.

Movie S6 : Catenoid equilibrium shape of a wicked membrane

Real time. Diameter of the rings : 2.5 cm. PAN fibrous membrane wicked by deionized water in a cylindrical
configuration. The strong shape jump is due to inextensibility constraint that suddenly becomes inactive.

Movie S7 : Slippery lubricant infused adaptable treatment with wicked membranes

Slowed 125 times. Width of the image : 5 cm. A PVDF-HFP fibrous membrane is disposed on a spherical glass
substrate and wicked with silicone oil. The resulting membrane reserves allow the storing of folds, thus keeping
a smooth transparent surface with water-repellent properties.

Movie S8 : Stretchable electronics with the wicked membrane

Successive photographs. Width of the membrane at its extended state : 3.8 cm. A PVDF-HFP fibrous membrane
is wicked by silicone oil and two thin gold strips are attached to it through capillary adhesion, and connected
to a 1.5V LED. When voltage is supplied, the LED remains illuminated even during a compression/extension
cycle (e↵ective stretching from compressed state: 800%).
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Figure S1: Measurement the liquid film thickness of the infused membrane with a colorimetry method. A
scale wedge (two slightly non parallel glass slides) is used to calibrate the gray level as a function of colored
liquid thickness on a photograph. In this case, we show an area on the membrane where the gray level is 0.50,
corresponding to a liquid film thickness of around 100 µm.
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Figure S2: Visualization of the wrinkles on a slightly compressed membrane.
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Figure S3: Force vs. displacement of the membrane during compression/extension cycle after imposing numerous
cycles to it.
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Figure S4: Side view of the catenoid-like shape adopted by a wicked membrane attached to the edge of two discs
(diameter of the disc: 2R = 2.5 cm) throughout a compression/extension cycle. Note that the this catenoid
jumps from a thin to wide state between image 5 and 7. This sudden change in shape is due to the iso-perimetric
constraint, responsible for a strong path dependence of the equilibrium state (see Supplementary Material).
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Figure S5: Side view of the bubble-like wicked membrane inflated with air. The tubes filled with blue dyed
ethanol allow to characterize pressure inside the wicked membrane bubble throughout its inflating. The external
diameter of the bubble supporting tube is 9 mm.
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Figure S6: Wrinkling of a beam of length L under compression (�L) in a liquid film of volume V = hL. The
liquid/air and solid/air interfaces have the same specific interface energy � and the liquid/solid interface is
considered to have a specific energy of 0. The beam has a bending resistance B and the texture wavelength is
�.
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Figure S8: Dimensionless wavelength � versus liquid thickness h. The points refer to experimental data for
di↵erent PAN membrane dry ticknesses and di↵erent wicking liquids. The gray solid lines are results of the
here presented model for ✏ = 1%, 2% and 5%. It is considered that the membrane grows as it is infused with
liquid. To capture this growth, we choose the membrane thickness t to be proportional to the liquid thickness
h (t = 0.8h). The gray dotted lines represent the same results for a zero-thickness beam.
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Figure S9: Plane wicked membrane during early compression. The surface minimization with iso-perimetic
constraint on the free edges of the wicked membrane is responsible for the circular shape adopted by these free
edges.
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Figure S10: Plane liquid infused membrane at a strong compression.
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Figure S11: Theoretical dimensionless force versus displacement curve of the wicked membrane for L/W =
1, 0.5, 0.25, 0.01 for the blue, green, orange and red curve respectively.
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Figure S12: Sketch of the catenoid-like shape generated by a wicked membrane with self-assembled surface
reserves attached to two parallel rings.
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Figure S13: Dimensionless neck radius r versus dimensionless distance between the two rings h for
di↵erent length constraints l. The length Rh/1.5090 is commonly used to normalize lengths in catenoid-related
problems. It is to be noted that the inextensibibilty constraint allows for catenoid geometries to exist in a
region where purely liquid catenoids do not exist (i.e. where h > 1). Solid green lines represent solutions of eq.
(43) (the neck radius refers to R(Y = 0)) for di↵erent isoperimetric constraint (distance between the two rings
when the membrane is straight L) where µ � 0, whereas the dotted green lines represent the solution of the
same equations but with µ < 0 i.e. where the constraint is inactive. The solid and dotted blue line respectively
represent the stable and unstable purely liquid catenoid.
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