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Abstract

Methodological approaches for realistic modeling of non-adiabatic processes are

reviewed and selected applications are discussed. The methods are based on

a hybrid approach with heavy atomic nuclei treated classically and light elec-

trons described quantum mechanically. The core of the methodology consists in

Ehrenfest’s mean-field approach enhanced by a model inclusion of quantum de-

coherence. Approximate treatment of long-time evolutions is also proposed for

the cases where direct dynamical calculations become computationally imprac-

ticable. Specific applications to ionic clusters of rare gases, based on effective,

low-dimensional Hamiltonians built within the diatomics-in-molecules method-

ology, prove the strengths and applicability of the developed methods in various

fields like photodissociation, post-ionization fragmentation, and collisions.
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1. Introduction

Ionic rare-gas clusters have been, during the last decades, a wonderful play-

ground and a veritable laboratory for exploring and questioning non-adiabatic

dynamics. Initially, mainly for fundamental purposes since it was shown that

the charge was localized in a small subunit of the clusters [1] solvated by almost

neutral atoms. Although made of identical atoms, the ionic rare-gas clusters are

representatives of complex systems bound by heterogeneous forces, strong chem-

ical ones within the core, intermediate polarization forces between the core and

the surrounding atoms, and weak van der Waals forces between the remaining

neutral atoms. Many experiments have also been performed for these attractive

systems [2] addressing the question how this complexity is reflected during their

fragmentation after energy is pumped into the system, either by photon absorp-

tion, collisions, or sudden ionization. More recently, applications of ionized

rare gases and cold rare-gas plasmas of medical interest [3, 4], for UV light

[5], space craft propulsion [6], astrophysics [7], or even in environmental

sciences and geosciences [8] have led to a renewed interest in the field.

From the theoretical point of view, interest has also been nourished by the

tractable complexity of the ionic rare-gas clusters. Complexity because of their

heterogeneous nature typical for various fields of research from solvation to solid

state, tractable because it was shown that the electronic Hamiltonian can be, for

these species, very effectively modeled by rather simple diatomics-in-molecules

(DIM) models of rather small dimensions [1, 9], 3N and/or 6N (N being the

number of atoms in the cluster) if the spin-orbit (SO) interaction is not or is

taken into account, respectively. Note, in particular, that the inclusion of the

SO interaction, which is unavoidable for the heavier rare gases, is rather simple

within the DIM approach [9].

In the 1980s, non-adiabatic dynamics was mainly based on trajectory surface

hopping (TSH) approaches [10, 11, 12, 13]. At that time, the surfaces needed

to be previously investigated, computed, sampled, and the possible areas for

surface hopping located. Only later, on-the-fly TSH calculations become
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practicable. Among the first on-the-fly approaches, a hemiquantal dynamics

method [14] was proposed with the use of the whole DIM basis set (HWD)

coupling the mean-field (Ehrenfest) approach [15] with a classical treatment of

nuclei. Within this approach, the need for a preliminary potential energy sur-

faces exploration was avoided. Very interesting results where found for example

for the argon trimer photodissociation [16, 17, 18]. However, the well known

problem of the mean-field approach of unphysical mixing of reaction (fragmen-

tation) channels, reflected here in fractionally charged fragments, limited the

approach to the direct fragmentation resulting in separate monomers. Later,

our team introduced a periodic decoherence mechanism [19] to fix this difficulty

and to deal with sequential fragmentation processes, particularly found in the

post ionization dynamics of rare-gas clusters. Further on, clusters remaining in

excited electronic states for extremely long lifetimes faced the theoretical treat-

ment to another computational limitation. As an approximate solution, we

proposed a multiscale treatment [20, 21] including radiative and non-radiative

transitions.

In the present contribution, our theoretical approaches and main obtained

results will be recalled. First, a methodology overview will be presented in Sec.

2, while Sec. 3 will be devoted to a review of main results we obtained for pho-

toabsorbtion, photodissociation, post-ionization fragmentation, and collisions of

rare-gas cluster cations. Some new results will be also presented for the lumi-

nescence spectrum obtained from the multiscale treatment and for collisions.

2. Methods and computations

2.1. Dynamics

The dynamical method used in our calculations relies on a classical treatment

of heavy atomic nuclei and a full quantum treatment of light electrons. As a

consequence, it is called the hybrid method throughout this paper. In the

literature, the approach used in this work is often referred to as the

Ehrenfest (or mean-field) method. However, we adhere to the hybrid

3



denomination here to emphasize its mixed, quantum-classical nature.

In addition, the inclusion of quantum decoherence (as described below

in subsection 2.2) goes well beyond the usual mean-field approaches.

Note also that alternative names like hemiquantal method [14, 16, 22, 23, 24,

25, 26, 27] and semiclassical method [19, 28, 29, 20, 30, 21, 31] were also used

in our previous studies.

Within the hybrid method, the equations of motion are written using the

mean-field formalism [15], which results in a set of coupled classical Hamilton

equations for the nuclei,

q̇i =
pi
mi

, ṗi = 〈ψ| − ∂Ĥ

∂qi
|ψ〉, (1)

and time dependent Schrödinger equation for the electrons,

ih̄
∂|ψ〉
∂t

= Ĥ|ψ〉. (2)

In this paper, small Latin indices are used to label nuclear degrees of freedom

(i = 1, ..., 3N where N is the total number of atoms)1 and qi and pi denote

nuclear coordinates and momenta, respectively. Further, Ĥ is an electronic

Hamiltonian, which is supposed to parametrically depend on the nuclear posi-

tions, |ψ〉 is a time dependent electronic wave function, and the angle brackets

in the second part of Eq. 1 denote an integration over electronic positions.

For a numerical treatment, the (time-dependent) electronic wave function

and the electronic Hamiltonian are expanded against a properly chosen basis

set, |Φα〉,2 which may also parametrically depend on nuclear coordinates:

|ψ(t)〉 =
∑
α

cα(t)|Φα(qi(t))〉, (3)

Ĥ =
∑
β,γ

Hβγ |Φβ〉〈Φγ |. (4)

1Whereas needen, capital Latin indices will be used to label particular atoms.
2Throughout this paper, small Greek indices always label electronic basis set wave functions

and/or electronic states.
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In our calculations, the basis set wave functions have been assumed orthonormal,

〈Φα|Φβ〉 = δαβ , and (at least approximately) diabatic, 〈Φα|∂Φβ
∂qi
〉 = 0. This

results, after inserting the expanded forms of Eqs. 3 and 4 into Eq. 1, into3

ṗi = −
∑
α,β

c∗αcβ
∂Hαβ

∂qi
. (5)

Similarly, the electronic Schrödinger equation can be rewritten in an expanded

form after Eqs. 3 and 4 are inserted in Eq. 2,

ih̄ċα =
∑
β

Hαβcβ . (6)

A note is probably worth to add here on Eq. 5. Since the Hamiltonian

matrix and the expansion coefficients of the electronic wave function are in

general complex-valued, the form of Eq. 5 may become rather involved if their

real and imaginary parts, cα = c
(re)
α + ic

(im)
α and Hαβ = H

(re)
αβ + iH

(im)
αβ , are

explicitly considered,4

ṗi = −
∑
α,β

[(
c(re)
α c

(re)
β + c(im)

α c
(im)
β

) ∂H(re)
αβ

∂qi
+
(
c(re)
α c

(im)
β − c(im)

α c
(re)
β

) ∂H(im)
αβ

∂qi

]
.

(7)

However, even if the Hamiltonian matrix is complex-valued, its imaginary part

may be independent of nuclear coordinates (it holds, e.g., for ionic clusters of

rare gases discussed in Subsec. 2.5, see also Ref. [32] for details) and
∂H

(im)

αβ

∂qi
= 0.

In this case, the second term on the right-hand-side of Eq. 7 vanishes and the

equation is considerably simplified,

ṗi = −
∑
α,β

(
c(re)
α c

(re)
β + c(im)

α c
(im)
β

) ∂H(re)
αβ

∂qi
. (8)

As mentioned for example in Ref. [14], the electronic Schrödinger equation,

Eq. 6, must be treated with care since rapid time oscillations of the electronic

3For a more general derivation see reference 32.
4Since the electronic Hamiltonian matrix is hermitian, its real part and imaginary part

must be symmetric and/or antisymmetric, respectively.
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wave function (i.e., expansion coefficients cα) may lead, if the equation is in-

tegrated numerically, to extremely short time steps and huge computational

demands. Such short time steps are, however, unnecessary for the much slower

motion of nuclei. A procedure was thus proposed [32] to treat these rapid elec-

tronic oscillations in a computationally efficient way. More specifically, for a

time step short enough for the slow moving nuclei to be considered, within the

time step, fixed in space, the electronic equation of motion is integrated between

times t and t+ ∆ analytically,

|ψ(t+ ∆t)〉 ≈ exp

[
− i
h̄

Ĥ(t)∆t

]
|ψ(t)〉, (9)

which finally leads to

cα(t+ ∆t) ≈
∑
β,γ

Q∗βγ(t)Qαγ(t)exp

[
− i
h̄
Eγ(t)∆t

]
cβ(t), (10)

with Eγ(t) being the eigenvalues of the electronic Hamiltonian calculated at

time t and matrix Q contains corresponding eigenvectors, expanded against

basis set |Φα〉, as its columns. Though Eqs. 9 and 10 are only approximately

valid within the approximation of fixed nuclei, it can be shown (see Ref. 32

for details) that the error introduced by this approximation is negligible if time

step ∆t is sufficiently short.

As is clear form the preceding explanation, eigenvalue/eigenvector problem

has to be solved repeatedly during a dynamical calculation. To facilitate re-

spective evaluations in systems which exhibit fast dissociation, an improved

simulation scheme has been proposed [33]. The scheme consists in periodical

checks of the fragmentation state of the simulated system. If well separated

fragments are detected (on the base of a simple distance criterion, for exam-

ple), they are evolved separately and the rank of the Hamiltonian matrix to be

diagonalized is reduced.

2.2. Quantum decoherence

It is well known that the Mean-Field (MF) approach described above suffers

from a serious drawback consisting in unphysical mixture of adiabatic electronic
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states during the classical evolution of nuclei. For an ionic system (e.g., rare-

gas cluster cations discussed in Subsec. 2.5), it may lead to fragmentary (non-

integer) charges observed for MF trajectories upon the system fragments. In a

preceding work [19], we proposed to remove this defect from the MF approach

by introducing periodic attempts to collapse (or quench) the time-dependent

electronic wave function to one of available adiabatic electronic states. The ex-

tended dynamical approach was denoted by an MFQ (Mean-Field with Quench-

ing) acronym and was interpreted in terms of quantum decoherence5. Note

also that the mean-field may be more appropriate for such a model

inclusion of quantum decoherence since it completely neglects the

decoherence effects, while quantum decoherence is partially, but to

an unknown extent, included in the trajectory surface-hopping algo-

rithms by considering changes of adiabatic surfaces in gradient cal-

culations needed for the classical propagation of nuclear degrees of

freedom.

The quenching algorithm comprises basically two steps. As a first step,

probabilities are calculated for collapses of the current electronic wave function

into all available adiabatic states and a particular collapse is proposed using the

roulette-wheel algorithm. Secondly, nuclear velocities are adjusted so that the

total energy of the system is conserved. The proposed electronic transition can

be, in principle, rejected, mainly in the second step of the present algorithm

due to insufficient kinetic energy of atomic nuclei needed to compensate upward

electronic jumps. If this applies, the system resumes the coherent evolution

until next hop attempt [34].

Two alternative approaches for calculating the probability of the electronic

5The quenches of the time-dependent electronic wave function towards an adiabatic elec-

tronic state can be understood as instantaneous collapses of the wave function upon a classi-

cal measurement performed on quantum electrons by atomic nuclei. As a consequence, they

model the process of dissipation of quantum information from the electronic subsystem to the

classical environment.
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wave function collapse have been proposed [19]. Firstly, a numerically cheap

calculation employing the adiabatic amplitudes of the current electronic wave

function [34] has been considered. Following our preceding studies, we denote

this approach by acronym ”AMP” (AMPlitudes). More specifically, the normal-

ized probability of collapsing the current electronic state, |ψ〉, to a particular

adiabatic state, |φα〉, is calculated from [34]

gAMP
ψ→φα = aαα, (11)

where aαα are diagonal elements of the electronic density matrix ( aβα = CβC
∗
α)

and Cα denote amplitudes of the current electronic wave function, ψ, with

respect to the adiabatic wave functions, |ψ〉 =
∑
α Cα|φα〉.

Secondly, Tully’s fewest switches (TFS) algorithm [11] has been proposed to

calculate the quenching probabilities6. In this algorithm, the probability of a

transition from adiabatic electronic state |φα〉 to adiabatic state |φβ〉 occurring

within a time interval ∆tQ (the period of quenching attempts) is given by (see

Ref. 11)

gTFS
φα→φβ =

2∆tQ
aαα

[
1

h̄
Im(a∗βαHβα)− Re(a∗βαṘ · dβα)

]
, (12)

where Hβα ≡ 〈φβ |Ĥ|φα〉 are matrix elements of the electronic Hamiltonian,

R represents current nuclear configuration, and dβα ≡ 〈φβ |∇Rφα〉 are non-

adiabatic coupling vectors. For adiabatic states φα and φβ , the general formula

of Eq. 12 simplifies since the first term on its right-hand-side disappears7,

gTFS
φα→φβ = −2∆tQ

aαα
Re(a∗βαṘ · dβα) =

2∆tQ
aαα

Re(aαβṘ · d∗αβ). (13)

6The TFS algorithm may be considered more realistic than the AMP ap-

proach, the latter being, however, computationally less demanding. Since the

AMP method leads to results which usually compare well with available exper-

imental data (see section 3), it has routinely been used in our calculations as a

computationally cheaper, but still sufficiently accurate alternative.
7The following identities are used in the following equation to derive the second equality:

a∗βα = aαβ and dβα = −d∗
αβ .
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If a general transition from a general coherent state, ψ =
∑
α Cαφα is consid-

ered, related quenching probability, gTFS
ψ→φβ , is calculated from Eq. 13 by

weighting over participating adiabatic states. In our implementation [19],

it is done in two steps. Firstly, the initial adiabatic state is chosen

randomly with the probability calculated from the amplitudes of the

current electronic wave function using Eq. 11, and secondly, Eq. 13

is employed for calculating the TFS transition probabilities from the

selected initial state to all possible final states. The probabilities are

then used to propose a particular transition. Note, however, that the

probabilities given by Eq. 13 do not, in general, sum up to 1 and that

the electronic jump can be banned in the TFS approach even at this

stage. Then, the coherent evolution is resumed until next quenching

attempt.

After the quenching step has been proposed via either the AMP algorithm

or the TFS method, nuclear velocities have to adjusted so that the total energy

of the system is preserved,

v ≡ Ṙ→ v′ = v + ξx. (14)

Several schemes of the nuclear velocity adjustment have been reported in

the literature: e.g., adjusting along the non-adiabatic coupling vector (the real

part of the vector in the present work) [11, 35],

x = Re[dβα], (15)

or adjusting along the vector given by the gradient of energy difference between

the initial and final states, Eβ − Eα [36, 37, 38],

x = ∇R [Eβ(R)−Eα(R)] . (16)

Both methods have been used in our calculations. In line with our previous

papers, we denote them by acronyms ”C” (non-adiabatic Coupling vector) and

”G” (Gradient), respectively.8

8Note that the C method leads to a slightly unphysical behavior since it does not fully
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In addition to the two literature methods of the post-quenching velocity

adjustment, we have also used another, computationally much cheaper method

which consists in scaling the velocities by a positive multiplicative factor,

v′ = ζv. (17)

In this way, the method follows some implementations of a thermostat in constant-

temperature molecular dynamics calculations [40]. We denote this approach by

acronym ”S” (Scaling). However, a drawback of this additional approach is that

it, like the C method, does not conserve the total angular momentum of the nu-

clei unless the momentum is zero [19] and is thus inappropriate for calculations

of collisions with a non-zero impact parameter. For this case, the S procedure

has been modified in a way that the nuclear velocities are first transformed to

a frame rotating around the center-of-mass of the collision complex, in which

the total angular momentum of nuclei is zero, and only then scaled using the

S method. Finally, the velocities are transformed back to the initial frame and

coherent evolution is continued. We denote this modified S method by an ”SR”

acronym.

Combining the two methods for the calculation of the collapse probability,

TFS and AMP, and the three (four) methods for an after-collapse velocity ad-

justment, C, G and S (SR), we totally obtain six (eight) MFQ models. In

general, they are denoted by acronyms MFQ-XXX/Y, where XXX = TFS or

AMP, and Y = C, G or S (SR).9

In our implementations, periodically evoked quantum decoherence

with a quenching period fixed throughout a particular calculation is

used. In practice, the period of the decoherence attempts varies, how-

ever, with the quenching mechanism employed. For the MFQ-AMP

conserve the total angular momentum of nuclei [39]. The G method, on the other hand, does

not suffer from such a defect. See also a detailed discussion provided in Refs. 19, 39.
9For example, MFQ-AMP/S denotes a model within which the collapse probabilities are

obtained from adiabatic amplitudes of the current electronic wave function, Eq. 11, and the

velocities are afterward adjusted by simple multiplicative scaling, Eq. 17.
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approach, it is typically about one attempt per ∆tQ ≈ 10 − 100 fs,

while for the MFQ-TFS method, it is usually by an order of magni-

tude shorter (an attempt per ∆tQ ≈ 1 − 10 fs) because the rejection

rate is much higher (see, e.g., references 19, 31). Note also that

if a quenching attempt is performed each time step, the MFQ-TFS

approach becomes very close to the Tully’s Fewest Switches one.

2.3. Radiative transitions

The implementation of radiative transitions basically follows in our codes

the scheme proposed for including quantum decoherence as described in the

preceding subsection. It consists in periodical attempts to change an (adi-

abatic) electronic state of the simulated system in the downward direction

(φα → φβ , β < α), without adjusting nuclear velocities, however, since the

released electronic energy is supposed to be emitted in the form of electromag-

netic radiation. The probability for a φα → φβ radiative transition is calculated

from Fermi’s golden rule [41],

g
(R)
φα→φβ =

∆tR

3πε0h̄
4c3

(Eα − Eβ)
3 |~µαβ |2 , (18)

where Eα and Eβ are adiabatic electronic energies prior and after the transi-

tion, respectively, ~µαβ is the transition dipole moment between corresponding

states,10 and ∆tR is an (arbitrary) time period at which radiation transitions

are attempted. In our calculations, ∆tR has been chosen equal to the period of

electronic quenching in the MFQ algorithms.11 In the present work, calculations

with the radiative transitions included will be denoted by suffix ”-R” added to

the acronyms introduced in the preceding subsection (e.g., MFQ-AMP/S-R).

10Both parameters are calculated at the current nuclear configuration reached on the clas-

sical nuclear trajectory.
11Radiative transitions have always been attempted immediately after a successful quench-

ing event, the adiabaticity of the starting state, φα, is thus secured.
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2.4. Multiscale method

The non-adiabatic dynamics is primarily intended for the investigation of fast

processes with typical times up to t = 1 ns and its extension to much longer times

requires rather huge computational demands. As a consequence, if metastable

intermediates are formed with life-times by many orders of magnitude longer,

dynamical simulations become impracticable, in particular for large systems.

As an example, let us mention the experimental observation of the long-time

decay of metastable ionic rare-gas clusters (see, e.g., Ref. [21] and references

reported therein).

Mainly for this reason, an approximate extension of the direct non-adiabatic

dynamics calculations, which overcomes this limitation, has been recently pro-

posed for radiative transitions [20] as well as for both radiative and non-radiative

transitions considered [21]. This approximate methodology consists in extend-

ing the short-time non-adiabatic dynamics calculations by a kinetic rate theory

treatment. More specifically, each trajectory resulting in long-lived metastables

is treated as an ensemble of systems undergoing a long-time electronic relaxation

which is represented by a properly proposed set of first-order ”chemical” pro-

cesses. The time evolution of abundances of resulting relaxed electronic states

(and decay products deduced from them) is then governed by a set of kinetic

equations which can be easily solved, either numerically or analytically, over

arbitrary time intervals and at modest computational costs. Since many time

scales can be treated in this way, this approach is called the multiscale method.

A general scheme of this multiscale method can be typically split into two

phases and several partial steps [20, 21]:

1. phase 1 – direct dynamical calculations

(a) preparation of an appropriate set of initial conditions, which should

mimic a particular experimental setup, to be further propagated via

a direct non-adiabatic dynamics calculation,

(b) subsequent non-adiabatic dynamics calculation up to a pre-set time

tDD and evaluation of the output of short-time processes,
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2. phase 2 – approximate kinetic treatment

(a) calculation of rate constants of slow processes governing the long-

time relaxation of the metastable intermediate species recorded in

the preceding step; the calculation is performed with fixed nuclear

configurations resulting from the preceding step at t = tDD,

(b) analysis of products generated in the preceding step, particularly

with respect to their stability, and updating the abundances of final

products through the kinetic model.

Note that radiative as well as non-radiative processes can be taken into ac-

count during both phases of calculations. During the second, kinetic treatment

phase, the needed rates of radiative and non-radiative electronic transitions are

obtained, for a given nuclear geometry, from the transition probabilities intro-

duced in Subsecs. 2.2 and 2.3. For a radiative transition from state φα (with

energy Eα) to state φβ (with energy Eβ < Eα), related rate constant can be

calculated from Fermi’s golden rule,

Γ
(R)
αβ =

1

3πε0h̄
4c3

(Eα − Eβ)
3 |~µαβ |2 , (19)

where the symbols used on the right-hand side are the same as in Eq. 18. The

rate constant for non-radiative electronic transitions can then be obtained from

Tully’s fewest switches formula as simplified for adiabatic states (see Eq. 13),

Γ
(NR)
αβ =

2

aαα
Re(aαβṘ · d∗αβ). (20)

with, again, the symbols used in Eq. 20 having the same meaning as in Eq. 13

of Subsec. 2.2.

To illustrate how the multiscale method works during the second, long-time

phase, a simple model case is considered when only parallel first-order processes

are expected to govern the long-time evolution. In this specific case, the kinetic

equations used to calculate the time evolution of the occupation numbers of the
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initial state, nα, and all possible final states, nβ , read as follows,12,

dnα
dt

= −
∑
β

Γ
(R)
αβ nα −

∑
γ

Γ(NR)
αγ nα,

dn
(R)
β

dt
= Γ

(R)
αβ nα,

dn
(NR)
γ

dt
= Γ(NR)

αγ nα.

(21)

Here, the sums on the right-hand-side of the first equation run over all final

(adiabatic) states (φβ and φγ) allowed within a particular kinetic model for

radiative and non-radiative transitions, respectively, and changes in the occu-

pation numbers are treated separately for radiative (R) and non-radiative (NR)

processes. This is because, even though the electronic states reached after ra-

diative and non-radiative transitions may be the same, nuclear kinetic energies

and, consequently, post-transition fragmentation pathways may differ for the

two cases.

If the initial conditions for Eqs. 21 are considered in a form of nα(tDD) = 1

and nβ(tDD) = 0 and if the time elapsed from the beginning of phase 2 of

calculations is denoted τ (τ ≡ t− tDD), one gets from Eqs. 21:

n
(R)
β (τ) = (1− e−Γτ )

Γ
(R)
αβ

Γ
, n

(NR)
β (τ) = (1− e−Γτ )

Γ
(NR)
αβ

Γ
, nα(τ) = e−Γτ ,

(22)

where Γ =
∑
β Γ

(R)
αβ +

∑
γ Γ

(NR)
αγ . Using solutions given by Eq. 22, occupation

numbers are obtained for each trajectory and for each final electronic state φβ

resulting, at time t = tDD + τ , from the φα → φβ transition. Then, possible

decay channels are detected for a particular transition and the abundance of

fragments is updated using the occupation numbers provided by Eq. 22.

2.5. Ionic rare-gas cluster cations

The methodology described in preceding subsections has mostly been used,

in our group, to study post-excitation dynamics of a specific class of model

systems, namely the singly charged clusters of rare gases (Rg+
N , Rg = He –

12Note that the occupation numbers are calculated for each particular trajectory entering

phase 2 of the multiscale treatment and the results obtained for all the trajectories are then

used to update fragment abundances as described below.
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Xe). The main reason for this choice consists mainly in a couple of favorable

features of these species. Firstly, there are computationally cheap and still

highly accurate interaction models for them which provide both the electronic

ground state as well as excited state potential energy surfaces and couplings

between them. Secondly, the models are based on (approximately) diabatic

basis sets, so, equations of Subsec. 2.1 directly apply. Finally, a plethora of

experimental data available on the rare-gas cluster cations in the literature

allows for straightforward tests of the proposed methodology.

In this subsection we provide a compact survey of interaction models (model

electronic Hamiltonians) used in preceding studies reported on the rare-gas clus-

ter cations from our group. Since most of the material has already been pub-

lished elsewhere, only a brief account is provided here for reader’s convenience

with frequent references to relevant preceding works.

2.5.1. Ne – Xe

For rare-gases with last filled shell being ns2np6 (Ne–Kr), the intra-cluster

interactions are described in the Rg+
N ions within specifically designed diatomics-

in-molecules (DIM) models. The DIM approach, originally developed by Ellison

[42] and later applied to singly ionized clusters of rare gases by Kuntz and Vall-

dorf [1], consists in, firstly, expanding the electronic Hamiltonian into a sum of

diatomic and atomic contributions,

Ĥ =

N−1∑
I=1

N∑
J=I+1

ĤIJ − (N − 2)

n∑
I=1

ĤI , (23)

where N denotes the number of atoms, and, secondly, in designing a specific

valence-bond basis set of wave functions for which the corresponding Hamil-

tonian matrix can be calculated from the electronic energies of atomic and

diatomic fragments. If the spin-orbit coupling is neglected, the atomic con-

tributions are constant and their sum can be identified with the zero of the
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electronic energy, i.e., the atomic part of Eq. 23 is neglected.13 The diatomic

energies are provided from independent sources, either from experiments or (ab

initio) calculations. References to studies from which particular diatomic curves

have been taken for specific calculations are given in Sec. 3.

The basis set allowing this consists of 3N valence-bond Slater determinants,

|Φα〉 ≡ |Rg...RgRg+Rg...Rg| (α = [K, pm], K = 1, · · · , N , and m = x, y, z),

where Rg and/or Rg+ denote respectively electronic configurations of an Rg

atom and/or ion, the latter corresponding to the K-th nucleus and having an

electron removed from the pm-orbital. A particular wave function of this basis

set represents thus a state with the positive charge localized in pm-orbital of

atom K. The corresponding Hamiltonian matrix, Hαβ ≡ 〈Φα|Ĥ|Φβ〉, is then

obtained from diatomic inputs as described in Ref. 1 and reviewed in detail in

Ref. 43.

The original DIM approach as applied to rare-gas cluster cations can be

extended in several directions which are particularly important for heavy rare

gases. First of all, the spin-orbit coupling can easily be included [9] via a simple

semi-empirical atoms-in-molecules scheme [44], secondly, the most important

three-body polarization forces (of the induced dipole–induced dipole type) can

also be taken into account [9] as well as three-body dispersion forces [45] acting

among neutral atoms in the Rg+
N complex. If the spin-orbit coupling is consid-

ered, the cardinality of the basis set (and the rank of the electronic Hamiltonian

matrix) doubles, α = [K, pm, sz] with sz = ±1/2 being the spin projection of

the electron removed from the valence shell. The inclusion of the three-body

forces, either polarization forces or dispersion forces, does not, on the other

hand, change the dimension of the electronic Hamiltonian matrix and requires

only a modification of its diagonal. For more details see Ref. 9 and Ref. 45.

Independent inputs needed to this extended DIM approaches consist of a) spin-

orbit coupling constants of atomic ions ( Rg+), rare-gas atom polarizabilities,

13In this case, the zero of the energy of an Rg+
N cluster corresponds to a fully dissociate

state, Rg+ + (N − 1)Rg.
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and three-body dispersion coefficients (for specific settings see Sec. 3).

Several interaction models result from the diatomic-in-molecules approach

and its extensions: a) the original model of Ref. 1 (denoted here as the DIM

model), b) a model augmented with the spin-orbit coupling (denoted as the

DIM+SO model), c) a model augmented with both the spin-orbit coupling

and the induced dipole–induced dipole interaction terms (the DIM+SO+ID-

ID model), and d) a most comprehensive model including, in addition to the

previous extensions, the three-body dispersion contributions (the DIM+SO+ID-

ID+N3 model). Basically, all of the four models have been used in our calcula-

tions to assess the role of various interaction contributions.

2.5.2. He

For helium, the situation is a bit more involved since the usual DIM model

based on a valence bond basis set14 does not work properly and does even not

reproduce the equilibrium linear symmetric structure of the He+
3 cation [46]. It

is mainly due to a lack of interaction anisotropy, important in ionic complexes of

rare gases, which cannot be properly modeled by spherical atomic orbitals of the

valence shell of the helium atom (1s). To include the needed anisotropy, three-

body contributions have been included in the He+
N DIM Hamiltonian matrix

by Knowles et al. [47, 48]. In our calculations, we have used the extended DIM

model as implemented for He+
N and reviewed in detail in Ref. 49.

14For helium cluster cations, He+
N , a basis set is used in the form of |Φk〉 =

|He...HeHe+He...He| (with He and He+ denoting respectively 1s2 and/or 1s1 configurations

of the helium atom and/or ion, and He+ occurs in the K-th position, K = 1, · · · , N). Each

particular wave function represents thus a state of the cluster with the positive charge local-

ized in 1s-orbital of atom K. As a consequence, totally N basis set wave functions are used

for He+
N and the spin-orbit coupling is neglected since non-zero angular momentum states are

not considered.
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3. Results and discussions

3.1. Photodissociation

The first step in the photodissociation is the photoabsorption where the sys-

tem is excited with photons of a well defined energy to some excited electronic

state. In addition to the potential energy surfaces given by the DIM method,

it is necessary to evaluate the transitions dipole moments which are necessary

to calculate the transition intensity. After some tentatives to derive it from

diatomic data, the use of the R vector according to the point-charge model [50]

has been widely adopted. Following semiclassical ideas and assuming purely

vertical transitions, an histogram is built and according to the potential energy

difference the transition probability is accumulated from some appropriate sam-

pling of nuclear configurations in the ground state [26, 27]. This sampling may

employ classical trajectories calculated under microcanonical conditions (fixed

energy) [18], but care should be taken with the ergodicity [26, 27, 51], or under

canonical conditions (fixed temperature) [43], often using Monte Carlo proce-

dures, or from importance sampling of quantum wave functions either coming

from a normal mode approach [52], a full quantum calculation [53], or from a

quantum Monte Carlo evaluation [54]. In Fig. 1, typical theoretical absorption

spectra of the ionic rare-gas trimers (argon, krypton, and xenon) calculated for

visible (VIS) wavelengths [43, 55, 56] are compared with experimentally recorded

ones [57, 58, 59]. Clearly the simulation works well for this initial step, giving

confidence in the underlying DIM models and other theoretical approaches and

assumptions. Clearly, the photon excitation is properly taken into account in

the simulation for the VIS peaks for all the three rare gases as well as for the

peak experimentally recorded [60] at ultra-violet (UV) wavelengths for argon.

The UV peaks for krypton and xenon were also predicted [55, 56].

In typical photodissociation experiments, the system fragments after pho-

ton absorption and various fragments are collected, often by Time-Of-Flight

(TOF) techniques, ideally all the fragments, however, mainly only the charged

fragments since neutral fragments are much more difficult to detect. Therefore,

18



a detailed information is experimentally obtained for the total Kinetic Energy

Released (KER) and the Kinetic Energy Distribution (KED) of the fragments.

From the theoretical point of view, since the system starts, after photon absorp-

tion, from an electronically excited state, non-adiabatic dynamics is needed as

non-adiabatic transitions to lower electronic states are possible and they may

lead to internal conversion. How effective non-radiative transitions and inter-

nal conversion are is an important problem in photodissociation dynamics. In

addition, the SO coupling also plays an important role as was clearly shown by

experimental KER results [61] obtained for the heavier rare-gas trimers excited

in the VIS region. In Fig. 2, such KER results measured for Xe+
3 are compared

with data resulting from our simulations [62]. The agreement is spectacular and

evidences that when there is enough energy, Xe+ atomic fragments are formed

in the excited fine-structure state and not in the ground state. Moreover, the

switching is quite abrupt. It is noteworthy that calculations were even able to

estimate the internal energy of the initial parent cluster (in the experiment)

since our results obtained for hot clusters agree much better with experimental

points than the results calculated for the cold ones. It is further clear that the

SO coupling and internal conversion compete in the non-adiabatic dynamics of

the ionic rare gases clusters.

Analysis of the KED also gives important information on the fragmentation

dynamics. For the Ar+
3 photodissociation, a trimodal distribution was observed

[59, 61, 63, 64, 65] and our simulations clearly also lead to fast and slow frag-

ments as illustrated in Fig. 3. The relative abundance of the two peaks depends

on the charge carried by the fragment. For the ions (Ar+), fast fragments domi-

nate while for the neutrals the reverse holds, slow fragments are more abundant.

However, the peak positions are more or less the same for both, illustrating that

charged and neutral fragments experience similar dynamics. In fact, these re-

verse abundances reflect the initial charge repartition in the excited state. After

VIS photon absorption (Ephot = 2.35 eV in Fig. 3), for example, the charge is

shared by the two outer atoms and the system mainly explodes leaving the

central atom slow and the two outer ones fast. Later in the dissociation, non-

19



adiabatic dynamics leads to some charge relocalization to the central atom, thus

contributing to the slow peak for the ions. After UV excitations (Ephot = 4.3 eV

in Fig. 3), although the charge is initially spread over the trimer following a

0.25-0.50-0.25 pattern in the equilibrium centrosymmetric geometry, the situa-

tion is more involved than in visible excitations because asymmetric distortions

are now favored by the absorption excitation process.

The ratio of the fast and slow peaks areas of the ions was called the symmetric

branching ratio [61]. In Fig. 4, experimental [61] and theoretical [28] results

are compared for Ar+
3 and Xe+

3 photodissociation at photon energies from

about Ephot ≈ 2 eV to Ephot ≈ 5 eV. The agreement between the experiment

and theory is very good, although it is rather difficult to converge the KED in

the simulation and a huge number of dissociation events needs to be considered.

Here again, we could estimate the effective temperature of the initial clusters,

which seems to be much larger for xenon than for argon.

The average size of ionic fragments emitted from photoexcited parents of

larger sizes is illustrated in Fig. 5 for Ar+
N (N = 6 − 19) for VIS photodis-

sociation in the main absorption peak (Ephot = 2.35 eV) [33] and compared

to the experimental results [66, 67]. These more global data show the competi-

tion between evaporation, direct fragmentation of the core, cage effects, internal

conversion, and other complex mechanisms emerging as the parent cluster size

increases. More specifically, the photon energy is absorbed mainly by

the core, therefore dissociative processes mainly start from the core.

However, since the core is gradually surrounded by (almost) neutral

atoms as the cluster size increases, collisions with them become fre-

quent and resulting cage effects may lead to an efficient transfer of

energy or even charge. However, if this is not the case, the surround-

ing neutral atoms are less bonded to the rest of the cluster than

charged atoms and may easily detach via evaporation process. As

each evaporation event yields the cluster with less internal energy,

some kinetic energy being taken away by the departing atom, the

cluster gets cooler and, when repeated, the evaporative cooling takes
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place.

Two theoretical approaches are also compared to each other, MFQ-AMP/S

and MFQ-TFS/C , and lead to quite similar results. For larger sizes, it is

however possible to notice some global increase of the non-adiabatic

transition efficiency with the MFQ-TFS approach compared to the

MFQ-AMP one. The MFQ approach is mandatory here since sequential

fragmentation processes are obviously present as illustrated in the inset.

The agreement with the experimental results is very good, given again con-

fidence in the theoretical simulation even for the highly involved nonadiabatic

dynamics in large ions. Below N ≈ 11−10, mainly dimer fragments are formed

as well as some trimers. For larger parent sizes, on the other hand, the fi-

nal fragment sizes increase with the initial parent size. For the smaller parent

clusters, evaporative cooling is not sufficient to avoid the core breaking, but

the production of ionic dimer fragments (instead of monomer ones) shows that

internal conversion is quite effective.

3.2. Post-ionization fragmentation

The post-ionization fragmentation of rare-gas clusters has for long been a

matter of controversy between theory and experiment, in particular for heavier

rare gases (krypton and xenon). While, for these two heavy rare gases, exper-

iment predicted an absolute dominance of monomer ionic fragments resulting

from ionized parents decay [68, 69], in theory [70, 69] ionic dimers dominated for

small parent sizes or even larger ionic fragments as the parent size increased. For

lighter rare-gases (argon and neon), on the other hand, the agreement between

theory and experiment was rather satisfactory [39, 71].

The above mentioned controversy was the main motivation for us to enter

the game and to test our theoretical approaches in investigating this intriguing

problem. To verify the reliability of the methodology, we started our calculations

with the post-ionization fragmentation of ionic trimers of argon (Ar+
3 ) for which

previous calculations [72] had been able to reproduce available experimental

data [73] fairly well. Our calculations using the MF dynamical approach [32]
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and various interaction models predicted between 24% and 28% of monomer

fragments, in a good agreement with both the experimental value (about 30%)

and predictions resulting from preceding calculations (see the left-most and

right-most columns of the Ar+
3 panel of Fig. 6).

However, after we applied the MF method to the two heavier rare gases [19],

a catastrophic disagreement emerged between our calculations and experiments

[19]. More specifically, ionic dimer fragments dominated over monomers in

our calculations, in contrast to the experiments where almost exclusively ionic

monomers were observed, but in line, at the same time, with other theoretical

calculations [70, 69] as well reporting the dominance of compound, dimer ionic

fragments. In Ref. [19], we proposed this to be a consequence of the fact that

quantum decoherence was completely ignored in the MF method used in our

group and was only partly included in other calculations utilizing Tully’s surface

hopping approach [11]. After quantum decoherence was considered [19] in our

calculations (MFQ methods of Subsec. 2.2), the agreement with the experiments

was considerably improved for krypton and xenon while, at the same time, an

excellent correspondence was preserved for argon (see Fig. 6). The agreement

became, for the two heavier rare gases, fully qualitative (more ionic monomers

were predicted from calculations than dimers) or even quantitative with an only

slight underestimation of the experimental values by the theory.

The remaining quantitative difference between experiment and theory seen

for krypton and xenon was finally interpreted in terms of the initial electronic

excitation of the parent ion prior to its decay. Since nothing firm is known about

this excitation from measurements, various models were adopted in calculations.

For example, an equally weighted linear combination of all the adiabatic states

available within the DIM method was used in the surface hopping calculations

[39, 71, 70, 69]. In our work, on the other hand, the initial electronic state of

the fragmenting parent was originally set [32, 19] in such a way that the positive

charge was localized on a randomly selected atom occupying an electronic state

prepared as a random linear combination of six atomic states included, for each

atom in the cluster, in the DIM basis, ΦKpmsz (see Subsec. 2.5.1), with K
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fixed to the selected atom and m = x, y, z and sz = ±1/2. Since, in addition,

we found from the energy considerations that a (four-dimensional) subspace of

this atomic state space corresponding to the P3/2 term cannot contribute to the

production of ionic monomer fragments due to lack of energy, only the (two-

dimensional) orthogonal complement of the P3/2 space (corresponding to P1/2)

was considered in later calculations [21, 31].

However, a quantitative agreement could still not be achieved. Mainly be-

cause a considerable amount of metastable, long-lived intermediate fragments

resulted from our calculations even though quite long simulation times were used

(hundreds of picoseconds). For this reason, we developed an approximate sim-

ulation scheme [21] allowing us to extend dynamical calculations to sufficiently

long times so that all the intermediate metastable species could undergo ex-

pected fragmentation. Since basically all time scales became accessible through

this scheme, we called it a multiscale method (see also Subsec. 2.4). After the

multiscale method was applied to the post-ionization fragmentation of ionized

krypton clusters [31], a close-to-quantitative agreement was achieved with avail-

able experimental data. For a summarizing view, see Fig. 7 from which both

a good performance of the multiscale method as well as shortcomings of direct

dynamical calculations if performed at insufficiently long times are clear.

To further verify the assumption that long times are needed to get converged

dynamical simulations of the post-ionization fragmentation of cluster cations of

heavy rare gases, a series of long-time calculations were performed [74] for the

Kr+
7 ion (the largest parent size for which experimental data are available

[68]) using an improved simulation protocol with periodical checks of the frag-

mentation state of the decaying ionic complex and with detected intermediate

fragments treated separately (see Ref. [33] for more details). In principle, this

extension can be combined with any dynamical approach described in Subsec.

2.2 and, if this is the case, a suffix ”(sf)” (an abbreviation of ”separate frag-

ments”) is added to the acronyms introduced in Subsec. 2.2. As an illustration

of such a long-time calculation, the post-ionization fragmentation of the Kr+
7

ion starting from the highest adiabatic electronic state available within the DIM
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approach is exemplified in Fig. 8. It is clearly seen that not only the experimen-

tal data are closely reproduced within such an treatment, but also a detailed

information can be obtained on the processes responsible for the disintegration

of the ionic parent to the final, elemental fragments (Kr+ and Kr+
2 ) through a

series of intermediate, metastable species.

Both the approaches used for direct dynamical simulations as well as the

multiscale method could easily be extended to include radiative transitions (see

Subsec. 2.3 for details). This allows, among others, to collect the information

about the luminescent radiation emitted from metastable species along their

decay. As an example, we show, in Fig. 9, calculated luminescent spectra of

metastable krypton and xenon dimer cations. Noteworthy, such an additional

information resulting from calculations is important for further experimental

validation of adopted theoretical approaches. Unfortunately, no related experi-

mental data are presently, to our best knowledge, available in literature.

3.3. Collisions

To complete this review about the non-adiabatic dynamics processes mod-

eled using the methods developed by our team, let us discuss two kinds of

collisions. The first one is a rather usual collision problem where we considered,

at various collision energies, collisions of Xe+ ions with neutral xenon trimers

(Xe3). In this up to now unpublished study, we focus on the production of

ionic xenon dimers (Xe+
2 ), having in mind the ionic clusters growth in super-

sonic expansions. In order to form a dimer ion, the charge needs to hop from

the initial charged monomer to a larger cluster while the subsequent detach-

ment of neutral atoms can further stabilize the final ionic dimer. As can be

seen in Fig. 10, at low collision energies (represented by Ecoll = 0.02 eV in

this work), the efficiency of the production of Xe+
2 is much higher if one starts

with the monomer ion (Xe+) in its fine-structure ground state (P3/2), while at

intermediate (Ecoll = 0.1 eV) and higher (Ecoll = 0.5 eV) collision energies, the

initial fine-structure excitation plays a rather lesser role. Moreover, the global

efficiency strongly decreases as the collision energy grows up, regardless of the
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initial monomer ion excitation. These new results clearly show that, to increase

the ionic cluster size, collisions at low energies should be privileged. Note also

that care has been taken here to use a method which preserves total angular

momentum. Particularly because the total angular momentum is closely related

to the initial impact parameter, and in a method where it is not conserved, data

corresponding to different impact parameters would be nonphysically mixed and

this would finally lead to wrong results.

The second illustration was primarily motivated, as already mentioned in

Sec. 1, by cold plasmas production and their use in various applications, e.g.,

medical applications for He [3, 4], and UV sources [5] and spacecraft propul-

sion for heavier rare gases [6]. The cold plasmas are usually produced in a

corona discharge apparatus, but the need to make the apparatus more practical

and easier to build and/or use requires a detailed knowledge of main micro-

scopic processes governing the properties of these cold plasmas. Among others,

Momentum Transfer (MT) cross-sections15 and integral cross-sections were cal-

culated for respectively Non-Reactive Scattering (NRS) and Collision Induced

Dissociation (CID) of various rare-gas dimer ions colliding with corresponding

rare-gas atoms. The ions were considered both in their electronic ground state

as well as in excited states, and also various vibrational and rotational states

of the dimers were investigated. Selected results taken from previous studies

carried out in our group are shown in Fig. 11. In these studies, the method

used for the non-adiabatic dynamics treatment was the MFQ-AMP/SR one (as

a computationally less demanding alternative) since basically tens of thousands

of trajectories had to be computed for each collision energy to get a reason-

able level of convergence. As is clearly seen in Fig. 11, the behavior of the

cross-sections with increasing collision energy is rather similar for all the rare

gases considered. The MT cross-sections decrease smoothly from low collision

energies to about Ecoll = 2 eV and then the decrease is more pronounced. At

15The MT cross-section is defined as follows: σMT =
∫

4π
σd (1− cosφ) dΩ, where σd is the

usual differential cross-section, φ denotes the deflection angle, and Ω is solid angle.

25



collision energies of Ecoll ≈ 1.5 eV, i.e., slightly below the energy at which the

slope of the MT cross-section curves changes, CID processes start, become ef-

fective, and rapidly achieve their saturation. In such a way, the fact that the

two processes, NRS and CID, combine and make disappear the initial ionic

dimer leads to a global smooth decrease of the MT cross-section from the small

collision energies (Ecoll = 0.01 eV) to the high ones (Ecoll = 100 eV). Notewor-

thy, the calculated cross-sections were used in a series of realistic calculations

of transport properties of the considered ions [75, 76, 77, 78, 79] the results of

which mostly very well reproduced available experimental data, extend them

to experimentally unreachable conditions, or even provide data which were not

recorded experimentally but are, a t the same time, important for macroscopic

plasma modelings.

4. Conclusions

Starting from a pioneering ”on-the-fly” method [14, 16, 22, 23, 24] and chal-

lenged by interesting experimental results, we have improved our hybrid dy-

namical approach (quantum treatment of electrons and classical description of

nuclei) [32] in two directions consisting in: a) the inclusion of periodic deco-

herence [19] to face sequential fragmentation and fix the fractionary charge

problem, and b) a multiscale approach [20] to include long-time evolution in-

volving radiative and non-radiative processes. These developments allowed us

to treat complex non-adiabatic dynamics occurring in photodissociation, post-

ionization fragmentation, and collisions of ionic rare-gas clusters. In general,

the larger the system, the more efficient the non-adiabatic relaxation processes

are and, therefore, internal conversion increases with the size of the cluster and

more generally of the system. However, the spin-orbit coupling introduces two

groups of states in the rare-gas cluster ions, and inter-group or intra-group non-

adiabatic transitions act rather differently [62]. Since the inter-group transitions

are rather improbable, a concept of pseudo-ground state for the excited state

group could be introduced.
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Some comparisons made with full quantum results (in the context of cold

plasmas modeling) [75, 80] are very encouraging, although some differences re-

main related to the classical treatment of the nuclear motion for helium [75] and

involved effects for the heavier rare gases [80].

The methodology developed up to now and described in this paper seems to

have a strong potential for further extensions and applications. For example, it

could be very interesting to test the methods on other systems and problems,

like vibrational predissociation, where many experimental results can be found

to test the developed theoretical approaches, and also quantum treatments of

the smaller systems. Even for rare gases, there is still much to be investigated,

e.g., larger ionic clusters, mixed ionic clusters, atoms and molecules solvated in

rare-gas envelopes etc. All the methods we have developed to carry on realistic

simulations could be involved to treat a very general problem of non-adiabtic

dynamics, namely how the excess energy flows and is dissipated or relaxed in

complex molecular systems with many electronic states involved and frequent

transitions between them.
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[74] I. Janeček, M. Stachoň, F. X. Gadéa, R. Kalus, Phys. Chem. Chem. Phys.

19 (2017) 25423.

[75] A. Chicheportiche, M. Benhenni, M. Yousfi, B. Lepetit, R. Kalus, F. X.
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[83] I. Paidarová, F. X. Gadéa, Chem. Phys. 274 (2001) 1.

33



Tables and figures

Figure 1: Photoabsorption spectra of Rg+
3 cations (Rg = Ar, Kr, and Xe) in the VIS region.

Discrete symbols represent experimental data (circles – Ar [57], squares – Kr [58], triangles –

Xe [59]), lines correspond to theoretical results [43, 55, 56] obtained for the DIM+SO model

and based on classical Monte Carlo samplings of cluster configurations performed at effective

temperatures best reproducing the experiments (full line – Ar, Teff = 150 K, dashed line – Kr,

Teff = 200 K, dotted line – Xe, Teff = 250 K). In the inset, experimental [60] and theoretical

[28] data are depicted for the UV spectrum of Ar+
3 . Note that in this case Teff = 230 K has

been used in theoretical calculations.
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Figure 2: Total kinetic energy released (KER) from photoinduced dissociation of the Xe+
3

ion (Xe+
3 → Xe+ + 2Xe): full dots – experiment [61], open dots – theoretical calculation [62]

performed using the DIM+SO and MF models and with the Xe+
3 configurations sampled

from the microcanonical distribution of ”hot” linear isomer initially vibrationally excited by

∆E ≈ 0.11 eV above its ZPE level (energy difference between two stable isomers of the Xe+
3

ion, see Ref. 56). For comparison, KER estimates resulting from the energy conservation law

are added as straight lines (dashed lines correspond to the Xe+
3 ion initially vibrationally

excited by ∆E ≈ 0.11 eV above its ZPE level and dotted lines represent the rotationally-

vibrationally ground-state ion; the upper pair of lines corresponds to fine-structure ground-

state Xe+ fragments, the lower pair has been obtained for excited Xe+ ionic fragments).
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Figure 3: Kinetic energy distributions of ionic (Ar+, thick lines) and neutral (Ar, thin lines)

fragments resulting from the photodissociation of the rotationally-vibrationally ground-state

Ar+
3 ion (linear isomer) following absorption of a photon carrying Ephot = 2.35 eV (full

lines) and/or Ephot = 4.30 eV (dotted lines). The curves have been calculated [30] using the

DIM+SO interaction model and the MFQ-AMP/S dynamical approach. Note that there is a

break on the horizontal axis between 0.5 eV and 1.0 eV.
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Figure 4: Experimental [61] (symbols) and theoretical [28] estimates of the symmetric branch-

ing ratio for dissociation of photoexcited Ar+
3 (squares, full line) and Xe+

3 (circles, dotted

line) ions. The theoretical data have been obtained for the DIM+SO model and the MF

dynamical approach. Thermal populations of the ionic trimers have been considered in cal-

culations with the effective temperatures set to Teff = 50 K for argon and Teff = 250 K for

xenon.
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Figure 5: Average size of ionic fragments for Ar+
N parents photoexcited by Ephot = 2.35 eV:

symbols – experimental data (upper triangles [66] and lower triangles [67]); stepwise lines –

calculations [33] performed for the DIM+SO+ID-ID(dmp) interaction model using the MFQ-

AMP/S(sf) (solid line) and/or MFQ-TFS/C (dotted line) dynamical approaches. In the inset,

time-dependent abundances of (intermediate and final) ionic fragments resulting from Ar+
9 are

depicted as obtained for the MFQ-AMP/S(sf) approach.
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Figure 6: Relative abundances of ionic fragments resulting from the post-ionization frag-

mentation of argon, krypton, and xenon trimers as obtained from MF [32] and MFQ [19]

calculations using the DIM+SO model at time t = 100 ps after the ionization event (when

the dynamical calculations are well converged [19]) and compared with available experimental

data reported in references [81] (Ar+
3 ), [68] (Kr+

3 ), and [69] (Xe+
3 ). For comparison, results of

independent Tully’s Surface Hopping (TSH) calculations are also shown [71, 70, 69].
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Figure 7: Relative abundances of monomer (open squares) and dimer (open circles) ionic

fragments [31] resulting from the post-ionization fragmentation of parent Kr+
N ions as obtained

from the multiscale method used to extend dynamical data calculated, up to t = 200 ps after

the ionization event, via the MFQ-AMP/S approach. For comparison, the MFQ-AMP/S

dynamical data recorded at t = 200 ps (dashed and dotted lines are used for monomer and

dimer ionic fragments, respectively) and experimental data [68] (full symbols) are also shown.

In the theory, the DIM+SO+ID-ID(dmp) model has been used for small parents (N ≤ 5) and

the DIM+SO+ID-ID(dmp)+N3(DDD) model have been applied to larger parents (N ≥ 6).
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Figure 8: Long-time evolution of the abundance of (intermediate and final) ionic fragments

resulting from the post-ionization fragmentation of the Kr+
7 ion initially excited to the highest

electronic level (L21) as obtained [74] from the MFQ-TFS/S(sf) dynamical method and the

DIM+SO+ID-ID(dmp)+N3(DDD) interaction model. Horizontal lines correspond to respec-

tive experimental values of monomer and dimer abundances as reported in reference [68].
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Figure 9: Luminescence radiation resulting from the metastable decay of the Kr+
2 (solid

curves) and Xe+
2 (dashed curves) ions calculated for rotationally-vibrationally ground-state

dimers ([j=0,v=0]) using the multiscale approach of Subsec. 2.4 and interaction potentials

taken respectively from Refs. 82 and [83]. Input configurations to the long-time phase of

the multiscale calculations have been generated, for both electronic states, from squares of

respective [j=0,v=0] nuclear wave functions and spectra have been collected at t→ +∞.
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Figure 10: Production of charged xenon dimers (Xe+
2 ) in collisions of ionic xenon monomers

(Xe+) with neutral trimers (Xe3) at various (center-of-mass) collision energies (Ecoll). The

data have been obtained using the DIM+SO interaction model and the MFQ-AMP/SR dy-

namical approach. The initial electronic state of the Xe+ ion has been either set to the ground

fine-structure state (P3/2, solid squares) and/or to the excited state (P1/2, open circles); curves

going through respective points are drawn to guide eyes. Note that weighted (multiplied by

the impact parameter) relative abundances of the Xe+
2 product ion are depicted and that

different scales are used on the vertical axes for different collision energies.
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Figure 11: Momentum-transfer (MT) cross-sections (full symbols) and collision-induced

dissociation (CID) cross-sections (open symbols) calculated for Rg+
2 (j=0,v=0)/Rg collisions

using the MFQ-AMP/SR dynamical method and the DIM+SO interaction model, Rg = He

(squares) [75], Ne (circles) [77], Ar (up triangles) [76], Kr (down triangles) [78], and Xe

(diamonds) [79].
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Sequential fragmentation of electronically highly excited Kr+7 ion upon electron-
impact ionization of its neutral precursor (Kr7).
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