
HAL Id: hal-02129161
https://hal.science/hal-02129161

Submitted on 15 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graphical event model learning and verification for
security assessment

Dimitri Antakly, Benoit Delahaye, Philippe Leray

To cite this version:
Dimitri Antakly, Benoit Delahaye, Philippe Leray. Graphical event model learning and verification
for security assessment. 32th International Conference on Industrial, Engineering, Other Applications
of Applied Intelligent Systems (IEA/AIE 2019), 2019, Graz, Austria. pp.245-252, �10.1007/978-3-030-
22999-3_22�. �hal-02129161�

https://hal.science/hal-02129161
https://hal.archives-ouvertes.fr

Graphical Event Model Learning and
Verification for Security Assessment

Dimitri Antakly1,2, Benôıt Delahaye2, and Philippe Leray2

1 GFI informatique
2 Université de Nantes/LS2N UMR CNRS 6004 , Nantes, France

dimitri.antakly@gfi.fr

{benoit.delahaye,philippe.leray}@univ-nantes.fr

Abstract. The main objective of our work is to assess the security of a
given real world system by verifying whether this system satisfies given
properties and, if not, how far it is from satisfying them. We are in-
terested in performing formal verification of this system based on event
sequences collected from its execution. In this paper, we propose a pre-
liminary model-based approach where a Graphical Event Model (GEM),
learned from the event streams, is considered to be representative of
the underlying system. This model is then used to check a certain se-
curity property. If the property is not verified, we also propose a search
methodology to find another close model that satisfies it. Our approach
is generic with respect to the verification procedure and the notion of
distance between models. For the sake of completeness, we propose a
distance measure between GEMs that allows to give an insight on how
far our real system is from verifying the given property. The interest of
this approach is illustrated with a toy example.

Keywords: Model-based learning · Formal verification ·Graphical Event
Models (GEMs) · Event streams.

1 Introduction

In order to build a secure access to data in a real world system and to ensure
its safeness from any upcoming potential threat one should learn the dependen-
cies and behavior of the different components of the system, identify malicious
behaviors and act at the right moment to intercept them. Some of the existing
modeling formalisms are better tailored for the verification of given properties or
hypothesis, others for learning behaviors and dependencies. Probabilistic finite
automaton, for instance, were used in modeling and verification of known or de-
sired behaviors [5]. Petri Nets were used in modeling and verification of several
parallel tasks as well as in Process Mining [8]. Probabilistic graphical models
were used in Machine Learning for the representation of dependencies between
the different variables of a system.

Each of these cited formalisms has its own advantages and disadvantages.
Nonetheless, all of the formalisms cited above and the ones that are in the same

2 D. Antakly et al.

family have a common flaw, the discretisation of time, which can be described as
a representational bias in the learning of these formalisms. Thus, from a security
point of view, it is better to use continuous time modeling formalisms that allow
knowing exactly when to act and not only what action to take; for example when
predicting a system failure or forecasting future user tendencies.

To explore the dynamics of a wide variety of systems behavior based on
collected event streams, there exist many advanced continuous time modeling
formalisms: for instance, continuous time Bayesian networks, Markov jump pro-
cesses [6], Poisson networks and graphical event models (GEMs) [2]. In this work
we are interested in Recursive Timescale Graphical Models (or RTGEMs) [2] a
sub-family of GEMs, that present advantages compared to the other formalisms.

Appropriate learning and verification techniques should be adapted for the
type of formalism that we wish to use. Standard model checking, for example,
is used as an verification method [1]. It has been applied to many formalisms,
but to the best of our knowledge, never adapted to RTGEMs. Another valid
solution for verification are approximation methods, such as Statistical Model
Checking (SMC) [4], which is an efficient technique based on simulations and
statistical results. SMC has been successfully applied to probabilistic graphical
models such as dynamic Bayesian networks (DBNs) in [3]. In the same way,
SMC could be easily adapted to RTGEMs.

The main objective of this work is to learn a model (if one exists) that is
at the same time representative of the real world system and secure. We are
not only interested in evaluating the fitness of the model using standard scoring
techniques but also in its suitability from a security point of view. Hence, we
propose a strategy where we choose to learn the “optimal” RTGEM (the one
that most fits the data). If this model does not satisfy a specific security property
we seek to find another RTGEM, in its close neighborhood, that does. To do
so, an appropriate model-based strategy is proposed and a distance measure is
introduced in order to compare two RTGEMs. The strategy we propose contains
three main steps, the learning of the model, the space exploration and model
verification phase, and finally the distance calculation.

This paper is divided into four sections, section 2 consists in definitions and
some background context that will be useful further on. Section 3 contains the
proposed strategy, that is illustrated by a toy example in section 4. Section 5 is
reserved for the conclusion and perspectives.

2 Background

The data we are using consists in timed sequences with strictly increasing times-
tamps (we use t0 = 0 and t∗ = tn+1 as conventions). Thus, our data is written
xt∗ for the sequence of events (t1, l1), ..., (tn, ln), with 0 < ti < ti+1 < t∗ for all
1 ≤ i ≤ n−1 and where li are labels chosen from a finite label vocabulary L. We
write |xt∗ | for the size of our data xt∗ (the number of events in the sequence).
The history at time t is the set of all the events that occurred before t, hi denotes
the ith history hi = (t1, l1), ..., (ti−1, li−1).

Graphical Event Model Learning and Verification for Security Assessment 3

2.1 Graphical Event Models

A Graphical Event Model (GEM) is defined as a directed graph G = (L, E) that
can represent data of the type xt∗ as given above, as well as the dependencies be-
tween the different labels (or events) in time. In this work we are only interested
in Markov GEMs, where the conditional intensity functions λl(t | h) satisfy the
following property:

λl(t | h) = λl(t | [h]Pa(l))

where Pa(l) are the parents of l in G. This means that the conditional intensity
of a certain label l at time t only depends on the history of the parents of l
and not the entire history of the process. We also note that conditional intensity
functions are piecewise-constant, which means that they take constant values
for a certain period of time based on the observed history. More details about
GEMs can be found in [2].

2.2 Recursive Timescale Graphical Event Models

Recursive Timescale Graphical Event Models as described in [2] are a class of
GEMs where each dependency between two events is defined for a given finite
timescale which specifies the temporal horizon and the granularity of the depen-
dency represented by that edge. Formally, a timescale is a set T of half-open
intervals (a, b] (with a ≥ 0 and b > a) that form a partition of some interval
(0, th], where th is the highest value of T and is called the horizon of an edge e.
An RTGEM M = (G, T) consists of a GEM G = (L, E) and a set of timescales
T = Te(e∈E) corresponding to the edges E of the graph G. The “recursive” form
of this formalism comes from the fact that it is constructed using a forward search
algorithm, usually starting from an empty model (only containing nodes that are
not connected). The set of elementary operators, allowed in the learning of RT-
GEMs in a forward search algorithm, is the following OF = {add, split, extend}.
The “add” operator adds a non-existing edge to the model and its corresponding
timescale T = (0, c], with c a constant. The “split” operator splits one interval
(a, b] in the timescale of a chosen edge into two intervals (a, a+b2], (a+b2 , b]. The
extend operator extends the horizon of a chosen edge by adding the interval
(th, 2th], with th being the previous horizon.

The conditional intensity functions now have parameters (they are also piecewise-
constant), i.e. λl(t | h) = λl,cl(h,t) where the index cl(h, t) is the parent count
vector of bounded counts over the intervals in the timescales of the parents of
l. For the following example, we consider that all RTGEMs are bounded by 1,
thus only the fact that a parent has occurred (or not) within the corresponding
timescale is important.

Example 1. Consider the TGEM illustrated in figure 1. We have L = {A,B,C,D};
for the event B for example, cB(h, t) = [0, 1, 1] means that there was no A in
[t− 3, t), there was an A in [t− 6, t− 3) and there was a D in [t− 5, t). Hence,
the conditional intensity functions for the variable B are of the form: λB,000,

4 D. Antakly et al.

A B C

D

(0, 3](3, 6]

(0, 2]

(0, 20]

(0
, 5

]

Fig. 1. Example of a four variables RTGEM

λB,001, etc. All conditional intensity functions are equal to constants making
them piecewise-constant depending on the corresponding combination of par-
ents.

In the learning algorithm proposed in [2], a backward search follows a for-
ward search. This means that, implicitly, the authors use symmetric opera-
tors in their backward search. For the sake of convenience we write: O−1F =
{remove edge, fusion, remove interval} for these symmetric operators, that do
the inverse of the ones cited beforehand. In order to learn the fittest RTGEM,
a Greedy Forward-Backward search is applied, based on an adapted Bayesian
Information Criterion (BIC) score to select the RTGEM that most represents
the data.

3 Proposed Approach

3.1 Problem Statement

In the learning phase of a model, where we want to learn the “fittest” model
that best represents reality, we tend to adapt scores and metrics that evaluate
the complexity and resemblance of the different learned models compared to
the real data (D), in order to chose the optimal one. From a security point
of view, it is also important to verify if our model (that represents reality to
a certain degree) satisfies certain security rules or properties, and if not, how
far the current model is from verifying them. The probability that a model M
verifies a security property φ is written P (φ |M). The problem we want to solve
can be written as follows:

∃M∗,M∗ = argmaxP (D |M) with P (φ |M) > c (1)

with c ∈ [0, 1] a given constant. The security properties we are looking to verify
are qualitative and generally address a limited number of events in our graph.
We denote lφ ∈ Lφ the labels of the events concerned by the security property
φ . The problem as stated in equation 1 cannot be solved using classical multi-
objective optimization heuristics, because of the fact that a qualitative property
cannot be optimized, it is either true or false (it cannot become “truer”).

Graphical Event Model Learning and Verification for Security Assessment 5

3.2 Proposed Strategy

The strategy we propose to solve (1) is described in the following generic algo-
rithm consisting in three main steps. The first step is the learning phase, the
second step is the model space exploration phase and model verification, and
the last step is the distance calculation between two models.

Algorithm 1 Proposed Strategy

input: D, φ
output: M∗,∆

1: Mo = argmax
M∈RTGEM

P (D |M)

2: N = Nc(Nlφ(Mo))
3: M∗ = find{M ∈ N , P (φ |M) > c}
4: ∆ = SHD(Mo,M∗)

The first line of Algorithm 1 corresponds to the learning phase of the fittest
RTGEM Mo (section 2.2). Lines 2 and 3 correspond to the model space explo-
ration phase and model verification, where we try to find a model M∗, in the
“close” neighborhood of Mo, that verifies the security property. This step will
be explained in details in sections 3.3 and 3.4. The last line of the algorithm
consists in calculating the distance between the optimal and the selected model
(if one exists). The distance measure we propose will be defined and explained
in section 3.5.

3.3 Model Space Exploration

The security properties we would like to verify address a number of particular
variables lφ in our model. The notation Nlφ(Mo), on line 2 of Algorithm 1,
defines the neighborhood of Mo limited by the labels lφ that are concerned by
the security property φ. The neighborhood N that we consider, is the transitive
closure (Nc) of the previous neighborhood, limited by the number of allowed
operators that is fixed beforehand. We check if the initial model verifies the
security property in the first step of our find function before doing any space
exploration. The idea of the model space exploration (in line 3) consists in doing
a finite number of operations on the concerned labels lφ of the model Mo, while
staying in N , in order to find a model that verifies the property. We check
after each operation, if the obtained model satisfies the property or not. The
search stops immediately when we find a model that verifies the property. The
operations that are allowed are the ones in the sets OF and O−1F .

The find function can be defined using any search technique: an exhaustive
technique like DFS (Depth First Search) or BFS (Breadth First Search) for
example. It can also be random, like the random walk technique or a greedy
search with an objective to improve P (φ |M) in order to make it higher than c.

6 D. Antakly et al.

3.4 Model Verification

In practice, we are interested in two main types of queries that can be verified
on continuous-time graphical models. The first type of queries targets the order
or number of occurrences of given events. The second type of queries addresses
time or the timing of given events. By adapting these queries (or a conjunction
of them) to the system’s security standards we obtain our security properties
that allow us to classify a model as normal (or dangerous) from a security point
of view. Certain types of properties can be formalized using an extended version
of LTL (Linear Time Logic) [1], with the addition of past time intervals over the
variables. For example we can write �100(C ⇒ A(0,5] ∧ B(0,10]), meaning that
all the occurrences of C within the next 100 time units (if it ever occurs) must
imply the occurrence of A and B in the past within their respective timescales.

These types of properties could be verified using exact verification methods
like standard model checking techniques [1], but standard model checking is sub-
ject to state space explosion and to the best of our knowledge was never adapted
to Graphical Event Models. In practice we could also use an approximation
method, like Statistical Model Checking (SMC) [4] that consists in simulating
the model and verifying on each sampled data sequence if the given property is
verified.

3.5 Distance Between Models

To the best of our knowledge, there is no existing metric of distance between
RTGEMs. In the literature, the popular Hamming distance has been adapted
for some probabilistic graphical models such as Bayesian networks [7]. In the
following, we propose an extension of the Structural Hamming Distance (SHD),
adapted to RTGEMs, where we evaluate the amount of differing information
on two different edges. Consider two RTGEMs with the same set of labels L,
G1 = (L, E1) and G2 = (L, E2), we define:

SHD(G1, G2) =
∑
e∈Esd

1 +
∑

e∈Einter

d(T (e,G1), T (e,G2)) (2)

Where Esd = {E1 \ E2} ∪ {E2 \ E1} are the edges of each model that are not
present in the other one and Einter = E1∩E2 is the set of edges that are present
in both models. T (e,G1) and T (e,G2) are the lists of endpoints of the intervals
on the timescales of the corresponding edge e in graph G1 and G2 respectively. A
timescale in an RTGEM can be represented by a vector v = [0, a, b, c, ...] where
the values are the successive timestamp values. We write v1 and v2 for the values
of a timescale (on a given edge that is present in both graphs) of G1 and G2

respectively. We write vid = |v1 ∩ v2|, for the identical endpoints in the two
vectors; and vnid = |v1 \ v2| + |v2 \ v1|, for the endpoints that are not identical
in the two vectors. Thus, we define the elementary distance as follows:

d(T (e,G1), T (e,G2)) =
vnid

vnid + vid
(3)

Graphical Event Model Learning and Verification for Security Assessment 7

Equation (2) corresponds to adding 1 to the global distance when the edge (or
the dependency between two nodes) exists in a graph but not the other, and
adding a value d in [0, 1) corresponding to the difference between the timescales
when an edge exists in both graphs.

4 Toy example

The purpose of the following example is to illustrate the interest of the proposed
strategy on a real life application. We consider a prepaid card online service,
where the possible actions are Recharge, Check account, Transfer money (to
transfer money to his or to another bank account) and Log out. We suppose
that the optimal RTGEM (Mo) that best fits the real behavior of users is as
shown in figure 2. A security query φ that we can verify on this example can be
of the form �1000(Transfer Money ⇒ Recharge(0,20] ∨ Check account(0,5]), and
for instance we want the model to satisfy the property P (φ | Mo) > 0.8. In
other words we would like to ensure a behavior for users that we consider safe:
every time a user wants to transfer money, an action where he checks his account
must have occurred right beforehand or a recharging of his account must have
occurred not long ago (because he may have made some purchases very recently
after the recharge and is aware of his balance). If our system does not verify
this property we would say that the average user should be more “careful” while
using the service and that the global behavior of the service is not secure.

Log in Recharge
Transfer
money

Log out

Check
account

(0, 5]

(0
, 5

]

(0
, 5

]

(0, 100]

(0
,5

]

(0, 5]

(0
,5

]

Fig. 2. The learned model

Log in Recharge
Transfer
money

Log out

Check
account

(0, 5]

(0
, 5

]

(0
, 5

]

(0
,5

]

(0, 5]

(0
,5

]

(0, 5]

(0, 50](50, 100]

Fig. 3. A modified more secure model

We notice, only from looking at the model, that P (φ | Mo) is low and that
the learned behavior does not verify the security property mainly because of the
missing dependency between “Check account” and “Transfer money”. Hence,
users are transferring money without checking their accounts first. Furthermore,
after recharging and using their card they never directly check their accounts
but they sometimes directly transfer money.

8 D. Antakly et al.

By doing a limited number of allowed operations on the labels that are ad-
dressed by φ (lφ = {Transfer Money,Recharge,Check account}), we can obtain
the RTGEM (M∗) of figure 3, where the modifications are in red. Clearly, this
obtained model is more secure considering the security property φ, because we
now have a smaller interval between “recharge” and “transfer money” that is
taken into consideration and we have added the edge between “check account”
and “transfer money”.

The distance is SHD(Mo,M∗) = 1.333 in this case, because of the added
edge and the split on the interval.

5 Conclusion and Perspectives

In conclusion, we have proposed a preliminary model-based strategy in learning
and verification for security assessments, as well as a distance measure between
graphical models. Our strategy consists in learning the model that best repre-
sents the real data, in checking if a close model exists that verifies a certain
security property and in computing a distance, that we defined, between the two
models to see how far the fittest model is from verifying the property.
In the future we plan to apply our algorithm and start the experimentation on
a real world case study to evaluate its complexity and advantages, especially in
systems verification, in order to compare it with other verification approaches.
Finally, we are also planning on studying the correlation between the relative
distance measure we compute and the change in the satisfaction probability of
a certain property.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
2. Gunawardana, A., Meek, C.: Universal models of multivariate temporal point pro-

cesses. In: Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics. pp. 556–563 (2016)

3. Langmead, C.J.: Generalized queries and Bayesian statistical model checking in dy-
namic bayesian networks: Application to personalized medicine. In: Proceedings of
The 8th Annual International Conference on Computational Systems Bioinformat-
ics. pp. 201–212. Life Sciences Society (2009)

4. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
International Conference on Runtime Verification. pp. 122–135. Springer (2010)

5. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
probabilistic automata for model checking. In: Quantitative Evaluation of Systems
(QEST), 2011 Eighth International Conference on. pp. 111–120. IEEE (2011)

6. Rao, V., Teh, Y.W.: Fast MCMC sampling for Markov jump processes and exten-
sions. The Journal of Machine Learning Research 14(1), 3295–3320 (2013)

7. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Machine learning 65(1), 31–78 (2006)

8. Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Berlin Heidelberg (2014)

