Comparaison d'algorithmes de réduction modulaire en HLS sur FPGA

Libey Djath¹, Timo Zijlstra², Karim Bigou¹, Arnaud Tisserand²

 1 Université de Bretagne Occidentale / Lab-STICC, UMR CNRS 6285 2 CNRS / Lab-STICC, UMR 6285

Compas, 25-28 Juin 2019, Anglet, France

Contexte

La cryptographie asymétrique sert par exemple :

- signature numérique
- authentification
- échange de clés secrètes

Exemples de cryptosystèmes asymétriques :

- cryptographie basée sur les courbes elliptiques (ECC) [Mil85, Kob87]
- cryptographie post-quantique (PQC) [Reg05, LPR10]

Les calculs dans ces cryptosystèmes sont effectués sur :

- ECC : entiers modulo un grand nombre premier *P* (200–500 bits)
- PQC à base de réseaux euclidiens : polynômes de degrés d ∈ [200, 1000] avec de petits coefficients (10-20 bits)

Residue Number System (RNS) pour ECC

RNS

- X représenté par ses restes dans une base $(a_1, a_2, ..., a_n)$
- représentation non positionnelle des nombres
- théorème chinois des restes (CRT) pour les conversions

Représentation du nombre X

 $\overrightarrow{X} = (X \mod a_1, X \mod a_2, \dots, X \mod a_n)$

Une primitive ECC requiert des milliers d'additions, soustractions et multiplications modulo P

En RNS, les calculs sur de grands entiers sont remplacés par des calculs en parallèle sur de petits restes mod a_i .

Cryptographie post-quantique (PQC)

Les cryptosystèmes actuels peuvent être cassés par l'algorithme quantique de Shor [Sho99] sur un ordinateur quantique

PQC

Basée sur des problèmes mathématiques pour lesquels il n'existe pas, a priori, d'algorithmes quantiques efficaces. Par exemple :

- réseaux euclidiens [LPR10]
- codes correcteurs d'erreurs

Opération la plus importante de PQC à base de réseaux euclidiens :

multiplication de polynômes

Les coefficients des polynômes sont dans GF(q), avec q un premier de quelques dizaines de bits

Les primitives ECC requièrent :

- réductions mod P
- réductions et accumulations de multiplications réduites si on utilise le RNS

Les primitives PQC à base de réseaux euclidiens requièrent :

- milliers de réductions de multiplications
- accumulations puis reductions

Comparaison d'algorithmes de réduction modulaire

Développement d'une bibliothèque C d'arithmétique modulaire pour la cryptographie asymétrique :

- synthèse de haut niveau (HLS)
- motifs de calcul (réduction modulaire) rencontrés dans les cryptosystèmes asymétriques
- comparaison d'algorithmes de réduction sur FPGA

Les motifs de calcul :

•
$$M1 : \sum_{i=1}^{N} x_i \mod m$$

• $M2: \sum_{i=1}^n x_i \times y_i \mod m$

Stratégies de réduction (pour M2) :

- réduction intermédiaire systématique (RIS) : $\left(\sum_{i=1}^{N} (x_i \times y_i \mod m)\right) \mod m$
- réduction seulement à la fin (RSF) :

$$\left(\sum_{i=1}^{N} x_i \times y_i\right) \mod m$$

Algorithme de référence : réduction native de l'outil

Algorithmes implantés pour des moduli quelconques :

- réduction de Barrett
- réduction de Montgomery

Algorithmes implantés pour des moduli spécifiques :

- MSR : moduli de la forme $2^w c$, avec $c < 2^{w/2}$
- MSC : moduli à écriture binaire très creuse (p. ex. 3 bits non nuls)

Code algorithme réduction de Barrett

```
#include "parameters.h"
1
    #include "arithmod_internal.h"
2
3
    word barrett(sumdword x)
4
    ł
5
        sumword x1 = SUM W(x >> width);
6
        sumword q = SUM_W((RSW(x1) * RSW(R_const)) >> (shift - width));
7
        word x0 = W(x);
8
        counter c = 0;
9
        if (x0 > M) c = 2;
10
        else if (x0 != 0) c = 1;
11
12
        q = q + c;
        sumdword z = SUM_DW(q) * SUM_DW(m);
13
        signword res = x - z;
14
        if (res < 0) res = res + M;
15
        if (res < 0) res = res + M;
16
        return W(res);
17
    }
18
```

FPGA cible Artix7 de Xilinx (xc7a15tcpg236-2l)

Outil

Vivado HLS (version 2017.4) de Xilinx

Implantation

- moduli de tailles w = 13, 17, 23, 30 bits
- vecteurs de tailles N = 10, 20, 40, 100

Optimisation

Mêmes directives d'optimisation pour tous les algorithmes :

- pipeline
- déroulage de boucles

Comparaison des différents algorithmes de réductions pour w = 23 bits, M2-RSF, N = 20

L. Djath, T. Zijlstra, K. Bigou, A. Tisserand

Réduction modulaire / HLS / FPGA

Compas, 25-28 Juin 2019

Impact des directives d'optimisation pour M2-RSF, MSR, w = 23 bits et N = 20

RSF : réduction seulement à la fin

	surf	ace	temps	(ns, cycl	es)	surface $ imes$ temps	
directives	slices	DSP	période	cycles	ТМ	$DSP \times TM$	slices \times TM
aucune	136	4	3.1	216	670	2680	91120
pipeline	142	4	3.2	64	205	820	29110
pipeline + unroll2	167	6	3.2	46	148	888	24716
pipeline + unroll4	228	10	3.3	37	123	1230	28044
pipeline + unroll10	526	22	3.1	39	121	2662	63646

Impact des stratégies de réduction pour M2, w = 23 bits et N = 20

- RIS : réduction intermédiaire systématique
- RSF : réduction seulement à la fin

	algorithme	surface		temps (ns, cycles)			surface×temps	
motif	et stratégie	slices	DSP	période	cycles	ТМ	$DSP \times TM$	$slices \times TM$
M2	Montgomery RIS	194	12	2.6	60	156	1872	30264
	Montgomery RSF	149	7	2.6	64	167	1165	24794
	Barrett RIS	259	12	2.8	53	149	1781	38436
	Barrett RSF	218	10	2.7	52	141	1404	30608
	MSC RIS	403	4	2.7	55	149	594	59846
	MSC RSF	261	4	2.7	47	127	508	33121
	MSR RIS	146	8	2.6	31	81	645	11768
	MSR RSF	167	6	3.2	46	148	884	24583

Impact de la taille N des vecteurs pour MSC

🕶 M2 RSF 🛛 M2 RIS 📑 🖷 M1 RSF

L. Djath, T. Zijlstra, K. Bigou, A. Tisserand

Réduction modulaire / HLS / FPGA

Compas, 25-28 Juin 2019 15 / 16

Conclusion

Conclusion

- La bibliothèque proposée offre :
 - support d'algorithmes de réduction modulaire adaptés à la cryptographie asymétrique, et pas supportés par les outils HLS actuels

Les implantations sont 2 fois plus rapides, avec un meilleur compromis surface \times temps

 possibilité de générer des circuits optimisés en temps et en surface pour des moduli quelconques et spécifiques

Travaux à venir

Dans la suite, nous souhaitons ajouter à notre bibliothèque :

- autres opérations
- autres formes de moduli

References I

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev.	ory and Applications of
On ideal lattices and learning with errors over rings. In Proc. 29th Annual International Conference on the Theo Cryptographic Techniques (EUROCRYPT), pages 1–23. M	ionaco, June 2010.
[Mil85] V .S. Miller. Use of elliptic curve in cryptography. In Advances in Cryptology, volume 218, pages 417–426. St	pringer, 1985.
[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and In Proc. 37th Annual ACM Symposium on Theory of Com Baltimore, MD, USA, May 2005.	cryptography. puting, pages 84–93,
[Sho99] P. W. Shor. Polynomial-time algorithms for prime factorization and disc quantum computer. volume 41, pages 303–332, 1999.	crete logarithms on a