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Introduction

Friction in brake systems depends on many phenomena, but temperature rise is of course the governing factor. Flat. fric tional surfaces and free contact conditions are essential for good brake performance. Temperature rise induces thermoe lastic distortions leading to surface waves. Lee and Barber (1992) show that if the sliding speeds exceeds a certain critical value instabilities arise leading to the estab lishment of localized high temperature contact regions, reg ularly spaced known as hot spots. Hot spots are associated with localized thermal expansions, interfacial pressure peaks and wear. This phenomenon is known as frictionally excited thermoelastic instability or TEI [START_REF] Barber | The Influence of Thermal Expansion on the Friction and Wear Process[END_REF][START_REF] Barber | Thermoelastic Instabilities in the Sliding of Conforming Solids[END_REF]. These phenomena can't disappear from one brake application to another. The problem is to compute the evolutions of contact pressure, surface profiles, and surface temperature when two elastic bodies slide on each other. This is a coupled thermoe lastic problem (Day, 1987) since the contact pressure will de pend on the thermal distortion of the bodies and the amount of frictional heat generation will depend on the contact pres sure. A complete brake system analysis must take into account crazing due to severe thermal loadings resulting in alternative compressive and tensile stresses . . Further complex contacting surface geometry (groove, pad, ventilation) resulting in stress concentrations may favor surface crack propagation (Dubourg et al., 1992). Crack propagation analysis is therefore necessary as it governs time lift brake systems. This complete analysis will be achieved in three steps:

The first one, presented in this paper, is concerned with a three-dimensional transient thermal analysis with variable speed effects.

The second one, in preparation,, is the thermoelastic analysis of a complete brake system including the presence of pads. The contact problem between pads and disk is solved in terms of temperature and pressure distributions.

The third and last step, will be the thermal crazing analysis. The model corresponding to the first step is based on anew hybrid method F.F.T.-F.E.M, combining Fourier transform techniques and finite element methods. A Fourier transform is applied with respect to the space variable e. The originality lies in the use of a fast Fourier transform algorithm which avoids singularity problems and is expensive in computer time. The transformed problem is then classically analyzed with the finite element technique for each frequency considered. Inverse transforms are then performed.

II The Thermal Problem: Moving Solid at Variable

Speed Under Nonaxisymmetric Transient Heat Condi tions

This thermal analysis is often performed using finite element modeling techniques and for economic reasons, the analysis is usually two-dimensional. This simplification implies contact conditions and heat flux transfer independent of e. This leads to false elastic distortions and unrealistic contact conditions [START_REF] Floquet | Mode!isation Thermique Bidimensionnelle des instabilites du freinage[END_REF].

A disk or a drum brake system is made in two parts: A mobile one, geometrically axisymmetric, composed of the disk and the rim; contact conditions correspond to a heat flux which is a function of time and space variables r and e, the boundary conditions outside the contact zone correspond to convection, radiation, and sometimes to known temperature (wheel axle or rim). The material thermal characteristics are temperature related. The sliding speed and the heat flux are time dependent. A fixed part, composed of blocks and caliper: the geometry is three dimensional, the sliding speed is nil. The contact and boundary conditions are identical to those defined for the mobile part; the material thermal characteristics are also tem perature related.

Classical finite element techniques are very well adapted for the fixed part of brake systems but three-dimensional modeling of the mobile part implies a very refined mesh as numerical instabilities arise when the Peclet number P is greater than 2 [START_REF] Kennedy | Improved Techniques for Finite Element Analysis of Sliding Surface Temperatures[END_REF]. That corresponds to a disk sliding speed V greater than a critical value, Ve, or to a mesh size e in the sliding direction smaller than:

P= Vc * e12D<2<*e<4D!Vc
where D is the material diffusivity. This limit implies reducing the element mesh size according to the sliding speed. That leads for instance to an element size of 1.5 µm for an vehicle iron disk (D = 1.5 10-5 m2/s) and V = 40 m/s! An unreasonable number of elements would thus be required.

A new method is proposed here to perform a three-dimen sional thermal analysis of a movlng axisymmetric solid sub mitted to nonaxisymmetric heat flux conditions [START_REF] Floquet | Lest Temperatures eclairs en systeme multicouche[END_REF] . This method combines Fourier integral transform techniques and finite element methods. Transforms are obtained through a fast Fourier Transform algorithm in order to reduce com puter time and to avoid numerical singularities. Note that the prescribed heat flux on S2 comes from the heat dissipation in the contact zone. In this work, the frictional heat is supposed to enter totally into the disk brake. In the step two of the modeling which will be presented in the future, matching of the thermal contact conditions at the pad/disk interface will be taken into account.

III

S l (S2 and S3 too) is partially bounded by r when 8 varies from 0 to 2?r. No particular conditions are required for initial temperature.

111.2 Theoretical Formulation. The basic concept of the method lies on Fourier transform with respect to the space variable 8. In practice, this is done by the Fast Fourier trans form (FFT) technique (Brighman, 1974). The calculation time is considerably reduced and no singularitiy problems are met in the inverse transform. This FFT technique is combined using the Singleton method [START_REF] Singleton | An Algorithm for Computing the Mixed Radix Fast Fourier Transform[END_REF] which accepts any num ber of discretization points with respect to the transformed variable. T(r,q,z,t) = Tc(r,q,z,t) on (S1) kgradT•n = qc(r,q,z,t) on ( S2)

-kgradT•n=h(T-Ta) on (S3)
Initial Condition (IC) :

T(r,q,z,O)=T ;(r,q,z) at t=O (1) 
D is assumed constant on a volume control element and independent of 8. h takes into account convection and radiation and is a function of both position and time. It is assumed to be constant over a surface element during a time step.

The application of a transform integral to (I) has the effect of removing partial derivatives with respect to the space vari able considered from the heat conduction equation and thus of reducing the dimensionality of the problem. The space vari able considered here is 8. The Fourier integral transform with respect to the 8 variable for a cyclic function g (x) with a period of 2?r, is defined by g(f) g(f) = r g (x)exp (-2j?rfX)dX ---------------------------------- Since the speed effect has been removed from the problem, the finite element technique can be applied directly. Consid ering a test function W(r, z) , r, z E (0) and applying the Green formula to (3), the weak formulation of the problem is:

I ---I 1 ar 2 I r gradT•grad WdO+ --WdO-c; -WdO !l !l r a r !l 2
performed on a simple geometric configuration under various boundary conditions, including speed and nonaxisymmetric heat flux effects. Comparisons are performed with an analyt ical solution in the first case. In the other cases, no analytical solutions exist.

IV Test Cases

A ring is considered; its meridian plane is a rectangle pre sented in Fig. 2. This region is initially at a nil temperature.

For times t gre a ter thari 0, a nil temperature is prescribed at the boundary z = 0, a prescribed heat flux, independent of r but dependent on e, is applied at the boundary z = e, and the side boundaries are insulated. The height e is equals to 0.09 IV.1 Zero Velocity With Axisymmetric Heat Flux. q = q0 cos (18) with q0 = constant = 106 W /m 2 D.r is assumed to be small enough for T to be independent of r. The analytical solution of this problem is (Oziski, 1980): (5)

This transformed system is then solved using two-dimen sional finite element techniques. Two degrees of freedom are considered by node (real and imaginary part) . ( 5) is trans formed classically following the finite element technique (Dhatt and Thouzot, 1981) 

into: dT - A -=+BT=F ( 

6) dt

This differential system may be solved by implicit or explicit classical methods (Euler, Runge Kutta, Prediction-Correc tion). The system must be solved for each frequency f. Heat transfer phenomena in moving media submitted to periodic oscillations behaves like a low pass frequency filter. As it will be demonstrated in § V with practical tests, the twenty first frequencies are sufficeint for a correct simulation.

The FFT-FEM method described above can simulate tran sient heat transfer in 3-D -z fort= 1 s and 10 s and for the angle IJ=O, t for z=0.9 and z=e and for the angle IJ=O,

-0 fort= 1 s and t = 10 s and z=0.9 and z=e. are presented in Figs. 5, 6, and7, respectively. Note that in Fig. 6 for t = 0, the slope of the curve is nil for z = 0.9e and different from 0 for z = e.

Small oscillations or GIBBS phenomena are due to the lim itation of the number of frequencies considered here for the calculation (only 16) [START_REF] Colin | Thermal Contact Simulation in 2-D and 3-D Mechanisms[END_REF] . It has no consequence as Fourier transforms converge in the mean. Further, a com-. parison between the temperature obtained by considering 360 frequencies instead of 16 has been performed: the difference -t �or the angle e = 0 and for z = e and z = 0.9e, -e for t =ls and t = I Os and for z-0.9e and z = e, are presented in Figs. 8 and9, respectively.

Comparison between temperature variations versus z for t = ls and 10s and for the angle e = 0, obtained in that case and for the static one is shown in Fig. 10. In both cases, a temperature softening effect dependent on z (the depth) is noted. It is more important in the speed case.

The velocity V causes a drop in maximum temperature as cold material is brought under the heat source, as noted earlier [START_REF] Colin | Thermal Contact Simulation in 2-D and 3-D Mechanisms[END_REF] , [START_REF] Leroy | Thermomechanical Be havior of Multilayered Media: Theory[END_REF][START_REF] Leroy | Thermomechanical Behavior of Multilayered Media: Results[END_REF]. Further, the temperature increase concerned a wider strip of material for the static case than for the moving one (Floquet A., and Men ard D., 1986).

IV.4 Variable Speed and Heat Flux. The temperature variations for the angle e = 0 and for z = 0.9e and z = e in Fig. 11; two periods are observed:

t < 6s: it corresponds to the braking period: the temperature increases rapidly at the surfaces (z = e); at z = 0.9e the maximum value is smaller and shifted forward. t > 6s: no more heat flux is applied: it corresponds to the slope break for both curves. Again this phenomenon is ob served later in time at z = 0.9e. Note also that for z = 0.9e, the temperature continues to increase during a short period, before decreasing due to the redistribution of the temperature field in the disk. The temperature variations versus the angle e for t = ls and 10s and for z = e and 0.9e in Fig. 12.

This case is very close to conditions encountered in a braking operation. The main difference comes from curvature effects which are not taken into account here, but is it not a limitation of the method at this simple geometrical configuration was retained for comparison with analytical solutions existing for the first test.

V General Case

A 3-D simulation, based upon a vehicle disk brake, takes into account temperature variations on r, e, z. The geometry, the dimensions and the mesh of the meridian plane are pre sented in Fig. 13. A cartesian coordinate system (0, x, y, z) is considered. 225 nodes are considered with 2 deg of freedom per node. The running conditions in terms of flux, speed and braking time are identical to those•considered in §IV.4. Con vection is considered on S3 = S. The heat flux q, constant versus with hexadedral elements of equivalent size in the () direction with respect to element size in the (r, z) plane. For instance, the case treated in &V. with 225 nodes in the meridian plane with two degrees of freedom per node takes only 8 seconds of computer time on a 12 specmark computer for a time step for a 3-D calculation according to the FFT-FEM method. A clas sical 3-D thermal analysis performed with the finite element code NASTRAN, on the same case.but with no speed effects, and a mesh of 225 nodes with 1 degree of freedom per node in the meridian plane and 72 elements in the 8 direction (five deg angle element}, i.e., 16200 nodes, takes 30 minutes of computer time on the same computer for a time step. The FFT.FEM method is 225 times faster! Taking into account speed effects requiring very refined mesh size in the sliding direction, thus finer mesh than those considered above will be necessary: the classical finite elemerit techniques are unsuitable for that case.

Conclusion

This original technique F.F.T.-F.E.M. combines quickness and accuracy of the transform techniques with the finite ele ment method's flexibility. It is used here to analyze three di mensional axisymmetric time dependent problems, such as brake systems. Numerical instabilities that arise in classical finite element analysis when the sliding speed is important are completely removed here. Results obtained are of good quality for small computer times.

The application of this technique to brake systems is straight forward. Stress fields can then be obtained with a classical elastic analysis. This information (temperature and stresses) in every point of the material are initial data for the analysis of fatigue crack behavior.

This FFT-FEM technique is part of a global research project of complete modeling and simulation of the thermomechanical behavior of braking operations.

  Description of the F.F.T-F.E.M. Techn ique 111.1 Geometry and Boundary Conditions. Any axisym metric geometry is considered (Fig. 1). Its volume ( V) is limited by its surface (S). The symmetric axis is OZ. The meridian plane n is bounded by r. The material thermal characteristics are temperature related, except in the 8 direction where the mean value will be used as a reference. The entire surface S is split into three disjoint surfaces S 1, S2, and S3. Classical boundary conditions are considered: Prescribed temperature on SI, Prescribed heat flux on S2, Natural or forced convection on S3.
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 1 Fig. 1 Brake disk

  a2T i aT a2T i a2T i (ar ar) ar2 +7-a;:+ az2 +? aq2 = n -at+ w aq Boundary Condition (BC) :

  f = �• nEN; j is a pure imaginary numberThe integral transform of the system (1) by the application of the transform (2) yields Nomenclature

  (r,z,t) = Tc( r,z,t) kgrad T• i'l = 7i. c(r,z,t) -kgradT•i'l= h (T-Ta) IC: T(r,z,0)= T;(r,z,O) on (r) at t = 0 (3) where Tc, qc, Ta, and Ti are respectively, the transformed boundary conditions in terms of temperature, heat flux and environment and initial temperatures. These are known quan tities. Note that the variable 8 has been transformed into a discrete parameter. The domain and the bounded surfaces are respectively transformed into n, rI' r2, and r3.

  m. The geometrical conditions are identical for all tests as well as the material properties considered, respectively h = 100 WI m 2 °C, k = 50 W/m°C, p = 7800 kg/m 3 , C = 500 J/kg°C. Different tests are presented, from the simplest one with an analytical solution to the most complex one. Changes concern the boundary conditions in terms of speed and heat flux.

  with: T(r, z, t) = Tc(r, z, t) on r1 T(r, z, 0)= T; (r, z, 0) on n at t = O T n qc , T and T; are complex quantities. Real and imaginary parts are separated. The notations employed are: T = TR + jT1• This leads to: exp( -Df•.2t )J sin ( {3 111z) cos (18) m=l + c;2 r T ; WdU-{3 r T 1 WdO-r q k � WdI' + r _ k h (TR_ T�) WdI' 2 f T : w dO + {3 f T R w dO -f q __ k � w dI' + f _ k h ( T1 -T;) w dI'

Fig. 3

 3 Fig. 2(a) Test geometry

Fig. 5

 5 Fig. 5 Temperature field versus depth for O = 0 and different times

Fig. 6 Fig. 7

 67 Fig.6Temperature field versus time for O = 0 and different depths heat flux q = q0 cos [5/2(0 -rr)) Oc[4rr/5, 6rr/5], q = 0 elswhere 290.0

  Speed and heat flux decrease linearly versus time down to zero, as in a braking operation. Initial values are respectively equal to 20/s and 106 W/m 2 • The operation lasts to t0 = 6s. Figures show:

Fig. 8 Fig. 9

 89 Fig. 8 Temperature field versus time for z = e and z = .9e with constant speed w = 20/s

Fig. 10 Fig. 11

 1011 Fig. 10 Temperature field versus depth at I = 10s for null and constant speed
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