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Computational Homogenization 
of Architectured Materials

Justin Dirrenberger, Samuel Forest and Dominique Jeulin

Abstract Architectured materials involve geometrically engineered distributions of
microstructural phases at a scale comparable to the scale of the component, thus call-
ing for new models in order to determine the effective properties of materials. The
present chapter aims at providing such models, in the case of mechanical properties.
As a matter of fact, one engineering challenge is to predict the effective properties
of such materials; computational homogenization using finite element analysis is a
powerful tool to do so. Homogenized behavior of architectured materials can thus
be used in large structural computations, hence enabling the dissemination of archi-
tectured materials in the industry. Furthermore, computational homogenization is
the basis for computational topology optimization which will give rise to the next
generation of architectured materials. This chapter covers the computational homog-
enization of periodic architectured materials in elasticity and plasticity, as well as
the homogenization and representativity of random architectured materials.

4.1 Introduction

Architectured materials are a rising class of materials that bring new possibilities
in terms of functional properties, filling the gaps and pushing the limits of Ashby’s
materials performance maps [11]. The term architectured materials encompasses
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any microstructure designed in a thoughtful fashion, such that some of its materials
properties, e.g. yield strength/density, have been improved in comparison to those
of its constituents, due to both structure and composite effects, which depend on
the multiphase morphology, i.e. the relative topological arrangement between each
phase [11, 33, 35].

There are many examples: particulate and fibrous composites, foams, sandwich
structures, woven materials, lattice structures, etc. with different objectives. For
instance, developing architectured porous materials for structural, acoustic and insu-
lation properties [40, 70], entangled monofilament of pearlitic steel [47, 173], sand-
wich composite structures [118, 163–165], segmented interlocking structures [59,
60, 62, 65, 66, 72, 117, 123, 136, 145–147, 189], asymmetric frictional materials
[18, 19], woven and non-woven textile composites [57, 130, 141], porous metallic
glasses [187], hierarchical composites [92], crumpledmetallic foils [34].Muchmore
examples can be found in the present book.

One can play onmany parameters in order to obtain architecturedmaterials, but all
of them are related either to the microstructure or the geometry. Parameters related to
the microstructure can be optimised for specific needs using a materials-by-design
approach, which has been thoroughly developed by chemists, materials scientists
and metallurgists. Properties improvements related to microstructural design are
intrinsically linked to the synthesis and processing of materials and are therefore due
to micro and nanoscale phenomena, taking place at a scale ranging from 1 nm to
10 µm. This scale is below the scope of the present chapter, but has been extensively
studied in the literature [63, 78, 148].

From a macroscopic viewpoint, parameters related to the geometry have mainly
been the responsibility of structural and civil engineers for centuries: to efficiently
distribute materials within structures. An obvious example would be the many differ-
ent strategies available for building bridges. At the millimetre scale, materials can be
considered as structures, i.e. one can enhance the bending stiffness of a component by
modifying its geometry while keeping the lineic mass (for beams) or surfacic mass
(for plates) unchanged [209]. On the other hand, one might need a lower flexural
strength for specific applications, with the same lineic and/or surfacic masses. This
can be achieved with strand structures, i.e. by creating topological interfaces in the
material. Processing remains the key technological issue for further development of
architectured materials as the microstructure, the shape, and the scale of the material
depend on it. Progress is made every day in terms of material processing at the lab
scale, as it was done in [191] by using a bottom-up approach of sequential processing
techniques in order to fabricate ultralight metallic microlatticematerials [190]. There
is still a long way to go for the industry to actually apply architectured materials in
product manufacturing.

Architectured materials lie between the microscale and the macroscale. This
class of materials involves geometrically engineered distributions of microstruc-
tural phases at a scale comparable to the scale of the component [11, 33, 35],
thus calling for enriched models of continuum mechanics in order to determine the



effective properties ofmaterials [81, 140], e.g. generalised continua theories, in order
to describe the behaviour of architectured materials, such as strain-gradient elasticity
[13], and strain-gradient plasticity. This topic has been especially fruitful these last
few years in the mechanics of materials community [9, 13, 45, 51, 129, 166, 167,
174, 203]; this results in the availability of versatile models able to describe the var-
ious situations encountered with architectured materials. Given mature processing
techniques, architectured materials are promised to a bright future in industrial appli-
cations due to their enticing customisable specific properties and the opportunity for
multifunctionality.

When considering actual applications, one engineering challenge is to predict the
effective properties of such materials; computational homogenisation using finite
element analysis is a powerful tool to do so. Homogenised behaviour of architec-
tured materials can thus be used in large structural computations, hence enabling the
dissemination of architectured materials in the industry. Furthermore, computational
homogenisation is the basis for computational topology optimisation [3, 10, 24, 41,
86, 116, 184, 205, 208, 210, 211] which will give rise to the next generation of
architectured materials as it can already be seen in the works of [8, 48, 71, 83, 96,
119, 120, 128, 132, 149, 171, 204, 207].

Therefore, the development of architectured materials is related to the availabil-
ity of appropriate computational tools for both design and modelling, but also for
computerised manufacturing as for the various additive manufacturing techniques
considered for producing architectured materials. In order to foster the development
of architectured materials within an industrial framework, the availability of mod-
elling bricks describing the underlying behaviour of such materials, is a necessity in
order for these to be used in structural simulation codes.We are aiming at developing
product design methodologies taking into account the specificities of architectured
materials. To do so, we focused on computational approaches to modelling and opti-
mising architectured materials, as well as novel processing techniques.

Materials science comes from the following fact: microstructural heterogeneities
play a critical role in the macroscopic behaviour of a material [29, 32, 77, 112,
151, 202]. Constitutive modelling, thanks to an interaction between experiments and
simulation, is usually able to describe the response of most materials in use. Such
phenomenological models, including little to no information about the microstruc-
ture, cannot necessarily account for local fluctuation of properties. In this case, the
material is considered as a homogeneous medium. Studying the behaviour of het-
erogeneous materials involves developing enriched models including morphological
information about themicrostructure [22, 49, 64, 105, 108, 115, 159, 195, 197, 201,
213]. Thesemodels should be robust enough to predict effective properties depending
on statistical data (volume fraction, n-point correlation function, etc.) and the physi-
cal nature of each phase or constituent. As amatter of fact, advancedmodels are often
restricted to a limited variety of materials. Although isotropic and anisotropic poly-
crystalline metals, for instance, have been extensively studied by the means of both
analytical and computational tools [25, 27, 38, 79, 97, 114, 121, 133, 157], some



material configurations (architectured materials, materials with infinite contrast of
properties, nanocomposites, materials exhibiting nonlinear behaviour, etc.) call for
further development of models and tools for describing their effective behaviour. The
purpose of this chapter is to present existing homogenization methods applicable to
architectured materials.

The chapter was conceived as a basis for the enquiring reader to find out the
main concepts related to computational homogenization of architectured materials,
as well as the bibliographical references necessary to further his/her understanding
of the present topic. It is based on the Ph.D. dissertation of the first author [54]. The
chapter is organized as follows: firstly, classical homogenization for linear elasticity is
presented in Sect. 4.2 and applied to the case of periodic architectured materials with
negative Poisson’s ratio, or auxetics. For a similar case of application, computational
homogenization for elastoplasticity is introduced in Sect. 4.3. Since architectured
materials are not always periodic, considerations regarding the of random media
based on computational homogenization are presented in Sect. 4.4. Conclusions and
perspectives are postponed to Sect. 4.5.

In this chapter, zeroth, first, and second order tensors are denoted by a, a , a∼ respec-
tively. The simple and double contractions are written . and : respectively. In index
form with respect to an orthonormal Cartesian basis, these notations correspond to

a.b = aibj, a∼ : b∼ = aijbij (4.1)

where repeated indices are summed up. The tensor product is denoted by ⊗. For
example, the component (a∼ ⊗ b∼)ijkl is aijbkl . The small strain assumption is made in
this chapter. The nabla operator is denoted by∇X (resp.∇x) when partial derivation is
computed with respect to macroscopic (resp. microscopic) coordinates. For example
σ∼ .∇ is the divergence of the second order tensor σ∼ . The index form of σ∼ .∇ is σij,j.
Similarly, u ⊗ ∇ means ui,j. The sign := defines the quantity on the left-hand side.

4.2 Computational Homogenization for Linear Elasticity

4.2.1 Constitutive Equations

When heterogeneous materials are assumed to respond linearly to mechanical load-
ing, constitutive relations are expressed locally for each phase in a linear elasticity
framework using the generalized Hooke law:

σ∼ = c≈ : ε∼ (4.2)

with σ∼ second-order symmetric Cauchy stress tensor, ε∼ second-order symmetric
engineering strain tensor and c≈, fourth-order positive definite tensor of elasticmoduli,



also known as the elastic stiffness tensor. It is possible to express strain as a function
of stress using the Compliance tensor s≈, which is defined as the inverse of tensor c≈:

ε∼ = s≈ : σ∼ with, s≈ := c≈
−1 (4.3)

such that,
s≈ · c≈ = I≈ (4.4)

with I≈, fourth-order identity tensor operating on symmetric second-order tensors

such that:

I≈ = 1

2

(
δikδjl + δilδjk

)
e i ⊗ e j ⊗ e k ⊗ e l (4.5)

The 81 components of cijkl can be thinned-down to 21 for the most anisotropic
case (triclinic elasticity) due to symmetries of σ∼ and ε∼. By isomorphism, these 21
components can be written as a symmetric second-order tensor (matrix) cIJ with 21
independent components using Voigt’s notation:

⎡

⎢⎢⎢⎢⎢⎢
⎣

σ11

σ22

σ33

σ23

σ31

σ12

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

c11 c12 c13 c14 c15 c16
• c22 c23 c24 c25 c26
• • c33 c34 c35 c36
• • • c44 c45 c46
• • • • c55 c56
• • • • • c66

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎣

ε11
ε22
ε33
γ23
γ31
γ12

⎤

⎥⎥⎥⎥⎥⎥
⎦

(4.6)

Engineering shear strain is used in the strain column-vector:

γ23 = 2ε23
γ31 = 2ε31
γ12 = 2ε12

The matrix form of the compliance tensor is obtained by inverting (4.6):

⎡

⎢⎢⎢
⎢⎢⎢
⎣

ε11
ε22
ε33
γ23
γ31
γ12

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

s11 s12 s13 s14 s15 s16
• s22 s23 s24 s25 s26
• • s33 s34 s35 s36
• • • s44 s45 s46
• • • • s55 s56
• • • • • s66

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢
⎣

σ11

σ22

σ33

σ23

σ31

σ12

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(4.7)



The finite element code used in the applications is actually making use of theMandel
notation presented in (4.8) and (4.9):

⎡

⎢⎢
⎢⎢⎢⎢
⎣

σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

⎤

⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

c11 c12 c13
√
2c14

√
2c15

√
2c16

• c22 c23
√
2c24

√
2c25

√
2c26

• • c33
√
2c34

√
2c35

√
2c36

• • • 2c44 2c45 2c46
• • • • 2c55 2c56
• • • • • 2c66

⎤

⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢
⎣

ε11
ε22
ε33√
2ε23√
2ε31√
2ε12

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(4.8)

The matrix form of the compliance tensor is obtained by inverting (4.8):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε22
ε33√
2ε23√
2ε31√
2ε12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

s11 s12 s13
√
2s14

√
2s15

√
2s16

• s22 s23
√
2s24

√
2s25

√
2s26

• • s33
√
2s34

√
2s35

√
2s36

• • • 2s44 2s45 2s46
• • • • 2s55 2s56
• • • • • 2s66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.9)

In the isotropic case, c≈ can be rewritten as follows:

c≈ = 3kJ
≈

+ 2μK≈ (4.10)

with k bulk modulus, μ shear modulus, J
≈
and K≈ respectively spherical and deviatoric

fourth-order tensorial projectors such that,

J
≈

= 1

3
δijδkl e i ⊗ e j ⊗ e k ⊗ e l (4.11)

and
K≈ = I≈ − J

≈
(4.12)

4.2.2 The Representative Volume Element

The question of representativity has been a topic of interest in scientific communi-
ties for half a century, especially in the field of materials science, micromechanics
and microscopy. Indeed, microstructural heterogeneities play a critical role on the
macroscopic physical properties of materials. One common way to account for this
underlying complexity is resorting to homogenisation techniques. Most homogeni-
sation approaches, including analytical and computational, require the existence of
a representative volume element (RVE). Several definitions have been given for the



RVE over the past 50 years. A review of this topic can be found in [84]. The classical
definition of RVE is attributed to [94], who stated that for a given material the RVE is
a sample that is structurally typical of the whole microstructure, i.e. containing a suf-
ficient number of heterogeneities for themacroscopic properties to be independent of
the boundary values of traction and displacement. Later, [26] emphasised the role of
statistical homogeneity, especially in a volume-averaged sense. This also means that
the RVE size considered should be larger than a certain microstructural length for
which moduli fluctuate. Hashin [88] made a review on analysis of composite materi-
als in which he referred to statistical homogeneity as a practical necessity. Sab [179]
considered that the classical RVE definition for a heterogeneous medium holds only
if the homogenised properties tend towards those of a similar periodic medium. This
entails that the response over an RVE should be independent of boundary conditions
(BC). Fromnumerical simulations onVEs of various sizes, [200] concluded that from
a practical viewpoint RVE should be as large as possible. Ostoja-Starzewski [150]
considers the RVE to be only defined over a periodic unit-cell or a non-periodic cell
containing an infinite number of heterogeneities. Drugan and Willis [61] introduced
explicitly the idea of minimising the RVE size, meaning that the RVE would be the
smallest material volume for which the apparent and effective properties coincide.
Besides, it is worth noticing that for a given material the RVE size for physical prop-
erty A, e.g. thermal conductivity, is a priori different from the RVE size for physical
property B, e.g. elastic moduli. Thus, one has to consider an RVE that depends on
the specific investigated property.

Many definitions refer to the separation of scales as a necessary condition for the
existence of a RVE. This condition is not always met, i.e.with percolating media
or materials with microstructural gradient of properties. This separation of scale
involves a comparison between different characteristic lengths:

– d , size of microstructural heterogeneities;
– l, size of the RVE considered;
– L, characteristic length of the applied load.

Previous considerations regarding characteristic lengths can be summarized as fol-
low:

d � l � L (4.13)

Nevertheless, Inequality (4.13) is a necessary but not sufficient condition for the appli-
cability of homogenisation. As a matter of fact, quasi-uniform loading, i.e. l � L,
has to be enforced. Let us consider ameasurable property, such as amechanical strain
field. The spatial average of its measured value over a finite volume V converges
towards the mathematical expectation of its measured value over a series of samples
smaller than V (ensemble average). It is the ergodicity hypothesis. Moreover, ergod-
icity implies that one sample (or realisation) of volume V contains the statistical
information necessary for the description of its microstructure. Also, this entails that
heterogeneities are small enough in comparison to the RVE size, i.e. d � l. If and



only if these two conditions are met (d � l and l � L), the existence and unique-
ness of an equivalent homogeneous medium for both cases of random and periodic
materials can be rigorously proven [179]. Homogenisation is therefore possible.

Taking into account these definitions, and assuming ergodicity for the heteroge-
neous media considered, [114] proposed a method based on a statistical analysis for
computing the minimal RVE size for a given physical property Z(x),∀x ∈ V and
precision in the estimate of effective properties. The computed RVE size was found
to be proportional to the integral range [137], which corresponds to a volume of
statistical correlation. This statistical approach is presented in Sect. 4.4.

4.2.3 Averaging Relations

Let us consider a given volume element (VE) of volume V without voids or rigid
inclusions, for the sake of simplicity. For the spatial average over V of a kinematically
compatible strain field ε∼

′ which is defined as the symmetric part of the gradient of a
kinematically admissible displacement field u ′:

〈ε∼′〉 = 1

V

∫

V
ε∼

′d V = 1

V

∫

V
u′

(i,j)d V e i ⊗ e j

= 1

V

∫

∂V
u′

(inj)dS e i ⊗ e j

= 1

V

∫

∂V
u ′ s⊗ n dS (4.14)

with u ′ s⊗ n and u′
(i,j) denoting the symmetric part of the resulting tensor. If one con-

siders now the spatial average of a statically admissible stress fieldσ∼
∗, i.e. σ∼

∗.∇ = 0
in V , it yields:

〈σ∼ ∗〉 = 1

V

∫

V
σ∼

∗d V = 1

V

∫

V
σ∗

ijd V e i ⊗ e j

= 1

V

∫

V
σ∗

(ikδj)kd V e i ⊗ e j

= 1

V

∫

V
σ∗

(ikxj),kd V e i ⊗ e j

= 1

V

∫

∂V
σ∗

(iknkxj)dS e i ⊗ e j

= 1

V

∫

∂V

(
σ∼

∗ · n
) s⊗ x dS (4.15)



From these averaging relations, we can define the elastic strain energy density Eel

such that,

2Eel = 〈σ∼ ∗ : ε∼
′〉

= 1

V

∫

V
σ∼

∗ : ε∼
′d V

= 1

V

∫

V
σ∗

iju
′
(i,j)d V

= 1

V

∫

V

(
σ∗

iju
′
i
)
,j

d V

= 1

V

∫

∂V
σ∗

ijnju
′
idS

= 1

V

∫

∂V

(
σ∼

∗ · n
) · u ′dS (4.16)

4.2.4 Boundary Conditions

It is necessary to set boundary conditions to the volume V considered in order to
solve the constitutive equations in the case of statics. Let us consider three types of
boundary conditions.

4.2.4.1 Kinematic Uniform Boundary Conditions—KUBC

Displacement u is prescribed for any material point x on the boundary ∂V such that,

u = E∼ · x ∀x ∈ ∂V (4.17)

with E∼ second-order macroscopic strain tensor, which is symmetric and independent
of x . It follows from (4.17) and (4.14):

〈ε∼〉 = 1

V

∫

V
ε∼d V = E∼ (4.18)

The macroscopic stress tensor is then defined as the spatial average of the local stress
field:

Σ∼ := 〈σ∼ 〉 = 1

V

∫

V
σ∼ d V (4.19)



4.2.4.2 Static Uniform Boundary Conditions—SUBC

Traction t is prescribed for any material point x on ∂V such that,

t = Σ∼ · n ∀x ∈ ∂V (4.20)

withΣ∼ second-order macroscopic stress tensor, which is symmetric and independent
of x . It follows from (4.20) and (4.15):

〈σ∼ 〉 = 1

V

∫

V
σ∼ d V = Σ∼ (4.21)

The macroscopic strain tensor is then defined as the spatial average of the local strain
field:

E∼ := 〈ε∼〉 = 1

V

∫

V
ε∼d V (4.22)

4.2.4.3 Periodic Boundary Conditions—PBC

For PBC, the displacement field u can be dissociated into a part given by the macro-
scopic strain tensor E∼ and a periodic fluctuation field for any material point x of V ,
such that:

u = E∼ · x + v ∀x ∈ V (4.23)

with v the periodic fluctuations vector, i.e. taking the same value on two homologous
points x + and x − of ∂V . Furthermore, the traction vector t = σ∼ · n fulfills anti-
periodic conditions such that,

σ∼
+ · n + + σ∼

− · n − = 0 (4.24)

v + − v − = 0 (4.25)

Periodicity is denoted by # while anti-periodicity is denoted by−#. A dual approach
exists; it consists in prescribing a macroscopic stress to the cell. However we do not
develop this approach here, cf. [142] for details.

4.2.5 Hill–Mandel Condition

Let us consider a volume V with two independent local fields ε∼
′ and σ∼

∗ such that
ε∼

′ is kinematically compatible and σ∼
∗ is statically admissible. If σ∼

∗ verifies SUBC,



or ε∼
′ verifies KUBC, or if σ∼

∗ and ε∼
′ verify simultaneously the periodic boundary

conditions, then:
〈σ∼ ∗ : ε∼

′〉 = 〈σ∼ ∗〉 : 〈ε∼′〉 (4.26)

Thus, one obtains the following equivalence for the three types of boundary condi-
tions:

〈σ∼ : ε∼〉 = 〈σ∼ 〉 : 〈ε∼〉 (4.27)

which corresponds to the Hill macrohomogeneity condition [95]. This ensures that
the mechanical work density at the microscale is preserved while scaling up to the
macroscopic level.

4.2.6 Effective Properties Versus Apparent Properties

When determining the properties of the volume V smaller than the RVE, apparent
properties are considered. The apparent properties converge towards the effective
properties once V ≥ VRVE.

Themicromechanical linear elastic problem admits a unique solution, up to a rigid
body displacement for SUBC and a periodic translation for PBC. Let us consider
two fourth-order tensors A≈ and B≈ accounting respectively for strain localization and

stress concentration:

ε∼(x ) = A≈ (x ) : E∼ ∀x ∈ V and ∀E∼ (4.28)

and
σ∼ (x ) = B≈ (x ) : Σ∼ ∀x ∈ V and ∀Σ∼ (4.29)

such that,
〈A≈ 〉 = 〈B≈ 〉 = I≈ (4.30)

Let us consider the elastic moduli c≈(x ) and the compliances s≈(x ), then:

σ∼ (x ) = c≈(x ) : ε∼(x ) ∀x ∈ V (4.31)

and
ε∼(x ) = s≈(x ) : σ∼ (x ) ∀x ∈ V (4.32)

Thus,
Σ∼ = 〈σ∼ 〉 = 〈C≈ : ε∼〉 = 〈c≈ : A≈ : E∼ 〉 = 〈c≈ : A≈ 〉 : E∼ (4.33)



and
E∼ = 〈ε∼〉 = 〈S≈ : σ∼ 〉 = 〈s≈ : B≈ : Σ∼ 〉 = 〈s≈ : B≈ 〉 : Σ∼ (4.34)

We can defineC≈
app

E
and S≈

app

Σ

, fourth-order symmetric tensors, accounting respectively

for the apparent elastic moduli and compliances of the volume V considered such
that,

C≈
app

E
= 〈c≈ : A≈ 〉 (4.35)

and
S≈
app

Σ

= 〈s≈ : B≈ 〉 (4.36)

These equations show that homogenized properties are not usually obtained by a
simple rule of mixtures.

Also, one can define the apparent properties from the elastic strain energy density
Eel:

Eel = 1

2
〈σ∼ : ε∼〉 = 1

2
〈ε∼ : c≈ : ε∼〉 = 1

2
E∼ : 〈A≈ T : c≈ : A≈ 〉 : E∼ (4.37)

and

Eel = 1

2
〈σ∼ : ε∼〉 = 1

2
〈σ∼ : s≈ : σ∼ 〉 = 1

2
Σ∼ : 〈B≈ T : s≈ : B≈ 〉 : Σ∼ (4.38)

This way, we obtain a new definition of the apparent elastic moduli and compliances:

C≈
app

E
= 〈A≈ T : c≈ : A≈ 〉 (4.39)

and
S≈
app

Σ

= 〈B≈ T : s≈ : B≈ 〉 (4.40)

This new definition justifies the symmetric nature of the apparent elastic moduli and
compliance tensors. By applying the Hill–Mandel lemma (cf. Sect. 4.2.5) one can
prove the equivalence between direct and energetic definitions [185].

According to [179], for an elementary volume V large enough (V > VRVE), the
apparent properties do not depend on the boundary conditions and match with the
effective properties of the considered material, then:

C≈
app

Σ

= S≈
app

Σ

−1 = C≈
app

E
= S≈

app

E

−1 = C≈
eff = S≈

eff−1
(4.41)

For volumes (V ≥ VRVE), based on energetic considerations and the subadditivity
property of the effective elastic moduli tensor, [98] proposed the so-called partition
theorem. The effective properties can be bounded by the following inequalities:



C≈
app

Σ

≤ C≈
eff ≤ C≈

app

E
(4.42)

S≈
app

E
≤ S≈

eff ≤ S≈
app

Σ

(4.43)

These inequalities have to be considered in the sense of quadratic forms. For elemen-
tary volumes smaller than the RVE, using the same arguments but for partitions of
different sizes, [98] derived hierarchical inequalities regarding apparent and effective
properties. Coarse and fine partitions are considered and their respective statistical
apparent properties are denoted by indices c and f :

C≈
Reuss ≤ C≈

app

Σ f
≤ C≈

app

Σc
≤ C≈

eff ≤ C≈
app

Ec
≤ C≈

app

Ef
≤ C≈

Voigt (4.44)

S≈
Voigt ≤ S≈

app

Ef
≤ S≈

app

Ec
≤ S≈

eff ≤ S≈
app

Σc
≤ S≈

app

Σ f
≤ S≈

Reuss (4.45)

C≈
Voigt, S≈

Voigt, C≈
Reuss and S≈

Reuss refer to the classical Voigt and Reuss bounds [172,

206]. The inequalities presented above can be used for verification of computational
homogenisation results, as it was done for instance in [114, 115] for elastic and
thermal properties. Moreover, the bounds C≈

app

Σ

and C≈
app

E
are usually far apart when

the contrast of properties between phases is large. If the microstructure features
a matrix phase, tighter bounds can be obtained by choosing elementary volumes
including only the matrix at the boundary, as shown in [182, 183].

4.2.7 Computational Homogenization Using the Finite
Element Method

In order to determine homogenizedmechanical properties for a givenmicrostructure,
one has to solve boundary value problems in statics. The finite element (FE) method
has proved to be quite an efficient technique to solve this kind of problems even in
the case of highly nonlinear phenomena [29, 38, 81].

4.2.7.1 FE Formulation of the Principle of Virtual Work

Galerkin’s approach for continuum mechanics is implemented and used with the
principle of virtual work. In each of the n elements e, knowing the nodal displace-
ments

{
u∗

e

}
, one can compute the virtual displacement field u ∗ and the strain tensor

ε∼ as follows:
u ∗ = [N ]

{
u∗

e

}
(4.46)

and,
ε∼ = [B]

{
u∗

e

}
(4.47)



with [N ], the shape function matrix and [B], the matrix of shape function derivatives.
Then, for all

{
u∗

e

}
with prescribed body forces f and surface forces F :

n∑

e=1

(∫

Ve

σ∼
({

u∗
e

})
[B]
{
u∗

e

}
d V

)
=

n∑

e=1

(∫

Ve

f [N ]
{
u∗

e

}
d V +

∫

∂Ve

F [N ]
{
u∗

e

}
dS

)

(4.48)
Thus,

n∑

e=1

({F int
e

}− {F ext
e

}) {
u∗

e

} = 0 (4.49)

with
{F int

e

}
and
{F ext

e

}
respectively internal and external forces, in each element e,

such that for the global problem:

{F int
} =
∫

Ω

[B]T σ∼
({

u∗
i

})
d V (4.50)

and,
{F ext

} =
∫

Ω

[N ]T f d V +
∫

∂Ω

[N ]T F dS (4.51)

Balance between internal and external forces is achieved with a Newton iterative
algorithm using the stiffness matrix [K]:

[K] = ∂
{F int

}

∂
{
u∗

i

}

=
∫

Ω

[B]T
∂ {σ}
∂ {ε}

∂ {ε}
∂
{
u∗

i

}d V

=
∫

Ω

[B]T
∂ {σ}
∂ {ε} [B] d V (4.52)

which yields, for linear elastic problems:

[K] =
∫

Ω

[B]T [c≈] [B] d V (4.53)

4.2.7.2 Application to Linear Elasticity

In the case of linear elasticitywithin a volume V fulfillingRVE requirements, one can
compute the effective elastic moduli C≈ or compliances S≈ using (4.6) by prescribing

either the macroscopic strain E∼ or macroscopic stress Σ∼ :



⎡

⎢⎢⎢⎢⎢
⎢
⎣

Σ11

Σ22

Σ33

Σ23

Σ31

Σ12

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

C11 C12 C13 C14 C15 C16

− C22 C23 C24 C25 C26

− − C33 C34 C35 C36

− − − C44 C45 C46

− − − − C55 C56

− − − − − C66

⎤

⎥⎥⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎢
⎣

E11

E22

E33

2E23

2E31

2E12

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(4.54)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E11

E22

E33

2E23

2E31

2E12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

S11 S12 S13 S14 S15 S16
− S22 S23 S24 S25 S26
− − S33 S34 S35 S36
− − − S44 S45 S46
− − − − S55 S56
− − − − − S66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ11

Σ22

Σ33

Σ23

Σ31

Σ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.55)

Linear relations thus appear between macroscopic stress and strain, and can read-
ily be used to build up effective compliance and elastic moduli tensors for a given
microstructure. The formalism is similar for any linear property, e.g. thermal con-
ductivity. Such an approach has been successfully implemented for architectured
materials in [31, 54, 56, 58, 87, 101, 104].

4.2.7.3 The Element DOF Method for Periodic Problems

In the case of periodic boundary conditions (cf. Sect. 4.2.4.3), there is an alternative
to the FE formulation presented in Sect. 4.2.7.1. It consists in adding global DOFs
sharedby all elements. TheseDOFs correspond to themacroscopic strain components
Eij for displacements vi, in addition to classical nodal DOFs. The balance equations
can thus be written as follows:

∫

V
σijui,jd V =

∫

V
σij(Eikxk + vi),jd V

=
∫

V
σijEijd V +

∫

V
σijvi,jd V

=
∫

V
σijEijd V +

∫

V

(
σijvi
)
,j d V

=
∫

V
σijEijd V +

∫

∂V
σijvinjdS

︸ ︷︷ ︸
=0

=
∫

V
σijd V Eij

= V ΣijEij

= REijEij (4.56)



The FE problem left to solve concerns the homogeneous strain tensor Eij and its dual
REij, which corresponds to the macroscopic reaction stress. Prescribing Eij corre-
sponds to themacroscopic strain approach, while prescribingREij leads to themacro-
scopic stress approach. In that way, mixed macroscopic problems, e.g. tension, can
be solved with periodic boundary conditions. Implementation of additional degrees
of freedom in the FE framework is done as follows:

{ε∼} = [B]{u} + {E∼ } (4.57)

Also,
{ε∼} = [B′]{u′} (4.58)

with

[B′] =

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
1
1
1
1
1

N i

. . .

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(4.59)

and

{u} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E11
E22
E33
E23
E31
E12
ui

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.60)

4.2.8 Case of Application: Periodic Auxetics

4.2.8.1 Auxetics

Auxetic materials are a type of architectured materials exhibiting a negative Pois-
son’s ratio. They present interesting advantages for both functional and structural
applications. In the case of isotropic elasticity, mechanical behavior is described
by any couple of parameters among these: Young’s modulus E, Poisson’s ratio ν,



the bulk modulus k and Lamé’s coefficients λ and μ (also referred to as the shear
modulus). Poisson’s ratio is defined as the ratio of the contraction in the transverse
direction to the extension in the longitudinal direction. Material stability requires
the tensor of elastic moduli to be positive definite, resulting in a positive Young’s
modulus E and a Poisson’s ratio ν ranging from −1, for unshearable materials, and
0.5 for incompressible or rubber-like materials. Most materials naturally present a
positive Poisson’s ratio, although negative Poisson’s ratio materials, or auxetics [69],
have been engineered since the mid-1980s with the pioneering works of [4, 93] and
[124]. This new class of materials has been drawing more and more attention since
then [2, 7, 23, 37, 55, 56, 58, 68, 80, 100, 113, 119, 122, 125, 144, 155, 169, 178,
193, 194, 212], as well as their potential applications [15, 28, 46, 67, 135]. Aux-
etic materials have also been expected to present enhanced acoustic damping [131];
this was shown experimentally in [43, 44]. The use of auxetics as building blocks
for wave-guiding metamaterials has also been investigated in [13, 198]. Moreover,
experiments on auxetic foams seem to provide evidence of better resistance to crash
compared to conventional cellular materials [188].

Poisson’s ratio is defined only for isotropic elastic materials. In the anisotropic
case, negative apparent Poisson’s ratio can be defined as the opposite of the ratio
between transverse and longitudinal strains for a given specific direction. There is no
restriction anymore on the values of the apparent Poisson ratio ν∗.We call anisotropic
auxetics, materials for which negative apparent Poisson’s ratio is observed for a
sufficiently large range of tensile directions.

4.2.8.2 Computational Strategy

The computational framework used for homogenization has been presented in
Sect. 4.2.7. For this application, effective mechanical properties are computed over
a unit-cell (defined by its periodicity vectors vi ) with periodic boundary conditions
(PBC) using FE. Homogenization requires separation between micro and macro
scales. In the case of periodic homogenization, the computed effective properties
correspond to those of an infinite continuum made of periodic tiles.

Let us consider an elementary volume V including a solid phase Vs and porous
one Vp. In the latter, the stress field is extended by setting σ∼ = 0∼ in Vp. Practically,
the macroscopic strain E∼ and stress Σ∼ are computed by averaging the local fields
ε∼ and σ∼ . Within the porous phase, stresses are assumed to be equal to zero. Using
periodic boundary conditions, and applying a homogeneous macroscopic strain field
E∼ (cf. Sect. 4.2.7.3), it yields:



Σ∼ = 〈σ∼ 〉 = 1

V

∫

V
σ∼ d V

= 1

V

∫

Vs

σ∼ d V + 1

V

∫

Vp

σ∼ d V

︸ ︷︷ ︸
=0

= Vs

V

1

Vs

∫

Vs

σ∼ d V

= V s
V 〈σ∼ 〉s (4.61)

with V s
V , volume fraction of the solid phase. Let us now consider the case of a

prescribed homogeneous macroscopic stress Σ∼ :

E∼ = 〈ε∼〉 = 1

V

∫

V
ε∼d V

= 1

V

∫

Vs

ε∼d V + 1

V

∫

Vp

ε∼d V

= Vs

V

1

Vs

∫

Vs

ε∼d V + Vp

V

1

Vp

∫

Vp

ε∼d V

= V s
V 〈ε∼〉s + V p

V 〈ε∼〉p (4.62)

with V p
V , volume fraction of the porous phase. 〈ε∼〉p can be computed from the values

at the boundary of the porous phase.

4.2.8.3 Periodic Unit-Cell: Hexachiral Lattice

This chiral microstructure was first proposed by Lakes [125], then studied in [2, 55,
56, 58, 169]. Based on the parameters defined in [2], cell geometry can be described
in this way: the circular nodes have radius r, the ligaments have length L, and both
have in common wall thickness t (cf. Fig. 4.1a) as well as depth d, which in our case
is considered infinite due to periodicity conditions along direction 3. Hence, three
dimensionless parameters can be derived as shown in (4.63).

α = L/r β = t/r γ = d/r (4.63)

On Fig. 4.1b, α = 5, β = 0.25 and γ → +∞. These parameters correspond to a
volume fraction of 15%. The 6-fold symmetry provides transverse isotropy.



(a) Hexachiral unit-cell (b) Hexachiral lattice

Fig. 4.1 a Periodic cell with geometric parameters. b Hexachiral lattice with unit-cell (blue) and
periodicity vectors v1 and v2 (red)

4.2.8.4 Effective Elastic Properties

Elastic moduli tensor C≈ is computed over a periodic unit-cell using Z-Set FE soft-

ware.1 Meshes are composed of volumic fully-integrated quadratic elements, such as
10-node tetrahedra and 20-node hexahedra, taking into account the finite thickness
of the microstructure components. Using the Euler-Bunge [36] angles φ, θ and ψ as
shown on Fig. 4.2, let us define 3 orthogonal vectors l , m and n , such as:

[l ] =
⎡

⎣
cos(φ) cos(ψ) − sin(φ) sin(ψ) cos(θ)
sin(φ) cos(ψ) + cos(φ) sin(ψ) cos(θ)

sin(ψ) sin(θ)

⎤

⎦ (4.64)

[m ] =
⎡

⎣
− cos(φ) sin(ψ) − sin(φ) cos(ψ) cos(θ)
− sin(φ) sin(ψ) + cos(φ) cos(ψ) cos(θ)

cos(ψ) sin(θ)

⎤

⎦ (4.65)

[n ] =
⎡

⎣
sin(φ) sin(θ)

− cos(φ) sin(θ)
cos(θ)

⎤

⎦ (4.66)

Using macroscopic strain and stress tensors E∼ (φ, θ,ψ) and Σ∼ (φ, θ,ψ), one can
now define the Young modulus E(l ) and effective Poisson ratio ν∗(l , m ) for tension
along direction l :

E = l .Σ∼ .l

l .E∼ .l
(4.67)

ν∗ = −m .E∼ .m

l .E∼ .l
(4.68)

1http://www.zset-software.com/.

http://www.zset-software.com/


Fig. 4.2 Euler-Bunge angles

If we now consider simple shear in the plane (l , m ), the shear modulus μ(l , m )

can be defined as follows:

μ = l .Σ∼ .m

l .E∼ .m
(4.69)

For θ = ψ = 0, elastic moduli and Poisson’s ratio are obtained in the plane (1,2)
of the microstructure as functions of φ, we will refer to those as in-plane elastic
properties. On the other hand, when φ = 0 and θ = π

2 , one obtains moduli and Pois-
son’s ratio within plane (1,3) as functions of ψ. These values will be considered as
out-of-plane elastic properties.

For comparison purposes, normalized elastic moduli are defined using fV , volume
fraction of material, local constitutive isotropic elastic material parameters such as
E0 (Young’s modulus) and μ0. Shear modulus μ0 is defined from E0 and Poisson’s
ratio ν0 as follows:

μ0 = E0

2(1 + ν0)
. (4.70)

Thus, normalized Young’s modulus E∗ is obtained as follows:

E∗ = 1

E0fV
E (4.71)

Normalized shear modulus μ∗ is defined in this way:

μ∗ = 1

μ0fV
μ (4.72)

In-plane elastic properties are shown in Table 4.1. The use of auxetic lattices in
engineering applications might involve out-of-plane loading. Hence, ν∗, E∗ and μ∗
were plotted againstψ in Fig. 4.3a (polar plot). For this work,E0 = 210,000MPa and
ν0 = 0.3 are the isotropic elastic properties of the constitutive material. Resulting
elastic moduli tensors are presented hereafter as (4.73). Components are expressed
in MPa.



Table 4.1 In-plane Poisson’s ratio and normalized elastic moduli

Hexachiral

ν∗ −0.74

E∗ 2.3 × 10−2

μ∗ 2.3 × 10−1

(a) μ∗, E∗ = f (ψ) (b) ν∗ = f (ψ)

Fig. 4.3 Results for hexachiral lattice (θ = π
2 , φ = 0)

4.2.8.5 Results

Elastic moduli tensor was computed for the hexachiral lattice as shown in (4.73).
Transverse isotropy is verified since C11−C12

2 = C66.

[C≈ ] =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

1650 −1218 130 0 0 0
−1218 1650 130 0 0 0
130 130 31968 0 0 0
0 0 0 5075 0 0
0 0 0 0 5075 0
0 0 0 0 0 1434

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(4.73)

Components were used to obtain the in-plane properties gathered in Table 4.1. ν∗
is underestimated compared to the value from [2], while our estimation of the nor-
malized Young modulus E∗ is higher. This is discussed later. Figure 4.3a shows an
increase of E∗ when the material is streched out-of-plane, while reaching its maxi-
mum value along direction 3 (ψ = π

2 or ψ = 3π
2 ). Figure 4.3b shows that Poisson’s

ratio ν∗ is always negative, except for ψ = 0 or ψ = π where ν∗ is close to 0, and
ψ = π

2 orψ = 3π
2 where it takes the constitutivematerial value 0.3. Normalized shear

modulus μ∗ fluctuates in a decade around the in-plane value depending on angle ψ.



4.2.8.6 Discussion

Values obtained for E∗ (cf. Table 4.1) exceed those from [2]. This is due to the
boundary conditions of the FEM problem. With periodicity over displacements and
nodal force loading, the prescribed loading in [2] corresponds to a static uniform
boundary conditions (SUBC) micromechanical problem, which is known to lead to
an underestimation of the elastic moduli [114]. On the other hand, the PBC problem
gives exact results for an infinite medium. Both the hexachiral lattice presents a
strong anisotropy when loaded out-of-plane (cf. Fig. 4.3a). The hexachiral cell has
also been studied in the case of second-gradient elasticity, as this model accounts for
chirality, hence opening the way for acoustic cloaking applications [13, 16].

4.3 Computational Homogenization for Elastoplasticity

The computational homogenization method developed in Sect. 4.2 for elasticity can
be extended for elastoplaticity by considering the elastic moduli tensor, as well as
an equivalent plasticity model to account for nonlinearities.

A case of application is made from the study of elastoplasticity [55] in the hex-
achiral auxetic lattice introduced in Sect. 4.2.8.3.

Let us consider the following yield function f (σ∼ ):

f (σ∼ ) = σeq − r (4.74)

with the von Mises equivalent stress,

σeq =
√
3

2
σ∼

dev : σ∼
dev (4.75)

where σ∼
dev is the deviatoric part of the stress tensor. Linear isotropic hardening rule

is adopted:
r = ro + hp (4.76)

where ro is the yield stress, h the hardening modulus and p is the cumulative plastic
strain variable.

4.3.1 Plastic Anisotropy

Local material is now considered isotropic von Mises-elastoplastic. Plastic material
parameters are shown in Table 4.2.



Table 4.2 Local constitutive plastic parameters

Yield stress (MPa) 100

Hardening modulus (MPa) 1000

Fig. 4.4 Stress (plain
curves) and apparent
Poisson’s ratio (dashed
curves) versus strain
response for 3 different
hardening moduli

First, the auxetic behavior is investigated. Although the parameters given in
Table 4.2 will be used in the following sections, a short parametric study has been
performed in order to assess the effect of the hardening modulus on the Poisson
ratio. Uniaxial strain-controlled tensile test is performed along direction 1 until 4%
of total macroscopic strain. The homogenized cell exhibits a nonlinear elastoplastic
behavior (cf. Fig. 4.4). Now, if one considers the ratio of transverse over longitudinal
macroscopic strains, an apparent Poisson ratio can be defined in the nonlinear regime
as defined in (4.77) and plotted on Fig. 4.4. From these curves we observe that the
auxetic nature of the lattice is kept with plasticity.

The effect is even stronger than in elasticity when the hardening modulus is in
the range (h = 100 MPa and h = 1000 MPa). The auxetic effect is dependent on
the size of the plastic zone in the unit cell. If the plastic zone is confined in a small
domain around the junction between the rotating nodes and the connecting beams, as
shown on Fig. 4.5 for low values of the hardening modulus, the auxetic deformation
mechanism is strengthened. For h = 10,000 MPa, the plastic zone spreads almost
over the entire cell, thus fading the effect of plasticity on the auxetic behavior. The
hardening modulus value, h = 1000 MPa, is kept for the rest of this work since it is
of the same order of magnitude of several common alloys.

νapp = −E22

E11
(4.77)

Now, anisotropy in the plastic regime is investigated. As a matter of fact, there is
no guarantee for the 6-fold symmetric material to behave isotropically in the plastic
regime. Polar plots shown on Fig. 4.6a–c are obtained from uniaxial tensile and
shear tests in every direction of the plane (1,2). Each point corresponds to a test for a
different direction with angle φ from the principal direction 1 of the structure defined



Fig. 4.5 Deformed shape of a periodic unit-cell after 4% of total strain, with von Mises equivalent
stress map (h = 1000MPa)

(a) Tensile stress (MPa) (b) Poisson’s ratio (c) Shear stress (MPa)

Fig. 4.6 a Tensile stress, b apparent Poisson’s ratio, and c shear stress for 0.2% (green), 1% (red)
and 4% (blue) total strain

on Fig. 4.5. Figure 4.6a, c shows stress level versus angle φ for three given strain
states: respectively 0.2% (green), 1% (red) and 4% (blue) total strain for tension, and
0.1, 0.5 and 2% for shear. Figure 4.6b uses the same color code but for the apparent
Poisson ratio versus angle φ for the same given tension states. The three plots show
a quasi-transversely isotropic response for the hexachiral lattice with plasticity.

4.3.2 Macroscopic Modeling

An additional upscaling can be performed. The mesoscopic elastoplastic behavior is
now modelled as a constitutive behavior for further use in large structural computa-
tions. First, let us consider an isotropic compressible plasticity model such as those
developed by Abouaf et al. [1] and Green [85] for porous metals, and by Deshpande



and Fleck [52] andMiller [143] for cellular materials. An extension to the anisotropic
case was proposed by Badiche et al. [17] and Forest et al. [76].

Let us now consider a yield function f (Σ∼ ) such as,

f (Σ∼ ) = Σeq − R (4.78)

where R is the macroscopic yield stress. Moreover, let us adopt the following equiv-
alent yield stress:

Σeq =
√
3

2
C Σ∼

dev : Σ∼
dev + F

(
TrΣ∼
)2

(4.79)

where TrΣ∼ is the trace of the stress tensor. C and F are coefficients accounting for
the relative influence of deviatoric and hydrostatic stress, they are usually expressed
as functions of the porosity ρ for isotropic materials.

Associated plasticity is assumed, such as the macroscopic plastic strain rate is:

Ė∼
p = ∂f

∂Σ∼
= ṗ

σeq

(
3

2
C Σ∼

dev + F
(
TrΣ∼
)
1∼

)
(4.80)

In the case of uniaxial tension, we define the in-plane plastic Poisson ratio:

ν p = − Ė
p
22

Ė
p
11

= − F − C
2

C + F
=

C
2 − F

C + F
(4.81)

When F = 0, incompressible plasticity is recovered. If C = 1, then ν p < 0 for
F > 1

2 and lim
F→+∞ ν p = −1. ν p as a function of F is plotted on Fig. 4.7.

Such a plasticity model is not fully capable of describing the anisotropic behavior
of our microstructure along direction 3, especially transverse contraction when ten-
sion is applied in plane (1,2). In order to simplify the model, instead of using a fully
anisotropic Hill tensor applied to the deviatoric stress tensor and a separate contri-

Fig. 4.7 Plastic Poisson’s
ratio for an isotropic material
as a function of parameter F ,
with C = 1



bution of the hydrostatic stress, we consider here a generalized Hill tensor applied
to the Cauchy stress tensor.

We consider the same yield function f (Σ∼ ) as in (4.78) with the following equiv-
alent yield stress:

Σeq = √Σ∼ : H≈ : Σ∼ (4.82)

where H≈ is the applied generalized Hill fourth-rank tensor.

For the hardening rule, we consider an isotropic hardening function with a non-
linear potential and a linear part:

R = R0 + Hp + Q(1 − e−bp). (4.83)

4.3.3 Simulation and Identification

In order to determine parameters for the model, some of them are determined from
reference curves obtained by periodic simulations of the unit-cell. Then comparison
between reference data with results computed on a RVE is made and optimization of
macroscopic material parameters is run using a simplex algorithm. The experimental
database includes tensile, shear and Poisson’s ratio curves. While loading in tension,
we consider out-of-plane contraction. However, direction 3 and out-of-plane shear
are not taken into account. Tensorial components of H≈ (cf. 4.85) and parameters for

the hardening rule (4.83) are thus identified:

R = 1.29 + 8.61p + 0.1
(
1 − e−140p

)
(4.84)

Comparison between curves from full-field simulations and the identified macro-
scopic model provides a good correlation as shown on the tensile stress and apparent
Poisson’s ratio versus strain curve (cf. Fig. 4.8), the shear stress versus strain curve
(cf. Fig. 4.9) and the transverse strain vs. longitudinal strain curve (cf. Fig. 4.10).

[H≈ ] =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

1.00 0.9294 −0.00031 0.0006 0 0
0.9294 0.99 −0.00027 −0.00067 0 0

−0.00031 −0.00027 × 0 0 0
0.0006 −0.00067 0 0.11554 0 0

0 0 0 0 × 0
0 0 0 0 0 ×

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(4.85)



Fig. 4.8 Stress and apparent
Poisson’s ratio versus strain
for full-field simulation and
macroscopic model for an
uniaxial tensile test along
direction 1

Fig. 4.9 Stress versus strain
for full-field simulation and
macroscopic model for an
pure shear test in plane (1,2)

Fig. 4.10 Transverse strain
versus longitudinal strain for
full-field simulation and
macroscopic model for an
uniaxial tensile test along
direction 1

4.3.4 Conclusions

Full-field simulations and macroscopic modelling using an anisotropic compress-
ible plasticity framework have been performed for an auxetic microstructure: the
hexachiral lattice. Plasticity of auxetics has been explored, showing that the auxetic
effect persists and becomes even stronger with plastic yielding. It was also shown
that the effect of plasticity on auxeticity fades with the expansion of the plastic zone.
The plastic anisotropy for this 6-fold symmetric lattice is becoming weaker with
plastic saturation. The proposed fully anisotropic Hill criterion seems to be suitable
for modeling periodic architectured cellular materials as it was able to catch negative
Poisson’s ratio, transverse contraction, and volume change.



4.4 Statistical Representative Volume Element Size
for Computational Homogenization

For non-periodic architectured materials, the problem of representativity of samples
can be addressed by means of a probabilistic approach giving size-dependent inter-
vals of confidence, which is a well-known approach used in geostatistics [137]. The
approach presented [114] is based on the scaling effect on the variance of effective
properties in simulations of random media. Several assumptions have to be consid-
ered regarding the statistics of the microstructures considered.

Ergodicity hypothesis

The ergodicity hypothesis is fulfilled for a property or a random function Z when the
statistical properties of its measured value (mathematical expectation, variance, etc.)
over a finite volume V (spatial average) converge to those estimated over series of
independent samples smaller than V (ensemble average), when the volume V goes
to infinity. Ergodicity implies that one realization of a volume V ≥ VRVE contains
all the statistical information necessary to the description of its microstructure.

Stationarity hypothesis

The stationarity hypothesis is assumed for a property or a random function Z when
its mathematical expectation is constant with respect to time and space.

Statistical homogeneity hypothesis

A random structure is considered statistically homogeneous, when it is stationary,
which means that its probabilistic properties are invariant by translation.

4.4.1 RVE Size Determination for Media with Finite
Integral Range

Let us consider a microstructure that fulfills the ergodicity and stationarity condi-
tions for a given physical quantity Z(x) regarded as a random function with average
E {Z(x)} and point variance D2

Z . The ensemble variance D2
Z(V ) of its average value

Z(V ) over the domain Ω with volume V can be obtained using the centered second-
order correlation function W 2 in this way:

D2
Z(V ) = 1

V

∫∫

Ω

W 2(x − y)dxdy (4.86)

with

W 2(h) = E
{(

Z(x) − Z
) (

Z(x + h) − Z
)}

(4.87)



For determining the RVE size for the physical property Z one can rely on the
geostatistical notion of integral range [39, 109, 112, 126, 127, 138]. The integral
range An is homogeneous to a volume of dimension n in R

n. For n = 3, the integral
range is given by:

A3 = 1

D2
Z

∫

R3
W 2(h)dh (4.88)

The physical interpretation of the integral range is such that for a given volume V ,
one can define n = V

A3
volume elements for which the i average values Zi(V ′) over

the n sub-volumes V ′ = V
n are uncorrelated random variables. Hence, for a large

specimen, i.e.V � A3, (4.86) can be rewritten introducing the point variance of Z ,
D2

Z as follows:

D2
Z(V ) = D2

Z

A3

V
(4.89)

Let us analyze this asymptotic relation. First, in general onehas noguarantee on the
finiteness of point variance D2

Z [137]: let us consider a large domain Ω and a smaller
domain V ⊂ Ω that is attainable by means of experimentation or computation, one
can then compute an experimental variancewhich is in fact a function ofΩ supported
by V , that will increase with Ω . If the variance over V is finite, it should be regarded
as a limit of the experimental variance for Ω → +∞. D2

Z can be computed over V
as follows:

D2
Z = 1

V

∫

V

(
Z(x) − Z

)2
d V

= 1

V

∫

V
Z2(x) − Z

2
d V

= 1

V

∫

V
Z2(x)d V −

(
1

V

∫

V
Z(x)d V

)2
(4.90)

On the other hand, the ensemble variance D2
Z(V ′) is computed from the average

values Zi over n sub-volumes:

D2
Z(V ′) = 1

n

n∑

i=1

(
Zi(V ′) − Zi

)2

= 1

n

n∑

i=1

Z2
i (V ′) − Zi

2

= 1

n

n∑

i=1

Z2
i (V ′) −

(
1

n

n∑

i=1

Zi(V ′)

)2

(4.91)



(4.91) uses the average value of the average values Zi over n sub-volumes V ′, which
is expected to converge towards the effective property Zeff when V → +∞. If Zeff

is already known, it might be of interest to use it instead of Zi in order to obtain a
better estimate.

If Z(x) is the indicator function of the stationary random set A, then one can
obtain analytically the variance of the local volume fraction as a function of the point
variance as follows:

D2
Z = p − p2 = p(1 − p) (4.92)

with p, probability for a point x to belong to the random set A, which is equivalent
to the volume fraction of A in V .

The asymptotic scaling law given in (4.89) can be used for any additive variable
Z over the domain Ω . In the case of elastic properties for instance, average stress
〈σ∼ 〉 or strain 〈ε∼〉 fields have to be computed. For determining the RVE size for a
given property Z , one thus has to know its integral range A3. There is no theoretical
covariance for mechanical fields. However, there are two ways to estimate it; first by
assuming that Z is equal to the arithmetic average of properties (rule of mixtures)
for a biphasic medium, hence (4.90) yields:

D2
Z = p(1 − p) (Z1 − Z2)

2 (4.93)

with Z1 and Z2, respectively property Z of phase 1 and 2. D2
Z can also be estimated

computationally on the largest virtual sample available, in order to minimize bound-
ary layer effects and obtain a converged value. The approach proposed by di Paola
[53] consists in taking only into account the inner part of the simulation volume.
This could present an advantage for determining the point variance.

Once the point variance has been estimated for a given property, the integral
range can be obtained using the procedure proposed by Matheron [139] for any
random function: consider realizations of domains Ω with an increasing volume V
(or non-overlapping sub-domains of large simulations, with a wide range of sizes),
the parameterA3 can be estimated by fitting the obtained variance according to (4.89):

logD2
Z(V ) = logD2

Z + logA3 − log V (4.94)

Following the method proposed in [114], itself based on the approach developed
in [39], considering a large number n of realisations (or sub-volumes), the following
sampling error in the estimation of the effective properties arises:

εabs = 2DZ(V )√
n

(4.95)

From which the relative error εrel can be defined:

εrel = εabs

Z
= 2DZ(V )

Z
√

n
⇒ ε2rel = 4D2

Z A3

Z
2
nV

(4.96)



Hence a volume size that we will consider statistically representative can be defined
for a prescribed property Z , number of realizations n and relative error (e.g. 5%):

VRVE = 4D2
Z A3

ε2relZ
2
n

(4.97)

This RVE size then depends on the point variance D2
Z , integral range A3 and mean

value Z , 3 parameters that are estimated from simulations.

4.4.2 Generalization of the Statistical Approach to
Microstructures with Non-finite Integral Range

The method presented above is now adapted and generalized to the case of media
with non-finite integral range, especially Poisson linear varieties andBoolean random
models made of Poisson linear varieties, e.g.Poisson fibers, which will be used
hereafter for modeling non-woven architectured materials. Since the integral range
of linear Poisson varieties is not finite [107], (4.89) does not apply anymore. It was
proposed in [126] to use a modified scaling law with exponent γ �= 1. The variance
can thus be rewritten as follows [110]:

D2
Z(V ) = D2

Z

(
A∗
3

V

)γ

(4.98)

which yields by linearization,

logD2
Z(V ) = logD2

Z + γ logA∗
3 − γ log V (4.99)

A∗
3 is not the integral of the centered second-order correlation function W 2(h)

anymore, as defined before in (4.88). Nonetheless, it is homogeneous to a volume of
material and can readily be used to determine RVE sizes which can then be obtained
by updating the previous definition for relative error:

εrel = εabs

Z
= 2DZ(V )

Z
√

n
⇒ ε2rel = 4D2

Z A∗
3
γ

Z
2
nV γ

(4.100)

Hence yielding an updated definition of the RVE size:

VRVE = A∗
3

γ

√√√
√ 4D2

Z

ε2relZ
2
n

(4.101)



The generalized integral range A∗
3 and scaling-law exponent γ can be estimated

from simulations as it was done in [6, 57, 114]. When considering statistical RVE
sizes of microstructures with non-finite integral range for other properties than mor-
phological ones, for which there is no information about the theoretical value of the
point variance D2

Z , it may be useful to reformulate (4.98) as follows:

D2
Z (V ) = KV −γ (4.102)

with K = D2
Z A∗

3
γ , leaving only 2 parameters to identify from the statistical data

obtained by simulation. We will adopt this formulation when studying Poisson fibers
in Sect. 4.4.3. The method for determining statistical RVE sizes has been studied
and used for media with finite integral range in the [6, 31, 105, 106, 114, 115, 133,
134, 152, 156, 199]. This approach is implemented for media with infinite integral
range in [57], for the case of Poisson fibers.

In most papers, the authors resorted to periodic boundary conditions (PBC)
since [114] showed from computational experiments that mean apparent proper-
ties obtained with PBC converge faster towards the effective properties than with
the Dirichlet and Neumann-type BC. Nevertheless, KUBC and SUBC can be useful
since they correspond to the Voigt and Reuss bounds in elasticity. They can thus be
used for bounding the effective properties of random architectured materials. If the
microstructure features a matrix phase, tighter bounds can be obtained by choosing
elementary volumes including only the matrix at the boundary, as shown in [182].

4.4.3 Non-woven Architectured Materials

A challenging candidate material was imagined for assessing the applicability of
such methods to architectured materials: stochastic random networks made of infi-
nite fibers, more specifically Poissonian fibrous networks. The determination of the
effective properties of Poisson fibers is not trivial as it is a porous medium with infi-
nite integral range. This pathological morphology could give rise to gigantic RVE
sizes, maybe even no RVE at all, i.e. yield non-homogenizability in the sense of
[14]. Although infinite fibers do not exist in nature, they can be considered a limit
case representative of sintered long-fiber non-woven materials, such as those studied
by Mezeix et al. [141]. This random fibrous architectured material can be modeled
computationally. The generation of such virtual specimens relies on a tridimensional
Poisson point implantation process. Due to the long-range correlation induced by the
model of random structures chosen, the size of the representative volume element
is a priori unknown. Moreover, periodization of these microstructures is generally
impossible, making the periodic homogenization tools ineffective. Very large virtual
samples computations have to be performed in order to compute their representative
volume element sizes a posteriori based on statistical arguments [114] and finally
predict their effective mechanical properties.



Many studies are available regarding finite-length fibrous media and strongly
oriented infinite-fiber media. For instance, [50, 158] dealt with the morphology of
3D long-fiber media randomly oriented in-plane, [192] used a 3D random model
of randomly oriented long-fibers for the design of an acoustic absorber, and [20,
21] generated virtual samples of long but finite fibers for modeling the mechanics
of entangled materials. None of these studies accounted for the representativity of
samples. Oumarou et al. [153] computed RVE sizes for 2D random arrays of fibers,
using the statistical method of [114]. The works of [89, 161, 162, 196] on 2D fibrous
fractal networks also deal with the representativity and homogenization of such, yet
self-similar, fibrous media.

The non-woven material model used hereafter corresponds to a 3D stochastic
network composed by randomly oriented and distributed infinitely-long interpene-
trating rectilinear fibers. It exhibits an infinite integral range [107], i.e. an infinite
morphological correlation length; this medium is non-periodizable without modify-
ing its morphology, thus falling beyond the spectrum of periodic homogenization
and the definition of RVE proposed by Sab and Nedjar [181].

4.4.4 Case of Application: RVE Size of Random
Fibrous Media

The example is taken from [57] where the enquiring reader can find details and a
full analysis of the problem of representativity in fibrous random media. The results
presented hereafter are based on the equations introduced in Sect. 4.2.8.2 for the
homogenization of porous media.

As shown on Fig. 4.11, the elementary volume considered in the computation is
the volume V that is composed of two complementary phases Vf and Vp, respectively
accounting for the Poisson fibers and the porous phase.

4.4.4.1 Mixed Mechanical Boundary Conditions—MBC

A type of mixed BC, appropriate for porous randommedia, is presented here, instead
of SUBC, in order to compute values that we can compare with those obtained using
KUBC. Since only a minimal number of DOFs are prescribed on the boundary ∂V ,
mixed mechanical boundary conditions (MBC) are less constraining, or “softer”,
than KUBC. They differ from the mixed uniform boundary conditions (MUBC)
proposed in [90, 91] which are restricted, in general, to tensile loading of a volume
element. They also differ from the normal mixed BC (NMBC) proposed by Gelebart
et al. [82], since those are applied on the whole boundary ∂V , similarly to MUBC.
The periodicity compatible mixed uniform boundary conditions (PMUBC) were
proposed by Pahr and Zysset [154] as a generalization of MUBC, and implemented
by Chateau et al. [42]. The BC proposed here are similar to PMUBC, but simpler



Fig. 4.11 Example of an
elementary volume of
Poisson fibers used in the
simulation

because only 2 loading configurations are considered. MBC are considered with a
view to estimating the overall bulk and shear moduli of isotropic random porous
media, thus being less general than PMUBC; the 2 loading cases are presented
hereafter.

Mixed triaxial loading

Displacement u is prescribed along normals on ∂V , such that:

u1 = E11x1 ∀x ∈ F1

u2 = E22x2 ∀x ∈ F2

u3 = E33x3 ∀x ∈ F3 (4.103)

The traction vector σ∼ · n is prescribed in this way:

σ21n1 = σ31n1 = 0 ∀x ∈ F1

σ12n2 = σ32n2 = 0 ∀x ∈ F2

σ13n3 = σ23n3 = 0 ∀x ∈ F3 (4.104)

From (4.62), it yields:

〈ε11〉 = E11; 〈ε22〉 = E22; 〈ε33〉 = E33 (4.105)

The macroscopic stress is computed using (4.61).

Mixed shear loading

Displacement u is prescribed along direction 1 on F2 and direction 2 on F1, such
that:



u2 = E12x1 ∀x ∈ F1

u1 = E12x2 ∀x ∈ F2 (4.106)

Two components of the traction vector σ∼ · n are prescribed in this way:

σ11n1 = σ31n1 = 0 ∀x ∈ F1

σ22n2 = σ32n2 = 0 ∀x ∈ F2. (4.107)

The traction vector is fully prescribed on F3:

σ33n3 = σ13n3 = σ23n3 = 0 ∀x ∈ F3 (4.108)

(4.62) gives:
〈ε12〉 = E12 (4.109)

Details of the calculation can be found in [57]. The boundary value problems for
estimating the overall bulk and shear moduli are explicited hereafter for both KUBC
and MBC.

4.4.4.2 Overall Properties

The fibers are considered linear elastic following the generalized Hooke law:

σ∼ = c≈ : ε∼ ∀x ∈ Vf (4.110)

with c≈, fourth-order positive definite tensor of elastic moduli of the isotropic elastic

fibers, and Vf volume of the fibers.

Overall bulk modulus

For the case of linear elasticity, 〈σ∼ : ε∼〉 is used as an estimate of

(
C≈

eff : E∼

)
: E∼ , with

C≈
eff, the tensor of effective elastic moduli of the homogenized medium, that can be

rewritten in this way:
C≈

eff = 3keffJ
≈

+ 2μeffK≈ (4.111)

with K≈ and J
≈
respectively deviatoric and spherical projector on 2nd-order tensors.

Hence, for a hydrostatic macroscopic strain tensor,

E∼ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ (4.112)



it yields:

2Eel = 〈σ∼ : ε∼〉 = Σ∼ : E∼ =
(

C≈
eff : E∼

)
: E∼ = 3keffE∼ : J

≈
: E∼ = 9keff (4.113)

when computed on a given volume element, kapp = 1
9 〈σ∼ : ε∼〉 is an estimate of keff.

Overall shear modulus

For a deviatoric macroscopic strain tensor,

E∼ =
⎡

⎣
0 1

2 0
1
2 0 0
0 0 0

⎤

⎦ (4.114)

it yields:

2Eel = 〈σ∼ : ε∼〉 = Σ∼ : E∼ =
(

C≈
eff : E∼

)
: E∼ = 2μeffE∼ : K≈ : E∼ = μeff (4.115)

When computed on a given volume element, μapp = 〈σ∼ : ε∼〉 is an estimate of μeff.

4.4.4.3 Results

The estimation of elastic properties is now performed on hundreds of realizations.
Fibers were attributed the constitutive material properties listed in Table 4.3. The
variability of each realization gives rise to different results for apparent elastic prop-
erties. Mean values over n realizations of the same size are considered in this section.
The number of realizations n fluctuates, depending on the size and BC. Ideally, n
should be different for each volume size in order to achieve a similar sampling error
for all sizes considered. The fluctuation observed here is due to errors during the
meshing step; the larger the virtual sample, the more defects in the geometry are
likely to happen. Nevertheless, the values gathered in Table 4.4 are large enough for
achieving statistical representativity.

Table 4.3 Constitutive
material parameters for
Poisson fibers

Young’s modulus (GPa) 210

Poisson’s ratio 0.3

Shear modulus (GPa) 81

Bulk modulus (GPa) 175

Volume fraction 0.16



Table 4.4 Number of realizations n considered depending on boundary conditions and simulation
size

BC Volume

103 203 303 403 503 603 703 803 903 1003

n – KUBC – kapp 63 63 61 60 56 54 44 51 32 13

n – KUBC – μapp 63 63 61 60 54 54 47 50 27 14

n – MBC – kapp 40 60 53 55 45 48 37 46 28 13

n – MBC – μapp 41 62 58 59 48 49 45 41 11 12

Results for the elastic properties are obtained over a large number of realizations
(between 11 and 63, depending on their size). For the hydrostatic loading defined in
(4.112), the ensemble averaged apparent bulk modulus kapp is computed in this way:

kapp = 1

n

n∑

i=1

(kapp)i = 1

n

n∑

i=1

(
1

9
〈Trσ∼ 〉f

)

i

(4.116)

On the other hand, the ensemble averaged apparent shear modulus μapp is obtained
as follows for the shear loading defined in (4.114):

μapp = 1

n

n∑

i=1

(μapp)i = 1

n

n∑

i=1

(〈σ12〉f

)
i

(4.117)

Results for the bulk modulus kapp and shear modulus μapp are shown respectively
on Figs. 4.12 and 4.13 for the different volumes of simulation and corresponding
number of fibers (N ) considered. The mean values obtained for the largest system
size considered (N � 800) are given with the corresponding intervals of confidence
[Z ± 2DZ ] in Table 4.5 and compared with analytical bounds. Boundary layer effects
are significant for small elementary volume sizes, for both types of BC. Similarly

Fig. 4.12 Mean values for
the bulk modulus depending
on the number of fibers
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Fig. 4.13 Mean values for
the shear modulus depending
on the number of fibers

Table 4.5 Bounds and mean
values for apparent thermal
and elastic properties

kapp (MPa) μapp (MPa)

FE-Uniform 4763 ± 624 3270 ± 394

FE-Mixed 2527 ± 413 1097 ± 272

Hashin–Shtrikman
upper bound

11,839 7328

Voigt bound 28,000 12,923

to the results observed for the thermal properties, mean apparent values for KUBC
are decreasing with increasing volume size, whereas mean estimates obtained with
MBC are slightly increasing with V . There are very strong discrepancies for mean
values obtained with KUBC and MBC for both bulk and shear moduli, even for
the largest volume considered: �

(
kapp
)

= 88% and �
(
μapp
) = 198%. Apparent

properties obtained for KUBC are constantly above those computed with MBC; this
is in accordance with the bounds stated in [91] for mixed boundary conditions, as
well as the hierarchies of estimates given by Huet [99].

4.4.4.4 Mechanical Fields

In order to explain the discrepancies observed on the mean apparent properties, let
us analyze the mechanical fields coming out of the simulation done on a realization
with V = 503. For the triaxial loading, mapping of the normalized elastic energy

density
σ∼ :ε∼

Vf 〈σ∼ :ε∼〉
f

is presented on Fig. 4.14 for KUBC and MBC. From this figure,

it can be seen that KUBC induce a higher elastic energy density level than with
MBC. Also, the strain localization is affecting every fiber for KUBC, while only the
favorably oriented fibers are deforming withMBC, resulting in a more homogeneous
elastic strain energy density field with KUBC thanwithMBC. On Fig. 4.15, mapping
only ε22

E22
, for MBC the localization is clearly confined to both ends of preferentially



Fig. 4.14
σ∼ :ε∼

Vf 〈σ∼ :ε∼〉
f
mapping

for a V = 503 realization
under hydrostatic load using
KUBC (top) and MBC
(bottom)

Fig. 4.15 ε22
E22

mapping for a

V = 503 realization under
hydrostatic load using
KUBC (top) and MBC
(bottom)

oriented fibers, here along the vertical direction. On the other hand, for KUBC most
of the deformation takes place all over the boundary ∂V , including fibers that are
not preferentially oriented.

4.4.4.5 Integral Range, Variance and RVE Size

The theory introduced in Sect. 4.4.2 is now applied. Using (4.101) and (4.102), it
yields:

VRVE =
(

4K

ε2relZ
2
n

) 1
γ

(4.118)

Based on (4.100), the relative error associated with the number of realizations
considered (cf. Table 4.4) is computed and presented in Table 4.6. As stated earlier,
ideally, the error should be the same for all sample series by adapting the number of
realizations. Although the relative error fluctuates, most values are very low, except
for the smallest sample sizes.

Variance for the apparent bulk and shear moduli as functions of the volume are
shown on Figs. 4.16 and 4.17.

The γ exponents of the scaling-law for both moduli were estimated from the
results of simulations, by fitting the slope of the variance curves. Only the data



Table 4.6 Relative error for the samples considered εrel depending on boundary conditions and
simulation size
BC Volume

103

(%)
203(%) 303

(%)
403

(%)
503

(%)
603

(%)
703

(%)
803

(%)
903

(%)
1003

(%)

εrel – KUBC – kapp 9.9 4.9 3.7 2.9 2.5 2.1 2.0 1.7 1.9 2.6

εrel – KUBC – μapp 11.9 6.2 4.7 3.7 3.3 2.7 2.6 2.2 2.7 3.3

εrel – MBC – kapp 25.6 11.7 8.8 6.0 5.3 4.1 3.9 3.0 3.3 4.2

εrel – MBC – μapp 51.6 21.8 14.7 9.8 8.8 6.8 5.6 5.4 8.9 7.1

Fig. 4.16 Variance for the
bulk modulus depending on
the volume of simulation

Fig. 4.17 Variance for the
shear modulus depending on
the volume of simulation

points for volumes V ≥ 403 have been considered, in order to mitigate any bias due
to boundary layer effects with small volumes. The values obtained in this way are
gathered in Table 4.7. For the case of Poisson fibers, [110, 111] gave the theoretical
value of 2

3 for γ in (4.98) and (4.102). This value holds only for the indicator function
of the Poisson fibers and its mean value, the volume fraction. The value estimated
here (γ = 0.67) verifies the theoretical result of [110]. Results from [6], for 3D
randomly distributed long-fibers, show a convergence of the variance on the volume
fraction of fibers following a scaling law with exponent γ = 0.8; this value is in-
between the values for infinite fibers (γ = 2

3 ) and short-fibers (γ = 1), which could
be compared to a random distribution of spheres in the extreme case of a shape factor



Table 4.7 Values for γ exponent estimated from the simulation

γ

kapp-KUBC 0.51

kapp-MBC 0.77

μapp-KUBC 0.64

μapp-MBC 0.66

V f
V 0.67

Table 4.8 RVE sizes estimated from computations with γ = 2
3 , εrel = 5% and n = 1

Z BC K VRVE N

VV – 4.4 × 10−1 1643 2.1 × 103

kapp KUBC 5.0 × 108 1883 2.8 × 103

kapp MBC 3.5 × 108 2963 6.9 × 103

μapp KUBC 4.0 × 108 2453 4.8 × 103

μapp MBC 1.8 × 108 4893 1.9 × 104

equal to 1, similarly to the simulations in [105]. For the apparent shear modulus, γ
fluctuates between 0.64 and 0.66.Hence, as a 1st-order approximation, these physical
properties may depend on the indicator function of the fibers. The same conclusion
can be drawn for the apparent bulk modulus, but with further variation since γ varies
between 0.51 and 0.77 depending on the BC.

Values for RVE size and relative error in Table 4.8 can be compared to the volume
considered and associated relative error in Table 4.6: for instance, if one considers the
experimental error associated with the estimate of kapp using KUBC for V = 1003,
with n = 13 realizations, εrel = 2.6%. For the same relative error and number of
realizations, the asymptotic model, on which values in Table 4.8 are based, yields an
RVE size of V = 100.13, which corresponds to an error of 0.1%. The model is thus
appropriate for every data point considered, except in the case of volumes for which
boundary layer effects are not negligible.

4.4.4.6 Conclusions

This section questions the applicability of the concept of RVE for pathological cases
such as Poisson fibers. The microstructural model was developed and implemented
numerically. Hundreds of realizations were computed using FE, generating a large
amount of data to be analyzed statistically. Overall, the method proposed in [114]
and generalized in [57] for determining RVE sizes can be considered robust and
effective, even for pathological microstructures. This is method is thus very useful
for the homogenization of random architectured materials.



4.5 Conclusions 

The use of architectured materials in industrial applications is conditional upon the
development of appropriate models for such materials. The present chapter covered
the most critical aspects of computational homogenization for architectured materi-
als. First, an introduction to classical computational homogenization was made and a
description of a computational approach using the finite element method was given.
This approach was applied for the specific case of periodic auxetic microstructures.
Periodic homogenization elastoplastic constitutive materials was then explored. A
systematic statistical approach for the computational homogenization of random
architecturedmaterials was presented. The problem of representativity is also critical
when considering architectured materials in which the scale separation assumption
becomes invalid, i.e. for finite structuresmade of architecturedmaterials. Recent ana-
lytical results show that effective properties can indeed be determined independently
of the number of unit cells [30, 160]. The polynomial approach was developed fur-
ther in the works of [12, 102, 103]. This approach was applied for modeling the
homogenized behavior of auxetics [16] and 3D woven textiles based on experiments
[170]. However the dependence on the choice of the representative unit cell remains
without solution. Approaches like multifield methods [186] and computational con-
tinua [73, 74] may be appropriate alternatives to the polynomial approach. For more
details about the mechanics of generalized continua, see [5, 75, 180]. The study of
structuresmade of architecturedmaterials has been the object of intensive research in
the last few years [168], and has resulted in promising results concerning the devel-
opment of architectured metamaterials for acoustic [175, 177] and elastodynamic
applications [174, 176].
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